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Abstract. The purpose of this article is to discuss two basic ideas of Henri
Poincaré in the theory of dynamical systems. The first one, the recurrence the-
orem, got at first a lot of attention but most scientists lost interest when finding
out that long timescales were involved. We will show that recurrence can be
a tool to find complex dynamics in resonance zones of Hamiltonian systems;
this is related to the phenomenon of quasi-trapping. To demonstrate the use
of recurrence phenomena we will explore the 2 : 2 : 3 Hamiltonian resonance
near stable equilibrium. This will involve interaction of low and higher order
resonance. A second useful idea is concerned with the characteristic exponents
of periodic solutions of dynamical systems. If a periodic solution of a Hamil-
tonian system has more than two zero characteristic exponents, this points at
the existence of an integral of motion besides the energy. We will apply this
idea to examples of two and three degrees-of-freedom (dof), the Hénon-Heiles
(or Braun’s) family and the 1 : 2 : 2 resonance.

1. Introduction. Henri Poincaré’s books and papers are full of ideas, sometimes
sketchily presented, sometimes worked out in great detail. After Poincaré’s (1854-
1912) time a large part of mathematics was developed in a di↵erent style of writing,
think of Bourbaki. In this modern style the emphasis is on a concise definition-
theorem-proof presentation. Poincaré’s influence on mathematics and physics has
been enormous but maybe this modern emphasis on the form of mathematics is
the cause of the neglect of some of his ideas. The purpose of this paper is to trace
two important ideas of Poincaré regarding dynamical systems and to illustrate this
by examples. The intertwining of analysis and geometry is typical for the scientific
work of Henri Poincaré. This will also become clear in the ideas and examples.
In both cases the main source will be ”Les Méthodes Nouvelles de la Mécanique
Céleste” (1892-1899), [14]. On a wide range of topics, many other ideas can be
found in his books and papers.

It may be a surprise that the first topic is the recurrence theorem for dynamical
systems characterized by measure-preserving maps. This is of course a well-known
result but there are historical reasons for its neglect. We will show that recurrence
can be used as a tool to become aware of the fine-structure of resonance manifolds
and zones. This topic involves passage through resonance problems for which there
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Figure 1. Henri Poincaré (1854-1912) at the time when he sub-
mitted his prize-essay for the birthday of the Swedish king Oscar
II.

is a tremendous amount of literature. A survey is given by Kevorkian [12] where
many applications are discussed; it also contains a reference to his original 1971
paper on this topic. An early asymptotic result by Sanders can be found in [17].
Seminal papers on the dynamics of passage including asymptotic estimates are by
Neishtadt, see [13] with more references there. Haberman discussed passage through
resonance both for the conservative and dissipative case; see for instance [10].

The second topic is the use of characteristic exponents to recognize the possibility
of integrability. Here, the presence of non-generic behaviour may signal integrability.

General references for dynamical systems are [1], [4] and [5]; for Hamiltonian
systems see also [23] and for an explicit analysis [8].

2. The recurrence theorem. To solve ODEs, in particular in problems of ce-
lestial mechanics, series expansions are often used to obtain local information. An
important global result is the recurrence theorem, originally presented in his prize-
essay for the birthday of the Swedish king, Oscar II, discussed again in [14], vol. 3,
chapter 26.
Consider a dynamical system defined on a compact set in Rn with the property
that the flow induced by the system is measure-preserving. Poincaré uses the term
volume-preserving as the notion of measure did not exist at his time. Examples
are found in billiard dynamics, the motion of an incompressible fluid in a non-
deformable vessel or the phase-flow induced by a time-independent Hamiltonian
system without singularities on a compact domain. Using the invariance of the
domain volume under the flow, it is proved that most particles or fluid elements
return an infinite number of times arbitrarily close to their initial position. The
recurrence time is not specified but depends in general on the required closeness to
the initial position and of course on the dynamical system at hand.
The interpretation of the recurrence theorem in the case of a chaotic system is in-
teresting. In a two degrees-of-freedom Hamiltonian system near stable equilibrium,
the KAM theorem guarantees in most cases the existence of an infinite number of
two-dimensional invariant tori that separate the energy manifold into small chaotic
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regions. In these systems the recurrence phenomena near stable equilibrium are
quite strong. Moving further away from stable equilibrium the tori break up, the
recurrence times will be more and more dependent on the initial positions.
In the case of more than two degrees-of-freedom, resonances will produce more ac-
tive sets of chaotic orbits near stable equilibrium producing very di↵erent recurrence
times.
It is easy to obtain an upper limit L for recurrence times, dependent on the Eu-
clidean distance d to the initial condition. Consider a time-independent Hamiltonian
of the 2n variables p, q expanded in the form

H(p, q) = H2(p, q) +H3(p, q) +H4(p, q) + . . . , (1)

where the index i indicates the degree of the homogeneous polynomials Hi(p, q), i =
2, 3, . . . Assume that H2(p, q) is Morse at (p, q) = (0, 0) and that the quadratic part
is definite, so the origin is a stable equilibrium of the equations of motion. In [22]
it is argued that:

Proposition 1. Each orbit near stable equilibrium of the system induced by Hamil-

tonian (1), except a number of orbits in a set of measure zero, reaches a size d
neighborhood of its initial point with upper bound L of the recurrence time Td:

L = O

✓
1

d2n�1

◆
as d ! 0. (2)

As the recurrence time Td depends on so many characteristics of the dynamical
system at hand, most researchers lost interest. It did not help that Ernst Zermelo
used recurrence to throw doubt on the statistical mechanics of Ludwig Boltzmann;
see for a review [18]. Zermelo, who was more a philosopher of mathematics than
a mathematical physicist reasoned that a collection of molecules placed in a corner
of an empty vessel would always return to this corner after some time. The impli-
cation, Zermelo inferred, is that Boltzmann’s mechanics is wrong. However, a cm3

of atmospheric air put into a closed vessel has more than 1020 dof which produces
upper bounds L and probably recurrence times much longer than the lifetime of the
universe. Non-integrability and in general complexity tends to increase recurrence
times. On realistic timescales collisional gas dynamics has little use for the recur-
rence theorem.
In a sense, this discussion caused mathematical physicists to lose interest in the
recurrence theorem. This is unfortunate as we shall see that the theorem can be
used as an indicator for complex dynamics.

3. Recurrence as a tool: the 2 : 2 : 3 resonance. To obtain a picture of the
problem, think first of a two dof time-independent Hamiltonian system near stable
equilbrium. The energy manifold for a fixed value of the energy is topologically the
3-dimensional sphere S3. Suppose that the linear frequencies have a rational ratio,
say m : n. The normal modes that in many resonance cases exist are embedded
in the energy manifold and are lying on or near coordinate planes; they will have
a linking dependent on m and n. Periodic orbits in m : n resonance may exist in
general position, a neighbourhood of these periodic solutions on the energy manifold
will be called a resonance zone. Orbits starting outside a resonance zone may pass
through this zone and will experience during passage the geometric structure of the
zone. If m = n = 2 we have the 1 : 1 resonance, but adding a coupled oscillator
with frequency 3 will not change the dynamics much at first order approximation
except that it adds dimensions to the resonance zone.
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The complexity of the resonance zones will generally increase with the dimension.
We will find stable and unstable periodic solutions producing homo- and heteroclinic
tangles, see [5] and [23] for the general theory and subsection 3.4 for analysis.
Solutions that pass through a resonance zone will be delayed by the complexity
of the dynamics, but they will always return to the zones, winding for some time
around the tori associated with the stable periodic solutions and being perturbed
by the tangles. This delay of orbits in resonance zones is called quasi-trapping in
[23].
Apart from a measure zero number of orbits, passage through the resonance zone is
the rule and both quasi-trapping and recurrence will take place. By studying the
Euclidean deviation (or distance) d from the initial conditions in phasespace as a
function of time one may get an indication of the dynamics of the resonance zone
inviting further study. Relatively long recurrence times suggest complexity.

3.1. Formulation of the 2 : 2 : 3 resonance. We illustrate the dynamics of the
2 : 2 : 3 resonance for the Hamiltonian H2 + "2H4 + "3H5.(
H = 1

2 (q̇
2
1 + 4q21) +

1
2 (q̇

2
2 + 4q22) +

1
2 (q̇

2
3 + 9q23)� 1

4"
2(↵1q41 + 2↵2q21q

2
2 + ↵3q42 + ↵4q43)

�"3(b1q31q
2
3 + b3q32q

2
3 + b3q21q2q

2
3 + b4q1q22q

2
3).

(3)

The Hamiltonian was chosen to contain one combination angle at H4 level: (�1 =
�1 � �2) and 4 combination angles at H5 level. The equations of motion induced
by (3) are:

8
><

>:

q̈1 + 4q1 = "2(↵1q31 + ↵2q1q22) + "3(3b1q21q
2
3 + 2b3q1q2q23 + b4q22q

2
3),

q̈2 + 4q2 = "2(↵2q21q2 + ↵3q32) + "3(3b2q22q
2
3 + b3q21q

2
3 + 2b4q1q2q23),

q̈3 + 9q3 = "2↵4q33 + "3(2b1q31q3 + 2b2q32q3 + 2b3q21q2q3 + 2b4q1q22q3).

(4)

The figures we show in this section have been obtained using system (4). To make
some explicit numerical calculations we choose in most cases:

↵1 = 0.4,↵2 = 1,↵3 = 0.6,↵4 = 4, b1 = 1, b2 = �1.5, b3 = 1, b4 = �1. (5)

The choice of ↵1, . . . ,↵4 excludes non-generic behaviour; for instance if ↵2 = 0, the
Hamiltonian H2 + "2H4 is integrable, there are other non-generic cases of the ↵
coe�cients. In the sequel we fix the ↵ coe�cients according to (5); this also holds
for the b coe�cients except in the discussion of section 3.4. Because of the resonance
in H2 we expect resonant interaction between the first two modes q1, q2 and no or
very small interaction with the third mode.

3.2. The primary resonance zones. At H5 four combination angles are possibly
active:

�2 = 3�1 � 2�3, �3 = 3�2 � 2�3, �4 = 2�1 + �2 � 2�3, �5 = �1 + 2�2 � 2�3.

