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Abstract

One of the problems of periodic FPU-chains with alternating large masses is whether signifi-
cant interactions exist between the so-called (high frequency) optical and (low frequency) acoustic
groups. We show that for ↵-chains with 2n particles we have significant interactions caused by
external forcing of the acoustic modes by a stable or unstable optical normal mode. In the proofs
an embedding theorem plays a part; the analysis is straightforward in the case that n is even, a
di↵erent approach using invariant manifolds with symmetry is needed if n is odd. For �-chains
the interactions are characterised by parametric excitation, there are indications that interaction is
negligible.

MSC classes: 37J20, 37J40, 34C20, 58K70, 37G05, 70H33, 70K30, 70K45

Key words: Fermi-Pasta-Ulam chain, alternating mass, high-low frequency interaction, invariant man-
ifolds, symmetry.

1 Introduction

In large nonlinear chains and in nonlinear wave theory one of the basic questions is whether interaction
between very di↵erent parts of the spectrum plays a part. Such knowledge helps to reduce the often
formidable size of the problem. For many applications, for example in Galerkin truncations of wave
equations, this has strong implications for the selection of resonances and mode groups; see for many
examples [15] ch. 7, for recent research and references [10].
A classical problem of mathematical physics is the Fermi-Pasta-Ulam chain (FPU) that consists of a
chain of nonlinearly coupled oscillators with equal masses and nearest-neighbour interaction only. It
was formulated to show the thermalisation of interacting particles by starting with exciting one mode
with the expectation that after some time the energy would spread out over all the modes. This is one
of the basic ideas of statistical mechanics. In the first numerical experiment in 1955, 32 oscillators
were used with the spectacular outcome that the dynamics was recurrent as after some time most of
the energy returned to the chosen initial state. For the original report see Fermi et al. [12], recent
references can be found in Christodoulidi et al. [7] or Bountis and Skokos [2]. Discussions can be
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found in Campbell et al. [6] and Galavotti (ed.)[13]. The recurrence problem is mainly solved now
for low energy chains, see for references [20].
We will study the alternating periodic FPU-chain, formulated in [14], for the special case of a large
di↵erence between the 2 alternating masses and for many particles; the general case of alternating
masses was studied in [4] but the problem is far from solved. If the 2 mass sizes are very di↵erent,
we will see that the spectrum of the linear part can be divided into two groups, the optical group with
relatively large frequencies, and the acoustic group with small frequencies. We will show that for FPU
↵-chains energy exchanges can occur between the optical group and the acoustic group; this is quite
unexpected as there is no frequency resonance. Because the system is Hamiltonian such exchanges
will always be reversible.

The spatially periodic FPU-chain with N particles where the first oscillator is connected with the last
one can be described by the Hamiltonian

H(p, q) =
NX

j=1

 
1

2m j
p2

j + V(q j+1 � q j)

!
, (1)

We choose the number N = 2n of particles even and take the odd masses m2 j+1 equal to 1, the much
larger even masses m2 j = m = 1

a , where a > 0 is small. This chain is an example of an alternating
FPU-chain.
We consider the Hamiltonian near stable equilibrium p = q = 0, and use a potential V of the form

V(z) =
1
2

z2 +
↵

3
z3 +

�

4
z4 ,

and speak of an ↵-chain if ↵ , 0, � = 0 and of a �-chain if ↵ = 0, � , 0.
We mention some facts concerning such systems, and refer to paper [4] for more details. The eigen-
values of the linear system for 2n particles are given in [4], Proposition 3.2:

� j = 1 + a ±
r

1 + 2a cos(2⇡
j
n
) + a2, 0  j  n. (2)

As a ⌧ 1 the eigenvalues are spliting naturally into 2 groups. With 2n particles in the chain the optical
group is characterised by n eigenvalues of size 2 + O(a) and we have n eigenvalues of size O(a), the
acoustic group, which includes the eigenvalue 0 corresponding to the momentum integral:

q̇1 + mq̇2 + . . .+ q̇2n�1 + mq̇2n = L, (3)

with L a constant. This integral enables us to reduce any FPU-chain with 2n dof (2n particles) to
(2n � 1) dof. It is remarkable that for a ⌧ 1 both the optical and the acoustic group (excluding the
case of eigenvalue zero) consist of detuned 1 : 1 : . . . : 1 resonances with nonlinear coupling between
the 2 groups.
From section 2 of [4] we have some explicit results:
If N = 4n the system produces for j = 0, n the eigenvalues 2(1 + a), 2 (in the optical group), and
2a, 0 (in the acoustic group). For each of these non-zero eigenvalues we found periodic solutions, for
the ↵-chain as well as the �-chain.
In the more general case N = 2n we find a 2-parameter family of periodic solutions, determined by
q2 = q4,= . . . = q2n, q1 = q3 = . . . = q2n�1 with as an example:

q1(t) = cos
q

2(1 + a)t, q2(t) =
a

p
2(1 + a)

sin
q

2(1 + a)t.
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It is interesting that O(1) deviations of particles of mass 1 produce O(a) deviations of particles of
mass m, see section 4. In the case of O(1) initial conditions in the optical group and interaction O(a)
with the acoustic group we will indicate this by weak interaction; an O(1) response in the acoustic
group is called strong interaction.

Czechin et al. identified bushes of solutions forming submanifolds for classical (equal masses) FPU-
chains; see [9] and further references there; the paper also generalised the results found for two-mode
invariant manifolds in [16]. We will use related results for alternating FPU-chains. In our approach an
important role will be played by Theorem 3.1 in [4] which is an embedding result that enables us to
extend results obtained for chains with a small number of particles like 4 to systems with 4n particles
with n arbitrarily large. We formulate the theorem as follows:

Theorem 1.1
Consider the equations of motion induced by Hamiltonian (1) for ↵� , 0 and ↵- or �-chains, with
alternating masses 1, m > 0 and n (even) particles. Suppose k is a multiple of n and consider the
equations of motion induced by Hamiltonian (1) with identical ↵, �, m and 2kn dof, then there exists a
restriction of this larger Hamiltonian system that is equivalent to the first system with 2n dof.

