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Abstract

The evolution of a rotating axisymmetric galaxy from an asymmetric state to
a state of mirror symmetry with respect to the galactic plane has as basic result
that in the asymmetric initial state the perpendicular z normal mode is unstable
for the 1 : 1 and 1 : 2 resonances. Dynamically this results in a transfer of mass
and momenta towards the galactic plane. The timescale of evolution to symmetric
equilibrium will determine in these cases the final distribution function describing
position and velocities. In the case of the 1 : 1 resonance we have in the final
stage apart from the angular momentum integral 2 adiabatic invariants describing
nonlinear dynamics. For the 1 : 2 resonance the dynamics in the final stage is
simpler, apart from the angular momentum integral the dynamics is governed by
the 2 actions. In the first sections the results of mathematical analysis have been
summarised, examples of evolution are given in section 3.
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1 Modeling complex evolution

The dynamics of galaxies cannot be understood without considering their evolution.
There are many examples in astrophysics where evolution has produced systems with
certain symmetries, think of globular clusters, disk galaxies and elliptical galaxies.
In the solar system planets usually take a spherical shape with rotation producing a
certain flattening at the poles. Orbits of satellites around planets with tidal friction
often tend to evolve to circular orbits in a plane while locking into 1 : 1 resonance;
this resonance is present for the Earth-Moon system where one rotation of the Moon
around its axis corresponds with one revolution around Earth.
We consider the evolution of galaxies with, because of observations, special interest
in the evolution of the position and velocity distributions of stars from a relatively
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asymmetric state to a symmetric one.
The evolution of galaxies is a very complex affair. Our basic assumption is that
the systems are already in an axisymmetric state of mass distribution and evolve
slowly to mirror-symmetry with respect to the plane of the galaxy. One can drop the
assumption of axi-symmetry but this adds one degree of freedom and one timescale
to the system with more computational possibilities. Note that different timescales
are involved. For instance in the orbital evolution of a satellite around a heavy mass
with tidal friction one can reach the state of 1 : 1 resonance with the motion still
far from planar.
Apart from the basic assumption our formulation of the Hamiltonian is completely
general except for the choice of explicit time-dependence. Changing the shape of
time-dependence there is no difficulty in repeating the calculations.

The collisionless Boltzmann equation describes the evolution of the distribution
of particles f(t,x,v) where x indicates the position, v the velocity; the collective
gravitational potential ruling the dynamics of the system is Φ(t,x), see [2] ch. 4.
With Lagrangian derivative d/dt the equation is df/dt = 0. This is a first order par-
tial differential equation with characteristics given by the Hamiltonian equations of
motion. The axisymmetry implies when introducing cylindrical coordinates R,ϕ, z:

∂Φ

∂ϕ
= 0, (1)

producing the angular momentum integral J (in [2] called Lz) enabling us to re-
duce the spatial 3-dimensional motion to 2 degrees of freedom (dof). The angular
momentum integral is:

R2ϕ̇ = J. (2)

We want to describe the dynamical consequences of evolution to a mirror-symmetric
state by expanding around the circular orbits in the galactic plane at position
(R, z) = (R0, 0) putting R = R0 + x. To study evolution to symmetry we con-
sider as a model the time-dependent two dof Hamiltonian:

H =
1

2
(ẋ2 + x2) +

1

2
(ż2 + ω2z2)− (

1

3
a1x

3 + a2xz
2)− e−εnt(

1

3
a3z

3 + a4x
2z). (3)

The parameter ε is small and positive, with n it determines the timescale of evolu-
tion. We will choose n = 1 or 2. The epicyclic frequency in the galactic plane has
been scaled to 1, the vertical frequency is ω, so x corresponds with deviations of
R0, the radius of circular orbits. The two velocity dispersions differ considerably;
for velocity dispersions in the plane of the galaxy see [3], for dispersions in the halo
[1]. Velocity dispersions in galaxies is an ongoing research topic. To make the local
analysis more transparent we rescale the coordinates x = εx̄ etc. Dividing by ε2

and leaving out the bars we obtain the equations of motion:{
ẍ+ x = ε(a1x

2 + a2z
2) + εe−εnt2a4xz,

z̈ + ω2z = ε2a2xz + εe−εnt(a3z
2 + a4x

2).
(4)
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A more general formulation is given in [9] also including computational details.. For
the mathematical analysis one uses first and second order averaging, see [6] or [10].

