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Abstract

To discover qualitative changes of seolutions of differential equations, one has to study their bifurcations, We start with the well-
known bifurcations of equilibria leading to periodic solutions, followed by bifurcations of periodic solutions (Neimark-Sacker
end Hopf-Hopf) in a dissipative setting leading to quasi-periodic motion corresponding with tori. In their turn these families of
quasi-periodic solutions may bifurcate to produce strange attractors. A number of examples jllustrate the theory.
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1. Introduction

The interest in bifurcations started with 18th and 19th century explorations of rotating fluid masses when the speed
of rotation was varied. The first systematic bifurcation theory was given by Henri Poincaré in'?, vol. 1. Bifurcation
phenomena in differential equations correspond with qualitative changes of the solutions, for instance changes of
stability, emergence of new solutions or transitions like the Neimark-Sacker bifurcation that, starting with a periodic
solution, produces quasi-periodic solutions. The theory has very important consequences for mechanics and the other
natural sciences. We will briefly discuss bifurcations of equilibria and periodic solutions, followed by a treatment of
the emergence of tori containing quasi-periodic solutions which can bifurcate again to produce chaos.

2. Bifurcations of equilibria

Consider the n-dimensional autonomous differential equation
i=fix,p), xeR", 1))

with isolated equilibrium xo, so f(xg) = 0; y is 2 real parameter. The theary of bifurcations of equilibria like Hopf,
transcriticel, saddle-node etc., are a well-documented area, see for instance ™12, All this started with Poincaré’s very
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Fig. 1. Transcritical bifurcation of the amplitude of a periodic solution

detailed description’? vol. 1, of what is now called the Hopf-bifurcation. This bifurcation was later discussed by
Andronov and again later by Hopf. It arises if, when linearizing the vector field near xg, for a certain value of the
parameter p = pig two eigenvalues become purely imaginary. In this case a periodic solution can emerge as happens
in the canonical example of the Van der Pol equation:

f+x=p(l - P)x. @

Some confusion may arise because of the terminology. Consider for instance the two-dimensional system in polar
coordinates:

F=@-rir

3
b=1. ©

The equation for the amplitude r shows the (supercritical) pitchfork bifurcarion as for 4 < 0 we have stability of the
origin, for # > 0 we have an attracting periodic sclution (limit cycle). The bifurcation behaviour of the amplitude
equation is then transferred to system {3) which is said to have a pitchfork bifurcation.

Another example is the system in polar coordinates:

F o= pr—rz,
6=1.

In the next section we will consider system (5) that contains the transcritical bifurcation, see Fig. 1, resulting in
an unstable periodic solution for u < 0, a stable one for # > 0.

@

3. Bifurcations of periodic solutions producing tori

We will discuss two important scenarios for the emergence of quasi-periedic solutions corresponding geometrically
with tori in phase-space. There exist other scenarios, for instance for Hamiltonian systems; see '2, Combining analytic
with geometric descriptions helps to visualize the dynamics and helps to present us with a global picture of the
solutions.

3.1. The Neimark-Sacker bifurcation

Consider system (1) with dimension at least three, containing an isolated periodic solution. At a critical value of
the parameter y = pip, the periodic solution has two critical exponents with real part zero. Alternatively formulated:
describing the phase-flow as a map, we have an isolated fixed point of the map with at i = g two purely imaginary
eigenvalues. Then:

1. A torus branches off the periodic solution;
2. The motion on the torus is quasi-periodic;
3. The corresponding fixed point is contained in an invariant circle.
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Example

Consider the system from? containing damping, parametric excitation and nonlinear interaction:
X+exk+(14ecos2x+exy=0, )
V+ey+4(1 + )y — ex* =0.

Here and in the next examples the procedure will be as follows. The presence of a small parameter enables us to
obtain analytic approximations of the solutions and some of the bifurcations. This information is supplemented by
numerical bifurcation techniques 1o obtain more detailed or more global information. In the case of system (5) we
find an isolated hyperbolic periodic solution for 0.546 < x < 0.559. At the value ¥ = 0.546, two real parts of the
four eigenvalues vanish in a Neimark-Sacker bifurcation. A two-dimensional torus emerges containing two-frequency
oscillations, one on timescale order 1 and one on timescale order 1/e.