The theorem states that each alternating periodic FPU-chain with 2n � 4 particles occurs isomorphi-
cally as an invariant submanifold in all subsystems with 2kn particles (k = 2, 3, . . .) with the same
parameters a, ↵, and �. So the study of small alternating FPU-chains is relevant for larger alternating
systems.
Our basic question is whether there is energy exchange between the two groups or, formulated di↵er-
ently, can high frequency modes transfer energy to low frequency modes and vice versa? In [20] an
a�rmative answer was given for the special case of an ↵-chain with 4 particles. Here we consider this
question more generally for ↵-chains but using the same dynamical mechanism.
The parameters ↵, � scale the nonlinearities. To avoid the solutions of the acoustic group leaving the
domain of stable equilibrium around the origin, we choose the initial values small or adjust ↵, �. The
techniques are equivalent. The interaction dynamics will be characterised by using actions E(t), the
traditional form of the quadratic part of the energies, or by computing the Euclidean distance to the
initial values as a function of time. The Euclidean distance is interesting as it gives information about
the timescales and recurrence properties of the FPU-chain.
For the case of 4 and 8 particles the coe�cients used for ↵-chains can be found in [3] and [4] table 1.
The coe�cients of the �-chain of the alternating FPU-chain discussed in section 4 were listed in [5].
As usual we will use for the action Ei of normal mode i the expression:

Ei =
1
2
(ẋ2

i + !2
i x2

i ).

The approximation theory in the case of widely di↵erent frequencies shows special aspects.

1.1 The asymptotics

A typical example will show the interaction of Hamiltonian systems with widely di↵erent frequencies.

Example 1.1
Consider the Hamiltonian:

H =
1
2
(ẋ2 + x2) +

1
2
(ẏ2 + "2y2) � "x2y,

3



with " a small positive parameter. The equations of motion are:

ẍ + x = 2"xy, ÿ + "2y = "x2. (4)

Averaging, see [17], requires that the solutions are located in a bounded domain of phase-space and
that the frequencies of the unperturbed solutions (" = 0) are bounded from below and above by
positive constants independent of ". Suppose that the initial values produce the value E � 0 for the
Hamiltonian. The energy manifold will be bounded and so the solutions will also be bounded if 0 
E < 1/8. The frequency condition poses in this case a problem as there are at least 2 timelike variables
t and ⌧ = "t. According to Lyapunov we can continue the normal modes in the non-resonant system
(4), for instance x = a cos t + " . . . To approximate the solutions we write the system as 2 integral
equations and apply contraction. We have with initial conditions x(0) = c (c2 < 1/4), ẋ(0) =
0, y(0) = ẏ(0) = 0:

x(t) = c cos t + 2"
Z t

0
sin(t � s)x(s)y(s)ds, y(t) = "

Z t

0
sin("t � "s)x2(s)ds. (5)

Starting iteration with x(0)(t) = c cos t, y(0)(t) = 0 produces

x(1)(t) = c cos t, y(1)(t) = c2(
"

8 � 2"2 �
1
2"

) cos "t +
c2

2"
� c2"

8 � 2"2 cos 2t

which is the beginning of a convergent series on intervals of time O(1).
To perform asymptotics we choose c =

p
"; we can easily solve the equation for y in this case to

O("). Assuming that initially the y-mode is at rest we find considerable interaction:

y(t) =
1
2
� "2

2(4 � "2)
cos 2t +

 
"2

2(4 � "2)
� 1

2

!
cos "t + . . . ,

showing for this approximation oscillations with periods O(1) and O(1/").

We shall see that the quadratic forcing of the slowly varying y-component is typical for the interaction
in FPU ↵-chains where the optical normal modes are forcing the acoustic ones.

1.2 Set-up of the paper

In the sequel we will consider for Hamiltonian (1) interactions between optical and acoustic modes to
show that optical modes may induce a nonzero response of one or more acoustic modes that start with
zero or small initial conditions. Both the set of optical modes and the set of acoustic modes present
detuned 1 : 1 : . . . : 1 resonances; Lyapunov-Weinstein results [21] give periodic solutions for these
resonances. As we have seen in the example of subsection 1.1 O(

p
") forcings can already produce

considerable perturbations; the example was inspired by [20] where for the case of an alternating FPU
↵-chain with 4 particles interaction was shown.
Theorem 1.1 enables us to study FPU-chains with more general initial conditions and more particles.
For an alternating system with N = 2n particles with n even, it is enough to show interaction in the
case of 4 particles. The embedding theorem guarantees then interaction in any system generated by
Hamiltonian (1) with the number of particles a 4-fold. We will study this case in section 2. The case
N = 8 is considered to show that adding particles enriches and complicates the interactions.
We cannot simply apply theorem 1.1 if the chain consists of 2p particles where p is a prime number as
there are an infinite number of prime numbers. In section 3 we will consider the case of n = 3, N = 6.
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Showing interaction in systems with 6 particles implies interaction in systems with 6n particles. The
asymptotic analysis results here are more restricted as we have to rescale the optical modes, but on
the other hand the asymptotics produces simple normal forms and provides inspiration for the study
of special solutions and manifolds. More importantly, we can identify invariant manifolds in the case
N = 6 that can be found in generalised form for any p > 3.
To show interaction between optical and acoustic modes in the remaining cases of 2p particles with
p prime we will identify, inspired by the case N = 6, in section 4 invariant manifolds with (p � 1)
dof. On these lower-dimensional manifolds we can show interaction between the optical and acoustic
modes. This is shown explicitly for N = 10.
Section 5 contains a note on �-chains, in section 6 (appendix) we list the coe�cients for the case
N = 6.

