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Abstract

We consider four masses in a circular configuration with nearest-neighbour interaction,
generalizing the spatially periodic Fermi–Pasta–Ulam-chain where all masses are equal.
We identify the mass ratios that produce the 1:2:4 resonance — the normal form in general
is non-integrable already at cubic order. Taking two of the four masses equal allows to
retain a discrete symmetry of the fully symmetric Fermi–Pasta–Ulam-chain and yields
an integrable normal form approximation. The latter is also true if the cubic terms of
the potential vanish. We put these cases in context and analyse the resulting dynamics,
including a detuning of the 1:2:4 resonance within the particle chain.
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1 Introduction

The Fermi–Pasta–Ulam (fpu) chain is one of the paradigmatic examples of a Hamiltonian
system, see [10, 6] and references therein. The Hamiltonian function is

H(p, q) =
N
∑

j=1

(

p2j
2m

+ V (qj+1 − qj)

)

(1a)

with N the number of particles, mass m a positive constant and nearest-neighbour potential

V (z) =
1

2
z2 +

α

3
z3 +

β

4
z4 . (1b)

The potential V can be extended to higher powers in z. In the literature separate attention
is often paid to the α–chain (β = 0) and the β–chain (α = 0). As an extension of harmonic
oscillator interaction the β–chain is slightly more natural.
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The dynamics defined by the Hamiltonian function (1) is described by the equations of
motion

q̇j =
∂H

∂pj
=

pj
m

, ṗj = −
∂H

∂qj
= V ′(qj+1 − qj) − V ′(qj − qj−1) , j = 1, . . . , N

for N particles under the force F = −V ′. The convention qN+1 := q1 puts the N–degrees-
of-freedom (dof) chain into a circular configuration, one also speaks of the spatially periodic
fpu-chain. Using the diagonal S1–symmetry

S1 × R2N −→ R2N

(θ, p, q) $→ (p, (qj + θ)j)
(2)

enables us to reduce the equations of motion, thereby fixing the value of the momentum mapping

(p, q) $→
N
∑

j=1

pj

corresponding with the linear momentum integral. This leads to a Hamiltonian system with
N − 1 dof.

The initial interest in [9] was with large N , at that time N = 32 or N = 64, trying to
confirm the ergodic hypothesis, see also [8]. After this failed — the numerical experiment [9]
did not show equipartition of energy at low energy level but quite to the contrary recurrence
phenomena — many papers appeared on the fpu-chain and also smaller values of N were
considered. Interestingly, for N = 3 the reduced system in N − 1 = 2 dof was shown in [10] to
be equivalent to the paradigmatic Hénon–Heiles system [14], a Z3–symmetric unfolding of the
1:1 resonance. Moreover, as shown in [16, 15] the 1:1 resonance also governs the normal form
approximations of the fpu-chains with N ≥ 4 and their normal forms are all integrable. This
puts the classical fpu-chain in the realm of Kolmogorov–Arnol’d–Moser (kam) theory where
invariant maximal tori of the approximating normal form persist for the original system. The
invariant tori obstruct or at least delay equipartition of energy, see also [19]. It turns out that
such integrable approximations do also exist for the fpu-chain with alternating masses [11, 5],
see in particular [4] where the case mj = 1, m, 1, m of four alternating masses is analysed.

1.1 Problem formulation

In the inhomogenous fpu-chain the masses of the oscillating particles introduced in the Hamil-
tonian (1a) are not required to be equal. We follow [3] and consider four masses m1, . . . , m4 for
which the fourth and first mass are also subject to nearest-neighbour interaction, resulting in a
spatially periodic fpu-chain. Having unequal masses yields 4 extra parameters — next to the
coefficients α, β of the potential for the nearest-neighbour interaction — which can be brought
down to one extra parameter by restricting to mass ratios that produce the 1:2:4 resonance.
Indeed, from [3] we know that there are 12 curves of mass ratios producing the 1:2:4 resonance.

The analysis of the equations of motion is carried out by computing normal forms. The
approximations obtained in this way are valid in a neighbourhood of the equilibrium. In our
problem the origin of the phase space is a stable equilibrium and, as we shall see, typical error
estimates depend on the size ε of a neighbourhood of this equilibrium.
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From the approximating normal forms of the Hamiltonian function we want to identify
invariant manifolds and ideally integrability of the normal form system. In addition we look for
periodic solutions on a given energy manifold, in some cases normal modes. We have to explain
the terminology as there exists some confusion in the literature. In physics a normal mode
was originally a continuation of linearized motion restricted to one of the co-ordinate planes.
However, reductions and transformations of the positions and momenta mix the variables and
the original simple notion of normal mode gets lost. In our terminology we will for instance for
n actions τ = τ1, . . . , τn and corresponding n angles φ call τ1 a normal mode if we have identified
a continuation of a periodic solution of the normal form for which τ2 = τ3 = . . . = τn = 0.

The 1:2:4 resonance with α ≠ 0 has in general not an integrable normal form, see [7].
However, if two opposite masses in the periodic chain are equal, then exchanging these masses
yields a Z2–symmetry that enforces the cubic terms in the normal form to vanish, whereas the
quartic terms produce the first non-trivial normal form. The same happens for the β–chain
where the third order terms (with coefficient α) are already zero in the original system. Such
fourth order normal form approximations are integrable. Interestingly, it turns out that while
the quintic terms in the normal form vanish as well, higher order truncations (starting at order
six) do break the integrability of the normal form. This yields four different timescales in the
dynamics of these inhomogenous fpu-chains: the fast harmonic motions in 1:2:4 resonance,
the semi-slow motion of the first non-trivial normal form that can be reduced to 1 dof, the
slow motion of all higher order normal forms, which still can be reduced to 2 dof and the
exponentially slow motion in 3 dof.

As mentioned before, the normal form approximations have validity near equilibrium, for
the approximation theorems see [17]. Suppose we consider solutions on an energy manifold
near a stable equilibrium as is the case in N − 1 dof for the Hamiltonian reduced from (1).
When considering solutions near a stable equilibrium it is natural to introduce a small positive
parameter ε and rescale q = εq̄, p = εp̄, divide the Hamiltonian by ε2 and leave out the bars.
In the equations of motion this produces εα, ε2β instead of α, β. The normalisation procedure
keeps the quadratic part H2 of the Hamiltonian (1) as an integral of the normal form equations.

A general result for time-independent Hamiltonians is that when normalising and using the
cubic terms of the Hamiltonian, the solutions and integrals produce approximations with error
O(ε) valid on the timescale 1/ε. In our special problem where the cubic terms vanish after the
normalising transformation, the error estimate, when including the normalised quartic terms,
is O(ε2) valid on the timescale 1/ε2.

The same estimates hold for integral manifolds of normalised systems, but with a difference:
they represent structures that are asymptotic approximations of phantom structures in the
original system. For the normal form integral H2 the timescale of validity can be extended,
the approximation is valid for all time as the solutions in a neighbourhood of equilibrium are
bounded. When including detuning effects, the approximation approach sketched here enables
us to determine the size of the detuning parameters. When retaining nontrivial cubic terms
they have to be of size O(ε); if the normalised cubic terms vanish, the detuning is bounded
by O(ε2).

