
Systems with fast limit cycles and slow interaction
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We will review the theory of slow-fast systems that started with papers by
Tykhonov, Pontryagin, Levinson, Anosov, Fenichel and other scientists. After
this review we focus on systems with limit cycles. The Pontryagin-Rodygin the-
orem for slow-fast systems has an ingenious proof; also it has as advantage that
it can be applied if the slow manifolds of the slow-fast system are all unstable. A
serious disadvantage is that for application we have to know the fast solutions
explicitly with the slow part in the form of parameters. Another disadvantage is
the relatively short timescale where the results are valid. In practice there are
very few cases where the theorem applies. However, the Pontryagin-Rodygin
idea can be used again on assuming that the fast limit cycle arises in higher
order approximation; this allows an approximation approach to study the slow
motion. At this point we have still a restricted timescale but extension is then
possible by looking for continuation on stable, in particular slow manifolds.
We will demonstrate this extension of the theory by studying various types of
self-excited, coupled slow and fast Van der Pol oscillators.

1. Introduction

We will be concerned with slow-fast systems of the form:

ε
dy

dt
= f(t, x, y) + εR1,

dx

dt
= g(t, x, y) + εR2. (1)

x ∈ Rn, y ∈ Rm, ε is a small, positive parameter.

With excuses to people left out we mention the following founding scientists:

1. Tikhonov (1952)

2. Flatto and Levinson (1955)

3. Anosov (1960)

4. Pontryagin - Rodygin (1960)

5. Tikhonov expansions, Vasil’eva (1963), O’Malley (1968)
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6. Fenichel (1971 - 1979)

7. Jones and Kopell (1994)

The early developments in the period 1952-1970 were concerned with asymptotic approxi-

mations and periodic solutions. In the second period new developments were stimulated by

invariant manifold theory and new dynamics results.

2. Early results

We start with an example of (1): a prey-predator system with unequal interaction.

The population N preyed upon is abundant with respect to the predators P ; the prey-

population grows fast (we will return to the example later on):

εṄ = r(t)N

(
1− N

K(t)

)
− εNP, Ṗ = cNP − dP − P 2. (2)

The growth rate r(t) and carrying capacity K(t) are positive for t ≥ 0 and T -periodic, c and

d are positive constants; we have N,P ≥ 0. Think for r(t),K(t) of seasonal variations.

Tikhonov [13] studied system (1) by putting ε = 0 and supposing that y = φ(t, x) is an

isolated, asymptotically stable root of the equation f(t, x, y) = 0 (with t, x as parameters).

He proved then that y(t) jumps fast to the ’slow’ solution of the equation:

dx

dt
= g(x, φ(t, x)). (3)

The resulting approximation is valid on a time-interval O(1) for the slow motion of x. Ex-

amples show that without further assumptions this result is optimal. Vasil’eva [14] and

O’Malley [10] improved Tikhonov’s theorem in a practical way by assuming in addition that

the stability of the root y = φ(t, x) is exponential:

ReSp
∂f(t, x, y)

∂y
|(y = φ(t, x)) < 0. (4)

With this assumption the jumps take time O(ε) and we can obtain asymptotic expansions in

ε valid on time intervals O(1). Vasil’eva [14] uses matched asymptotic expansions, O’Malley

[10] introduces multiple timescale expansions for this singular perturbation problem.

Qualitative results regarding the existence of periodic solutions of system (1) were ob-

tained by Flatto and Levinson [8] and by Anosov [1]. Suppose that the slow equation (3)

contains an isolated T0-periodic solution, with only one multiplier 1, then the original system

contains a Tε-periodic solution with Tε → T0 as ε → 0. The theorems in [8, 1] show minor

differences in formulation, the important step is that they involve structural stability of the

asymptotic phenomena, they anticipate in a sense Fenichel’s results.



An interesting quantitative result was produced by Pontryagin and Rodygin [11]. Con-

sider again the slow-fast system (1) in autonomous form and assume:

1. For x fixed the fast equation for y contains an exponentially stable limit cycle of the form

y∗(τ, x) with period T (x) (x a parameter, τ = t/ε).

2. For fixed positive T1, T2 we have T1 ≤ T (x) ≤ T2.

3. Replace t by ετ and average g(x, y) over the limit cycle.

Then with corresponding initial values we have with x̄(τ) from the averaged equation:

y(τ, ε)− y∗(τ, x̄) = O(ε), x(τ, ε)− x̄(τ) = O(ε), δ(ε) ≤ τ ≤ L/ε. (5)

For the Pontryagin-Rodygin theorem, weak and strong points are:

• The timescale of validity is restricted to O(1/ε) in τ , so O(1) in t.