2 Periodic FPU ↵-chain with 4n particles

Figure 1: We illustrate the interaction of the optical and acoustic groups of system (6) for a = 0.01.
Initial positions x1(0) = x2(0) = 0.5, x3(0) = 0 and initial velocities zero. Left E1(t) (optical
group), middle the acoustic mode x3(t) and right E3(t) (acoustic group) (the scales for E1 and E3 are
di↵erent).The action E3(t) starts at E3(0) = 0 and oscillates between 0 and 0.2

Systems with 4 particles are embedded in systems with 4n particles. So the occurrence of interaction
that we show to occur in a system of 4 particles, occurs in all systems where the number of particles
is N = 2n with n even. We discuss the cases of 4 and 8 particles.

2.1 Periodic FPU ↵-chains with 4 particles (embedded in 4n particles)

In the case of 4 particles we find the eigenvalues (or squared frequencies):

!2
1 = 2(1 + a), !2

2 = 2, !2
3 = 2a, !2

4 = 0.

Reduction to 3 degrees-of-freedom (dof), see [3] and [20] , produces for the ↵-chain the following
system:

8>>>>><
>>>>>:

ẍ1 + 2(1 + a)x1 = 2↵
p

a(1 + a)x2x3,
ẍ2 + 2x2 = 2↵

p
a(1 + a)x1x3,

ẍ3 + 2ax3 = 2↵
p

a(1 + a)x1x2.
(6)

(The factor in the cubic term di↵ers with a multiplicative factor from [4]; it depends on the choice of
an eigenbasis.) We can choose ↵ = 1 and suitable initial values. For system (6) the 3 normal modes
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exist and are harmonic functions with frequencies
p

2(1 + a), 2, 2a.
This problem for a small was studied in [20] with the conclusion that there exists strong interac-
tion between the optical group (modes 1 and 2) and the acoustic group (mode 3) when starting in a
neighbourhood of periodic solutions of the detuned resonance formed by the modes 1 and 2; this is
illustrated in fig. 1. When starting at initial conditions that are not close to a periodic solution in 1 : 1
resonance for modes x1, x2, the interaction is negligible; see fig. 2.

Figure 2: We illustrate weak interaction of the optical and acoustic groups of system (6) for a = 0.01
by plotting E3(t). Initial positions are x1(0) = 0.5, ẋ1(0) = x2(0) = 0, ẋ2(0) = 1/

p
2 (optical),,

x3(0) = ẋ3(0) = 0 (acoustic). Because of the phase di↵erence of the optical modes the forcing of the
acoustic mode E3(t) is small, less than 0.003, but still shows interesting dynamics. See also section
2.3

The interaction is demonstrated in [20] by constructing normal forms for system (6), see for details
section 2.3. The asymptotic approximation to O(

p
a) obtained in this way leads to a forced, linear

equation for x3(t):
ẍ3 + 2ax3 = 2

p
ar2

0 cos2(
p

2t +  0), (7)

 0 is the constant phase of the optical periodic solution, r0 the amplitude. The general solution with
constants c1, c2 is:

x3(t) =
r2

0

2
p

a
�

r2
0

8r2
0 � 2

p
a

cos(2
p

2t + 2 0) + c1 cos(
p

2at) + c2 sin(
p

2at). (8)

Note the factor 1/
p

a. To illustrate the interaction we use the actions

E1(t) =
1
2

⇣
ẋ2

1 + 2(1 + a)x2
1) , E2(t) =

1
2

⇣
ẋ2

2 + 2x2
2

⌘
, E3(t) =

1
2

⇣
ẋ2

3 + 2ax2
3

⌘
.

The (constant) Hamiltonian is the sum of these three actions plus the cubic term, a multiple of x1x2x3.
In fig. 1 the initial values are E1(0) ⇡ E2(0) ⇡ 0.25, up to O(a), and E3(0) = 0. We see the
interaction: E3 quickly rises almost immediately from 0 to a value comparable to the values of the
other actions. It is interesting to compare with a case where the forcing is not resonant because of
a phase di↵erence. In fig. 2 we take the initial values x1(0) = 0.5, x2(0) = x3(0) = 0, ẋ1(0) =
ẋ3(0) = 0, ẋ2(0) = 1/

p
2. There is no strong interaction due to the phase di↵erence of the optical

modes.
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2.2 Periodic FPU ↵-chain with 8 particles (embedded in 8n particles)

We have demonstrated the interaction between acoustic and optical modes in the preceding subsection
for the case of 4 particles; this result extends to 4n particles because of theorem 1.1. However, there
are some new aspects involving di↵erent interactions that are instructive.
We use system (23) and Table 1 of [4] to determine the 7 dof system describing the alternating FPU-
chain with 8 particles. The eigenvalues and squared frequencies of the linearised system are:

!2
1 = 2(a + 1),!2

2,3 = 2
p

a2 + 1 + a + 1 !2
4 = 2,!2

5 = 2a,!2
6,7 = �

p
a2 + 1 + a+, !2

8 = 0.

We number the eigenmodes according to the size of the eigenvalue. The relation between eigenmode
variables in this system and the system with 4 particles is x1 $ x1, x4 $ x2, x5 $ x3.
For simplicity we leave out the complete form of the coe�cients given in [4] for the reduced 7 dof
system. To show the relative size of the terms in the equations of motion we include for the optical
group (equations 1 � 4) from [4] the nonlinear terms to O(

p
a). We find for this group:

8>>>>>>>><
>>>>>>>>:

ẍ1 + 2x1 = ↵
p

a(2x4x5 +
p

2x3x6 +
p

2x2x7) + O(a
3
2 ),

ẍ2 + 2x2 = ↵
p

a(
p

2x7x4 + x2x5 +
p

2x1x7) + O(a
3
2 ),

ẍ3 + 2x3 = ↵
p

a(�
p

2x6x4 � x3x5 +
p

2x1x6) + O(a
3
2 ),

ẍ4 + 2x4 = ↵
p

a(�
p

2x6x3 + 2x1x5 +
p

2x2x7) + O(a
3
2 ).