3
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1.2 Plan of the paper

In the next section we formulate the inhomogenous fpu-chain in more detail, determine the
masses that produce the 1:2:4 resonance and reduce the S1–symmetry (2) of rotating the circular
chain to arrive at our system in 3 dof; classically this means that we use an integral independent
of the energy to remove 1 dof of the 4–particles system. Section 3 then concerns the technical
analysis of determining basic invariants to obtain the normal forms of the 1:2:4 resonance. In
section 4 we identify the cases with two equal masses, next to the β–chain the focus of this
paper. A useful reduction to a 1 dof problem is analysed in section 5. Section 6 is about the
non-integrable higher order terms for 2 dof and the implications for 3 dof; we conclude with
section 7.

2 The inhomogenous fpu-chain

For the inhomogeneous fpu-chain we allow the 4 particle masses mj to be different. In the
Hamiltonian (1a) we take N = 4 and obtain

H(p, q) =
4
∑

j=1

(

p2j
2mj

+ V (qj+1 − qj)

)

(3)

while we keep the potential V defined in (1b). We can write the quadratic part of H(p, q) as

H2 =
1

2
pTA4p +

1

2
qTC4q (4)

with A4 = diag(µ1, . . . , µ4) the 4 × 4 diagonal matrix that has at position (j, j) the inverse
masses m−1

j =: µj while the 4× 4 matrix

C4 =

⎛

⎜

⎜

⎝

2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

⎞

⎟

⎟

⎠

encodes the quadratic part of the potential V . As shown in [3] one of the eigenvalues of A4C4

vanishes, corresponding to the S1–symmetry (2) and leading to the linear momentum integral,
while the three remaining eigenvalues γ1, γ2, γ3 of A4C4 put the restrictions

4(µ1 + µ3)µ2µ4 + 4(µ2 + µ4)µ1µ3 = γ1γ2γ3 (5a)

3(µ1 + µ3)(µ2 + µ4) + 4(µ1µ3 + µ2µ4) = γ1γ2 + γ2γ3 + γ1γ3 (5b)

2(µ1 + µ2 + µ3 + µ4) = γ1 + γ2 + γ3 (5c)

on the inverse masses µj. Correspondingly, choices of the µj exist that produce the first order
resonances 1:2:1, 1:2:3 and 1:2:4 (but not 1:2:2). The resulting 1:2:3 resonance has been studied
in [3], here we consider the 1:2:4 resonance. Scaling to γ1 + γ2 + γ3 + γ4 = 21 we have γ1 = 1,
γ2 = 4 and γ3 = 16 next to γ4 = 0 whence the right hand side γ1γ2γ3 of eq. (5a) becomes 64 and
the right hand side of eq. (5b) becomes 84. We use µ2 + µ4 =: v to parametrise the solutions

4
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(µ1, µ2, µ3, µ4) ∈ R4
>0 and first note that v ≠ 21

4
. Indeed otherwise also µ1+µ3 =

21

4
by eq. (5c),

whence µ1µ3 + µ2µ4 =
21

64
by eq. (5b) and µ1µ3 + µ2µ4 =

64

21
by eq. (5a) contradict each other.

Then the solution of these equations is

µ1,3 =
21− 2v ±

√
∆

4

µ2,4 =
v ±

√
Γ

2

where

∆ = −
(2v + 11)(2v − 19)(2v − 13)

4v − 21

Γ = −
2(v − 16)(v − 4)(v − 1)

4v − 21
.

Diagonalising A
1

2

4C4A
1

2

4 = UΛUT , Λ = diag(γ1, γ2, γ3, 0) with an orthogonal matrix U yields the
symplectic transformation

p = Ky , q = Lx (6)

adapted from [3] where

K = A
− 1

2

4 UΩ
1

4 and L = A
1

2

4UΩ− 1

4

with Ω = diag(γ1, γ2, γ3, 1) that turns the quadratic part (4) of the Hamiltonian (3) into

H2 =
3
∑

j=1

2j−1(
x2
j + y2j
2

) +
y24
2

. (7)

This simultaneously achieves two goals. On one hand the S1–action of eq. (2) becomes x4 $→
x4 + ϑ, i.e. x4 is a cyclic angle and reducing this S1–symmetry amounts to fixing the value y4
of the momentum integral and ignoring the cyclic angle x4, whence the reduced Hamiltonian
in 3 dof reads as

H2 =
x2
1 + y21
2

+ 2(
x2
2 + y22
2

) + 4(
x2
3 + y23
2

) . (8)

On the other hand the transformation (6) achieves the splitting of the quadratic part of the
reduced Hamiltonian into the three oscillators in 1:2:4 resonance visible in eq. (8). For inverse
masses µj that do not lead to resonant oscillators, this same procedure — with adapted Λ
and Ω — leads to the deformation

Hλ
2 = (1 + λ1)

x2
1 + y21
2

+ (2 + λ2)
x2
2 + y22
2

+ (4 + λ3)
x2
3 + y23
2

(9)

of the 1:2:4 resonant oscillator (8), with detunings λj = λj(µ), j = 1, 2, 3. This is the quadratic
part of

Hλ(x, y) = H(Ky, Lx) (10)

reduced from (3). As we have discussed in section 1.1, the detunings λ1,λ2,λ3 depend in size
on the order of the first non-zero terms in the normal form.

5
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3 Harmonic and nonlinear oscillators in 1:2:4 resonance

It is well-known that the flow induced by the quadratic Hamiltonian (8) is periodic and a
truncated normal form of the Hamiltonian (10) with respect to (8) depends on x, y only through
certain invariants, see below (for the general theory see also chs. 11–13 in [17]). This allows to
use the periodic flow of XH0

2
to reduce to 2 dof.

This embeds the reduced system into the space of invariants R11 where 11 is the number of
independent invariants, see below. However, as the 11× 11 Poisson matrix of these invariants
has rank 4, this is indeed a reduction from 3 to 2 dof (the Hamiltonian (8) acts as a Casimir).
The effectiveness of determining invariants becomes clear in section 3.2 where we formulate the
normalised equations of motion.

Note that a preliminary study of the Hamiltonian (10) at λ = 0 is contained in [1], for a
summary see [17]. We will pursue the study of such non-integrable normal forms in a subsequent
paper. As shown in [7] already the general third order normal form of the 1:2:4 resonance is
not integrable.

In case there does exist a third independent integral (next to the quadratic (8) and the
Hamiltonian itself) the normalised system is integrable and we can reduce to 1 dof. As noted
in [17] this may happen if there are additional discrete symmetries. Such a discrete symmetry
is introduced if two opposite masses are equal as one then can flip the periodic chain about the
other two masses without changing the equations of motion.