We will use polar (amplitude-phase) coordinates r,� by transformation q = r1 cos(!t+
�), q̇ = �!r sin(!t+ �). The transformation results in:

H2 = 2r21 + 2r22 +
9

2
r23.

We find after averaging to O("2):
8
><

>:

ṙ1 = �"2 1
8r1r

2
2 sin 2�1, �̇1 = �"2 1

8 (
6
5r

2
1 + 2r22 + r22 cos 2�1),

ṙ2 = +"2 1
8r

2
1r2 sin 2�1, �̇2 = �"2 1

8 (2r
2
1 + r21 cos 2�1 +

9
5r

2
2),

ṙ3 = 0, �̇3 = �"2 3
8r

2
3.

(6)
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Figure 2. The 2 : 2 : 3 resonance with the actions I1, I2, I3 in
10 000 timesteps for Hamiltonian (3) starting outside the primary
resonance zones; initial conditions q1(0) = 0.3, q2(0) = 1.2, q3(0) =
0.5, velocities zero, and parameter values " = 0.1 and (5). Left
I1, I2 showing strong energy exchanges, the q1 and q2 normal modes
are unstable. Right the action I3 showing variations of order 0.04
(between 0.375 and 0.450).

Figure 3. The 2 : 2 : 3 resonance. Left the Euclidean distance d
in 10 000 timesteps of the orbits to their initial conditions in phas-
espace outside the primary resonance zones and parameter values
of fig. 2; recurrence takes many more timesteps. Right the Eu-
clidean distance d for the same Hamiltonian (3) but starting at
q1(0) = 0.3, q2(0) = 1.2, q3(0) = 0 and velocities zero; we have now
q3(t) = q̇3(t) = 0, t � 0. The recurrence is di↵erent and faster in
this case of pure q1, q2 interaction.

The combination angles �2, . . . ,�5 will arise at O("3). For the averaging-normal
form (6) we have 2r21 + 2r22 = E1 + O(") with constant E1 � 0 and r3 � r3(0) =
O(") on the timescale 1/"2. The normal form to O("2) is integrable with integrals
r3 = r3(0), 2r21 + 2r22 = E1 and the normalized Hamiltonian to quartic terms.
The equation for �1 depends on r1, r2 and �1. If the normal form (6) has a few
solutions with sin 2�1 = 0, �̇1 = 0, these are approximate short-periodic solutions
in general position (separate from the normal modes).
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A primary resonance zone M is defined as a neighborhood of the solutions with
sin 2�1 = 0, �̇1 = 0. In the 2 : 2 : 3 problem such a resonance zone has for a chosen
value E0 with H2 = E0, E0 > 0 the free parameter r3(0). We find with system (6) :

�̇1 =
1

8
"2

✓
4

5
r21 �

1

5
r22 + (r21 � r22) cos 2�1

◆
. (7)

Putting the righthand side of eq. (7) zero we find two primary resonance zones
M1,M2: (

M1 : 2�1 = 0, 2⇡, r21 = 2
3r

2
2,

M2 : 2�1 = ⇡, 3⇡, r21 = 4r22.
(8)

The periodic solutions of the two primary resonance zones are located on the energy
manifold which is topologically the 5-dimensional sphere S5 and its intersections
with the elliptical cylinder 1

2 (q̇
2
1 +4q21)+

1
2 (q̇

2
2 +4q22) = E1 and the hyperbolic cylin-

der q̇21 + 4q21 = 4r21 = µ(q̇22 + 4q22) with respectively µ = 2
3 or 4; this defines two

three-dimensional manifolds.
To study the complexity of the primary resonance zones we use the recurrence the-
orem. In fig. 2 we start outside the resonance zones to observe the resonant interac-
tion of the first two modes; the variations of the third mode are small in accordance
with the normal form (6). We will use the Euclidean distance (or deviation) d for
three dof in fig. 3 defined by:

d2 =
3X

i=1

[(qi(t)� qi(0))
2 + (q̇i(t)� q̇i(0))

2)]. (9)

Choosing q3(0) = q̇3(0) = 0 the third mode remains zero, the recurrence is fairly
strong and regular; see fig. 3 right. Starting with nonzero initial values of the third
mode in fig. 3 left we find behaviour that suggests quasi-trapping in one or more
resonance zones. This suggests that we have to study the resonance zones in more
detail.

3.3. Secondary resonance. We will extend the theory of higher order resonance
of [16], see also [17], to three dof. Higher order (or secondary) resonance may take
place in a primary resonance zone. Consider as an example the primary zone M1

with 2�1 = 0, 2⇡, r21 = 2
3r

2
2. To O("2) the higher order combination angles satisfy

the equations:
8
>>><

>>>:

�̇2 = � 3
4"

2( 35r
2
1 +

3
2r

2
2 � r23),

�̇3 = � 3
4"

2( 32r
2
1 +

9
10r

2
2 � r23),

�̇4 = � 3
4"

2( 9
10r

2
1 +

13
10r

2
2 � r23),

�̇5 = � 3
4"

2( 65r
2
1 +

11
10r

2
2 � r23).