(9)

In the same way the acoustic group with nonlinear terms to O(
p

a) becomes:
8>>>>><
>>>>>:

ẍ5 + 2ax5 = ↵
p

a(x2
2 � x2

3 + 2x1x4) + O(a
3
2 ),

ẍ6 + ax6 = ↵
p

2a(x1x3 � x4x3) + O(a
3
2 ),

ẍ7 + ax7 = ↵
p

2a(x1x2 + x4x2) + O(a
3
2 ).

(10)

For the ↵-chain with 8 particles 3 invariant manifolds were found in [4]; indicated by the mode num-
bers they are M145, M256, M357. In manifold M145 we recognize the case of 4 particles. Considering
possible interactions between optical and acoustic modes in these manifolds we find that in each case
acoustic mode x5 is excited by an optical mode.
General initial conditions
As we can see by inspection of the Hamiltonian with coe�cients given in table 1 of [4] there are
terms outside the 3 invariant manifolds discussed above that may lead to interaction of the optical
and acoustic group, for instance the terms x3x4x6, x2x4x7. We illustrate the interaction by choosing
nonzero initial values in the optical group and zero initial values in the acoustic group, see fig. 3. We
use the distance to the initial values of the optical and acoustic groups:

do(t) =

vut 4X

j=1

((x j(t) � x j(0))2 + (ẋ j(t) � ẋ j(0))2), (11)

and

da(t) =

vut 7X

j=5

((x j(t) � x j(0))2 + (ẋ j(t) � ẋ j(0))2). (12)

Without interactions da(t) would remain zero for t > 0. On a time interval of 1000 steps the interaction
between the optical and acoustic groups is clear, it is dominated by x5(t); for a more complete picture
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Figure 3: We illustrate for a = 0.01 the interaction of the optical and acoustic groups of system (23)
in [4] (derived for ↵-chains with 8 particles). Initial positions x j(0) = 0.5, j = 1, . . . , 4 (optical),
x j(0) = 0, j = 5, 6, 7 (acoustic) and initial velocities zero. Left do(t) for 4000 timesteps. The
distance da(t) to the zero initial values in the acoustic group grows from 0 to value nearly 5 and is
mainly excited by x5(t) (middle figure shows da(t) on 4000 timesteps). As an illustration da(t) is also
shown for 50 000 timesteps

we also give da(t) for 50 000 timesteps in fig. 3. The numerics suggests that the dynamics becomes
more complex on large intervals of time.
We conclude that in periodic ↵-chains with 4n particles we have significant interaction between the
optical and the acoustic groups. In the case of 4 particles mode x3 and for 8 particles mode x5 play
an important part.

2.3 Normal forms and the case of 4 particles

The dynamics of slow-fast Hamiltonian systems is usually non-hyperbolic so this necessitates a spe-
cial approach. In this paper

p
a is a small parameter, we will use below the more usual ". We focus

on FPU-chains with alternating large mass. The dynamics of the eigenmodes is described by the
Hamiltonian:

H(x, y) =
2n�1X

1

1
2
(y2

j + !2
j(")x2

j) + "H3(x1, . . . , x2n�1). (13)

H3 is a homogeneous polynomial of degree 3, for j = 1, . . . , n,!2
j = 2 + O("2), for j = n +

1, . . . , 2n � 1,!2
j = O("2). A much simpler example of such systems is discussed in subsection 1.1;

we will use and extend the same idea.
For a compact set of initial values containing the origin the solutions exist uniquely and are found
on bounded energy manifolds that are topologically spheres (S 2n�2). The equations of motion are for
j = 1, . . . , n of the form:

ẍ j + 2x j = �"
@H3

@x j
+ O("2). (14)

The usual transformation to slowly varying systems for amplitude r and phase  is:

x = r cos(!t +  ), ẋ = �!r sin(!t +  ). (15)

The slowly varying system for j = 1, . . . , n (the optical group) contains terms x j, j = n+ 1, . . . , 2n�1
that are governed by perturbed, coupled harmonic equations with frequencies near

p
2 and O("). We

rescale the optical variables to localise near the origin, see the cases N = 4 and 6. Introducing the
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timelike variable ⌧ = "t we average the slowly varying system of the optical group over t while keep-
ing the terms xn+1, . . . , x2n�1. It turns out that because of the 1, . . . , 1 resonance it is easy to extract
periodic solutions from the averaged system. They have validity O(") on intervals of time O(1/").
We sketch the analysis for FPU-chains with alternating large mass in the case N = 4 and in section 3
for N = 6. A common feature will be that 1 : . . . : 1 resonances produce generally periodic solutions
in general position, i.e. outside the normal mode planes.

The case N = 4.
In system (6) we put

p
a = ", rescale x1 =

p
"x̄1, x2 =

p
"x̄2 and find after omitting the bars:

8>>>>><
>>>>>:

ẍ1 + 2x1 = 2"↵x2x3 + . . . ,
ẍ2 + 2x2 = 2"↵x1x3 + . . . ,
ẍ3 + 2"2x3 = 2↵"2x1x2 + . . . ,

(16)

where the dots stand for higher order terms. The linear part of the equation for x3 yields timelike
variable "t, terms dependent on t are present at order "2. Transforming by eqs. (15) we find from
system (16) after averaging over t:

8>>><
>>>:

ṙ1 = � "p
2
↵r2 sin( 1 �  2)x3,  ̇1 = � "p

2
↵ r2

r1
cos( 1 �  2)x3,

ṙ2 = "p
2
↵r1 sin( 1 �  2)x3,  ̇1 = "p

2
↵ r1

r2
cos( 1 �  2)x3.