• To apply the theorem we have to know x∗(τ, y) with period T (y) explicitly; this will

be rarely the case.

• Strong point: the result is also useful if the system contains an unstable slow manifold.

So in practice the Pontryagin-Rodygin theorem is useless but, as we shall see, it can be an

inspiration for a related approach. First an example to show the weak points:
εẋ1 = x2 + y(x1 − 1

3
x31),

εẋ2 = −x1 − yx21,

ẏ = 1− y, 0 ≤ y ≤ 1.

(6)

There are two roots of the fast equation, called slow manifolds, both are unstable. Differen-

tiation of the 1st equation with x1 = x produces:

d2x

dτ2
+ x+ yx2 = yx′(1− x2) + ε(1− y)(x− 1

3
x3). (7)

Doelman and F.V. [3] showed that at parameter value y = 1/
√

7 the limit cycle vanishes;

see for an illustration fig. 1.

3. Modern results

Fenichel [4, 5, 6, 7] formulated geometric singular perturbation theory with many conse-

quences for the existence of slow manifolds leading to a reformulation of quantitative results.

The theory was introduced for autonomous systems where the geometric interpretation is

easier, but it can be generalised to systems with periodic coefficients in time. Consider sys-

tem (1) with the vector fields time-independent. Put ε = 0 and suppose as in Tykhonov’s



Figure 1. Left eq. (7) if y is constant, right varying y.

theorem that y = φ(x) is an isolated root of the (fast) y-equation with x as parameter.

Fenichel: If y = φ(x) defines a compact manifold M0 and

ReSp
∂f(x, y)

∂y
|(y = φ(x)) 6= 0

then system (1) contains an invariant manifold Mε ε-close to M0.

The dynamics on the slow manifold Mε is approximated by the flow of the slow equation

dx/dt = g(x, y(x)).

The theorem does not require asymptotic stability of the root, it has to be structurally stable

and so be stable or unstable. Note that the existence and approximation of periodic solutions

in a slow manifold is much easier than in the theorems of Flatto-Levinson and Anosov as we

“got rid of” the fast dynamics and can restrict our attention to the slow manifold equation.

One drawback is that the overall condition of compactness and the spectral assumption is

sometimes not met in applications.

For an example of obtaining existence and approximation of a periodic solution we return

to the time-periodic case of system (2), a prey-predator system with unequal growh of prey

N . The growth rate r(t) and carrying capacity K(t) are T -periodic. The slow manifolds

SM1, SM2 are described by: SM1 : N = 0, SM2 : N = K(t). SM1 is unstable, SM2 is

stable. N = K(t) is a first order periodic approximation of the prey population in SM2. We

will find co-existence of prey and predator from the next approximation (omitted here).

Discussion of the Tikhonov theorem versus Fenichel.

The Tikhonov theorem can describe transient motion. Consider the Van der Pol equation

with µ� 1:

ẍ+ x = µ(1− x2)ẋ, (8)



with Liénard transformation producing:

1

µ
ẋ = z + x− 1

3
x3, ż = − 1

µ
x. (9)

With 1/µ = ε we identify root z = −x + 1
3
x3. Along the stable parts of the cubic curve

Figure 2. Slow manifolds and fast motion for Van der Pol relaxation.

we have slow motion, during a cycle 2 fast jumps take place. We obtain the well-known

relaxation oscillation with slow motions periodically followed by fast transitions from one

stable manifold to the other one; µ = 20. The jumps are described by Tikhonov’s theorem,

choosing compact parts of the stable cubic curves we can apply Fenichel; the complete picture

arises by patching parts together using singular perturbation theory.

4. Slow-fast limit cycles at higher order

Consider again the system of ODEs (1). Assume that leaving out the εR1, R2 and O(ε2)

terms, the system does not contain a limit cycle but suppose that, adding these perturba-

tions, one or more limit cycles emerge by a bifurcation. A well-known example is the Hopf

bifurcation arising in the Van der Pol-equation. Suppose we can solve the system when

omitting the perturbation terms to construct the so-called variational equations in τ = t/ε:r
′
f = εF1(rf , φf , rs, φs) +O(ε2), r′s = ε2G1(rf , φf , rs, φs) +O(ε3),

φ′f = Ω1 + εF2(rf , φf , rs, φs) +O(ε2), φ′s = εΩ2 + ε2G2(rf , φf , rs, φs) +O(ε3),
(10)

where ′ represents differentiation with respect to τ , the index f indicates a fast variable,

s indicates slow. The dimensions of rf , φf , rs, φs depend on system (1). In this way we

have reduced the system to a quasi-periodic system where averaging over angles is possible,

see [12] ch. 5. If the limit cycle of the fast equation is asymptotically stable it is natural

to average over the fast limit cycle which means averaging over φf . Averaging over angles



involves the analysis of resonance manifolds. This theory has many aspects that are difficult

to capture in one theorem. We summarize the procedure as it runs in general.

