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Abstract

An important aspect of understanding FPU chains is the existence of invariant man-
ifolds (called “bushes”) in FPU chains. We will focus on the classical periodic FPU
chain and on the FPU chain with alternating masses where we show that also in the
alternating case nested manifolds (related to bushes) exist. The use of symmetries
leads to the emergence of systems of n particles as invariant manifolds of systems
with a multiple of n particles. This analysis is followed by examples of existence and
stability of special invariant manifolds and phase-space dynamics in the case of 4 and
8 particles. These examples are typical for periodic FPU chains with 4n or 8n particles.
It turns out that in the alternating case the dynamics is strongly affected by the choice
of the alternating mass m. Normal form calculations help to identify quasi-trapping
regions leading to delay of recurrence. The results suggest that equipartition of energy
near stable equilibrivm is improbable.

Keywords Alternating FPU - Invariant manifolds - Symmetry - Stability -
Quasi-trapping

Mathematics Subject Classification 70H07 - 70H12 - 34E10 - 37J15

1 Introduction

The Fermi-Pasta—Ulam (FPU) problem has been the subject of many papers since
its formulation in 1955. For a recent study of localization, recurrence and references
see Christodoulidi et al. (2010). An important aspect of understanding FPU chains is
the existence of invariant manifolds (called “‘bushes”) in classical FPU chains; basic
results are found by in Chechin and Sakhnenkeo (1998), Chechin et al. (2002) and

Communicated by George Haller.

& Roelof Bruggeman
r.w.bruggeman@ uu.nl

1 Mathematisch Instituut Universiteit Utrecht, PO Box 80.010, 3508 TA Utrecht, The Netherlands

Published online: 22 June 2018 @ Springer



Journal of Nonlinear Science

Chechin et al. (2005). In these papers group-theoretical methods were used for coupled
oscillator systems with special attention to «- and 8 FPU chains. See for the existence
of invariant manifolds for B-chains also (Rink 2001). We will focus on the FPU chain
with alternating masses (which includes the classical periodic FPU chain) to show
that also in the alternating case nested manifolds (bushes) exist. This is followed by
examples of existence and stability of invariant manifolds and phase-space dynamics
in the case of 4 and 8 particles. These examples are typical for periodic FPU chains
with 4n or 8n particles.

The alternating case was studied by Galgani et al. (1992) for a FPU chain with
fixed end points using mainly numerical tools for special cases to obtain insight into
the equipartition of energy, in particular between the low (acoustical) frequency and
the high (optical) frequency part. The terminology acoustical-optical derives from
physics. The spectrum of the linearized system scales with the alternating mass m (or its
inverse) producing a natural split of the frequency spectrum. See Sect. 3.3. A prelimi-
nary but important conclusion by Galgani et al. (1992) is that for the masses considered
and on long timescales no equipartition takes place; the evidence is numerical. Inspired
by these results we will study the pericdic FPU problem in the case of alternating
masses. The emphasis will be on invariant manifolds, periodic solutions, integrability
of the normal forms (near-integrability of the original system), chaos and recurrence
phenomena; for recurrence see also Verhulst (2016, 2017a) for chains of FPU cells.

The periodic Fermi—Pasta—~Ulam problem with alternating masses presents compli-
cated dynamics. For the mono-atomic case of the original periodic FPU problem with
all masses equal it was shown by Rink and Verhulst (2000) for up to six degrees-of-
freedom (dof) and for an arbitrary number of dof by Rink (200 1), that the corresponding
normal forms are governed by 1:1 resonances and that these Hamiltonian normal forms
are integrable. This explains the recurrence phenomena near stable equilibrium for long
intervals of time.

Bruggeman and Verhulst (2017a) have studied the inhomogeneous FPU problem
with four particles which contains many different resonance cases. In a periodic chain,
for (even) n particles with arbitrary masses m; > 0, position g; and momentum
pj=mjqj, j =1...n, the Hamiltonian is of the form:

n
1 ) 1 o
Hp.¢)=)_ (ﬂpi + V(gj+ -q,-)) with V(z) = 522 + _533 + _53:24_ )
j=1 N7

Ifa > 0, 8 = 0 we will call this an @-chain, if « = 0, 8 > 0 a 8-chain. The quadratic
part of the Hamiltonian is not in diagonal form; forn = 3, 4. .. the linearized equations
of motion can be written as:

(miGi+2q —qp—gqu =0,
mygr+2p—-q3—q =0,
\m3gz+2q3—qa—q2 =0, ()
=0,
| Mndn +29n — g1 — gn-1 =0.
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Recurrence for the dynamics induced by system (2) is described by the Euclidean
distance

2

n 1/
d= (Z @i (®) — g (O) + (pi(0) — pi (0))2) , 3)
i=}

with possibly g; and p; replaced by transformed variables.

Consider the periodic FPU chain with an even number (2n) of alternating masses
1, m,1,m,...,, withm > 0, which is to some extent related to the formulation
in Galgani et al. (1992) where the emphasis is on energy partition for large systems
(n = 6,...,200) with fixed end points and 0 < m < 1. The mass ratio m:1 is the
important parameter; we choose a = 1/m, 0 < a < 1. If a = 1 we have the classical
case of equal masses. By a symmetry argument we will leave out the case a > 1.

The eigenvalue spectrum of system (2) will be indicated by A;, i = 1, ..., 2n; the
corresponding frequencies of the linear normal modes are w; = +/A;. The numerical
value of H> (for given initial conditions) is indicated by Eg; near stable equilibrium
and assuming that m is not very large, we can rescale p — &p, ¢ — &g with £ asmall
positive parameter. Dividing by £2, we obtain from Hamiltonian (1) the Hamiltonian
H» + e H3 + 8% B Hy with Hj a cubic polynomial in (p, g), Hs quartic in (p, ). We
have clearly for the energy E = H3|,—¢ + O(¢) for all time.

From Sect. 4 onward we will use symplectic transformations to put the linear part
of the equations of motion in quasi-harmonic form. This is possible as the system
induced by Hamiltonian (1) satisfies with Pp a constant the momentum integral:

migy +magz + -+ 4+ mpgn = Po. 4)

The integral can be used to reduce the system by one dof.