3.2. The Hopf-Hopf bifurcation

In two degrees of freedom systems we may find an equilibrium with two pairs of purely imaginary eigenvalues. To
illustrate this, we slightly modify a four-dimensional example of Hale® with positive coefficients w, a, b:

+x =l -2 -aP)i
¥+ wy = g(1 - y* - b2y,

In the ccordinate planes x = & = 0 and y = y = 0 we find isolated periodic solutions from the Van der Pol-equation.
It is shown in 12 section 12.3.1 by averaging that if w [J 1, and excluding a = b = 1/2 we have quasi-periodic motion
outside the coordinate planes if a,b > 1/2 and a,& < 1/2, cormresponding with a torus containing two-frequency
oscillations, both on a timescale of order 1. As the torus in the averaged system is normally hyperbolic, it persists in
the original system (6).

A remarkable bifurcation takes place if @ = b = 1/2. Passing from a,b > 1/2 to a,b < 1/2 the torus goes from
unstable to stable. Ata = b = 1/2 the torus deforms to a 3-sphere in 4-dimensional! phase-space covered with quasi-
periodic solutions. The sphere is expected to be structurally unstable in the sense that higher order terms will destroy
it.

(6)

4, Torus break-up

Most of the literature providing insight in the breakdown of tori has been obtained by studying explicitly given
maps. The reason is that phenomena governed by differential equations are implicitly defined and much more difficult
to demonstrate. Note that the breakdown of tori in Hamiltonian context is generic because of non-integrability and
chaos, in & dissipative setting it asks for a more specific dynamics.

Suppose we have a dynamical system containing quasi-periodic solutions corresponding with a torus. The presence
of stable and unstable periodic solutions in p/g-resonance on a torus may produce such a break-up; it can be triggered
by heteroclinic tangencies of stable and unstable manifolds of periodic solutions, arising when a parameter is varied.

An early paper is? where the analysis discusses a two-dimensional map containing a smooth invariant circle with
a pair of periodic orbits, one stable and one unstable. When the invariant manifolds of periodic orbits start crossing in
homoclinic or heteroclinic tangencies the invariant circle looses differentiability and chaotic dynamics takes over.

More details of torus break-up can be found in! where it is established that the breakdown of the torus starts with
non-smoothness of the torus The authors give three possibilities:

o The stable and unstable periodic orbits vanish through a bifurcation.
s Stable and unstable manifolds of the unstable periodic orbit intersect tangentially to form a homoclinic orbit.
» The stable periodic orbit looses stability.

Detailed studies of dissipative families of maps of an annulus into itself can be found in® and 3. The torus corre-
sponds with an invariant circle in the plane. A perturbation yields loss of smoothness of the invariant circle followed
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Fig. 2. Two coupled oscillators

by its destruction. In addition this involves homoclinic bifurcations, cascades of bifurcations, homoclinic and het-
eroclinic tangencies, "small’ strange attractors and 'large’ strange attractors. In'? the bifurcations display a dense
occurrence of resonances. This causes a Cantorization of the bifurcation sets, making the system highly complex.

These map studies give a lot of insight, but we are left then with the task to identify the phenomena in models of
real mechanical systems. We shall note that explicit mechanical systems will also show new phenomena.

5. A simple mechanical system

A system of two coupled oscillators with positive damping 8, x, see Fig. 2, and nonlinear interaction was considered
in%:
i+825+x+y +xy=0,

V+ &§ + 4y + bx* =0. @

As the damping coefficients &, « are positive it is easy to see that the phase-flow is exponentially contracting; if b > 0
the origin is the only stable equilibrium (and limit set), so we choose b < 0 which introduces & new element in the
dynamics. The nonlinear damping of the x oscillator is not essential (it implies a small modification), we might as
well take linear damping. It turns out that ¥ [J 0 is crucial as it produces asynchronous oscillations. Surprisingly
enough, we will see that in the case b < 0 tori, resonances and chaos are produced.