1. Average over the fast angles φf with attention to the possible presence of resonance

manifolds. We obtain a system without angle φf .

2. Consider the resonance manifolds separately, see [12] ch. 5.

3. We can rescale τ → t or alternatively use the slow angles φs as a timelike variable.

The resulting slow-fast system may contain a slow manifold M .

4. Consider the dynamics in the slow manifold M by eliminating rf . We can average

over the slow angle φs in the slow manifold. Critical points will correspond with

periodic solutions or tori producing interesting phenomena in the original slow-fast

system (10).

5. This procedure enables us to extend the description of the dynamics to 3 timescales:

t/ε, t and εt, expressed in the corresponding angles. Some aspects of this analysis

corresponds with the treatment of slow-fast systems in [2].

In actual applications we will meet problems of normal hyperbolicity of slow manifolds and

certain degeneracies. This is not uncommon in applications as in practice symmetries and

specific parameter values may destroy aspects of the general mathematical theory.

Example 1

Interaction of slow-fast Van der Pol limit cycles.

We assume (x1, x2) ∈ Γ1, (y1, y2) ∈ Γ2 with Γ1,Γ2 ⊂ R2, compact subsets containing the

origin. This produces a relatively simple interaction problem as we have only one fast angle

(or time). Consider the system with parameters a1, a2, positive frequency ω, parameter

µ > 0:x
′
1 = x2 + ε(x1 − 1

3
x31), x′2 = −x1 − εa1y21x′1,

ẏ1 = y2 + µ(y1 − 1
3
y31), ẏ2 = −ω2y1 − µa2x21ẏ1.

(11)

Differentiation is respectively with respect to τ = t/ε and t. The slow manifold of system

(11) is given by the plane x1 = x2 = 0. If ε = 0 the slow manifold is Lyapunov (neutrally)

stable. It contains an asymptotically stable slow limit cycle corresponding with the Van

der Pol-oscillator in (y1, y2) coordinates. Another invariant manifold is given by the plane

y1 = y2 = 0 where a fast Van der Pol-oscillator is found in (x1, x2) coordinates. The question

of interest is the interaction of the two oscillators outside the 2 coordinate planes.



Figure 3. Numerical approximation of a stable torus of system (12). Left the projection of

x1(t), ẋ1(t) (fast), right the projection of y1(t), ẏ1(t) (slow) with x1(0) = 2, ẋ1(0) = 0, y1(0) =

2, ẏ1(0) = 0, ε = µ = 0.1, a1 = 0.5, a2 = 0.3, ω = 2. The choice of parameters corresponds with

the analysis of the slow manifold (16) leading to a stable torus.

The more familiar (equivalent) scalar equations in respectively τ and t are:
d2x1
dτ2

+ x1 = ε(1− x21 − a1y21) dx1
dτ
,

d2y1
dt2

+ ω2y1 = µ(1− y21 − a2x21) dy1
dt
.

(12)

We transform to amplitude-angle variables: x1 = r1 sinφ1, x
′
1 = r1 cosφ1, y1 = r2 sinφ2, ẏ1 =

r2ω cosφ2. The equations from system (12) produce with differentiation with respect to τ :

r′1 = ε cos2 φ1[1− r21 sin2 φ1 − a1r22 sin2 φ2],

φ′1 = 1 + ε sinφ1 cosφ1[1− r21 sin2 φ1 − a1r22 sin2 φ2],

r′2 = εµr2 cos2 φ2[1− r22 sin2 φ2 − a2r21 sin2 φ1],

φ′2 = εω − εµ sinφ2 cosφ2[1− r22 sin2 φ2 − a2r21 sin2 φ1].

(13)

We can average over the fast angle φ1 to obtain the approximating system:
r̃′1 = 1

2
ε[1− 1

4
r̃21 − a1r̃22 sin2 φ̃2],

r̃′2 = εµr̃2 cos2 φ̃2[1− r̃22 sin2 φ̃2 − a2
2
r̃21],

φ̃′2 = εω − εµ sinφ2 cosφ2[1− r22 sin2 φ2 − a2
2
r̃21].