3.1 Invariants, syzygies and Poisson bracket relations

In complex co-ordinates zk = xk + iyk the flow defined by H0
2 reads as

(t, z) $→
(

e−itz1, e
−2itz2, e

−4itz3
)

whence a monomial zm1

1 zm2

2 zm3

3 z̄n1

1 z̄n2

2 z̄n3

3 is invariant if and only if m1+2m2+4m3 = n1+2n2+
4n3. The ring of functions invariant under this flow is generated by the basic invariants

τ1 =
1

2
z1z̄1 =

x2
1 + y21
2

τ2 =
1

2
z2z̄2 =

x2
2 + y22
2

τ3 =
1

2
z3z̄3 =

x2
3 + y23
2

of degree 2, the basic invariants

σ1 =
1

2
Re z21 z̄2 =

x2
1x2 + 2x1y1y2 − x2y21

2

σ2 =
1

2
Im z21 z̄2 =

y21y2 + 2x1x2y1 − x2
1y2

2

σ3 =
1

2
Re z22 z̄3 =

x2
2x3 + 2x2y2y3 − x3y22

2

σ4 =
1

2
Im z22 z̄3 =

y22y3 + 2x2x3y2 − x2
2y3

2

6
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Table 1: Poisson brackets {τi, σj}

{↓,→} σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8
τ1 −2σ2 2σ1 0 0 −2σ6 2σ5 −4σ8 4σ7
τ2 σ2 −σ1 −2σ4 2σ3 −σ6 σ5 0 0
τ3 0 0 σ4 −σ3 σ6 −σ5 σ8 −σ7

of degree 3, the basic invariants

σ5 =
1

2
Re z21z2z̄3 =

x2
1(x2x3 + y2y3) + 2x1y1(x2y3 − x3y2) − y21(x2x3 + y2y3)

2

σ6 =
1

2
Im z21z2z̄3 =

−x2
1(x2y3 − x3y2) + 2x1y1(x2x3 + y2y3) + y21(x2y3 − x3y2)

2

of degree 4 and the basic invariants

σ7 =
1

24
Re z41 z̄3 =

(x4
1 − 6x2

1y
2
1 + y41)x3 + 4(x2

1 − y21)x1y1y3
24

σ8 =
1

24
Im z41 z̄3 =

4(x2
1 − y21)x1x3y1 − (x4

1 − 6x2
1y

2
1 + y41)y3

24

of degree 5. These 11 basic invariants1 are not free, but restricted by the syzygies Sj = 0,
j = 1, . . . , 20 given by

S1 =
1

2
(σ2

1 + σ2
2) − τ 21 τ2

S2 =
1

2
(σ2

3 + σ2
4) − τ 22 τ3

S3 = σ1σ3 − σ2σ4 − τ2σ5
S4 = σ2σ3 + σ1σ4 − τ2σ6
S5 = σ1σ5 + σ2σ6 − 2τ 21σ3
S6 = σ1σ6 − σ2σ5 − 2τ 21σ4
S7 = σ1σ5 − σ2σ6 − 12τ2σ7
S8 = σ2σ5 + σ1σ6 − 12τ2σ8
S9 = σ3σ5 + σ4σ6 − 2τ2τ3σ1
S10 = σ3σ6 − σ4σ5 − 2τ2τ3σ2

S11 =
1

4
(σ2

5 + σ2
6) − τ 21 τ2τ3

S12 = 6(σ1σ7 + σ2σ8) − τ 21σ5
S13 = 6(σ1σ8 − σ2σ7) − τ 21σ6

S14 = 6(σ3σ7 − σ4σ8) −
1

2
(σ2

5 − σ2
6)

S15 = 6(σ3σ8 + σ4σ7) − σ5σ6

1These are the generators given in [12], note however that only 9 of them are of degree ≤ 4.

7
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Table 2: Poisson brackets {σi, σj}

{↓,→} σ1 σ2 σ3 σ4
σ1 0 −τ1(τ1 − 4τ2) −σ6 σ5
σ2 τ1(τ1 − 4τ2) 0 σ5 σ6
σ3 σ6 −σ5 0 −τ2(τ2 − 4τ3)
σ4 −σ5 −σ6 τ2(τ2 − 4τ3) 0
σ5 4τ1σ4 + 6σ8 4τ1σ3 − 6σ7 −σ2(τ2 − 2τ3) −σ1(τ2 − 2τ3)
σ6 −4τ1σ3 − 6σ7 4τ1σ4 − 6σ8 σ1(τ2 − 2τ3) −σ2(τ2 − 2τ3)
σ7

2

3
τ1σ6

2

3
τ1σ5 −1

6
σ1σ2 − 1

12
(σ2

1 − σ2
2)

σ8 −2

3
τ1σ5

2

3
τ1σ6

1

12
(σ2

1 − σ2
2) −1

6
σ1σ2

S16 = 3(σ3σ7 + σ4σ8) −
1

2
τ3(σ

2
1 − σ2

2)

S17 = 3(σ3σ8 − σ4σ7) − τ3σ1σ2
S18 = 3(σ5σ7 + σ6σ8) − τ 21 τ3σ1
S19 = 3(σ5σ8 − σ6σ7) − τ 21 τ3σ2
S20 = 18(σ2

7 + σ2
8) − τ 41 τ3

and by the inequalities τ1 ≥ 0, τ2 ≥ 0, τ3 ≥ 0. Note that the syzygies themselves have to satisfy
(at least) 14 relations. The Poisson bracket relations between the basic invariants are

{τi, τj} = 0 , i, j = 1, 2, 3

while the {τi, σj}, i = 1, 2, 3, j = 1, . . . , 8 are given in table 1. The relations {σi, σj}, i, j =
1, . . . , 8 are split into tables 2 and 3 (here we use that {σi, σj} = −{σj , σi}).

The Poisson bracket relations together with the syzygies allow to identify the subsets
{τ1 = 0} and {τ1 > 0} of the reduced phase space that are invariant under the dynamics
for every Hamiltonian function H that can be written in terms of the invariants, in partic-
ular for truncated normal forms. Indeed, for τ1 = 0 the syzygies S1, S11 and S20 enforce
σ1 = σ2 = σ5 = σ6 = σ7 = σ8 = 0 whence

τ̇1 = −2σ2
∂H
∂σ1

+ 2σ1
∂H
∂σ2

− 2σ6
∂H
∂σ5

+ 2σ5
∂H
∂σ6

− 4σ8
∂H
∂σ7

+ 4σ7
∂H
∂σ8

= 0

and similarly σ̇1 = σ̇2 = σ̇5 = σ̇6 = σ̇7 = σ̇8 = 0 — independent of H — ensure that the values
of these invariants, in particular of τ1, stay zero. This makes the complement {τ1 > 0} an
invariant set as well.

This does not work for τ2 = 0 because of the τ 21 –contribution from {σ1, σ2} which further-
more prevents equilibria2 inside {τ2 = 0, τ1 > 0}. Even if H is independent of σ1 and σ2 there
are non-zero terms in e.g. the brackets {σ1, σ5}, {σ5, σ6} and {σ7, σ8}. Similarly for τ3 = 0
because of the τ 22 –contribution from {σ3, σ4}, also preventing equilibria inside {τ3 = 0, τ1 > 0}.