3.1. Periodic and quasi-periodic solutions

For system (7) various scalings of the variables are possible corresponding with different localizations in phase-
space. A suitable scaling near the origin is x = +&x, y — &y, with £ a small positive parameter; we put x — sx, b —
£b. After this rescaling, we find for £ = O ‘unperturbed’ harmonic equations. The analytical technique used is again
averaging-normalization with results:

o We find a hyperbolic critical point (equilibrium) of the averaged equations.
o The critical point corresponds with an asymptotically stable periodic solution (relative equilibrium)
e Decreasing ¥, the periodic solution leaves the neighbourhood of the origin

Using the analytical results as a start we apply numerical bifurcation technigues, i.e. Autoand Mat cont. We start at
¥ = 0.2 and decrease ¥ to find the torus displayed in fig. 3. As the system is 4-dimensional, a Poincaré-map will still
be 3-dimensional, so for its display we prefer to use a projection on the y, y-plane.

One can find different dynamical aspects in other domains of phase-space and by other methods. Another suitable
scaling is x — £'/*x with y not rescaled; this concerns a larger domain than the size considered above both for x and
y. In this case we find after the rescaling for £ = 0 the ‘unperturbed’ equations (8):

E+(1+yx=0, §+4y=0, 8)

resulting in Mathieu-functions as solutions for ‘unperturbed’ x(z). One can use the Poincaré-Lindstedt method using
the known features of Mathieu-functions to determine the existence (by the implicit function theorem) and approxima-
tion of two x-periodic solutions. The Mathieu-function has a periodic branch and a branch with unbounded sclutions.
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Fig. 3. Torus in projection of Poincaré-section (y, y) at y = 0.092, b = -0.5, & = 0.4, x = 0.1, horizontal y & [21, 28], vertical & {~12, -2]; from*

For application of the Poincaré-Lindstedt method we have to use the periodic branch; for details see?. Also in this
region further away from the origin, we find bifurcations resulting in tori.

5.2. Break-up of the torus

Considering the presence of Amold tongues, we are confronted with a very complicated structure that can be
characterized by Cantor sets. So we will look for a prominent tongue within this structure. Using Auto and Mat cont
when decreasing ¥ in the torus regime, we find a bifurcation diagram with a large 1 : 6 resonance tongue bounded by
saddle-node bifurcation curves. At the saddle-node curves in the diagram, the stable and unstable period 6 solutions
that exist for the parameter values within the tongue, vanish. An example of the 1 : 6 stable (node} and unstable
(saddle) periodic solutions on the torus at y = 0.09184 is given in Fig. 4. We keep on decreasing . The 1 : 6 stable

i e - J
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Fig. 4. Stable and unstable 1 : 6 periodic solutions on the torus in projection of Poincard-section (y,¥) at ¥ = 0.09184, horizontal y € [21, 28],
vertical § & [-12,=2]; from?

(node) and unstable (saddle} periodic solutions on the torus at ¥y = 0.0903 have a heteroclinic connection resulting
in a cascade of period doublings, the torus becomes non-smooth. After the cascade of period doublings the torus has
vanished. A strange attractor emerges with Kaplan-Yorke dimension 232, ., see Fig. 5.

3.3. Conclusions for the simple mechanical system

s Averaging-normalization and the Poincaré-Lindstedt method are tools to find and locate periodic solutions and
tori.

e The programs Auto, Content and Ma cont provide the tools for subsequent numerical bifurcation results.

o We studied in this mechanical system the prominent resonance 1 : 6, many other resonances can be located
producing interesting phenomena.

s We briefly mentioned domains that are further away from the origin and which also contain periodic selutions
and strange attractors. Again the analysis is by rescaling and with mixed enalytic-numeric tools.
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Fig. 5. A strange attractor at y = 0.0892, horizontal y, vertical §; from*

6. General conclusions

The systematic study of maps as represented by the references has been an inspiration to consider realistic dy-
namical systems corresponding with actual mechanical systems. Averaging-normalization and numerical bifurcation
techniques can be very helpful. Remarkable enough, complicated phenomena as predicted by studies of maps can
already be identified in our simple example from?. An interesting side-remark is that the phenomena described here,
confirm a visionary paper by Ruelle and Takens !' who suggested a new bifurcation scenario where a periodic solution
produces subsequently a torus and then a strange attractor.

In® 2 (relatively simple) three degrees of freedom mechanical system is considered, Interestingly, it turns out that
in this case new bifurcation phenomena arise. This makes a strong case for exploring torus break-up in more realistic
mechanical models.
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