(14)

Starting at the same initial values as r1, r2, φ2, the approximations r̃1, r̃2, φ̃2 have validity

O(ε) on the timescale 1/ε in τ (as in the Pontryagin-Rodygin theorem). We conclude from

system (14) that the only possibility to quench the fast oscillator completely is if a1 > 0.

We will consider the case µ = O(ε).



Put µ = εµ0 with µ0 a positive constant independent of ε. In this case φ̃2 is timelike with

respect to r̃2 and we can reformulate system (14) as:
dr̃1
dφ̃2

= 1
2ω

[1− 1
4
r̃21 − a1r̃22 sin2 φ̃2] +O(ε),

dr̃2
dφ̃2

= εµ0
ω
r̃2 cos2 φ̃2[1− r̃22 sin2 φ̃2 − a2

2
r̃21] +O(ε2).

(15)

System (15) has a slow manifold given by

1− 1

4
r̃21 − a1r̃22 sin2 φ̃2 = 0. (16)

The slow manifold is stable if we find a positive solution for r̃1. Eliminating r̃1 with (16) we

find for the dynamics in the slow manifold:

dr̃2

dφ̃2

= ε
µ0

ω
r̃2 cos2 φ̃2[1− 2a2 − r̃22(1− 4a1a2) sin2 φ̃2] +O(ε2). (17)

There is no obstruction to average again, this time over φ̃2 . We find in the slow manifold

the equation:

d˜̃r2

dφ̃2

= ε
µ0

2ω
˜̃r2[1− 2a2 −

1

4
(1− 4a1a2)˜̃r22]. (18)

The solutions of eq. (18) are valid to O(ε) on an 1/ε timescale in φ̃2, which means a long

timescale in t. A periodic solution in φ̃2 arises if

˜̃r22 = 4
1− 2a2

1− 4a1a2
(19)

with positive righthand side. If in addition both 1 − 2a2 and 1 − 4a1a2 are positive, the

periodic solution ˜̃r2(φ̃2) is stable. A corresponding approximation in the slow manifold for

r̃1 can be found from eq. (16). The approximations for r1 and r2 represent a torus in 4-space;

a finite-dimensional torus will contain quasi-periodic solutions. See fig. 3 for an illustration.

The analysis of coupled slow-fast Van der Pol-oscillators is more complicated if we have

more than 2 oscillators. To avoid discussing too many cases we reduce the number of free

parameters.

Example 2

The case of one fast and two slow Van der Pol-oscillators.

We will present an abbreviated account with an illustration. Consider the system of 3 scalar

equations with parameters a, b > 0:
x′′ + x = ε(1− x2 − by2 − bz2)x′,

ÿ + y = ε(1− ax2 − y2 − z2)ẏ,

z̈ + z = ε(1− ax2 − y2 − z2)ż,

(20)



where again a prime indicates differentiation with respect to τ = t/ε, a dot indicates differ-

entiation with respect to time t. The coordinate planes correspond with invariant manifolds,

we consider the dynamics outside the coordinate planes.

Using amplitude-angle variables and fast time τ also for the 2 slow equations we have

the equivalent system:

r′1 = εr1 cos2 φ1(1− r21 sin2 φ1 − br22 sin2 φ2 − br23 sin2 φ3),

φ′1 = 1− ε
2

sin 2φ1(1− r21 sin2 φ1 − br22 sin2 φ2 − br23 sin2 φ3),

r′2 = ε2r2 cos2 φ2(1− ar21 sin2 φ1 − r22 sin2 φ2 − r23 sin2 φ3),

φ′2 = ε− ε2

2
sin 2φ2(1− ar21 sin2 φ1 − r22 sin2 φ2 − r23 sin2 φ3),

r′3 = ε2r3 cos2 φ3(1− ar21 sin2 φ1 − r22 sin2 φ2 − r23 sin2 φ3),

φ′3 = ε− ε2

2
sin 2φ3(1− ar21 sin2 φ1 − r22 sin2 φ2 − r23 sin2 φ3).