2The 3 normal modes are periodic orbits in 3 dof and reduce to equilibria in 2 dof. In the literature one
sometimes speaks of ‘relative equilibria’ to allude to this fact, but here we have made the symmetry reduction
from 3 dof to 2 dof explicit and simply speak of ‘equilibria’ when arguing in 2 dof (i.e. in the τ,σ variables).
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Table 3: Poisson brackets {σi, σj} (continued)

{↓,→} σ5 σ6 σ7 σ8
σ5 0 −2τ1(τ1τ2 − τ1τ3 − 4τ2τ3)

1

6
τ1σ2(τ1 − 8τ3) −1

6
τ1σ1(τ1 − 8τ3)

σ6 2τ1(τ1τ2 − τ1τ3 − 4τ2τ3) 0 1

6
τ1σ1(τ1 − 8τ3)

1

6
τ1σ2(τ1 − 8τ3)

σ7 −1

6
τ1σ2(τ1 − 8τ3) −1

6
τ1σ1(τ1 − 8τ3) 0 − 1

36
τ 31 (τ1 − 16τ3)

σ8
1

6
τ1σ1(τ1 − 8τ3) −1

6
τ1σ2(τ1 − 8τ3)

1

36
τ 31 (τ1 − 16τ3) 0

Furthermore this shows that the normal–1–mode (τ, σ) = (τ1, 0, . . . , 0) is not automatically
an equilibrium; similarly for the normal–2–mode (τ, σ) = (0, τ2, 0, . . . , 0). However, the normal–
3–mode (τ, σ) = (0, 0, τ3, 0, . . . , 0) makes all Poisson brackets vanish, whence it is an equilibrium
for every Hamiltonian function. This can also be obtained from the dynamics on the invariant
set {τ1 = 0}, which is best understood by intersecting the energy level set with the surface of
revolution

σ2
3 + σ2

4 = τ 22 (η − τ2) , 0 ≤ τ2 ≤ η

defined by the syzygy S2 = 0. Here η ≥ 0 is the value of the conserved quantity 1

2
H0

2 , allowing
to replace τ3 by

1

2
(η− τ2) since τ1 = 0. The two surfaces touch in (regular) equilibria, while the

singular point τ2 = 0 — the normal 3–mode — is always an equilibrium.

On the invariant subset {τ1 > 0} of the reduced phase space in 2 dof we may use the syzygies
to replace

τ2 =
σ2
1 + σ2

2

2τ 21

τ3 = 18
σ2
7 + σ2

8

τ 41

σ3 =
6σ1σ2σ8 + 3(σ2

1 − σ2
2)σ7

τ 41

σ4 =
3(σ2

1 − σ2
2)σ8 − 6σ1σ2σ7
τ 41

σ5 = 6
σ1σ7 + σ2σ8

τ 21

σ6 = 6
σ1σ8 − σ2σ7

τ 21
,

compare with [18]. Substituting these expressions in the equations of the remaining 5 invariants
yields a system of 5 differential equations where furthermore the Casimir H0

2 makes sure that
we are in fact on a 4–dimensional manifold. This confirms that we have indeed reduced to
2 dof. The reduced system is straightforwardly studied on the singular part {τ1 = 0} of the
reduced phase space, a 2–dimensional surface of revolution that is conically attached to the
regular part {τ1 > 0} — the latter has a simple structure (it is a manifold) but has the more
complicated dynamics of truly 2 dof.
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3.2 Equations of motion

Any Hamiltonian function on R6 that is invariant under the S1–action generated by the quadratic
Hamiltonian (8) — e.g. a truncated normal form of the general Hamiltonian (10) with respect
to (8) — can be expressed as a function

H = H(τ, σ)

in the basic invariants. The equations of motion on the reduced phase space then read as

τ̇i = {τi,H} , i = 1, 2, 3

and

σ̇j = {σj ,H} , j = 1, . . . , 8.

We expand H as
Hλ = Hλ

2 + H3 + H4 + h.o.t. (11)

with

Hλ
2 = (1 + λ1)τ1 + (2 + λ2)τ2 + (4 + λ3)τ3 (12a)

H3 = a1σ1 + a2σ2 + a3σ3 + a4σ4 (12b)

and

H4 =
1

2

3
∑

k=1

bkτ
2
k + b4σ5 + b5σ6 + b6τ2τ3 + b7τ1τ3 + b8τ1τ2 . (12c)

Note that the normal form of a Hamiltonian with a positional force (derived from a potential)
as in (10) reduced from the fpu-chain (3) has a2 = a4 = 0 and b5 = 0. The non-integrability [7]
of the general truncated normal form of order 3 is reflected by (a1, a3) ∈ R2 in general position.
Discrete symmetries [17] can lead to integrable normal forms.

3.3 Symmetry reduction to one degree of freedom

Let the Hamiltonian (11) be invariant under the Z2–symmetry generated by

(x1, x2, x3, y1, y2, y3) $→ (x1, x2,−x3, y1, y2,−y3) .

This symmetry leaves the τi and σ1, σ2 invariant while the σj , j = 3, . . . , 8 are mapped to −σj .
Consequently, the Hamiltonian Hλ depends only on even powers in σj , j = 3, . . . , 8 and in
particular a3 = a4 = 0 in eq. (12b) for H3. This makes τ3 an integral of motion of the
truncation H3,λ = Hλ

2 +H3 of Hλ. The flow of Xτ3 rotates the (σ3, σ4)–, (σ5, σ6)– and (σ7, σ8)–
planes, leaving only τ1, τ2, τ3, σ1 and σ2 invariant. Reducing the S1–action generated by τ3
leads to 1 dof and on the reduced phase space these 5 invariants can serve as variables. The

10
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syzygy S1 = 0, the value η of 1

2
H0

2 and the value ζ ≤ 1

2
η of τ3 reveal the reduced phase space

to be the surface of revolution

σ2
1 + σ2

2 = 8(η − 2ζ − τ2)
2τ2 , 0 ≤ τ2 ≤ η − 2ζ .

Rotating the (σ1, σ2)–plane to achieve a2 = 0 and omitting constant terms in H3,λ we obtain

H3,λ
η,ζ = a1σ1 + (2λ1 − λ2)τ2 .

Intersecting the reduced phase space with the planes {H3,λ
η,ζ = h} then yields the orbits in

1 dof. The reconstructed dynamics in 2 dof persists under both the perturbation by the quartic
part (12c) and by the fifth order part H5. Indeed, remarkably enough, one has to go to sixth
order where H6 breaks the integrability because it does depend on even powers in σ3 and σ4.

Remark 3.1 This analysis remains true mutatis mutandis if the Hamiltonian (11) is invariant
under the Z2–symmetry generated by

(x1, x2, x3, y1, y2, y3) $→ (x1,−x2, x3, y1,−y2, y3) .

Indeed, this symmetry leaves the τi and σ3, σ4, σ7, σ8 invariant, while σ1, σ2, σ5, σ6 are mapped
to −σ1, −σ2, −σ5 and −σ6, respectively. This makes τ1 an integral of motion of Hλ

2 +H3 which
persists under the perturbation by the quartic part (12c), but in this case already the fifth
order part H5 breaks the integrability.