(10)

Outside the primary resonance zone we have terms in system (6) from the first
two modes that dominate at O("2). In the zone M1 this is not the case and other
combination angles may play a part. If the derivative of a combination angle is sign-
definite, the angle is timelike and we can average over the angle. A combination
angle is not timelike if the righthand side of the equation contains zeros. In such a
case a secondary resonance will be found in the primary resonance zone. In M1 we
find for the 1 : 1 periodic solutions:

2r21 + 2r22 = E1, r
2
1 =

2

3
r22 ! r21 =

1

5
E1, r

2
2 =

3

10
E1.
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Figure 4. Recurrence when starting in the primary resonance
zone M1 in 1000 timesteps. E1 = 3.06 as in fig. 3 with now
q1(0) = 0.7823, q2(0) = 0.9581; q3(0) = 1.32068, the value given
by eq. (11) which puts the orbits in the secondary resonance zone.
Initial velocities are zero. The top figure left shows the variations
of the actions I1, I2, the top figure right shows I3 with small vari-
ations as predicted. The recurrence d (below left) is strong and
regular as the orbits are caught in the resonance zone M1 with near
fairly stable dynamics; the picture for 1000 timesteps shows some
white segments but hides the fine-structure of recurrence transi-
tions shown when enlarged for 100 timesteps (below right).

The combination angles in (10) admit a zero (critical value) if in M1:

r23 =
57

100
E1. (11)

We repeat the calculation for primary resonance zone M2. We find for the 1 : 1
periodic solutions in M2:

2r21 + 2r22 = E1, r
2
1 = 4r22 ! r21 =

2

5
E1, r

2
2 =

1

10
E1.

The combination angles in (10) (we omit the details) admit a zero (critical value)
if in M2:

r23 =
29

100
E1. (12)

To improve our insight in the dynamics we produce the actions corresponding
with the two cases of fig. 5. In fig. 6 we present left I1 and I2 starting outside the
primary resonance zones exchanging energy according to the 1 : 1 resonance; I3
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Figure 5. Recurrence when starting outside primary resonance
zoneM1 andM2 in 20 000 timesteps. E1 = 3.06 as in fig. 3 with now
left q1(0) = 0.3, q2(0) = 1.2; q3(0) = 1.32068, the critical value in
M1 given by eq. (11). The orbits passing through M1 encounter the
critical case of q3(0), recurrence is slow and di↵erent from the case
of fig. 3. Right the case q1(0) = 0.3, q2(0) = 1.2; q3(0) = 0.9420, the
critical value in M2 given by eq. (12). The recurrence takes much
longer which suggests that this location corresponds with unstable
periodic solutions.

(right) varies within the error estimates. Next we give the actions in the unstable
case of fig. 5 (right). It is interesting that I3(t) changes strongly (between 0.65
and 1.33) when outside the time-interval of validity, 1/"2, of the normal form.
Conservation of energy influences the exchanges of I1 and I2 at the same time.

3.4. Normalization in the primary resonance zones. To obtain a better un-
derstanding of the dynamics in the primary resonance zones we have to extend the
averaging-normal forms to O("3). We find with sin 2�1 = 0 in M1 and M2:
8
>>>>>>>>><

>>>>>>>>>:

ṙ1 = � "3

32 (3b1r
2
1r

2
3 sin�2 + 2b3r1r2r23 sin�4 + b4r22r

2
3 sin�5),

�̇1 = � "2

8 (
6
5r

2
1 + 2r22 + r22 cos 2�1)� "3

32 (3b1r1r
2
3 cos�2 + 2b3r2r23 cos�4 + b2

r22r
2
3

r1
cos�5),

ṙ2 = � "3

32 (3b2r
2
2r

2
3 sin�3 + b3r21r

2
3 sin�4 + 2b4r1r2r23 sin�5),

�̇2 = � "2

8 (2r
2
1 + r21 cos 2�1 +

9
5r

2
2)� "3

32 (3b2r2r
2
3 cos�3 + b3

r21r
2
3

r2
cos�4 + 2b4r1r23 cos�5),

ṙ3 = "3

24 (b1r
3
1r3 sin�2 + b2r32r3 sin�3 + b3r21r2r3 sin�4 + b4r1r22r3 sin�5,

�̇3 = �"2 3
8r

2
3 � "3

24 (b1r
3
1 cos�2 + b2r32 cos�3 + b3r21r2 cos�4 + b4r1r22 cos�5).