The short-periodic solutions of the equations of motion linearized near the origin are
called the linear normal modes of the system. One of the questions that arise are whether
the linear normal modes can be continuved for the system with nonlinear interactions or
not. The transformation to quasi-harmonic form is natural, but may cause confusion. In
position and impulse space we have the basis vectors ey, e3, ..., €2,—1 corresponding
to particles with mass 1, and basis vectors with even index corresponding to the heavier
particles with mass m = 1/a. After symplectic transformation we have n eigenvalues
that are O(a), giving the “acoustic frequencies,” and n eigenvalues that are of order 1,
giving the “optical frequencies.” The description of each eigenvector (corresponding
with a so-called normal mode) involves a mix of particles of mass 1 and of mass m.
The behavior of the solutions within the two sets of particles cannot in a simple way
be identified with the normal mode (quasi-harmonic) equations corresponding with
the optical and acoustical part of the spectrum.

Note that according to Weinstein (1973) a n dof Hamiltonian system near stable
equilibrium contains at least n families of periodic solutions parametrized by the
energy. We will keep this in mind when looking for periodic solutions in particular
systems.

@ Springer
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In the sections on chains with 4 or 8 particles the analysis by averaging normal

forms is a basic tool. For the normal form theory and results in the case of Hamiltonian
systems see Sanders et al. (2007) ch. 10. In the analysis resonances in the frequency
spectrum of the linearized equations of motion, generated by the quadratic part of
the Hamiltonian H», play a fundamental part. The cubic part H3 and if necessary the
quartic part Hy will be normalized to Hs, Hy.
The general theory and proofs of averaging for ODEs involve spatial variables and
time with bounds (independent of £) on the spatial domain and the initial conditions.
It is important to note that in the case of a Hamiltonian system near stable equilibrium
we have dynamics on a bounded energy manifold. The implication is that the normal
form analysis and its error estimates are valid for an arbitrary number of dof if the
initial energy is bounded independent of &.

In Bruggeman and Verhulst (2017a) we have discussed a number of technical nor-
mal form aspects of averaging for Hamiltonian systems. In a system of » perturbed
harmonic equations we will often transform to polar coordinates. If the frequencies
are wj, 1 < j < n we can introduce

xj =rjcos(wit +¢5), yj = —rjojsinfwjt+¢;) (1<j<T (5
to produce an equivalent first-order system in the variables

X = (rlery---’rﬂy‘plv'--sfpﬂ)'

This system is equivalent with the n dof system of perturbed harmonic equations
outside the normal mode planes.

The numerical experiments were carried out by MATCONT under MATLAB with
ode code 78, for instance for Euclidean distances in phase space. The precision was
increased until the picture did not change anymore with typical relative error =13,
absolute error e~13. Basic normal form computations were carried out using MATH-
EMATICA.

In Sects. 2 and 3 we present results on periodic solutions and invariant manifolds
for alternating periodic FPU chaias with an even number of particles. Section 4 sum-
marizes results for 4 particles, features that will be found again in periodic FPU chains
with 4n particles. Section 5 contains the formulation of the system for 8 particles,
where we find 3 invariant manifolds and study their stability. The normal form anal-
ysis of Sect. 6 produces interesting phenomena. At first-order normalization only the
cases m = 2 and m = 4/3 give non-trivial results. In particular the analysis of the
dynamics near unstable invariant manifolds for m = 4/3 yields insight into the pres-
ence of resonance zones, recurrence and quasi-trapping phenomena. These features
will be found again in periodic FPU chains with 8n particles.

2 The 2n Particles FPU Chain, Three Families of Periodic Solutions

Consider the equations of motion with alternating masses derived from Hamiltonian
(1). As we shall see in Sect. 3.3, the eigenvalues 2(1 + a), 2 and 2a of the linearized
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system (2) occur in the spectrum. Associated with the corresponding frequencies we
can find in a 4n dof system (taken from now on for convenience instead of 2n) with
alternating masses three exact families of periodic solutions:

e Solutions determined by
@i®)=0,j=1,....2n;q(t) = —q3(t) = qs(1) = —q7(t) = - - - = —qau-1 (1),
producing the equations of motion (harmonic for an a-chain)
G2j—1+2q2j1 =0, j=1,2,...,2n. (6)
For a S-chain we add a cubic term to the equations of motion. On a given energy
manifold this represents a one-parameter family of periodic solutions.
e Solutions determined by
q2j-10)=0,j=1,..., 2, q2(t) = —qa(t) = q6{t) = —qg{t) = - - - = —qua (1),
producing the equations of motion (harmonic for an «-chain)
G2j +2aq2; =0, j=1,2,...,2n. (7

For a §-chain we add a cubic term to the equations of motion. On a given energy
manifold this represents a one-parameter family of periodic solutions.

e Because of the symmetry of the equations we expect that solutions exist of the
form:

qi1(t) =q3(t) =+ = gap—1, q2(t) =qa(t) =+ = qan(t).

For an «-chain this leads to the linear system:

dqi+2q1= 2q,
g2 + 2ag2 = 2agq;.

The eigenvalues are 0 and 2(1 + q); the solutions exist, are periodic (harmonic)

and will have frequency /2(1 + a).
For a B-chain we find:

g1 +2q1 = 2q2—2elq — q2)°,
G2+ 2aq: = 2aq) +2ae(q) — q2)°.

We conclude that ag) + g2 = 0 so that we can eliminate g3. For q; we find the
equation:

g1 +2(1 + a)q = —2¢(1 +a)’q}.

The solutions exist and are elliptic periodic functions.

@ Springer
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According to Poincaré (1899), the presence of a family of periodic solutions on an
energy manifold generally implies the presence of another integral of motion besides
the energy. In this case, this is the momentum integral:

2n 2n
Z(jg_;_] +m chz;‘ = constant. (8)
j=1 =1

We will meet these periodic solutions again when analyzing explicit FPU chains.

3 The 2n Particles FPU Chain, Invariant Manifolds

We consider the general case of the alternating periodic FPU chain with 2n parti-
cles. We will give a relation between the system with 2n particles and an invariant
submanifold of the system with 2k particles for each multiple k of n.

3.1 Earlier Results

In a seminal paper Chechin and Sakhnenko (1998) group-theoretical methods were
used for systems with certain symmetries. From irreducible representations of the sym-
metry group the authors conclude to the existence of specific dynamical regimes (called
bushes) of essentially lower dimension than the dimension of the original systems.
The theory was developed in Chechin and Sakhnenko (1998) both for Hamiltonian
and non-Hamiltonian systems with a number of physical applications.