In the case that the cubic terms (12b) vanish identically, e.g. when the Hamiltonian (11) is
invariant under the Z2–symmetry generated by

(x1, x2, x3, y1, y2, y3) $→ (x1,−x2,−x3, y1,−y2,−y3) , (13)

we immediately consider the truncation

H4,λ = Hλ
2 + H4

given by the fourth order term (12c). Requesting b24 + b25 ≠ 0 we can again achieve b5 = 0 by a
rotation, but now the term b4σ5 in the truncated normal form is accompanied by a quadratic
expression in τ1, τ2, τ3. Since σ1, σ2, σ3, σ4, σ7 and σ8 do not enter the Hamiltonian H4,λ, there
is a third integral of motion K = τ2 + τ3 (or, equivalently, τ1 − 2τ2, τ1 + 2τ3 or τ1 − τ2 + τ3).
The flow of XK rotates the (σ1, σ2)–, (σ3, σ4)– and (σ7, σ8)–planes, leaving only τ1, τ2, τ3, σ5
and σ6 invariant. Reducing the S1–action generated by K leads to 1 dof and on the reduced
phase space these 5 invariants can serve as variables. The syzygy S11 = 0, the value η of 1

2
H0

2

and the value ζ ≤ η of K reveal the reduced phase space to be the surface of revolution

σ2
5 + σ2

6 = 4τ 21 τ2τ3 = 16(2η − 4ζ + τ2)
2τ2(ζ − τ2) , max(0, 2ζ − η) ≤ τ2 ≤ ζ . (14)

Omitting constant terms, the truncated normal form of order 4 becomes

H4,λ
η,ζ = b4σ5 + (4b1 + b2 + b3 − 2b6 + 4b7 − 4b8)

τ 22
2

+ [2λ1 + λ2 − λ3 + 4b1(η − 2ζ) − b3ζ
+ b6ζ + 4b7(η − 2ζ) − 2b8(η − 3ζ)] τ2 .

(15)
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Intersecting the reduced phase space with the parabolic cylinders {H4,λ
η,ζ = h} then yields the

orbits in 1 dof. This is carried out in detail in section 5 below. While the fifth order normal
form terms H5 vanish, the perturbation by the sixth order normal form terms H6 generically
breaks the integrability and the resulting perturbation problem has to be analysed in 2 dof.

In the special case b24 + b25 = 0 the dynamics in 1 dof is given by periodic orbits around the
τ2–axis, with equilibria at the extremal values of τ2. In 3 dof the latter yield invariant 2–tori
shrinking down to normal modes. Only where the vertical planes {H4,λ

η,ζ = h} are double planes
intersecting the reduced phase space, i.e. where

τ2 = −
2λ1 + λ2 − λ3 + 4b1(η − 2ζ) − b3ζ + b6ζ + 4b7(η − 2ζ) − 2b8(η − 3ζ)

4b1 + b2 + b3 − 2b6 + 4b7 − 4b8

lies between max(0, 2ζ− η) and ζ , the circles of intersection consist of equilibria and the higher
order terms become important, compare with [13].

4 Equal masses in the fpu-chain

The parametrisation (5) of the inverse masses µj, j = 1, . . . , 4 by v ≠ 21

4
yields positive values

µj(v) > 0, j = 1, . . . , 4 for

v ∈ [1, r1[ ∪ ]r2, s1[ ∪ ]r3, s2[ ∪ ]s3,
19

2
] ,

see fig. 1a. Also we can use the transforms under the groupD4 (as is done for the 1:2:3 resonance
in [3]),

ξ1 =
−µ1 + µ2 − µ3 + µ4

2
, ξ2 =

µ4 − µ2√
2

, ξ3 =
µ3 − µ1√

2
,

where using the spherical coordinates (ρ,ψ,φ) determined by

ξ1 = ρ sinψ , ξ2 =
ρ√
2
cosψ cosφ , ξ3 =

ρ√
2
cosψ sinφ

the distribution of inverse masses is plotted in fig. 1b. Here as in fig. 1a the excluded boundary
points are given by

r1 = 1.3932195 s1 = 3.6182827

r2 = 2.2250632 s2 = 8.2749368

r3 = 6.8817173 s3 = 9.1067805 .

At v = 1 we have µ2 = µ4 and at v = 19

2
we have µ1 = µ3. These cases are extended cases of

classic and alternating masses cases as considered in the literature, see for instance [5]. When
relabeling the masses the two cases are mapped into each other and so we may concentrate on
v = 1. Then the solution of the system (5) is

(µ1, µ2, µ3, µ4) = (
19

4
+

√
143

4
,
1

2
,
19

4
−

√
143

4
,
1

2
) (16)
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while K and L in eq. (6) are given by

K = A
− 1

2

4 UΩ
1

4 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
√
13−

√
11

4
√
3

√
13+

√
11

4
√
6

19−
√
143

8
√
218

1
√
11

4
√
3

−
√
13

4
√
6

√
218

16

0 −
√
13+

√
11

4
√
3

√
13−

√
11

4
√
6

19+
√
143

8
√
218

−1
√
11

4
√
3

−
√
13

4
√
6

√
218

16

⎞

⎟

⎟

⎟

⎟

⎟

⎠

and

L = A
1

2

4UΩ− 1

4 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 4
√
13−3

√
11

16
√
3

15
√
13+16

√
11

32
√
6

√
218

32

1

2

√
11

16
√
3

−
√
13

32
√
6

√
218

32

0 −4
√
13+3

√
11

16
√
3

15
√
13−16

√
11

32
√
6

√
218

32

−1

2

√
11

16
√
3

−
√
13

32
√
6

√
218

32

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

We perturb the masses by unfolding the values in eq. (16) from µ to µ+ ν, ν ∈ R4; in general
this yields a non-diagonal matrix Λ if we use the same transformation. However, using adapted
K = K(ν) and L = L(ν) resulting from A4 = A4(ν) = diag(µ1 + ν1, µ2 + ν2, µ3 + ν3, µ4 + ν4)
and corresponding diagonalising matrix U = U(ν) again yields Λ = diag(γ1, γ2, γ3, 0) and
Ω = diag(γ1, γ2, γ3, 1) with now

γj = (2j−1 + λj)
2 , j = 1, 2, 3

where λ = λ(ν) detunes the 1:2:4 resonance. For ν = 0 also λ = 0; the detunings λ are O(ε) if
the normalised H3 does not vanish, if it does, we have λ = O(ε2). We start with neglecting the
changes by detuning in the higher order terms, which are transformed to

H3 = −
α x1

12

(

13x2 +
√
286x3

)(

11x2 −
√
286x3

)

(17)

H4 =
β

144

(

9x4
1 + 108x2

1x
2
2 + 216x2

1x
2
3 +

287

4
x4
2 −

√
286x3

2x3

+3x2
2x

2
3 + 2

√
286x2x

3
3 + 287x4

3

)

. (18)

As already discussed, the normal form terms H3 of cubic order vanish. This in particular leads
to λ = O(ε2). The detuning terms are of the same order ε2 as H4.

Remark 4.1 From fig. 1a we see that we also have equal masses µ3 = µ4 at two values
v = 3.1305722 and v = 7.3694278. However, here the cubic normal form does not vanish. The
reason is that µ3 = µ4 does not define a symmetry like the Z2–symmetry (13). We therefore
defer the discussion of these cases to the general discussion of non-vanishing cubic normal forms
in a subsequent paper.
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(a) (b)

Figure 1: (a). All the branches of the fibre of possible inverse mass configurations of µj(v), for
j = 1, 2, 3, 4 with colors red, green, blue, brown and thicknesses 8, 6, 4, 2, respectively. (b). The
fibre is contained in an ellipsoid, leading to the shown distribution of inverse masses in spherical
co-ordinates with horizontally the azimuth φ and vertically the inclination ψ. The continuous
curves correspond to the branches of the fibre in fig. (a) and the dotted curves correspond to
the translates of the branches under the dihedral group D4. All these curves on the ellipsoid
show that the fibre for the 1:2:4 resonance consists of 12 open curves, compare with [3].