(13)

The normal form has the integral corresponding with H2:

2r21 + 2r22 +
9

2
r23 = E0, E0 � 0. (14)

Using eq. (10) we can analyse the equations of the combination angles �2, . . . ,�5.
Di↵erentiating the equations and substituting ṙi, i = 1, 2, , 3 from (10) we find in
the primary resonance zone M1 the system:

(
�̈i � "5[ci1b1r31(0)r

2
3(0) sin�2 + ci2b2r31(0)r

2
3(0) sin�3+

ci3b3r21r2(0)(0)r
2
3(0) sin�4 + ci4b4r1r22(0)(0)r

2
3(0) sin�5] = 0

(15)
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Figure 6. The actions when starting outside primary resonance
zone M1 and M2 in 20 000 timesteps. Each orbit starts outside the
primary resonance zones with q1(0) = 0.3, q2(0) = 1.2 and all ve-
locities zero. In the first two figures (top) we took q3(0) = 1.32068,
the critical value in M1 given by eq. (11). I3(t) varies with mag-
nitude 0.06 in according with the error estimate. The instability
of the normal modes forces considerable exchange of energy of the
first two modes. The next two figures show the instability of M2.
When passing this primary resonance zone the critical value of
q3(0) = 0.9420 taken from eq. (12) plays a part.

with i = 2, . . . , 5 and coe�cients cij � 0, i = 2, . . . , 5, j = 1, . . . , 4. If for instance
b2 = b3 = b4 = 0 we have:

�̈2 � "5
47

320
b1r

3
1(0)r

2
3(0) sin�2 = 0. (16)

The solutions of system (15) are valid only in the primary resonance zone M1 and
on a timescale 1/"5/2. The equilibrium solutions correspond with higher order
periodic solutions. In the case of only one angle, for instance �2 in eq. (16),
we have equilibria 0,⇡ with �2 = 0 unstable, �2 = ⇡ stable. Around the stable
periodic solutions we expect to find tori in the resonance zone. The unstable periodic
solutions, for instance associated with the saddle point of (16), will produce tangles
that complicate the dynamics.
Fig. 4 shows the behaviour of the actions and the Euclidean distance d to the
initial values in zone M1; the figure below right suggests quasi-trapping around tori
alternating with excursions to a neighbourhood of the initial conditions in M1.
Figs. 5 and 6 illustrate these computations. In fig. 8 we show the instability in
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Figure 7. Dynamics when starting in the primary resonance zone
M2 in (because of the instability) 10 000 timesteps. E1 = 3.06 as
in fig. 3 with now q1(0) = 1.1063, q2(0) = 0.5532; q3(0) = 0.94202,
values putting the orbits in M2. Initial velocities are zero. The
top figure left shows strong variations of the actions I1, I2, the top
figure right shows I3; the variations are strong as we start near an
unstable secondary resonance. The orbits are leaving the unstable
resonance zone M2. Below the corresponding recurrence d.

resonance zone M1 associated only with combination angle �2 described by eq. (16);
we chose b1 = 10 to illustrate the phenomena more clearly.

Summary of results for the 2 : 2 : 3 resonance. For the 2 : 2 : 3 resonance
the phase-flow is dominated by H4. However, in the resonance zones M1 and M2

the actions I1, I2 are by definition varying very little so that H5 terms become
important. We have normalized the equations of motion in the resonance zones to
H5. In figs 2 and 3 we started to explore the dynamics of the 2 : 2 : 3 resonance
by numerically integration; the results suggest passage through resonance involving
the third mode, especially as the results are changing qualitatively when excluding
the third mode in fig. 4, right.

After identifying the resonance zones M1 and M2 we find in fig. 4 fairly regular
behaviour inM1 and more irregularity inM2, see fig. 7. This illustrates the presence
of stable and unstable secondary resonances as obtained by studying the normal
forms in the primary resonance zones for 4 combination angles at H5. Figs 5 and 6
show transition through resonance.
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Figure 8. Recurrence starting in the primary resonance zone
M1 in 10 000 timesteps. E1 = 3.06 (as in fig. 3) with q1(0) =
0.7823, q2(0) = 0.9581; q3(0) = 1.32068, the value given by eq. (11)
which puts the orbits in the secondary resonance zone. Initial ve-
locities are zero. We have chosen b1 = 10, b2,= b3 = b4 = 0
to demonstrate the instability caused by the secondary resonance
corresponding with �2. The top figure left shows the variations
0.5 and 0.3 of the actions I1, I2, the top figure right shows I3 with
variation 0.2. The corresponding recurrence d is shown in the third
figure.

In fig. 8 instability in M1 is highlighted by restricting H5 to b1 6= 0, so only the
combination angle �2 is involved. The actions show considerable fluctuations, as
predicted.

4. Second useful idea: genericity of periodic solutions. The presence of an
isolated periodic solution in a dynamical system or alternatively the presence of
families of periodic solutions is related to the existence of integral manifolds of
the system. Poincaré discussed such aspects extensively in [14]. The presence of
a familiy of periodic solutions on the energy manifold may even signal integrabil-
ity. In the subsequent section we will consider examples from two and three dof
Hamiltonian systems.

4.1. The Poincaré-Birkho↵ theorem. It bothered Poincaré, see [21], that so
many results in dynamical systems are local, based on series expansions, normal
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forms, bifurcations, and he formulated a more global geometric theorem in [15]. Its
publication was postponed as he found his reasoning not satisfactory; the actual
proof was given by Birkho↵ [2]. The theorem shows existence of periodic solu-
tions but also that isolated periodic solutions on the energy manifold represents the
generic case for two dof Hamiltonian systems.