Independently, in Poggi and Ruffo (1997) the periodic FPU 8-chain was considered
for which special periodic solutions and two-mode invariant manifolds were found; the
analysis in Poggi and Ruffo (1997} is by inspection of equations and not by exploiting
symmetries. The paper Chechin and Sakhnenko (1998) was continued in Chechin
et al. (2002) to find invariant manifolds (bushes) in classical periodic, monatomic
FPU chains. The analysis leads to the existence of a wide range of multimode invariant
manifolds that include the results in Poggi and Ruffo (1997). Exploiting symmetries,
a number of new invariant manifolds for the classical, periodic FPU chain were given
in Rink (2001).

In this section we will exploit the symmetries of the periodic FPU chain with
alternating masses to obtain a great many invariant manifolds in Theorem 3.1. The
proof also leads to the determination of the eigenvalues, in Proposition 3.2.

3.2 Invariant Manifolds

In the study of the alternating FPU chain with 8 particles we observed an invariant
manifold equivalent to the system with 4 particles. This phenomenon turns out to be
much more general, as we formulate in Theorem 3.1 below. It can be considered as
an example of the theory of Chechin and Sakhenko (1998). We consider the system
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FPU», (a; «, B) of second-order differential equations

miG; = +gjp1 —qj) +a(@j1 —g;)° + B(gj+1 —flj)3

9)
— (g — gj-D) —algj — gj-1)* - Blg; — q;j—1)°
for 1 < j < 2n, with indices taken modulo 2n. The masses are m2;-y = | and
my; = a~! with a > 0. The parameters o, 8 € R regulate the nonlinearity of the
system. If o = B = 0 the system is linear, with associated matrix — A, Ca,, where
Az, is a 2n x 2n diagonal matrix with diagonal (1, a, 1, a, .. .}, and Ca, has the form
[2 -1 0---0—1\
-12 —-1---0 0
0 -12.--00
.o (10)
0 0 0 ---2 -1
\-10 0 ----12

The system of differential equations (9) has the same structure if we allow & and 8
to be complex, and a € C\{0}. In this complex context we have the following result:

Theorem 3.1 Let o, B € C, a € C\{0}, n = 2, and let k be a multiple of n. There
is a 2n-dimensional subspace My, C C* such that the restriction of the system
FPUyi{a; o, B) to My , is equivalent to the system FPUy,(a; «, B).

By equivalence we mean that there is a bijective map ® : C** — M;.,, such that the
image t +> ®g(t) of the solution ¢ > g(¢) with initial values (¢ (0), g’ (0)) € C** is
the solution in C%* with initial values (®q(0), ®g'(0)).

The cyclic group of order n acts naturally on the system FPUj,(a; o, B). It is
generated by the shift over two particies (j — j + 2 modulo 2n). This is the group of
symmetries used in the proof of the theorem. It enters via the dual group U, of n-th
roots of unity.

Proof of Theorem 3.1 Vector formulation of the system. The linear part of the system
(9) can be formulated as § = — A3, Ca,q. For the quadratic part we note that the factor
of o has the form

—(29; — qj+1 —qj-1){qj-1 — gj+1)
We define Dy, 4 as the 2n x 2n-matrix with 1 at positions (i, j) such that j —i =

1 mod 2n and zeros elsewhere, and Dy, - = Dgn‘ + Then the quadratic term has the
matrix form

—(A2,C2nq) X ((D2,-q — Dan.4)q)
where x denotes the coordinatewise product: (a x b); = a;b;.
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For the coefficient of 8 we proceed similarly to find the matrix form of the system,
in whichweuse Ea, + = I, — D3y o, Eoy — = Iy — D2, _ with the 2n x 2n identity
matrix f,.

g =—ACq —a (ACq) X ((D2a,— — D2 +q) — B(ACq) x ((E+q)
X(Et+q) + (E_q) x (E_q) + (D4 — D_)q)
x((D4. ~ D-)q)). (11)

(To save space we suppressed the indices 2n.)
Decomposition. Let U, = {€2*J/" : j mod n} denote the group of n-th roots of

unity. For each ¢ € U, we define vectors vz, (¢) and ws,(£) in Cc2n by

vn(@)2jot = &, van(@)2j =0, wa®)zj-1 =0, wun(l)zj = ¢/,(12)

for 1 < j < n. Together, these vectors form a basis of C27_ This leads to a decompo-
sition

C = @ Xon (),  X2,(8) = Cuz, (L) + Cwan(d). (13)
celly

The importance of this decomposition is that all matrices A»,C2,, D3, 4., E2p + that
occur in (11) preserve this decomposition. On the basis 12, (¢), w2, () of X2,(L) we
have for instance the following matrix description in X,(£):

2 —(14+¢7hH 01
Alnc2n ~ (_a(l_i_c) 2a )’ DZH."I“ -~ (g 0)' (14)

We do not need to know the precise form of these matrices, but it is important that
these matrices do not depend explicitly on n.
The {(commutative) coordinatewise product of vectors satisfies for £, &2 € Uy,

v2,{81) X v2,(82) = v2.(L182), v {{Dw2(52) = 0,

15
wan(§1) X wan($2) = wau(8162). S

Description of the System. We write the vector g as g = Zg eu, X (&) with x({) €
Xan(L). We arrive foreach ¢ € U, at

X(¢) = —A2Conx(8)

—e Y T@L) -8 )3 (1, &2, 83), (16)
51.526Un, Dil2=( §1.62.536Un. L15283=¢

where T({1, £2) and S(£1, &2, ¢3) are linear combinations of products of elements of
the space X2,(Z;).

Now let k be a multiple of n. We form the linear map &, 1 : C2 — C* determined
by ©,4v2:(8) = va(L), Pprwan(¢) = wa(Z). The image of @, is a linear
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subspace My, of C*. This subspace is determined by the condition that X () C
My if & € Uy C Ug and Xo(§) D My = {0) if & € Up\U,.

Suppose x € My . If § € Up\U,, then x({) = 0, and all factors in the right-hand
side vanish as well, since at least one of the £; has to be in Up\U,. If { € Uy, then
the form of the right-hand side in (16) is the same as in the system with 2n particles.
If some {; is not in Uy, then the term T (£, &2), respectively, S(¢1, &2, £3) is zero.
So the descriptions of the system of differential equations with 2n particles and the
restriction to My , of the system with 2k particles are exactly equal. m

Bushes of Modes. This theorem can be seen as an example of the theory of Chechin
and Sakhenko (1998). See also Chechin et al. (2002), where this theory is applied to
the classical FPU chain with equal masses. For each divisor n of k the space M; , is
the “bush” associated with the subgroup U,, of Uy.