For the α–chain (β = 0) at v = 1 we need two normalising transformations to get the truncated
normal form H4,λ = Hλ

2 +H4 with λ = λ(ν) in the Hamiltonian (10) and

b1 = 0

b2 = −
4147

8640
α2

b3 = −
17875

9072
α2

b4 = −
3
√
286

280
α2

b5 = 0 (19)

b6 =
15053

7560
α2

b7 = −
403

810
α2

b8 = −
209

756
α2

in the quartic part (12c). For the general β–chain (α = 0) where we do not need to restrict to
v = 1 to have the cubic terms vanish we get the truncated normal form H4,λ = Hλ

2 +H4 with
λ = λ(ν) in the Hamiltonian (10) and

b1 = −
3(2v − 19)2

28(4v − 21)4n4
1

(

b12Γ
3

2 + b11Γ
1

2 + b10
)

β

b2 = −
3(2v − 13)2

210(4v − 21)4n4
2

(

b22Γ
3

2 + b21Γ
1

2 + b20
)

β

14
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b3 = −
3(2v + 11)2

22(4v − 21)4n4
3

(

b32Γ
3

2 + b31Γ
1

2 + b30
)

β

b4 =
3∆

√
2
13
(4v − 21)3n2

1n2n3

(

b42Γ
3

2 + b41Γ
1

2 + b40
)

β

b5 = 0 (20)

b6 = −
3(2v + 11)(2v − 13)

25(4v − 21)4n2
2n

2
3

(

b62Γ
3

2 + b61Γ
1

2 + b60
)

β

b7 = −
3(2v + 11)(2v − 19)

24(4v − 21)4n2
1n

2
3

(

b72Γ
3

2 + b71Γ
1

2 + b70
)

β

b8 = −
3(2v − 13)(2v − 19)

27(4v − 21)4n2
1n

2
2

(

b82Γ
3

2 + b81Γ
1

2 + b80
)

β

in the quartic part (12c) where

n1 =

(

45(2v − 19)[(6v2 − 57v + 107)
√
Γ + 6v3 − 69v2 + 229v − 256]

2(−v +
√
Γ)(4v − 21)

)
1

2

n2 =

(

−
9(2v − 13)[(6v2 − 39v − 52)

√
Γ + 6v3 − 87v2 + 388v − 256]

2(−v +
√
Γ)(4v − 21)

)
1

2

n3 =

(

90(2v + 11)[(6v2 + 33v − 328)
√
Γ + 6v3 − 159v2 + 664v − 256]

(−v +
√
Γ)(4v − 21)

)
1

2

are defined as in [3] (together with an n4 that we do not need here) and

b12 = 2(4v − 21)2(48v5 − 584v4 + 3932v3 − 85074v2 + 746170v − 1877017)

b11 = 8(4v − 21)(72v8 − 1948v7 + 18782v6 − 55941v5 − 331278v4 + 3089076v3

− 6496428v2 − 10260437v + 40373227)

b10 = −(48v6 − 1512v5 + 22576v4 − 196266v3 + 898339v2 − 1676472v + 368062)

× (28v4 − 900v3 + 6419v2 − 12950v − 697)

b22 = 4(4v − 21)2(24v5 − 412v4 − 422v3 + 43143v2 − 298372v + 676534)

b21 = 4(4v − 21)(144v8 − 5000v7 + 66532v6 − 368922v5 − 143706v4 + 12250443v3

− 61549224v2 + 133760048v − 122081152)

b20 = −(48v6 − 1512v5 + 19504v4 − 131754v3 + 436867v2 − 387240v − 682400)

× (28v4 − 828v3 + 5999v2 − 15848v + 8048)

b32 = 4(4v − 21)2(24v5 − 892v4 + 18826v3 − 29937v2 − 844720v + 3115234)

b31 = 4(4v − 21)(144v8 − 9416v7 + 245764v6 − 3135882v5 + 16325934v4 + 67107387v3

− 1318986636v2 + 6135153536v − 9655555456)

b30 = −(48v6 − 1512v5 + 18736v4 − 115626v3 − 668141v2 + 10326288v − 28221968)

× (28v4 − 540v3 − 721v2 + 33040v − 96832)
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b42 = (4v − 21)2(48v4 − 920v3 + 6676v2 − 21436v + 24965)

b41 = 2(v − 1)(4v − 21)(144v6 − 5336v5 + 76684v4 − 547544v3 + 2027809v2

− 3622625v + 2366158)

b40 = −(v − 1)(v − 4)(v − 16)(2v − 19)(12v2 − 126v + 277)

× (28v3 − 512v2 + 2667v − 3713)

b62 = 4(2v − 19)(4v − 21)2(12v4 − 212v3 + 1435v2 − 6682v + 16004)

b61 = 4(2v − 19)(4v − 21)(72v7 − 2920v6 + 43422v5 − 282828v4 + 593619v3

+ 1700190v2 − 8425848v + 6257248)

b60 = −(48v6 − 1512v5 + 14512v4 − 26922v3 − 256469v2 + 1113924v − 830576)

× (28v4 − 684v3 + 5231v2 − 11276v − 6304)

b72 = (2v − 13)(4v − 21)2(48v4 − 872v3 + 7924v2 − 44368v + 101273)

b71 = 2(2v − 13)(4v − 21)(144v7 − 5720v6 + 82884v5 − 525336v4 + 750405v3

+ 8645652v2 − 47236533v + 73402004)

b70 = −(48v6 − 1512v5 + 13456v4 − 4746v3 − 542351v2 + 2893233v − 4699028)

× (28v4 − 720v3 + 6899v2 − 29105v + 45848)

b82 = (2v + 11)(4v − 21)2(48v4 − 968v3 + 6580v2 − 16648v + 12161)

b81 = 2(2v + 11)(4v − 21)(144v7 − 5240v6 + 80004v5 − 658896v4 + 3142173v3

− 8672760v2 + 12977859v − 8267824)

b80 = −(48v6 − 1512v5 + 20752v4 − 157962v3 + 687961v2 − 1579011v + 1497904)

× (28v4 − 864v3 + 6371v2 − 17261v + 16316) .

Interestingly, at v = 1 we have b4 = 0. Since ∆ is a factor of b4 we also have b4 = 0 at v = 19

2

where we furthermore have b1 = b7 = b8 = 0. Adding the α– and β–chain, i.e. working with
the full potential (1b) we get at v = 1 the coefficients

b1 =
3

26
β

b2 = −
11 · 13 · 29

26335
α2 +

7 · 41
283

β

b3 = −
53 · 11 · 13

24347
α2 +

7 · 41
263

β

b4 = −
3
√
2 · 11 · 13
23 · 5 · 7

α2

b5 = 0 (21)

b6 =
15053

23 · 33 · 5 · 7
α2 +

1

253
β

b7 = −
13 · 31
2 · 34 · 5

α2 +
3

22
β

b8 = −
11 · 19
22337

α2 +
3

23
β

in the quartic part (12c). Note that both α2 and β are of order O(ε2).
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5 Dynamics in one degree of freedom

Here we study the dynamics of a general Hamitonian

H = σ5 + pλη,ζτ2 + q
τ 22
2

(22)

on the reduced phase space, a surface given by eq. (14). We defer to the end of this section the
discussion of the dependence of the parameters pλη,ζ and q via eq. (15) on the detuning λ = λ(ν),
the external parameters α, β and µj , j = 1, . . . , 4 of the fpu-chain and the distinguished param-
eters η and ζ . In particular, we assume that the coefficient b4 does not vanish in the truncated
normal form (15). The orbits of the equations of motion defined by the Hamiltonian (22)
coincide with the intersections of the surface (14) with the energy level sets {H = h}.