(17)

We put � =  1 �  2 to obtain the equation:

�̇ = �
r

a
2
↵

 
r2

r1
� r1

r2

!
cos(�)x3. (18)

The averaged system has the first integral r2
1 + r2

2 = 2E0 with E0 a positive constant. The amplitudes
r1, r2 will be constant if � = 0, ⇡; from the equation for � we find this is the case if r1 = r2 = E0.
The results are valid on intervals of time O(1/"). The 1-parameter family of solutions with constant
amplitudes leads for x3 (replacing "2 by a) to the equation:

ẍ3 + 2ax3 = 2a↵E0 cos(
p

2t +  1) cos(
p

2t +  2) = ±2a↵E0 cos2(
p

2t +  1) (19)

with  1 �  2 = 0, ⇡. This result is similar to eq. (7) of section 2.
If sin( 1 �  2) , 0 because of a phase di↵erence as in fig. 2 the forcing of the equation for x2 in
system (16) remains small.

3 Periodic FPU ↵-chain with 6n particles

We start again with analysing the system after reduction using the momentum integral.

3.1 The case of 6 particles

The eigenvalues, producing squared frequencies of the linearised system are:

!2
1 = 2(1 + a),!2

2,3 = a + 1 +
p

a2 � a + 1,!2
4,5 = a + 1 �

p
a2 � a + 1,!2

6 = 0. (20)

For a = 0.01 the corresponding eigenvalues are 2.02, 2.00504, 0.0149623, 0.
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Figure 4: Left the action E4, right action E6 for the ↵-chain with 6 particles in 2000 timesteps. The
initial conditions are x1(0) = 0.5, x2(0) = 0.5, x3(0) = 0.5, x4(0) = x5(0) = 0 and all initial
velocities zero so that E1(0) = 0.25, E2(0) = 0.25, E3(0) = 0.25, E4(0) = 0.0, E5(0) = 0.0. We
observe forcing of the acoustic modes with mode 5 most a↵ected in this case

Using momentum integral (3) a symplectic transformation to 5 dof produces the Hamiltonian H2 + H3
with:

H3 =
X

i, j,k

di jkxix jxk.

The coe�cients di jk are given in table 1 of the appendix. For the interaction analysis the terms O(
p

a)
and O(a) are su�cient. The equations of motion for the optical group x1, x2, x3 and the acoustic group
x4, x5 become:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ẍ1 + !2
1x1 = �2

p
ax2x5 � 2

p
ax3x4 + O(a3/2),

ẍ2 + !2
2x2 = �2

p
ax1x5 � 3p

2
ax2x3 �

p
2ax2x5 +

p
2ax3x4 + O(a3/2),

ẍ3 + !2
2x3 = �2

p
ax1x4 � 3

4

p
2ax2

2 +
p

2ax2x4 + 3
4

p
2ax2

3 +
p

2ax3x5 + O(a3/2),
ẍ4 + !2

4x4 = �2
p

ax1x3 +
p

2ax2x3 + O(a3/2),
ẍ5 + !2

5x5 = �2
p

ax1x2 � 1
2

p
2ax2

2 +
1
2

p
2ax2

3 + O(a3/2).

(21)

The optical group is in detuned 1 : 1 : 1 resonance, the detuning is O(
p

a). In system (21) we observe
quadratic forcing terms for modes 4 and 5, similar to the case of 4n particles, so we expect interaction
of acoustic and optical modes. Fortunately we can identify an invariant manifold that is easier to
study. In system (21), putting x1 = x2 = x4 = 0 we have an invariant manifold consisting of mode 3
and 5:

ẍ3 + 2x3 =
p

2ax3x5, ẍ5 +
3
2

ax5 =
1
2
p

2ax2
3. (22)

The dynamics is basically that of system (4) in subsection 1.1, this clarifies the interaction.
Another invariant manifold, consisting of modes 1, 2 and 5 is analysed in the next subsection.
System (21) is a system with widely di↵erent frequencies and it merits a deeper analysis, but here we
restrict ourselves to numerical demonstration of the interactions. We have a = 0.01 in fig. 4, we start
with zero energy in the acoustic modes. In this example mode 4 shows more interaction than mode 5
but their role is reversed for other initial conditions.
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3.2 Normal forms in the case of 6 particles

For system (21) we put
p

a = ", rescale xi =
p
"x̄i, i = 1, 2, 3 and leave out the bars. The dots stand

for higher order terms in ".
8>>>>>>>>>>><
>>>>>>>>>>>:

ẍ1 + 2x1 = "(�2x2x5 � 2x3x4) + . . . ,
ẍ2 + 2x2 = "(�2x1x5 �

p
2x2x5 +

p
2x3x4) + . . . ,

ẍ3 + 2x3 = "(�2x1x4 +
p

2x2x4 +
p

2x3x5) + . . . ,
ẍ4 + 3

2"
2x4 = "2(�2x1x3 +

p
2x2x3) + . . . ,

ẍ5 + 3
2"

2x5 = "2(�2x1x2 � 1
2

p
2x2

2 +
1
2

p
2x2

3) + . . . .

(23)

The linear part of the equations for x4, x5 has timelike variable
p

3/2 "t, terms dependent on t are
present at higher order. We find after averaging of the 3 equations of the optical group:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ṙ1 = " 1
2

p
2(r2 sin( 1 �  2)x5 + r3 sin( 1 �  3)x4),

 ̇1 = " 1
2

p
2( r2

r1
cos( 1 �  2)x5 +

r3
r1

cos( 1 �  3)x4),
ṙ2 = "(� 1

2

p
2r1 sin( 1 �  2)x5 + 1

2 r3 sin( 2 �  3)x4),
 ̇2 = "( 1

2

p
2 r1

r2
cos( 1 �  2)x5 + 1

2 x5 + 1
2

r3
r2

cos( 2 �  3)x4),
ṙ3 = "(� 1

2

p
2r1 sin( 1 �  3)x4 � 1

2 r2 sin( 2 �  3)x4),
 ̇3 = "( 1

2

p
2 r1

r3
cos( 1 �  3)x4 � 1

2
r2
r3

cos( 2 �  3)x4 � 1
2 x5).