For the B-chain the total group of symmetries is larger than the cyclic group used
in the theorem. It is the dihedral group generated by the shift j +— j + 2 mod 21 and
the reflection j = 2 — j mod 2n. The reflection interchanges X (¢) and X (;").
Real Systems. Leta > 0, a, 8 € IR. The system (9) is a system of second-order
differential equations in R?". For roots of unity ¢ that are not real the vectors vy, (¢)
and wy, ({) arenotin R”, and the decomposition (13) does not respect the real structure.
To get a real basis we have to consider X»,() & X», (E), which intersects R in a
space with real dimension 4. That space is invariant under the operators Az, Ca,,
Dang---.

Periodic Solutions. In Sect. 2 we mentioned periodic solutions. We now recognize
them as solutions of the form t — f(t) vo,(—1) and ¢ — f(t) wa,(—1) living in
Xon(=1).

There are also solutions in the space X,,(l). One of them is the solution

F @) (wan(1) + wa,(1)) with f' = 0. It is in the translational component of the sys-
tem. The third type of solution in Sect. 2 with eigenvalue 2(a + 1) is of the form
1= f(t) (van(1) — a wan(1}).
Invariant Manifolds. The space My, C C* is a 2n-dimensional linear subspace
of the position space C2 of the system FPU2 (a; «, B). In the context of Theorem
3.1 that seems a natural approach, since the symmetric group acts in the same way
on positions and impulses of particles. The corresponding invariant manifold is a
4n-dimensional linear subspace of the phase space C*.

3.3 Eigenvalues

Propaosition 3.2 The eigenvalues of AzpCay are

1+a+/142acos@nj/m)+a® ©=j<n) 17)
Proof In the complex context, the eigenvalue equation of A»,C», is the product of
the eigenvalue equations of Aj,C», restricted to X2,(¢), where ¢ runs over U,. The

solutions of

M-2(0+ar+aR-¢-¢H =0
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give the eigenvalues in the proposition. m]

We note the following:

e From { = 1 we have the eigenvalues 0 and 2(a + 1).

s Ifniseven (4n particles), { = —1is one of the possible roots leading to eigenvalues
2 and 2aq. _ _

e The other roots £/ and {"~/ with | < j < n/2 produce eigenvalues with multi-
plicity 2.

e The eigenvalues with 0 < j < n — | behave fora | O as

2w 2mj
24+a (1 + cos ﬂ) + 0(a®) and a (1 — cos ﬂ) + 0(a?).
n n

So, for large mass values (a | 0) the eigenvalue spectrum consists of two groups,
one with size 2 + O(a) (the so-called optical group) and the second one with size
Of{a) (the so-called acoustical group).

The transformation of system (9) to a quasi-harmonic system of the form %; +
w;i(a)x; = .- with the dots representing nonlinear terms yields a more tractable
system. The new vanables are called phonons or quasi-particles.

4 Four Alternating Masses, a Summary

This case has been analyzed in Bruggeman and Verhulst (2017b). The dynamics of
this case will be found again in systems with 8 particles, in general 4n particles.

For the a- and $-chain we find no three dof first-order resonances in a cell with
four particles. There are two dof resonances of which the normal form is integrable to
a high order.

Considering large mass {a small) we find more interesting results. We have from
the linear system (2) the 4 eigenvalues:

Ai=2(1+4a), 2, 24, 0.

with frequencies w,.z = A;, I = 1,..., 4. After symplectic transformation using the

momentum integral ZT m;q; = constant (see also 8) we have with y = 24/2a(1 + a)
for the @-chain the quasi-harmonic equations of motion:

1+2(1+a)x; =yxaxs,
¥4 2x3 = yx1x3, (18)
X3+ 2ax;3 = YX|X2.

Three exact families of periodic solutions are the normal modes associated with the
eigenvalues 2(1 + a), 2 and 2a. The exact solutions are harmonic.

Two of the frequencies will be near +/2, one will be +/2a, the associated modes
will be called the optical group (x, x2) and the acoustical group (x3). System (I8)
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is an example of a system with widely separated frequencies, see Tuwankotta and
Verhulst (2003) and further references there. Following the analysis in Tuwankotta
and Verhulst (2003) we apply normalization considering x3 as slowly varying. We
use the transformation in (5) and find that to second-order normalization the normal
form has the integral of motion

1
E(ri’- +r3) = E, (19)
E) a positive constant. A second integral of motion is with C a constant, x = ¢| — ¢3:
rirpcos x = C. 20)

For the 8-chain the equations of motion are:

fi+2(1+a)x =—(1+a)x] = 31+ a)x (x5 + ax3),
X2 + 2x3 = —xg - 3ax2x§‘ - 3(1 + a)xfxg, (21)
X3 4+ 2ax;3 = —3ax§x3 - azxg = 3a(l + a)xlzx;;.

The three normal modes are exact solutions (elliptic functions) of the system. Nor-
malizing to second order we find again the normal form integrals (19) and (20).
For both the «-chain and the 8-chain special quasi-periodic solutions arise if

¢ —g2=0o0rm.
These solutions are unstable for the «-chain, and stable for the S-chain, see again
Bruggeman and Verhulst (2017b). At this level of approximation we find weak inter-
action between the optical and the acoustical group, and no equipartition.
5 A Periodic Chain with Eight Particles
The case of 8 particles in a periodic chain introduces a large number of new phenomena,

typical for system with 8n particles. We find for the linear system (2) the eigenvalues
numbered Aq, ..., Ag:

Ai=2(14+a), 14+a++V1+a?(twice), 2, 2a, 14+a—+/1+ a? (twice), 0, (22)

which for small values of a withi =1, ..., 8 satisfy:

1 1
x=2(1+a), 2+a+ 5(12 + O(a*) (twice), 2, 2a, a — 5a2 + O(a*) (twice), O.