The singular points of the reduced phase space (14) are always equilibria, these occur where
τ2 = 2ζ− η ≥ 0. Indeed, for 2ζ = η this value is 0 and the surface of revolution has a cuspoidal
singular point, while for 2ζ > η this value is positive and the singular point is conical, compare
with fig. 2. At ζ = η the reduced phase space (14) shrinks down to a single point, from which
the normal–2–mode is reconstructed, and also when ζ = 0 the reduced phase space is a singular
point, corresponding to the normal–1–mode τ1 = 2η. The normal–3–mode τ3 = 1

2
η is reduced

to the cuspoidal singular point τ2 = 0 at the origin of (14) in case 2ζ = η. As all three normal
modes yield singular points in 1 dof, the reconstruction of (22) to 3 dof has three families of
periodic orbits in the co-ordinate planes (xj , yj), i.e. at the normal modes.

Figure 2: The possible forms of the reduced phase space (14) in the intersection with {σ6 = 0}
given by the curves (24). To get back the surface of revolution (14) one has to rotate the
curve(s) about the horizontal axis.

For regular equilibria in 1 dof the energy level set {H = h} has to be tangent to the reduced
phase space (14). The latter is a surface of revolution and the former is a cylinder in the
σ6–direction — on the basis of the intersection (a parabola)

{H = h} ∩ {σ6 = 0} : σ5 = h− pλη,ζτ2 − q
τ 22
2

. (23)
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Hence, equilibria (τ ∗2 , σ
∗
5, σ

∗
6) necessarily satisfy σ∗

6 = 0. The value h ofH can always be adjusted
to let the reduced phase space (14) and the level sets of the Hamiltonian (22) intersect. The
two curves that form the intersection of the surface (14) with {σ6 = 0} are given by

σ5 = ±4(η − 2ζ + τ2)
√

τ2(ζ − τ2) , max(0, 2ζ − η) ≤ τ2 ≤ ζ (24)

and have derivatives

dσ5
dτ2

= ±2

[

2
√

τ2(ζ − τ2) +
(η − 2ζ + τ2)(ζ − 2τ2)

√

τ2(ζ − τ2)

]

. (25)

We may concentrate on the derivatives of σ5 with respect to τ2 in eq. (23) and only need to
solve the equation

∓
√

τ2(ζ − τ2)(p
λ
η,ζ + qτ2) = 4τ2(ζ − τ2) + 2(η − 2ζ + τ2)(ζ − 2τ2) (26)

for τ ∗2 between max(0, 2ζ − η) and ζ to obtain the values (τ ∗2 , σ
∗
5, 0) of equilibria, with σ

∗
5 given

by eq. (24). The regular equilibria undergo a centre-saddle bifurcation where the curves given
by (23) and (24) not only touch but also have coinciding curvature, resulting in the equation

∓q
√

τ ∗2
3√

ζ − τ ∗2 = 4τ ∗2 (ζ − 2τ ∗2 ) − 4τ ∗2 (η − 2ζ + τ ∗2 ) − 3(η − 2ζ + τ ∗2 )(ζ − 2τ ∗2 ) (27)

on η and ζ . In case the condition (26) holds at the singular point τ ∗2 = 2ζ − η > 0 this
equilibrium undergoes a Hamiltonian flip bifurcation (which reconstructs to a period doubling
bifurcation in 2 dof and to a frequency-halving bifurcation in 3 dof). Where this happens at
τ ∗2 = 0 the energy level curve (23) passes horizontally through the singular point reduced from
the normal–3–mode, resulting in an unstable manifold and thus revealing the normal–3–mode
to be unstable. Next to η = 2ζ (to make τ2 = 0 a singular point of the reduced phase space)
this requires pλη,ζ = 0, i.e. for the normal form (15) that

(b3 − b6 − 2b8)ζ = 2λ1 + λ2 − λ3 .

It is helpful to illustrate the dynamics using the contour (24), see fig. 2. Indeed, from these
sections one can easily construct the surface of revolution (14), the intersections of which
with the parabolic cylinders {H = h} yield the orbits of the reduced dynamics. The parabolic
cylinders are determined by the parabolas (23) whence the relative positions of the contour (24)
and these parabolas allow to get a full picture of the reduced flow on the surface (14). For
q > 0 the parabolas (23) are ‘upside-down’, with a maximum at

τ2 = −
pλη,ζ
q

.

Hence, regular equilibria (τ ∗2 , σ
∗
5, 0) on the lower arc of the contour (24) are elliptic (sometimes

the miniml value h ofH is taken at the singular point τ ∗2 = 2ζ−η) while on the upper arc we may
have both hyperbolic and elliptic equilibria, depending on the centre-saddle and Hamiltonian
flip bifurcations (in particular also the maximal value h of H is sometimes taken at the singular
point τ ∗2 = 2ζ − η).
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Figure 3: The bifurcation diagram of the dynamics defined by the normal form of the Hamil-
tonian function (3) with v = 1 in 1 dof for (α, β) = (1, 0) — the α–chain — where we put
2λ1 + λ2 − λ3 on the horizontal axis, while we normed η = 1 and put ζ ∈ [0, 1] on the vertical
axis. The black lines are centre-saddle bifurcations and the dark grey lines form a circle of
Hamiltonian flip bifurcations. The light grey point from which all these lines emerge is where
the normal–3–mode is momentarily unstable.

The Hamiltonian flip bifurcation occurs where the parabola (23) enters the singular point
τ ∗2 = 2ζ − η > 0 with the same slope as the upper or lower arc of the contour (24). Between
these two curves in the (ζ , η)–plane the singular equilibrium τ ∗2 = 2ζ − η > 0 is unstable.
Together with the curves (27) of centre-saddle bifurcations these yield the bifurcation diagram
shown in fig. 3. For a centre-saddle bifurcation the parabola (23) and the contour (24) have to
pass each other non-transversely — the equilibrium where the bifurcation takes place requires
that the two curves have to touch each other.

To actually compute the bifurcation diagram, the precise dependence of pλη,ζ and q on the
external parameters becomes important. For instance, for the normal form (15) we have

pλη,ζ =
2λ1 + λ2 − λ3 + 4b1(η − 2ζ) − b3ζ + b6ζ + 4b7(η − 2ζ) − 2b8(η − 3ζ)

b4
(28)

and

q =
4b1 + b2 + b3 − 2b6 + 4b7 − 4b8

b4
. (29)

Note that the detuning λ ∈ R3 only enters through the combination 2λ1+λ2−λ3. In particular,
the α–chain with v = 1 has b1, . . . , b8 given by (19), whence

pλη,ζ = −
−45360(2λ1 + λ2 − λ3) + (65192η − 284997ζ)α2

486
√
286 α2

and q =
1327579

1944
√
286

.