(24)

This is a more di�cult system than obtained for N = 4 as it is more asymmetric and it is more di�cult
to find from system (24) solutions with constant amplitude. We note a few aspects:

• We have the first integral of system (24) r2
1 + r2

2 + r2
3 = 2E0 with E0 a positive constant. We

know from Lyapunov-Weinstein theory (see [21]) that on a compact energy manifold system
(23) contains at least 5 periodic solutions. However it is not easy to find all of them, even when
considering the averaged system.

• In section 3 we noted the presence of an invariant manifold consisting of mode 3 and 5 with
modes 1, 2, 4 vanishing. The averaged system to be analysed from (24) is:

ṙ3 = 0,  ̇3 = �1
2

x5, ẍ5 +
3
2
"2x5 = "2 1

2
p

2x2
3.

Integration shows again forcing of mode 5.

• A manifold consisting of modes 1, 2, 5 with vanishing modes 3, 4 contains 3 dof. From system
(24) we have:

8>>>>><
>>>>>:

ṙ1 = " 1
2

p
2r2 sin( 1 �  2)x5,  ̇1 = " 1

2

p
2 r2

r1
cos( 1 �  2)x5,

ṙ2 = �" 1
2

p
2r1 sin( 1 �  2)x5,  ̇2 = "( 1

2

p
2 r1

r2
cos( 1 �  2)x5 + 1

2 x5),
ẍ5 + 3

2"
2x5 = "2(�2x1x2 � 1

2

p
2x2

2).
(25)

For the combination angle � =  1 �  2 we find:

�̇ =
1
2
"(
p

2(
r2

r1
� r1

r2
) cos � � 1)x5.

We have ṙ1 = ṙ2 = 0 (solutions with constant amplitude) if � = 0, ⇡. We find a solution for
� = 0: r2 = �r1 with � =

p
2 so that r1 =

p
2/3E0, r2 =

p
4/3E0. The amplitudes of modes

1 and 2 are constant in fig. 5 with error O(").

11



Figure 5: From left to right x1(t), x2(t), x5(t) for the invariant manifold of modes 1, 2, 5 of the ↵-chain
with 6 particles in 500 timesteps, see system (25). The initial values are chosen to obtain “constant”
ampltudes with initial conditions x1(0) = 0.8164966, x2(0) = 1.154701, x3(0) = x4(0) = x5(0) =
0 and all initial velocities zero. We observe forcing of the acoustic mode 5

4 The cases of 2p alternating FPU-chains with p prime

Inspired by section 3 we will look for low-dimensional invariant manifolds that show interaction
between acoustic and optical modes in the cases N = 2p with p � 5 prime. We put ↵ = 1 as we can
adjust ↵(, 0) by scaling of the coordinates. It is useful to write out the equations of motion:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

q̈1 + 2q1 � q2p � q2 = (q2 � q1)2 � (q1 � q2p)2,
mq̈2 + 2q2 � q1 � q3 = (q3 � q2)2 � (q2 � q1)2,
q̈3 + 2q3 � q2 � q4 = (q4 � q3)2 � (q3 � q2)2,
mq̈4 + 2q4 � q3 � q5 = (q5 � q4)2 � (q4 � q3)2,
. . . = . . . ,
mq̈p�1 + 2qp�1 � qp�2 � qp = (qp � qp�1)2 � (qp�1 � qp�2)2,
q̈p + 2qp � qp�1 � qp+1 = (qp+1 � qp)2 � (qp � qp�1)2,
mq̈p+1 + 2qp+1 � qp � qp+2 = (qp+2 � qp+1)2 � (qp+1 � qp)2,
. . . = . . . ,
q̈2p�1 + 2q2p�1 � q2p�2 � q2p = (q2p � q2p�1)2 � (q2p�1 � q2p�2)2,
mq̈2p + 2q2p � q2p�1 � q1 = (q1 � q2p)2 � (q2p � q2p�1)2.

(26)

4.1 A case of weak interaction

From system (26) we find the special manifold defined by:

q1(t) = q3(t) = . . . = q2p�1(t), q2(t) = q4(t) = . . . = q2p(t), (27)

leading to the 2-dimensional system:
8>><
>>:

q̈1 + 2q1 � 2q2 = 0,
mq̈2 + 2q2 � 2q1 = 0.

(28)

The characteristic equation is �4 + 2(a + 1)�2 = 0 producing the frequencies
p

2(a + 1), 0, the
manifold is associated with the eigenvalues 2(a + 1), 0 of (2) and contains a member of the optical
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group. A typical solution with q1(t) equalling the odd modes, q2(t) the even modes, is

q1(t) = cos
q

2(a + 1)t, q2(t) = �a cos
q

2(a + 1)t, (29)

showing weak high-frequency interaction (small in parameter a).

4.2 Strong interaction for N = 6

The invariant manifolds we found for 2p = 6 in section 3 inspire us to consider system (26) again. If
2p = 6 a special family of solutions, defining an invariant manifold, arises if for all time we have:

q3(t) = q6(t) = 0, q2(t) = �q4(t), q1(t) = �q5(t), (30)

resulting in the system (similar for q3, q4):
8>><
>>:

q̈1 + 2q1 � q2 = q2
2 � 2q1q2,

mq̈2 + 2q2 � q1 = 2q1q2 � q2
1.

(31)

The eigenvalues near the origin are �a � 1 ±
p

a2 � a + 1, see also eq. (20). Reversing the transfor-
mations q! x in section 3 we find that the invariant manifold described by assumptions (30) consists
of the modes x3, x5 (one optical, one acoustic).
Note that the full Hamiltonian system contains system (31) supplemented by the (mirrored) modes
q4, q5. The symmetry assumptions reduce the 6 dof system to two equivalent 2 dof systems.
Using the eigenvalues and eigenvectors for system (31) we can construct a 2 dof system in quasi-
harmonic form with dynamics as in section 3 for N = 6. The linear transformation of q1, q2 produces
quadratic terms for the nonlinearities as before with interaction of optical and acoustic modes.