The corresponding frequencies are w; = +/A;,i = 1,...,8. The first four modes
X1, X2, x3, x4 will be called the optical group, the modes xs, xg, x7 the acoustical

group.
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Table 1 The coefficients of H3,

) d, XgXHX d, XaXpX
expressed in the py afty afly arhty
cipencoortinues xj WK gy fiTas)  ,  Ja(V@Res)
is the coefficient of xg Xgxy, A RAGERALES S T e s

24/a2+1 N 2Va2+
\/E(—\/a2+l+a+l) . JE(\/GZ+1~-G--I) .
Xs X7 —_ 5 x5x5
2v/a2+1 5% 2/at+1 i
V2 ava+1 X|xX2x7 —2/aJa+1 X1X3X§
af a2 +1+a+1
(*I) X2X3%4 =2/ava+1 X1X3X5
al4
V2/a /2a?
X3X4.X X2X5.%
a1 e al+1 16
V2/a 24°
- X2X4X X3X5%

X4X5X
Yy a— 4X6X7

One can find a number of prominent resonances, but, as we will show below, of
special interest are the cases a = %, a= % and a near zero. The calculation of the
normal forms H3 and Hj shows that these values of a correspond with effective reso-
nances. The eigenvalue A = O corresponds with the momentum integral Z? mig; =
constant (see 8) producing families of translations. We will use this integral to reduce
the system to seven dof. For all choices of a and after this reduction there will be at
least seven families of periodic solutions (Weinstein 1973).

The increased complexity of the eight particle system can be handled, but we

restrict most results to a-chains.

5.1 Symplectic Transformation

We use a symplectic transformation p = Ky, ¢ = Lx, with x, y € R® such that the
quadratic part of the Hamiltonian H» for the system with eight particles transforms to
the form

1 1
Hy=2y'y+ ExT_Ax,

where A is the diagonal matrix with Ay, .. ., Ag on the diagonal. The coordinates x ; and
y; correspond to the eigenmodes (phonons) with eigenvalue A ;; see also Bruggeman
and Verhulst (2017a) for details.

Applying the transformation to H3 and Hy4, we arrive for H3 at the expression

Hj3 = (dasxixs + dazsxixs) + (dseexgxs + dsrx3xs) + (di27x1%2x7 + di36%1X3%6)
+ da3axax3xs + digsx1xaxs + (drsex2x5%6 -+ d357X3x5%7)

+ (d346x3x4x6 + d247x2X4X7) + dag7X4X6%7.
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For Hy we find an expression with 49 terms of the form e; j ¢ ;x;x;x;x;, among
which occur all fourth powers x7, all products x7x7, and 21 other terms. The coeffi-
cients d;;i; and e;jz; are algebraic functions of the parameter a. The coefficients d;j;
of H3 and e;j; of Hy are all nonzero for 0 < a < 1; the expressions for the djj; are

given in Table 1.
The resulting equations of motion for the «-chain have the following form:

¥+ 2(a + Dxy = —a(xq4xsdias + x3x6 d136 + x2x7d127),
¥z + ( a’+1+a+ 1) x2 = —alx3xqdazs + x7x4d247 + 2 x2x5d735 + X5%64256
+x1x7d127),
i3+ ( a’+1+a+ 1) x3 = —a{x2x4dr34 + X6x4d346 + 2 x3x5d335 + x| X6d 36
+ x5x7 d357),
¥4+ 2xq4 = —o(xx3d234 + x6x3 d3as + X1 x5d)145 + x2x7d247
+ x6x7d467),
X5 +2axs = —o (x% ds + x6x2 dysg + x3d33s + xgdggs + x3dy7s
+ x1x4 d145 + x3x7d357)
Xe + (—\/ﬂz_-l'l +a+ 1) xg = —a (x1x3d)36 + x4x3 d346 + x2x5d256 + 2x5x6d665
+ x4x7 dag7),
X7+ (-—m +a+ l) x7 = —a(x1x2dyy7 + x4x2 dagy + x3xsdisy + xqxedasr
+ 2x5x7 d775)- (23)

The Euclidean distance d will be based on the time evolution of (x (¢), x(1)).

Inspection of the equations of motion induced by H; 4 a Hj yields the xy, x4, x5
normal modes as exact solutions and three invariant manifolds that are 6-dimensional
subspaces in 14-dimensional phase space:

1. Manifold M145 composed by the x|, x4 and x5 modes, associated with the eigen-
values 2(1 + a), 2 and 2a. The dynamics is described by:

14+ 21 +a)x) = —exgxsdyss,
X4+ 2x4 = —exyx5di45, (24)
X5 4+ 2axs = —ex)xad)a5.

For the «-chain this system was treated aiready in the system with four particles;
see Eq.(18). This is an example of Theorem 3.| showing how lower-dimensional
invariant manifolds emerge as invariant manifolds in systems with more particles;
see Sect. 3. In the case of the «-chain the x, x4, x5 normal modes are harmonic
solutions.
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0 2000 4000 6000 8000 10000 ull 2000 4000 €000 8000 10000
t 1

Fig. 1 Timeseries for an e-chain with 8 particles, m = 8(a = 0.125); with 10,000 timesteps, showing
recurrence. We took ¢1(0) = 1 and the other initial values zero. Left the Euclidean distance d in phase
space (vertical scale) to the initial values of the equations of motion induced by Hamiltonian (1) with
ae = 0.1, 8 = 0. Right for the same initial values the Euclidean distance d; in phase space taking into
account only the heavier masses 2, 4, 6, 8. Discussion. The tolal distance to the initial position (on the
left} takes values in [0, 1.8]; the distance 4> (on the right) takes values in [0, 0.85]. This indicates energy
transfer to the more massive part of the chain

2. A second 6-dimensional invariant manifold M>s¢ is composed from the x3, x5 and
xg modes. The equations of motion are:

X2+ daxy = —e(2x2x5d25 + x5x6d256),
¥s 4+ 2axs = —e(x3dys + xgxadys6 + x2dsgs), (25)
Xo + Aoxe = —e(xaxsdrse + 2xs5x6dsss).

The xs, x5 coordinate plane contains harmonic solutions.
3. A third 6-dimensional invariant manifold M3s7 is composed from the x3, x5 and
x7 modes. The equations of motion are:

X3+ A3x3 = —&(2x3xsdszs + x5x7d357),
¥s+2axs = —e(x3dys + x3d775 + x3x7d357), (26)
X714 Mx7 = —e(xyxsdssy + 2x5x7d775).

The x5, X5 coordinate plane contains harmonic solutions.

The mode x5 plays a pivotal part as it occurs in each of the three manifolds. Not too
far from the origin of phase space, for fixed energy and compact energy manifold, the
three invariant manifolds are slightly deformed ellipsoids, topologically S5, embedded
in the iso-energetic manifold of the 7 dof system (topologically S'3).