The idea is to characterize certain dynamical systems by an area-preserving,
continuous twist map of an annular region into itself. Such a map has at least
two fixed points corresponding with periodic solutions of the dynamical system.
The applications Poincaré had in mind were the global characterization of periodic
solutions of time-independent Hamiltonian systems with two degrees of freedom.
The dynamics of such a system restricted to a compact energy manifold is three-
dimensional. The Poincaré map of the orbits can provide the two-dimensional twist
map of the theorem. Poincaré’s reasoning and the actual proof are constructive
and show that generically the number of fixed points is even and that the map
corresponds with a large number of periodic orbits emerging in pairs. This illustrates
the complexity of the annular twist map. The results that we describe below using
characteristic exponents are concerned with a much more general geometric-analytic
setting but with the restriction that the results are local.

After 1912, fixed point theorems play an important part in general and di↵erential
topology and in dynamical systems.

4.2. Characteristic exponents. In chapter 4 of volume 1 of [14] pp. 162-232,
Poincaré developed his theory of characteristic exponents of solutions of n-dimensional
autonomous systems of the form ẋ = X(x). Starting with a particular T -periodic
solution of the system, x = �(t), we can obtain an associated variational solution
by considering neighbouring solutions of the form:

x = �(t) + ⇠.

Substituting this into the equation, expanding and linearizing, we find:

⇠̇ =
@X

@x
|x=�(t)⇠. (17)

One of the independent n solutions of eq. (17) is �̇(t). In section 59 of [14] he shows
that one can write the solutions of eq. (17) in the form:

⇠ = e↵tS(t), (18)

with ↵ a complex number and S(t) a T -periodic n⇥n matrix. The constants ↵ are
called characteristic exponents, it is clear that at least one of them is zero. Poincaré
discusses in great detail the case when the original equation has an integral and con-
tinues then to study the consequences in the case of Hamiltonian systems (section
69).
In this case with n-dimensional momentum and position variables, we have 2n
characteristic exponents that appear in pairs ↵,�↵; so in the time-independent
Hamiltonian case at least two characteristic exponents are zero. Each extra in-
dependent integral adds two exponents zero if a transversality condition using a
functional determinant is satisfied. In the case that the Hamiltonian system has
no other independent integral besides the energy, a periodic solution on an energy
manifold has in the generic case two characteristic exponents zero only. In section
69 of [14], Poincaré discusses exceptional cases.

Keeping an eye on applications in celestial mechanics, Poincaré also considers the
case when the dynamical system contains a small parameter. He proves that if the
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solutions of the system can be expanded with respect to the small parameter follow-
ing his expansion theorem, the characteristic exponents can also be expanded with
respect to the small parameter. Historically the first example of non-integrability
was discovered by Poincaré in his famous prize essay for King Oscar II (1890); it is
discussed in more detail in [14] and [21].

We will discuss a few examples to illustrate the use of these results.

5. Periodic solutions and integrability. To compute characteristic exponents
used to be di�cult. Nowadays, normal form methods enable us rather easily to
find approximations while recent developments in numerical bifurcation methods
produce by standard path-following techniques explicit series of numbers. We will
present a few results using averaging-normalization to two- and three dof systems.

5.1. Braun’s or Hénon-Heiles family of Hamiltonians. The material in this
subsection is based on part of [20] with a new discussion added. For historical rea-
sons we use x, y instead of q1, q2. Consider the two dof Hamiltonian with parameters
a1, a2:

H =
1

2
(ẋ2 + x2) +

1

2
(ẏ2 + y2)� a1

3
x3 � a2xy

2. (19)

The corresponding equations of motion are:

ẍ+ x = a1x
2 + a2y

2, ÿ + y = 2a2xy. (20)

If a2 = 0 the system decouples and is trivially integrable; we exclude this case. If
a1 = �1, a2 = 1 we have the famous Hénon-Heiles problem which gave in 1964 the
first modern example of a non-integrable Hamiltonian system; see [11] and for more
references [7] and [20].
Exact periodic solutions, see [20], in the form of elliptic functions on the energy
manifold are the x-normal mode y = ẏ = 0 and the solutions:

(2a2 � a1)x
2 = a2y

2, a2(2a2 � a1) > 0. (21)

Introducing amplitude-phase variables r1,�1, r2,�2, combination angle � = �1��2

and second order averaging-normalization we find:
8
><

>:

ṙ1 = + 1
2a2(

1
6a1 � a2)r1r22 sin 2�,

ṙ2 = � 1
2a2(

1
6a1 � a2)r21r2 sin 2�,

2�̇ = (� 5
6a

2
1 + a1a2 +

2
3a

2
2)r

2
1 � a2(a1 � 1

6a2)r
2
2 + a2(

1
6a1 � a2)(r22 � r21) cos 2�.