4.3 The general case with p prime

We can apply similar symmetries to the general system (26) with 2p particles. We assume:
8>>>>><
>>>>>:

qp(t) = q2p(t) = 0,
q2(t) = �q2p�2(t), q4(t) = �q2p�4(t), . . . qp�1(t) = �qp+1(t),
q1(t) = �q2p�1(t), q3(t) = �q2p�3(t), . . . qp�2(t) = �qp+2(t).

(32)

The symmetry assumptions imply that the value of the momentum integral (3) vanishes. System (26)
with 2p dof reduces to 2p � 2 dof which is a 4-fold; we are left with two (p � 1) dof systems with
identical dynamics. The (p � 1) dof system is of the form:

q̈ + Bq = N(q)

with q = (q1, . . . , qp�1)T , B is a (p � 1) ⇥ (p � 1) matrix and N(q) a homogeneous vector, quadratic
in the q variables. Explicitly for p > 5 :

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

q̈1 + 2q1 � q2 = q2
2 � 2q1q2,

mq̈2 + 2q2 � q1 � q3 = q2
3 � 2q2q3 + 2q1q2 � q2

1,
q̈3 + 2q3 � q2 � q4 = q2

4 � 2q3q4 + 2q2q3 � q2
2,

mq̈4 + 2q4 � q3 � q5 = q2
5 � 2q4q5 + 2q3q4 � q2

3,
· · · = · · · ,
mq̈p�1 + 2qp�1 � qp�2 = 2qp�1qp�2 � q2

p�2.

(33)
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The normal mode frequencies of system (33) are derived from the single eigenvalues of B, again resp.p
2 + O(a) and O(

p
a). To put the system in quasi-harmonic form we use a linear transformation

that diagonalises B. The linear transformation of q keeps the nonlinearities quadratic, resulting in
interaction as before. We demonstrate the process for p = 5.

4.4 Strong interaction for N = 10

As an illustration we consider the case N = 10. With p = 5 the symmetry assumptions (33) produce
invariant manifolds with dynamics described by 2 equivalent 4 dof systems. We have for the 1st
system:

8>>>>>>>><
>>>>>>>>:

q̈1 + 2q1 � q2 = q2
2 � 2q1q2,

mq̈2 + 2q2 � q1 � q3 = q2
3 � 2q2q3 + 2q1q2 � q2

1,
q̈3 + 2q3 � q2 � q4 = q2

4 � 2q3q4 + 2q2q3 � q2
2,

mq̈4 + 2q4 � q3 = 2q3q4 � q2
3.

(34)

The first two equations are identical to the first two of the general case in system (33), but the linear
transformation to quasi-harmonic equations will be di↵erent in the general case. The eigenvalues of
the linear part on the left-hand side are:

a + 1 ±
r

1 � 1
2
(1 +

p
5)a + a2, a + 1 ±

r
1 � 1

2
(1 �p5)a + a2, (35)

with approximate size O(a), 2 + O(a), O(a), 2 + O(a) so after transformation the 1st and 3rd modes
are acoustic. The eigenvalues (35) are contained in eq. (2) in the case N = 10. Carrying out the
linear transformation for system (34) by Mathematica we find that the 4 right-hand sides contain 10
quadratic terms and products of the variables of the system. We have again forcing of the acoustic
modes as in the case of N = 6. We omit the general a-dependent (messy) expressions that arise by
the transformations. For a = 0.01 the right-hand sides are after rescaling the eigenvectors:

8>>>>>>>><
>>>>>>>>:

ẍ1 +!2
1x1 = �0.04x2

4 � 0.13x2x4 + R1(x)
ẍ2 + !2

2x2 = 0.0063x1x3 � 0.0019x2
3 + R2(x),

ẍ3 + !2
3x3 = �0.039x2

2 + 0.049x2x4 + R3(x),
ẍ4 + !2

4x4 = 0.0051x2
1 + 0.0062x1x3 + R4(x).

(36)

R1(x), . . . , R4(x) consist of quadratic terms that have no or less influence on the interaction between
acoustic and optical modes (modes x1, x3 are acoustic, x2, x4 are optical). System (36) is typical for
system (34) transformed to quasi-harmonic equations if 0 < a ⌧ 1. We have checked that the same
forcing of acoustic modes by optical ones takes place for N = 14. As we have seen in sections 2 and
3 the forcing by the quadratic terms guarantees strong interaction.

5 Remark on periodic alternating FPU �-chains

As stated in the Introduction the embedding theorem 1.1 holds both for ↵- and �-chains, but the
interaction results for �-chains will be much more modest. To illustrate the di↵erence with ↵-chains
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we consider again the case of 4 (or 4n) particles. Using the momentum integral the reduction to 3 dof,
choosing � = 1, becomes for 4 particles (see [3]):

8>>>>><
>>>>>:

ẍ1 + 2(1 + a)x1 = �x1(x2
1 + 3x2

2) � ax1(2x2
1 + 3x2

2 + 3x2
3) � a2x1(x2

1 + 3x2
3),

ẍ2 + 2x2 = �x2(x2
2 + 3x2

1) � 3ax2(x2
1 + x2

3),
ẍ3 + 2ax3 = �3ax3(x2

1 + x2
2) � a2x3(x2

3 + 3x2
1).