. If we choose a1 = 1, a2 = −1, a3 = a4 = 0 we have the famous Hénon-Heiles
problem [5]. The possible values of ω depend on the galactic potential constructed.
An example describing an axisymmetric rotating oblate galaxy can be found in [2]
eq. (3-50).
A time-independent example with in the centre of the galaxy a very massive nucleus
produces with mass M large the potential:

Φ = Φ0(
√
R2 + z2) + Φ1(R, z),Φ0 = − M√

R2 + z2
, (5)

where, at least near the centre, Φ1 is small with respect to Φ0. It is well-known
that, assuming rotation and expanding in a neighbourhood of the centre and near
the circular orbits we find for the epecyclic orbits and the orbits perpendicular to
the galactic plane the 1 : 1 resonance. Outside the disk of the galaxy extending the
galactic plane this resonance may again be prominent.

2 Evolution of the dynamics to mirror-symmetry

Assuming ω ≥ 1 the resonances with most dynamical consequences are generally
1 : 1, 1 : 2 and 1 : 3, for the background of nonlinear resonance see [6], ch. 10.
It will be useful to introduce polar coordinates

x = r1 cos(t+ ψ1), z = r2 cos(ωt+ ψ2), (6)

and the actions Ex, Ez by:

Ex =
1

2
(ẋ2 + x2) =

1

2
r21, Ez =

1

2
(ż2 + ω2z2) =

ω2

2
r22. (7)

The dynamics of prominent resonances produces periodic solutions, adiabatic in-
variants and interesting stability changes during evolution.

2.1 The 1 : 1 resonance

If the epicyclic frequency and the vertical frequency are equal or close, the 1 : 1
resonance becomes important. The dynamics of the 1 : 1 resonance turns out to be
the most complicated case. Depending on the system parameters we find normal
modes (families of periodic solutions in the galactic plane and perpendicular to
it) and stability changes during evolution. Averaging the equations of motion we
find that to O(ε) all averaged terms vanish. Significant dynamics takes place on
a longer timescale so we choose n ≥ 2 to consider longer timescales, we have to
use second order averaging. The combination angle χ = ψ1 − ψ2 plays a part at
second order. Both time-dependent and time-independent terms are strongly active
on intervals of time O(1/ε2). We summarise from [8] the results for the end-stage
of mirror-symmetry a3 = a4 = 0.
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• The equations of motion have in the mirror-symmetric case 2 adiabatic invari-
ants:

E0 =
1

2
(r21 + r22) =

1

2
(ẋ2 + x2 + ż2 + z2) (8)

and:
I3 = r21r

2
2 cos 2χ+ αr41 + βr21, (9)

with α, β rational functions of a1, a2.

• The epicyclic x, ẋ normal mode is in the mirror-symmetric stage an exact
solution, it is unstable for −1/3 < a1/(3a2) < 2/15 and 1/3 < a1/(3a2) < 2/3.

• The vertical z, ż normal mode is obtained as O(ε) close to perpendicular mo-
tion. It is unstable for −1/3 < a1/(3a2) < 1/3.

• There are in-phase periodic solutions χ = 0, π existing and out-phase periodic
solutions χ = π/2, 3π/2.

We expect the dynamics of the mirror-symmetric case to describe the orbits of sys-
tem (4) on intervals of time larger than 1/ε2. During evolution the in-phase and
out-phase solutions are present with constant amplitude and are approaching peri-
odicity. The dynamics will after a long time be governed by the angular momentum
integral (2) and the 2 adiabatic invariants (8)-(9) producing a complicated velocity
distribution and varying actions as demonstrated in the examples.

2.2 The 1 : 2 resonance

A prominent case for general 2 dof systems is the 1 : 2 resonance (ω = 2). We find
the active combination angles χ1 = 2ψ1 − ψ2 and in the mirror-symmetric state
χ2 = 4ψ1 − 2ψ2. First order averaging produces instability of the vertical z normal
mode (x = ẋ = 0); the epicyclic x normal mode does not exist on the interval of
time O(1/ε) but emerges on a longer timescale. There are 2 adiabatic invariants
valid on intervals O(1/ε):

1

2
r21 + 2r22 = E0, a4r

2
1r2 cosχ1 = I3, (10)

with constants E0, I3 and r1, r2 radii in polar coordinates, the asymmetry (a4) is
prominent. In the original coordinates we have:

1

2
(ẋ2 + x2) +

1

2
(ż2 + 4z2) = E0, a4(x

2z − ẋ2z + 2xẋż) = I3.

On longer intervals of time the terms with coefficients a3, a4 will vanish and the
symmetric terms become dominant. The first order averaged system admits families
of solutions with constant amplitude and decreasing phases on intervals O(1/ε) if:

χ1 = 0, π, r21 =
4

3
E0, r

2
2 =

1

6
E0. (11)

The solutions with χ1 = 0 are again called in-phase, the solutions with χ1 = π
out-phase. Second order averaging is needed to consider longer intervals of time
and new phenomena. We summarise some results of [9].
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1. During an interval of time of order 1/ε the integrals (adiabatic invariants)
(10) are active, the system is dominated by the asymmetric a4 term. On
this interval of time it will govern the orbital dynamics and accordingly the
corresponding distribution function in phase-space.