Invariant manifolds M2s5¢ and M3s7 are new; they are not a consequence of Theo-
rem 3.1,
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Fig. 2 Timeseries for ¢-chains, a = 0.75, £ = 0.1, based on system (13); vertical the Euclidean distance
d in phase space to the initial values of the 7 modes. On the left the initial position is in M)4s5, with
x1{0) = x4(0) = x5(0) = 0.2 and initial velocities zere; the computation has 10,000 timesteps. On the
right we add to the modes 2, 3, 6, 7 the initial position values 0.01 keeping x| (0) = x4(0) = x5(0) = 0.2,
and carry out 20,000 timesteps. Discussion. On the left the solution stays in the manifold M45. It returns
fairly quickly to positions in phase space near to the initial position. On the right the solution staris near to
M) 45. The instability means that the solution may move far away from the manifold. We see that in 20,000
timesteps the solution does not return close to the initial position

5.2 Stability of the Invariant Manifolds

We turn to the question whether the invariant manifolds M)45, M256 and M3s7 are
stable or not on the energy manifold in 14-dimensional phase space, For Hamiltonian
systems the stability of solutions or manifolds is studied by linearization near the
solution or manifold. The set of eigenvalues of the linearization is invariant under
A — —Aand A — A. There are at least two eigenvalues 0. The analysis is simple
in the generic cases of two dof; the presence of eigenvalues with nonzero real part
means instability, and stability occurs if the real parts of all eigenvalues are zero. For
three or more dof the presence of eigenvalues with nonzero real part means instability
because of the reflection invariance, but the fact that all real parts of eigenvalues are
zero is inconclusive for stability. Higher-order terms may destroy the linear stability.
Another complication is that if first-order normal terms vanish, we should consider
higher-order resonances as instability may arise at longer timescales. Both the cases of
purely imaginary eigenvalues and vanishing first-order normal forms will be indicated
by quasi-stability or spectral stability. For a number of values of the mass ratio a
quasi- or spectral stability of M145, M2s¢ and M357 is the rule. An important exception

is that for the value @ = 3 the three invariant manifolds are unstable.

The analytical approac11 uses the fact that the normal modes 1,4 and 5 are harmonic
solutions in the three invariant manifolds. For k € {1, 4, 5} we consider the system
near the solution x4 (1) = p coswyt, p > 0, x; = 0 for j # 0 by taking

X = (p + itg) cos wit + vg sinag s, Yt = —ewr{p -+ up) sinwgt + wpvg COS wt,

Xj =ujcoswil + vjsinw;t, ¥j = —wjujsinw;t +w;vjcosw;t (j # k).

with u ; and v; small quantities. We linearize the resulting system in the new variables
u j, v; by omitting all occurrences of quadratic factors in the 1 ; and v;. We normalize
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the resulting system by averaging. By writing all goniometric functions in complex
exponentials we get factors e/*¥ where Q is an integral linear combination of the
frequencies w ;. The normalization is carried out by putting ' equal to zeroif  # 0.
(This is the normal form condition, see Sanders etal. 2007 Ch 10.) Since the frequencies
depend on the inverse mass a, the outcome of normalization depends on a. The result
for the 14-dimensional system (23) is a linear system in 14 unknowns, described by
a 14 x 14 matrix M;. ,. We carried out this lengthy process with MATHEMATICA, with
the following results:

Modek| Mio=0 [Mp,#£0
1 all a € (0, 1] none
4 lae€(0,1\{3/4}|M43/4 #0
5 |ae€ O, 1\{1/2}{Ms5,1,2 #0

27

The vanishing of the matrix M} , does not lead to conclusions concerning spectral
stability. So perturbation around mode 1 produces no results on stability.
Perturbation around mode 4 gives an unstable case a = 0.75 as the matrix My 3/4

has two positive eigenvalues %\E/—E, two negative eigenvalues and the eigenvalue 0 with

multiplicity 10. So the system is unstable at the eigenmode 4. Inspection of the eigen-
vectors for the positive eigenvalues shows that the unstability is in the direction of the
variables xs, X7, ¥s, ¥7. These directions are not in the invariant manifold M 4s. Hence
the manifold is unstable. The eigenmode & = 4 is outside the invariant manifolds M>s¢
and M3s7. The instability results are illustrated in Figs. 2, 3, and 4.

Perturbation around normal mode 5 is not conclusive as the matrix Ms ;2 has eight
purely imaginary nonzero eigenvalues and the eigenvalue O with multiplicity 6. From
this spectral stability we cannot draw definite conclusions concerning stability.

The stability analysis thus far is restricted to linearization around the modes 1, 4, 5,
it produces non-trivial results for a = 0.5 and 0.75 only. In the next section we obtain
additional results by computing first-order normal forms for system (23).

6 Eight Particles, Normalization of the a-Chain

Consider 0 < a < 1. We rescale x; — &x;,i = 1,...,7 and divide the Hamilto-
nian by &2. The resulting Hamiltonian H, + ¢ H3 determines the equation of motion
described by the vectors x en y in R (we can replace « by ¢); the reduction from 8
dof to 7 dof has been obtained by using the momentum integral.

The frequenciesarew; = ,/A;, 1 < j < 7withA,, ..., A7 thepositive eigenvalues
in (22). Introduce polar coordinates by transformation (3) to produce an equivalent
first-order system in the variables

X =(r,rn. . me,... e0).
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Fig. 3 Timescries for -chains, a = 0.75, € = 0.1, based on system (23). Horizontal 10,000 timesteps
on the left, 20,000 timesteps on the right; vertical the Euclidean distance d in phase space to the initial
values of the 7 modes. On the left the initial position is in Masg, with x2(0) = x5(0) = x5(0) = 0.2 and
initial velocities zero. On the right we add to the modes 1, 3, 4, 7 the initial position values 0.01 keeping
x2({0) = x5(0) = xg(0) = 0.2. Discussion. On the left, in the invariant manifold M>sg, there is regular
recurrence to the initial position. On the right, starting slightly away from M>5¢ we see no clear recurrence
within 20,000 timesteps. The lincarization does not lead to a conclusion concerning stability; the observation
is compatible with instability

This system is equivalent with the transformed 7 dof system outside the seven hyper-
planes x; = y; =0, | < j < 7. The parameters w; and dug, are algebraic functions
of a € (0, 1].