(22)

Here, we consider the possibility of more than two zero characteristic exponents
and the integrability of the original system (20). In [20] it was shown that the
normal form system (22) is integrable and contains in some parameter cases fami-
lies of periodic solutions on the energy manifold. Such cases yield more than two
characteristic exponents zero; they merit special attention as this may possibly sig-
nal integrability. Short-periodic solutions are obtained by considering solutions of
sin 2� = 0, �̇ = 0. We find the following cases:

• � = 0,⇡, a1 = �a2.
Substituting these values in the 3rd equation of the normal form system (22)
produces �̇ = 0. Any combination of r1 and r2 will produce for fixed energy
this type of periodic solution of system (22). However, one has to check
by higher order normalization whether this phenomenon persists. This was
carried out by Gustavson [9] who showed that this family of periodic solutions
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Figure 9. The actions of the 1 : 2 : 2 resonance can be displayed
on a simplex where the front plane contains the solutions on an
energy manifold. Dots represent periodic solutions. The figure
left is based on first order normalization and shows a continuous
family of periodic solutions at action value ⌧1 = 0. Right shows
the simplex obtained by second order normalization; the continuous
family breaks up into six unstable periodic solutions. The figures
are from [17] and [21].

breaks up into a finite number of periodic solutions at higher order. This is
not surprising as a1 = �a2 represents the Hénon-Heiles Hamiltonian.

• � = ⇡/2, 3⇡/2, a1 = a2.
Substituting these values produces equally �̇ = 0. Inspection of the original
equations (20) shows that the equations are separable when introducing u =
x+ y, v = x� y. The original system is integrable.

• A degeneration of the normal form takes place if a1 = 6a2.
Substituting this value in the normal form system (22) produces: ṙ1 = ṙ2 = 0
whereas � vanishes from the righthand side of the equation for � in system
(22). We conclude that any permitted choice of r1, r2 on the energy manifold
keeps the amplitudes constant while �̇ = constant. We can find families of
periodic solutions. There is no need to compute higher order normal forms as
this is a well-known case for integrability of system (20); see [3].

In these cases the presence of families of periodic solutions on the energy manifold
corresponding with more than two zero characteristic exponents are indications of
possible integrability of the original system. A more detailed analysis of these cases
has settled the question of integrability. It is relatively easy to extend this method
to other two dof Hamiltonian systems.

5.2. The 1 : 2 : 2 Hamiltonian resonance. The following results are from [19].
The general time-independent Hamiltonian for three dof contains 56 cubic terms.
Using the notations from [17] and [21] for the actions and angles (⌧,�) the first
order normal form is:

H(⌧,�) = ⌧1+2⌧2+2⌧3+2a1⌧1
p
2⌧2 cos(2�1��2�a2)+2a3⌧1

p
2⌧3 cos(2�1��3�a4),

(23)
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with a1, . . . , a4 real constants. Remarkably enough it was shown in [19] that this
normal form is integrable, it is the only case of a general three dof Hamiltonian
normal form in first order resonance where this happens; see [6]. It is tied in with
a symmetry in the normal form which produces the continuous familty of periodic
solutions in the submanifold ⌧1 = 0. The symmetry is broken at the second order
normal form, the continuous family breaks up into six periodic solutions including
two normal modes, see fig. 9. The implication of the result is that the original
(general) Hamiltonian in 1 : 2 : 2 resonance behaves with error O(") as an integrable
system on the timescale 1/". In addition, apart from the Hamiltonian itself, one
other integral (H2) is valid with error O(") for all time.
The integrability at first order was signalled by the presence of the continuous
family. It should be noted that a three dof Hamiltonian system in normal form
has already two independent integrals, the normalized Hamiltonian and H2. It is
expected that the presence of certain integrals persists if one applies directly certain
symmetries to the original cubic 1 : 2 : 2 Hamiltonian. We give two examples, each
with

H2 =
1

2
(ẋ2 + x2) +

1

2
(ẏ2 + 4y2) +

1

2
(ż2 + 4z2).

Example 1. Consider the Hamiltonian

H = H2 � (
a1
3
x3 + a2x(y

2 + z2) + a3x
2(y2 + z2)), (24)

with coe�cients a1, a2, a3. The equations of motion are:

8
><

>:

ẍ+ x = a1x2 + a2(y2 + z2) + 2a3x(y2 + z2),

ÿ + 4y = 2a2xy + 2a3x2y,

z̈ + 4z = 2a2xz + 2a3x2z.

(25)

We know that the first order normal form is integrable with a family of periodic

solutions in the submanifold x(t) = ẋ(t) = 0 (it is a matter of taste to rescale first

x ! "x etc.). The normal form in this case is very degenerate. For the system (25)
induced by Hamiltonian (24) we have the angular momentun integral: yż � ẏz =
constant as a second independent integral.

Example 2. Consider the Hamiltonian

H = H2 � (a1x
2y + a2x

2z), (26)

with coe�cients a1, a2. The equations of motion are:

8
><

>:

ẍ+ x = 2a1xy + 2a2xz,

ÿ + 4y = a1x2,

z̈ + 4z = a2x2.

(27)

Again, we know that the first order normal form is integrable with a family of

periodic solutions in the submanifold x(t) = ẋ(t) = 0. In this case we obtain this

family exactly by putting x(t) = ẋ(t) = 0 in system (27) to obtain a family of

harmonic solutions. A second independent integral is easily obtained by eliminating

x:
1

2
(a2ẏ � a1ż)

2 +
1

2
(a2y � a1z)

2 = constant.
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Summary of integrability results. In subsection 5.1 we compare well-known
results for the Hénon-Heiles (Braun’s) family of Hamiltonians with the idea of con-
sidering characteristic exponents. Finding more than two zero exponents by normal-
ization is an indication for the existence of an extra independent integral. However,
higher order normalization may produce small nonzero exponents. This happens
for the Hénon-Heiles system which is not integrable, but we find two (known) cases
of integrability.