2. On time intervals of order 1/ε2 the time-independent system involving the
coefficients a1, a2 dominates the dynamics. In [7] it is shown that for this
system, depending on a1, a2, 2 resonance manifolds can exist on the energy
manifold In this case the resonance manifold with 4ψ1 − 2ψ2 = 0 has stable
2 : 4 resonant periodic orbits surrounded by tori, for 4ψ1 − 2ψ2 = π the 2 : 4
resonant periodic orbits also exist but are unstable. The resonance manifolds
have size O(ε), the dynamics takes place on intervals of time of order 1/ε3.
Outside the resonance manifolds the dynamics is characterised by the adiabatic
invariants Ex, Ez.

3. The instability of the z normal mode persists at second order but leads to
stability in the final stage of mirror symmetry.. The epicyclic x, ẋ normal
mode does not exist in the first stage (time order 1/ε) but the normal mode
emerges in the final stage of mirror symmetry.

3 Examples of evolution

Dynamically interesting are the cases where we start in the beginning of evolution
near an unstable orbit, say a normal mode, and move to a different dynamics when
reaching a state close to mirror-symmetry. This changes the velocity distribution
drastically. Such evolution can happen in the case of 1 : 1 and of 1 : 2 resonance.
As described above these cases are dynamically different. The 1 : 1 resonance when
reaching a near mirror-symmetric state will still show nonlinear interaction between
the modes; the normal modes persist but depending on the parameters can be stable
or unstable. In the case of the 1 : 2 resonance near mirror-symmetry implies that
the dynamics has at the end of evolution the character of a 2 : 4 resonance with
little interaction of the modes; the normal modes persist and are stable. During
evolution of the 1 : 2 resonance the velocity distribution may change drastically.
The figures in the next subsections shows clearly the different types of dynamics of
the 1 : 1 and 1 : 2 resonances in the final stage of mirror-symmetry.
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3.1 Evolution of the 1 : 1 resonance

Figure 1: Left the behaviour of the action Ex(t) of system (4) in 1 : 1 resonance for the
case n = 2 near the epicyclic normal mode; initial conditions x(0) = 1, z(0) = 0.1, Ex(0) =
0.5, Ez(0) = 0.005. Parameter values a1 = −1.5, a2 = 1, a3 = 0, a4 = 4, ε = 0.1. Right we
display the corresponding z behaviour by plotting Ez(t). It takes around 200 timesteps
to settle in the stationary state which is drastically different from the initial state. In the
final stage the normal modes are stable.

Figure 2: Left the behaviour of the action Ex(t) of system (4) in 1 : 1 resonance for the
case n = 2 starting near the vertical (z) normal mode; initial conditions x(0) = 0.1, z(0) =
1, Ex(0) = 0.005, Ez(0) = 0.5. Parameter values a1 = −1.5, a2 = 1, a3 = 0, a4 = 4, ε = 0.1.
In the final stage the normal modes are stable.

In figs 1-2 the choice of a1, a2 implies the system has stable epicyclic and stable ver-
tical normal modes for the final mirror-symmetric case (a3 = a4 = 0). Considering
time evolution starting in an asymmetric state, our choice of a3, a4 keeps the normal
modes but destabilises them in the initial stage; we have a1 = −1.5, a2 = 1, a3 =
0, a4 = 4. When the time-dependent perturbation has become negligible the orbits
have moved into general position. The time-independent case will approximate the
dynamics after a long initial interval of time, the in-phase periodic solutions exist
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in this mirror-symmetric case and are stable.

Evolution to the Hénon-Heiles dynamics

Figure 3: Evolution to the Hénon-Heiles system based on system (4) for the case n =
2, a1 = 1, a2 = −1, a3 = 1, a4 = 4 with ε = 0.05 intially close to motion perpendicular
to the galactic plane with x(0) = 0, z(0) = 1 and zero velocities. Left action Ex, right
Ez. Because of the instability of the z normal mode in the asymmetric initial stage the
dynamics evolves to motion on a torus around a periodic solution in general position with
in the final stage Ex + Ez approximately constant.

The Hénon-Heiles case is included as there are many details available in the literature
on this system [5]. If a3 = a4 = 0 and ε = 1 the system is chaotic; large-scale chaos
sets in at E0 ≥ 1/12 = 0.083, the energy manifold is bounded if 0 ≤ E0 ≤ 1/6.
We consider the case of regular dynamics. In fig. 3 (left) we present for ε = 0.05
action Ex(t) starting close to the unstable z normal mode. As we see in fig. 3 (right)
the motion into the halo becomes reduced whereas the component of motion in the
galactic plane Ex has become much larger.
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Figure 4: Evolution to the Hénon-Heiles system of the velocity distribution based on
system (4) with the same parameters as in fig. 3. The motion is initially close to motion
perpendicular to the galactic plane with x(0) = 0, z(0) = 1 and zero velocities. The
velocity field corresponds with energy transfer to the galactic plane x direction.