(21)

As before we can average over the fast angle φ1 to find:

Figure 4. Numerical approximation of a stable torus of system (20). Left the projection

of the phaseplane x1(t), ẋ1(t) (fast), middle r1(t) =
√
x2(t) + ẋ2(t), right the projection of the

phaseplane y1(t), ẏ1(t) (slow) with x1(0) = 1, ẋ1(0) = 0, y1(0) = 1.5, ẏ1(0) = 0, z(0) = 1.3, ż(0) =

0, ε = 0.1, a = b = 0.3. The choice of parameters corresponds with the analysis of the slow

manifold (27) leading to a stable torus.



r̃′1 = ε
2
r̃1(1− 1

4
r̃21 − 2br̃22 sin2 φ̃2 − 2br̃23 sin2 φ̃3),

r̃′2 = ε2r̃2 cos2 φ̃2(1− a
2
r̃21 − r̃22 sin2 φ̃2 − r̃23 sin2 φ̃3),

φ̃′2 = ε−O(ε2),

r̃′3 = ε2r̃3 cos2 φ̃3(1− a
2
r̃21 − r̃22 sin2 φ̃2 − r̃23 sin2 φ̃3),

φ̃′3 = ε−O(ε2).

(22)



System (22) has in τ a relatively fast amplitude r1, fast angles φ2, φ3 and slow amplitudes

r2, r3. We will average over the fast angles outside the resonance domain determined by

φ̃′2 = φ̃′3. We find for the slow amplitudes:r̃
′
2 = ε2

2
r̃2(1− a

2
r̃21 − 1

4
r̃22 − 1

2
r̃23),

r̃′3 = ε2

2
r̃3(1− a

2
r̃21 − 1

2
r̃22 − 1

4
r̃23).

(23)

Interesting dynamics may happen if the following 2 ellipsoids intersect:

a

2
r̃21 +

1

4
r̃22 +

1

2
r̃23 = 1,

a

2
r̃21 +

1

2
r̃22 +

1

4
r̃23 = 1.

This leads to

r̃2 = r̃3,
a

2
r̃21 = 1− 3

4
r̃22. (24)

In this case the dynamics of system (20) reduces to the case of 1 fast and 1 slow oscillator

which we discussed before. Looking for solutions in system (20) of the form y2 = z2 gives a

shortcut to the problem.

The resonance cases φ2 − φ3 = 0, π lead to a first integral:

r2 =
r2(0)

r3(0)
r3. (25)

Replacing φ3 or φ3 + π by φ2 we can average over φ2 to obtain in the 2 resonance cases:
˜̃r′2 = ε2

2
˜̃r2(1− a

2
˜̃r21 − 1

4
˜̃r22 − 1

4
r̃23),

˜̃r′3 = ε2

2
˜̃r3(1− a

2
˜̃r21 − 1

4
˜̃r22 − 1

4
˜̃r23).

(26)

Another approach is to consider first the slow manifold obtained from system (22) for

r̃1. We find (leaving out the tildes)

r21 = 4− 8b(r22 sinφ2
2 + r23 sinφ2

3). (27)

Eliminating r̃1 from the equations for r̃2, r̃3 in system (22) we have after averaging over the

angles for the dynamics in the slow manifold:
˜̃r′2 = ε2

2
˜̃r2[1− 2a− ( 1

4
− ab)˜̃r22 − 2( 1

4
− ab)˜̃r23].

˜̃r′3 = ε2

2
˜̃r3[1− 2a− 2( 1

4
− ab)˜̃r22 − ( 1

4
− ab)˜̃r23].

(28)

We can draw several conclusions from system (28). An important one is that we find in the

slow manifold of system (22) a stable torus if

0 < a <
1

2
, 0 < ab <

1

4
. (29)



See fig. 4. We leave out the figures for other cases suggested by conditions (29); for instance

changing in the data of fig. 4 b to b = 1, the slow solutions y, z tend to a stable periodic

solution (if the y, z frequencies would be different we would obtain a stable 2-dimensional

torus), the fast oscillator is quenched and tends to the x, ẋ coordinate plane. Reversing the

role of the parameters by putting a = 1, b = 0.3 the slow solutions y, z are quenched and tend

to the 2 coordinate planes, the fast solution tends to a limit cycle in the x, ẋ phaseplane.

The examples of slow-fast oscillators with Van der Pol self-excitation that we discussed

have common features like averaging first over a fast angle, averaging after that over slow

angles, the presence of slow manifolds and the possibility of local resonance manifolds. To

facilitate the demonstrations we have in the examples only a few parameters. A consequence

of this is more symmetry producing sometimes non-generic reductions in the analysis. It

would be of interest to repeat studying the examples with more parameters. Many more

bifurcations are to be expected.

5. Conclusions

1. Slow-fast systems arise naturally in applications involving interactions and quenching.

2. Limit cycles obtained in a perturbation framework can be used to study long time

slow-fast interactions described by 3 timescales: t/ε, t and εt.
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