The bifurcation diagram depicted in fig. 3 is for the α–chain with v = 1 for α = 1. Using (20)
one can compute pλη,ζ and q also for the general β–chain but this leads to bulky formulas.

6 Reconstruction of the dynamics

In this section we reconstruct to higher dof. Reconstructing a degree of freedom amounts to
replacing each (regular) point by a circle. The cyclic angle on this circle carries the dynamics
that has been reduced. Where the symmetric dynamics approximates a non-symmetric system,
the former then is subject to a perturbation analysis to reveal the structure of the latter.
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6.1 Reconstruction to 2 degrees of freedom

While H0
2 is always an integral of the normal form, the integral K of H4,λ is typically made

deficient by higher order normal forms (and also by a cubic normal form with non-vanishingH3).
Therefore we first reconstruct the dynamics in 2 dof with the symmetry generated by H0

2 still
reduced. This consists of attaching an S1 to every regular point of the surface of revolution (14),
thereby reconstructing periodic orbits in 2 dof from regular equilibria in 1 dof. From the singular
point τ2 = 2ζ − η > 0 we also reconstruct a periodic orbit, but of half the period (recall that
here the S1–action generated by K has isotropy Z2). From the cuspoidal point τ2 = 2ζ − η = 0
we reconstruct the normal–3–mode, while the normal–1 and 2–modes are reconstructed from
the single-point versions of (14) with ζ = 0 and η = ζ , respectively — where this happens
simultaneously we have the 1:2:4 resonant equilibrium, which in 2 dof constitutes {η = 0}.

The higher order terms in the normal form yield a slow perturbation of the semi-slow
dynamics reconstructed from 1 dof. In 2 dof a smooth family of invariant tori is not structurally
stable with respect to such integrability-breaking perturbations. However, the periodic orbits
constituting the bifurcation diagram of fig. 3 do persist under such perturbations, whence, up
to Cantorising families of invariant tori by Diophantine conditions, the integrable dynamics in
1 dof also governs the perturbed dynamics in 2 dof.

6.2 Reconstruction to 3 degrees of freedom

When reconstructing the fast motion along the flow of XH0
2
, the normal modes change from

being equilibria in 2 dof to periodic orbits in 3 dof and only the 1:2:4 resonant equilibrium
remains an equilibrium. By the same token, the periodic orbits in 2 dof reconstruct to invariant
2–tori in 3 dof and maximal tori reconstruct to maximal tori (of now dimension 3, with one
fast and two semi-slow frequencies).

As any normal form H of H is by definition equivariant with respect to the flow of XH0
2
, the

symmetry-breaking terms lead to an exponentially small perturbation. Resonances among the
two-timescale-frequencies of maximal tori need a rather high order k ∈ Z3, but the resonant
3–tori still break up and lead to (rather small) gaps. Mutatis mutandi for resonant invariant
2–tori: for elliptic and hyperbolic tori persistence follows from the theory in [2] and for the
quasi-periodic centre-saddle bifurcations and the frequency halving bifurcations persistence
follows from the theory in [12].

6.3 Reconstruction to 4 degrees of freedom

Reconstructing the S1-symmetry (2) amounts to rotating the ring of 4 masses with a velocity

governed by y4 =
∑

pj . This last reconstruction to the full inhomogeneous fpu-chain in 4 dof

is not accompanied by a perturbation analysis as the S1–symmetry (2) is not only a symmetry
of the normal form, but a symmetry of the original system as well. Invariant tori reconstruct
to invariant tori of one more dimension (which may now have one resonance), in particular the
normal modes become invariant 2–tori and the maximal tori have dimension 4. In fact, the
dynamics of the inhomogeneous fpu-chain with 4 masses is best understood after reduction to
3 dof.
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7 Conclusions

The reduced 3 dof inhomogeneous, spatially periodic fpu-chain with two equal masses studied
here has an integrable normal form. For the 1:2:4 resonance of this chain this holds true in the
case of two opposing equal masses, but not for two adjacent equal masses.

The symmetry of the equations of motion induced by our assumption of two opposing equal
masses triggers off the existence of the three normal mode periodic solutions. In the original
4–particles system the normal modes can be reconstructed as a periodic mixture of the particle
solutions.

It is expected that breaking the symmetry induced by two equal masses will produce in-
teresting bifurcations. This also gives rise to integrability-breaking phenomena of the normal
forms.

Acknowledgements. We thank Roelof Bruggeman and Evelyne Hubert for helpful discus-
sions.

References

[1] E. van der Aa, First order resonances in three-degrees-of-freedom systems. Cel. Mech. 31
(1983) 163–191

[2] H.W. Broer, G.B. Huitema and M.B. Sevryuk, Quasi-Periodic Motions in Families of
Dynamical Systems: Order amidst Chaos. Lecture Notes Math. 1645, Springer (1996)

[3] R. Bruggeman and F. Verhulst, The Inhomogeneous Fermi-Pasta-Ulam Chain, a Case
Study of the 1:2:3 Resonance. Acta Appl. Math. 152 (2017) 111–145

[4] R. Bruggeman and F. Verhulst, Dynamics of a Chain with Four Particles, Alternating
Masses and Nearest-Neighbor Interaction. Chapter 5 in: M. Belhaq (ed.) Recent Trends
in Applied Nonlinear Mechanics and Physics. Springer Proc. Phys. 199, Springer (2018)
103–120

[5] R. Bruggeman and F. Verhulst, Near-Integrability and Recurrence in FPU Chains with
Alternating Masses. J. Nonlinear Sci. 29 (2019) 183–206

[6] H. Christodoulidi, Ch. Efthymiopoulos and T. Bountis, Energy localization on q–tori, long-
term stability, and the interpretation of Fermi-Pasta-Ulam recurrences. Phys. Rev. E 81(1)
016210 (2010) 1–16

[7] O. Christov, Non-integrability of first order resonances of Hamiltonian systems in three
degrees of freedom, Cel. Mech. & Dyn. Astr. 112 (2012) 147–167

[8] E. Fermi, Beweis, daß ein mechanisches Normalsystem im Allgemeinen quasi-ergodisch ist.
Phys. Z. 24 (1923) 261–265

[9] E. Fermi, J. Pasta and S. Ulam, Los Alamos Report LA–1940 (1955)

21



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[10] J. Ford, The Fermi-Pasta-Ulam problem: paradox turns discovery. Phys. Rep. 213 (1992)
271–310

[11] L. Galgani, A. Giorgilli, A. Martinoli and S. Vanzini, On the problem of energy partition for
large systems of the Fermi-Pasta-Ulam type: analytical and numerical estimates. Physica
D 59 (1992) 334–348

[12] H. Hanßmann, Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems —
Results and Examples. Lecture Notes Math. 1893, Springer (2007)

[13] H. Hanßmann, A. Marchesiello and G. Pucacco, On the detuned 2:4 resonance. Preprint,
Universiteit Utrecht (2019)
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