The instability of the z normal mode produces a drastic change of the velocity
distribution. This is illustrated in fig. 4 where the evolution is shown of the velocities
vx, vz from the asymmetric case to the case of mirror-symmetry.

Instead of the evolution to the Hénon-Heiles family one can formulate more
general conclusions. In section 2 we have listed open sets of parameters where the
mirror-symmetric potentials (a3 = a4 = 0) have existing normal x and z modes that
are unstable. The examples given here are typical for the dynamics.

3.2 Evolution of the 1 : 2 resonance

. On a timescale O(1/ε) the z normal mode exists and is unstable; the epicyclic
x normal mode is not present but emerges during evolution. In fig. 5 we start
near the z normal mode position. The solutions move into general position on tori
around periodic solutions. The asymmetric past of the system has changed the
overall dynamics drastically, but this depends strongly on the initial state where
the potential is still asymmetric and the timescale of evolution.
In fig. 6 we put ε = 0.05 and 0.03, the other parameters and initial conditions
are as in fig. 5. The evolution to mirror-symmetry takes longer as ε is smaller
than in fig. 5 with considerable influence on the position and velocity distribution.
It is remarkable how sensitive the final dynamics is to the transition timescale of
asymmetry to mirror-symmetry.

3.3 Evolution of the 1 : 3 resonance

The 1 : 3 resonance is dynamically different and less interesting. Most of the
analysis can be deduced from [8], Putting ω = 3 in system (4) we find after 2nd
order averaging:

ṙ1 = O(ε3), ṙ2 = O(ε3). (12)

8



Figure 5: The 1 : 2 resonance. The behaviour of system (4) starting near the z-normal
mode. We have x(0) = 0.1, z(0) = 1 with initial velocities zero, ε = 0.08, ω = 2, a1 =
0.5, a2 = 1, a3 = −1, a4 = 3. The dynamics produces a position and velocity distribution
that has changed considerably by the evolution to mirror symmetry.

Figure 6: The 1 : 2 resonance. Decreasing ε lengthens the transition time from asymme-
try to symmetry and changes the transition dynamics. In fig. 5 we used ε = 0.08. Keeping
the other parameters and the initial conditions equal we show the x(t), z(t) evolution for
the cases ε = 0.05 (top), 0.03 (below).
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This remarkable result shows that for the 1 : 3 resonance the slowly vanishing
asymmetry of the potential plays no part for the amplitudes to order ε3. The
theory of higher order resonance, see [6] and [7], shows that the combination angle
χ3 = 6ψ1 − 2ψ2 plays a crucial role. With high precision the distribution function
at the 1 : 3 resonance will depend on J and the 2 actions.

3.4 Consequences for the distribution function at the
main resonances

We conclude and summarise. Suppose we start with a collection of particles (stars)
characterised by a distribution function satisfying the Boltzmann equation that is
collisionless assuming negligible dynamical friction. The system is already in an
axi-symmetric state but the evolution to mirror symmetry to the galactic plane is
still going on. We have, apart from angular momentum J , two active integrals of
motion strongly depending on the local resonance between epicyclic and vertical
oscillations. The distribution function will be a function of the 3 integrals. Near
resonance the integrals will change during evolution.

A basic aspect of the evolution to mirror-symmetry is the instability near the
z normal mode (or in general, motion perpendicular to the galactic plane) in the
original asymmetric state when close to 1 : 1 or 1 : 2 resonance. In this stage matter
will be moved to the galactic disk and x-components of the velocities starting near
perpendicular motion will grow.
The timescale of evolution as given by the choice of ε will also be very important
for the state of the final dynamics, see for examples figs 5-6.

Both the 1 : 1 or 1 : 2 resonance show this instability but there is also a difference.
The 1 : 1 resonance is characterised by nonlinear interaction of the 2 modes both in
the asymmetric and in the final symmetric state. In the final state we have for the
3 integrals of motion J , E0 from (8) and I3 from (9).
For the 1 : 2 resonance we have in the initial asymmetric stage, (on a timescale
of order 1/ε) the 3 integrals of motion J,E0, I3 with E0, I3 given by (10). In the
final stage, say on timescales of order 1/ε3, the integrals of motion will be J,Ex, Ez.
So angular momentum and the 2 actions will dominate the dynamics of the 1 : 2
resonance in the mirror-symmetric stage.
This also holds throughout for the evolution of the 1 : 3 and other resonances from
asymmetry to mirror-symmetry. We leave out many interesting details of the higher
order resonances, see [9] for the theoretical background. The O(ε) constancy of the
actions in the 1 : 3 case and in the mirror-symmetric 1 : 2 case can be illustrated
numerically.
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