In subsection 5.2 we consider the 1 : 2 : 2 Hamiltonian resonance. In [19] it was
shown that the first order normal form is integrable and that a family of periodic
solutions on the energy manifold exists; these solutions have 4 zero exponents.
In [19] it was also shown that certain second-order perturbations will break up
the family of periodic solutions destroying the integrability at the same time. In
subsection 5.2 we present two examples where this break-up does not happen. This
does not mean that the corresponding Hamiltonian is integrable but that a second
independent integral exists besides the energy.

6. Conclusions.

• Recurrence can be a fairly regular phenomenon in dynamical systems or, al-
ternatively, it can show patterns that are di�cult to predict. If the system
is Hamiltonian, this is often related to quasi-trapping of orbits in resonance
zones of systems with three or more dof; for more discussion see [23]. In such a
case, irregular and long-time recurrence can be a tool to find resonance zones
with complex dynamics.

• The analysis of the Hamitonian 2 : 2 : 3 resonance demonstrates the use of
recurrence as a tool. However, this specific example merits a more detailed
discussion than can be given here as in this example the higher order phenom-
ena are arising already from H5. In particular, the geometric structure of the
resonance zones and the bifurcations arising from choices of the coe�cients
b1, . . . , b4 present interesting open problems.

• The analysis of the 2 : 2 : 3 resonance produces surprisingly strong interaction
between low and higher order resonance. This is an extension of the theory
of higher order resonance as put forward in [16] and [17].

• To compute accurate approximations of characteristic exponents of periodic
solutions of dynamical systems with either normal form methods or by numer-
ical bifurcation techniques is nowadays relatively easy. Generically we find for
autonomous di↵erential equations one zero exponent, for autonomous Hamil-
tonian systems two zero exponents. The presence of more zero characteristic
exponents can be used as an indication for the existence of independent inte-
grals of motion.
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erty, Phys. Review A, General Physics, 3rd series, 25, pp. 1257-1264 (1982).

[4] H.W. Broer and F. Takens, Dynamical systems and chaos, Applied Math. Sciences 172,
Springer (2011).

[5] H.W. Broer, B. Hasselblatt and F. Takens (eds.), Handbook of dynamical systems vol. 3,
Elsevier (2010).

[6] O. Christov, Non-integrability of first order resonances in Hamiltonian systems in three de-
grees of freedom, Celest. Mech. Dyn. Astr. 112, pp. 149-167 (2012).

[7] R.C. Churchill, G. Pecelli and D.L. Rod Stability transitions for periodic orbits in Hamiltonian
systems, Arch. Rat. Mech. Anal. 73, pp. 313-347 (1980).

[8] S.Yu. Dobrokhotov and M.A. Poteryakhin, Normal forms near two-dimensional resonance
tori for the multidimensional anharmonic oscillator, Math. Notes 76, pp. 653-664 (2004).

[9] F.G. Gustavson, On constructing formal integrals of a Hamiltonian system near an equilib-
rium point, Astron. J. 71, pp. 670-686 (1966).

[10] R. Haberman, Slow passage through the nonhyperbolic homoclinic orbit associated with a
subcritical pitchfork bifurcation for Hamiltonian systems and the change of action, SIAM J.
Appl. Math. 62, pp. 488-513 (2006).

[11] P. Holmes, J. Marsden and J. Scheurle, Exponentially small splitting of separatrices and
degenerate bifurcations, Contemp. Math. 81, pp. 213-143 (1988).

[12] J. Kevorkian, Perturbation techniques for oscillatory systems with slowly varying coe�cients,
SIAM Rev. 29, pp. 391-461 (1987).

[13] A. Neishtadt and Tan Su, An asymptotic description of passage through a resonance in
quasilinear Hamiltonian systems, SIAM J. Appl. Dyn. Systems. 12, pp. 1436-1473 (2013).
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[15] Henri Poincaré, Sur un theorème de géometrie, Rend. Circolo Mat. Palermo 33, pp. 375-407
(1912).

[16] J.A. Sanders, Are higher order resonances really interesting? Celestial Mechanics 16, pp.
421-440 (1978).

[17] J.A. Sanders, F. Verhulst and J. Murdock, Averaging methods in nonlinear dynamical sys-
tems, Springer, (2007).

[18] V.S. Steckline, Zermelo, Boltzmann and the recurrence paradox, Am. J. Physics 51, pp. 894-
897 (1983).

[19] Els Van der Aa and Ferdinand Verhulst, Asymptotic integrability and periodic solutions of a
Hamiltonian system In 1 : 2 : 2 resonance, SIAM J. Math. Anal. 15, pp. 890-911 (1984).

[20] F. Verhulst, Discrete symmetric dynamical systems at the main resonances with applications
to axi-symmetric galaxies, Phil. Trans. Royal Soc. A 290, pp. 435-465 (1979).

[21] Ferdinand Verhulst, Henri Poincaré, impatient genius, Springer (2012).
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