6.1 TheCasea € (0, 1] witha 52 0.5and a 5 0.75

We exclude O(¢g)-neighborhoods of a = 0.5 and 4 = 0.75, and a small interval
near a = 0. Averaging-normalization, see Sanders et al. (2007) chapter 4, using
MATHEMATICA produces that the normal form H = 0 which means that to first-order
normalization the amplitudes r; and phases ¢; are constant. The first-order normal
form in these cases is trivially integrable. To study the structural stability of this result
we would have to compute higher-order normal forms.

We present a numerical example of recurrence in the FPU system induced by
Hamiltonian (1) for mass ratio 1:8(a = 0.125) in Fig. |. A nonzero initial value is
chosen only for the first mass of the chain, and the recurrence is demonstrated by
computing the Euclidean distance d in 16-dimensional phase space. The regularity of
the recurrence agrees with the integrability of the normal form of H> 4 ¢ H3. However,
the heavier particles at positions 2, 4, 6, 8 have zero initial values but the Euclidean
distance d> of the more massive part of the chain shows variation between 0 and 0.85.
This suggests excitations and interactions that are not described by the first-order
normalization of Hj. Other choices of the mass ratio a produce similar results.

6.2 The Detuned Casea = 0.5

The first-order normal form of system (23) has to be reformulated in an O(g)

neighborhood of @ = 0.5. Putting a = 0.5 + c¢ the first seven eigenvalues w? are to

i
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t

Fig. 4 Timcseries for a-chains, a = 0.75, ¢ = 0.1, based on system (23). On the left 10,000 timesteps,
on the right 20,000 timesteps. Vertical the Euclidean distance d in phase space to the initial values of the
7 modes. On the left the initial position is in the manifold M357, with x3(0) = x5(0) = x7(0) = 0.2 and
initial velocities zero. On the right we add to the modes 1, 2, 4, 6 the initial position values 0.01 keeping
x3(0) = x5(0) = x7(0) = 0.2. Discussion. We sec on the left that the solution recurs regularly close
to the initial position. On the right there is no clear recurrence to the initial position in 20,000 timesteps.
The linearization gave no conclusion conceming the stability. The observed behavior is compatible with
instability
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Fig.5 Timeseries for actions of a-chain, a = 0.75, ¢ = 0.1, based on system (23) and with initial values of
the unstable case in Fig. - (right), necar M357. Top: from left to right the actions [, /5 and /5; bottom: /4,
Is and I7. The action J shows little variation, and is not depicted. Discussion. The actions I, I3 are inter-
mittently in 1:1 resonance. We see on top that initially mode 3, located in M357, has large energy and mode
2 has little energy. After 2000 timesteps energy is transferred from mode 3 to mode 2; the process repeats
itself after 15,000 timesteps. Mode 5 is reduced in energy for a period of time after ¢t = 15,000. The modes
4, 6, 7 are in resonance according to normal form system (24). Energy is transferred to modes 4 and 6

O(e):

3+ 2ce, % (3 + JE) + (1 + %) cs (twice),

1 1
2, 14+2c¢, = (3-+5 Ji— twice).
+ 2ce 2( )+( ﬁ)ce(wme)
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Fig. 6 Quasi-trapping illustrated for e-chain, a = 0.75, £ = 0.1, based on system (23) and with initial
values of the unstable case in Fig. £ (right). Left the x2, x3 modes near 1:1 resonance in the first 500
timesteps, middle again near a 1:1 resonance in 1500-2000 timesteps (note growth of x7), right motion
away from 1:1 resonance for timesteps 2000-3600

with O (&) detuned resonances wy = ws + wg and w3 = ws + w7.
The combination angles that turn up in the first-order normalization

X256 = @2 — @5 — e, X357 = @3 — @5 — Y7, (28)

correspond with the sum resonances @2 = @5+¢s and p3 = @s+¢7. Inaneighborhood
of a = 0.5 we can apply averaging—normalization using the frequencies of the exact
resonance while using the ce term as a perturbation. This produces the system:

. . i c .
f1=0 =0, tp|=ﬁe, ps =0,

Ersrg Sin xass . Ersrg COS X256 " c .
1= ———, N = ————} ——&,
415+ 55 4/15+5/5r 3
__ &rsrysin xas7 . Ersrycos x3sy

[
- , = AR
4/15+ 55 415455 5

£(rare sin X256 -+ rary sin x3s7) G5 = £(rare cos X256 + r3ry Cosis?)

r5 = ) = + ce,
5 410 > 44/10 15
; grars sin X256 é Erars COS X256 " c .
6 = ——e——, f = ————— + —=¢,
4/15 - 55 4/15-55r5 35
£ryrs sin . Eryrs CoOs ¢
__Er3rssin x3s5 __Er3r5COS X357 (29)

——, V1= ==t =5
415 =545 4/15-55r, V3

The system has the six independent integrals %rlz = E, %rf = E4 (already noted as
exact integrals) and:

\/3+\/§r22+\/3 — /512 = 2E3,
\/3+\/§r§+\/3 — V/5r2 = 2E3,

V3+V5r2 +3+V5r + V2r] = 2Es,

and H» + ¢ Hs; the constants Ea, ..., Es are positive. For integrability of the normal
form one needs one more independent integral.
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Short-periodic solutions of the normal form equations are found when looking for
constant amplitudes; they satisfy the condition

sin Xis7 = sin X256 = 0.

The equations for the combination angles are:

F5r7COS X357 _ (rarg COS Xo56473ry COSy57) _ _Farseosxsy | _ .
b4

< X357 = s =k
4 |5+5\/§ r 4410 rs 4\/15—5\/5 rn (30)
B _Fsrecos xass  _ (rarg cos xose---rary cosasy) ryrs Cos X256
X256 = —cC.
4~/ 15455 r2 410 r5 4/15-5/5 rg

We restrict our further discussion to the exact case a = %, corresponding to ¢ = 0.
Putting X256 = X357 = 0 we arrive at two equations:

raryrgr; = ¢ (\/ 3— ﬁrszré - rzzré2 -3+ ﬁr%rg)
iy (\/3 Vi -3+ ﬁrgrg) ,

with a parameter ¢ satisfying £ = 1 if 256 = x357 mod 27, and £ = —1 otherwise.)
So we have in first-order normalization two resonant manifolds. They do not intersect
each other in the region with positive amplitudes, which excludes double resonance.