(37)

As for a = 0 system (37) is already nonlinear we use averaging-normalisation in the usual way,
see [17]. Considering small O(a) initial values we put x1 7! ax1, ẋ1 7! aẋ1 etc. We summarise
the results. The analysis leads to in-phase and out-of-phase periodic solutions for the detuned 1 : 1
resonance of the modes 1 and 2. The symmetry of the first two equations of system (37) can be used
to put x1(t) = ±x2(t). To O(a) we find for these periodic solutions:

ẍ1 + 2x1 = �4x3
1, x1(t) = ±x2(t). (38)

The equation for the acoustic mode x3 becomes in this O(a) approximation:

ẍ3 + 2a(1 + 3x2
1(t))x3 = 0, (39)

with x1(t) a periodic solution. For the Floquet exponents we have �1 + �2 = 0. Eq. (39) is an example
af a parametrically excited oscillator with widely di↵erent frequencies, close to

p
2a and

p
2; see for

parametric excitation [18], [19] or [15]. The Floquet instability tongues will be extremely narrow for
a! 0. Interactions between optical and acoustic modes are then negligible for the 4 particles �-chain.
Numerical experiments confirm this.

We can repeat the analysis for a periodic FPU �-chain with 8 (or 8n) particles. Using [4] and the
appendix of [5] we can write down the cubic part of the 7 dof Hamiltonian; it contains 49 terms
dependent on a. As in the case of 4 particles we find parametrically excited systems with widely
di↵erent frequencies. This suggests that we can ignore interaction between optical and acoustic groups
but as in the case of 4 particles, the analysis is not conclusive.
The case of 8 particles is more complicated as among the 49 coe�cients of the Hamiltonian we have
terms like x1x2x3x5, x1x2x3x5, x1x3x4x7; in the equations of motion these terms will produce a certain
forcing of the acoustic modes x5, x6, x7. However, in all the cases of such forcing terms a closer
analysis shows they have coe�cients that are O(a3/2), so they will have less influence.

Conclusions and discussion

1. Our analysis is strongly dependent on the embedding theorem 1.1 and the identification of
submanifolds in subsection 4.3.

2. For ↵-chains with alternating large mass we have shown interaction between optical and acous-
tic modes for chains with N = 4n, 6n, 10n particles (n an arbitrary natural number). This means
that for the chains with number of particles ranging from 4 to 100 we have covered more than
70 % of the cases. As the prime numbers are thinning out if N increases, the percentage will
slowly increase with N.

3. The formulation of subsection 4.3 for invariant manifolds contained in chains with 2p particles
where p is prime has the same symmetries and structure as in the special formulation for 6 and
10 particles. This is strong evidence for interaction between optical and acoustic modes in the
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cases p arbitrary. Consider for instance the ↵-chains with altermating large mass and number of
particles 32 (a 4-fold), 34 (2 times prime number 17) and 36 (a 4- and 6-fold). The dynamics in
the 3 cases will be slightly di↵erent but according to the analysis started in section 4 we expect
in each case interaction between optical and acoustic modes. In a subsequent paper we will
extend our results to ↵-chains with N = 2pn particles where p � 7 is prime.

4. The interaction question for �-chains is more di�cult than for ↵-chains. We conclude that even
for � small enough or at low energy values we have at this stage no evidence for interaction
between optical and acoustic groups in �-chains, but weak interaction might be expected.

5. High-low frequency interaction and localisation of modes play an important part in both con-
servative and engineering mechanics. For classical FPU-chains localisation has been studied
in [7] and [8], it is tied in with the presence of bushes of invariant manifolds. For FPU-chains
with alternating mass again special invariant manifolds can be identified that lead to localisa-
tion for appropriately chosen initial values. For dissipative systems an early paper is [1] where
high-low frequency interaction is studied analytically and numerically for a cantilever beam
subjected to base excitation and damping. Related problems for microresonator arrays are con-
sidered in [11]. Di↵erences are that conservative systems involve recurrence and localisation
in submanifolds whereas dissipative systems often contain a measure of focusing by excitation
and damping.

6 Appendix

We present the coe�cients di jk used for the system with 6 dof in section 3.

i, j, k di, j,k

{1, 2, 5} 2
p

a
p

a + 1 = 2
p

a + a3/2 + O
⇣
a2

⌘

{1, 3, 4} 2
p

a
p

a + 1 = 2
p

a + a3/2 + O
⇣
a2

⌘

{2, 2, 3} 3a(W+1)
4W3/2

p
�a+W+1

= 3a
2
p

2
+ O

⇣
a2

⌘

{2, 2, 5} �
p

a(a2+a(W+2)�2(W+1))
4W3/2

p
�a+W+1

=
p

ap
2
+ a3/2

8
p

2
+ O

⇣
a2

⌘

{2, 3, 4}
p

a(a2+a(W+2)�2(W+1))
2W3/2

p
�a+W+1

= �
p

2
p

a � a3/2

4
p

2
+ O

⇣
a2

⌘

{2, 4, 5} �a(2a2�2a(W+1)+W�1)
2W3/2

p
�a+W+1

= O
⇣
a2

⌘

{3, 3, 3} � a(W+1)
4W3/2

p
�a+W+1

= � a
2
p

2
+ O

⇣
a2

⌘

{3, 3, 5}
p

a(a2+a(W+2)�2(W+1))
4W3/2

p
�a+W+1

= �
p

ap
2
� a3/2

8
p

2
+ O

⇣
a2

⌘

{3, 4, 4} a(2a2�2a(W+1)+W�1)
4W3/2

p
�a+W+1

= O
⇣
a2

⌘

{3, 5, 5} �a(2a2�2a(W+1)+W�1)
4W3/2

p
�a+W+1

= O
⇣
a2

⌘

{4, 4, 5} 3a3/2(a�W)

4W3/2
p
�a+W+1

= � 3a3/2

4
p

2
+ O

⇣
a2

⌘

{5, 5, 5} a3/2(W�a)
4W3/2

p
�a+W+1

= a3/2

4
p

2
+ O

⇣
a2

⌘

Table 1: Non-zero coe�cients in the description of H3 in the eigencoordinates x j.W =
p

1 � a + a2.
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