We can continue the periodic and quasi-periodic solutions in the detuned case for

¢ small enough.

(3

6.3 Summary Invariant Manifolds Mq45, M356 and M357 at Exact Resonance
a=0.5

® Mj4s: The first-order normal form vanishes and is trivially integrable.
e Mss6: The normal form Eq.(29) produces 3 normal modes, 3 integrals and 2
general position periodic solutions.

e Mais57: The normal form Eq.(29) produces 3 normal modes, 3 integrals and 2
general position periodic solutions.

6.4 The Detuned Casea = 0.75

We find for the frequencies wf, i=1...,7:
w? = 3.5, 3twice, 2, 1.5, 0.5twice.

and to 4 decimals: 1.8708, 1.7321 twice, 1.4142, 1.2247, 0.7071 twice. We replace
a by the small positive parameter ¢. In this case we have one combination angle

_@ Springer



Journal of Nonlinear Science

Table'Z The quantity R in (33) Left Right
describes the resonance
mziligold by R = G in the case Figure 2 R=0 R=8x 106
=3 Figure 3 R=0 R=2x10"5
Figure 4 R=0 R=4x10""%
Figure 5, 6 R=4%10"%
Figure 7, 8 R=5x10"°

The table gives the value of R lor simulations fora = % for which we
gave results

¢4 = ¢s + 7. Denoting the corresponding combination angle by x467 we find:

. . 2
rn=0 ¢ =c 78,

rn=0, ¢= 04—8
sf
r3 =0, = cm,
__3ererysin(xss7) . _ 3ererycos(x467)
T vz BT T w0
f‘5 = 0, (ﬁs = Cﬁs,
3
Fo = _ 3ergry sin(xa67) g5 = 3erqry cos(x467) Cﬁs
202 ' 20 v/2r 5
PR 3ergre sin(x467) by = 3erare cos(xa67) + Cﬁe . 32)
2072 20 V2r7 5
The normal form system has the six independent mtegrals ry, r,ri,rs, 2r4 + r6 =

Eq, 2r4 + r-, = F» and in addition the normal form H3 or equlvalently Hy+ 5H3 We
conclude that the normal form H> + H; of the a-chain fora = 0.75 is integrable.

In the exact case a = 3 we find from the amplitudes that x467 = 0 mod x is
a necessary condition for periodic solutions with constant amplitude. The condition

Xa67 = O leads to the equation

1
R :=riri4rirk- Ergr-‘,q =0, (33)

which describes the resonance manifold. The three invariant manifolds M)45, M2sg
and M3s7 are contained in the resonance manifold. Higher-order normalization might
produce non-trivial additional results at smaller scales in &.

The initial positions in the simulations that we carried out fora = % are either on
the resonance manifold, or near to it in the resonance zone. See Table 2.
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Fig.7 Projections of x4, xg in a resonance zone of the case m = 4/3 (a = 0.75), a-chain with 8 particles
reduced to systern {23). We use initial values (34), £ = 0.1. In this case we start close to the resonance
manifold described in (33). The presence of the 2:1:1 resonance of the modes 4, 6 and 7 induces transitions,
and it starts near the 2 : | resonance as x7(0) = v7(0) = O after which the x7 mode obtains energy. We
project on the plane x4 and xg, at the top timesteps 0-500 and 5001000, below timesicps 10001500 and
1500-2000 showing the evolution of the dynamics in the resonance zone

We used in Figs. 7 and 8 the initial conditions v;{0) = 0,i = 1, ..., 7 with for
xi@,i=1...,7

— 0.0408248, — 0.0547723, 0.0, — 0.05, 0.0, 0.0447214, 0.0. (34)

This initial position is in the resonance zone, with R = 5 x 1076,

Figures 6, 7 and 8 illustrate the phenomenon of quasi-trapping described in
Zaslavsky (2007). According to the Poincaré recurrence theorem, orbits on a com-
pact energy manifold will return close to its initial position in phase space in a finite
time. However, orbits that are not starting in a low-dimensional invariant manifold or
near a stable periodic solution will in general take a very long time for this recurrence,
depending on our assumption of closeness and the number of degrees of freedom.
The recurrence theorem means that orbits cannot be trapped away from the initial
conditions but they may linger in phase space during passage of resonance zones. In
these zones we have periodic solutions, tori and unstable saddle-like manifolds that
are the causes of delay. This is what we mean by quasi-trapping.
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Fig.8 The actions /4, I and [ (from left to right) for the same simulation as in Fig. 7, witha = 0.75,
2000 timesteps, and an initial position, in (3}, in the resonance zone. In the initial position x(0) = 0, but
mode 7 is excited.

In the case of @ = 0.5 we have two sum resonances, in the case ¢ = 0.75 we have
the 2:1:1 resonance between modes 4, 6 and 7. Note that we start with zero initial
value for mode 7. The dynamics in the resonance zone is illustrated in Fig. 7. First the
2:1 resonance of the x4, x¢ modes dominates (500 timesteps), then in the timesteps
for + = 500 the mode 7 is excited. The recurrent motion on tori around the periodic
solution will produce exchanges of energy between the modes. In Fig. 8 we present
the time series of the actions of the three modes.

7 Conclusions

1. The dynamics of 4 particles in a periodic FPU chain with alternating masses can be
identified in a submanifold of a FPU chain with 8 particles. As is shown in Sect. 3,
this is a general feature of FPU chains with 4n particles. There exist bushes (in the
terminotogy of Chechin et al. 2002}, families of invaniant manifolds, for arbitrary
large chains of this type with 4n particles. This also holds for the classical case
m=1.

2. In the cases of 4, 8 particles, incidental resonances emerge producing periodic
solutions that, in the case of stability, are associated with invariant tori. These
resonances and tori occur in systems with 4n and 8n particles as well.

3. Quasi-trapping as formulated in Zaslavsky (2007) and demonstrated in our anal-
ysis, produces a significant delay of recurrence. The trapping regions are often
associated with the primary resonances 1:2 or 1:1. The normal form approxi-
mations give precise estimates of validity for a long but finite interval of time.
However, this is enough to demonstrate the phenomenon as the recurrence theo-
rem applies to these quasi-trapping regions, the flow will return an infinite number
of times arbitrarily close to the regions.

4. Nearstable equilibrium we did not find energy equipartition in a periodic FPU chain
with alternating masses. The systematic presence of nested invariant manifolds
(bushes) makes equipartition less probable.
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