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Chapter 1
Henri Poincaré’s Inventions in Dynamical
Systems and Topology

Ferdinand Verhulst

Abstract The purpose of this article is to trace the invention of images and concepts
that became part of Poincaré’s dynamical systems theory and the Analysis Situs,
We will argue that these different topics are intertwined whereas for topology
Riemann surfaces and automorphic functions play an additional part. The intro-
duction explains the term invention in the context of Poincaré’s philesophical ideas.
Poincaré was educated in the school of Chasles and Darboux that emphasized the
combination of analysis and geometry 1o perform mathematics fruitfully. This will
be illustrated in the second section where we list his new concepts and inventions in
dynamical systems, followed by the descriptions of theory available before Poincaré
started his explorations and the theory he developed. The third section studies in the
same way the development of Poincaré’s topological thinking that ook place in the
same period of time as his research in dynamical systems theory.

1.1 Introduction

The purpose of this paper is to trace the inventions of Poincaré regarding dynamical
systems and topology starting with the accepted knowledge of his time. As we will
see, for topology we will have to discuss aspects of the theory of automorphic
functions. The intertwining of analysis and geomeiry is typical for the scientific
work of Henri Poincaré.

This paper will not be a systematic treatment of his achievements and their
impact on later science. Such systematic descriptions and references can be found
in the biographies [8] and [31].

The use of the word ‘invention’ in the title needs some explanation, One should
note that the first meaning of invention in French, as Poincaré used it, is indeed the
same as in English.
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2 E. Verhulst

A famous essay by Henri Poincaré in [16] has the title “L’invention mathéma-
tique”. In [31, p. 84] the essay is described as follows:

In a wonderful piece of introspection, Poincaré describes in the essay how sudden insight
came to him in solutions of mathematical problems. He conjectures that the unconscious
mind, stimulated by intense but scemingly fruitless exploration of a problem by the
conscious mind, considers many mathematical combinations and makes a choice on the
basis of aesthetics and economy. An example that he gives of such an occurrence concerns
the Fuchsian functions.

There has been a lot of confusion about the use of this term. The English translation
of [16] uses “discovery” instead of “invention”, see {18, p. 46]. Even recently in [8,
p- 120] this produced the following mix-up:

in 1908 Paincaré talked to the Sociéié de Psychologie in Paris about the psychology

of discovery of new results in mathematics. The published version in L'enseignement
mathématigue, “L'invention mathématique,” became one of his more famous essays.

The mix-up of discovery and invention is repeated on p. 120 of [8].

People argue that, starting with a complete system of axioms, mathematics is not
invented but discovered. Of course discovery applies to a result like:

Assuming Euclides’ axioms in plane geometry, we have that the sum of the
angles within a triangle is 180 degrees.

Such results were discovered by careful analysing and following up the given
assumptions.

Wihen Poincaré uses the term invention he refers to the creation of new concepts
or the identification of deep relations between different mathematical or physical
Concepls.

Platonic reasoning would argue for instance that the integers or the prime
numbers exist independently of the human mind. However, long after identifying
three apples or nine trees, the human mind came up with the abstract notion of
number, for instance 3 or 9, as an element of the set of integers. An integer (and
the set of integers) has no relation to a physical phenomenon, it exists only as an
abstraction in the human mind; it is an example of human invention. It became the
inspiration for the concept of operations like multiplication, a subsequent invention.
And this was followed by the concept of multiplication of elements of other sets, for
instance complex numbers, quaternions, matrices, elements of vectorspaces, etc.

Closely related 1o the idea of invention is the importance Poincaré attributes to
language in [15]. The scientist creates the language to describe phenomena; to find
the most suitable verbal description is an essential element of understanding the
phenomena, both in the natural sciences and in mathematics. The perception of the
relation between concepts and phenomena needs expression in language, which is
an ingredient of the process of scientific invention. An example given by Poincaré
concerns the motion of the celestial bodies. Kepler’s laws contain a description in
terms of the motion of the planets in elliptical orbits; the geometric concept of an
ellipse provided the language. The transition to Newton’s laws produced a richer
formulation resulting in deeper understanding; the analytic concept of differential
equation provided the language.
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1 Henri Poincaré’s Inventions in Dynamical Systems and Topology 3

A concept introduced in [17] gives another illustration of the language for a
new concept. Poincaré reasons that the classification of scientific facts is a main
part of the activity of scientists. One considers for instance in biology all living
creatures on Earth and tries to classify them in various groups. Or one considers
in mathematics the set of integers and tries to distinguish subsets as even or odd
numbers. A classification makes sense if adding new elements 1o the set does not
change the old classification. For instance in biology, the discovery of a new type
of living creature in the deep oceans, does not change the ‘definition’ of birds or
mammals. If a classification is not changed by adding new elements, it is called
predicative by Poincaré. This is now an accepted concept in logic. A definition in
mathematics is really a classification, a definition has to be predicative.

Poincaré gives a simple example. Consider the set of integers and as a subset A
the first hundred integers. Classify them in two subsets: A, the numbers one through
ten and B, the numbers larger than ten. Embedding H in a larger set, for instance the
first 200 integers, does not change the classification in A and B, so it is predicative.

When Poincaré (1854-1912) started his career, his educational background was
as follows:

He was a student at the Lycée of Nancy (1871-1875) where classical geometry,
analysis, algebra and the humanities were taught. After this he was a student at
L'Ecole Polytechnique (1873—1875) with courses in analysis, geometry, mechanics
and physics, chemistry, celestial mechanics. Then he attended L'Ecole des Mines
(1875-1878) where technical and geophysical lectures were given.

His dissertation on singularities of solutions of first order nonlinear partial
differential equations was accepted at the Sorbonne in 1879, he became 25 in that
year.

Poincaré was an enthusiastic reader of novels but not of scientific papers. He
read the classics on celestial mechanics and special functions of that time, papers
by Beuti, Hermite, Laguerre, Bonnet, Halphen, Darboux, and later the writings of
Riemann and Weiersiraf whom he admired,

In the sequel we will start each section with a list of Poincaré’s inventions and
ideas, followed by descriptions of what was known at that time and a skeich of his
ideas.

1.2 Dynamical Systems

New concepts and inventions:

1. Algebroid functions.

2. Index theory for plane dynamical systems i.e. autonomous second-order ordinary
differential equations (CDEs).

3. The Poincaré-Bendixson theorem for plane dynamical systems.

4. Convergence of series solutions of ODEs, the use of the implicit function
theorem, bifurcation theory (the Hopf bifurcation).

f.verhulst@uu.nl



4 F. Verhulst

5. Asymplotic, divergent series.

6. Normalization, the Poincaré domain.

7. Fixed point theorems for dynamical systems.

8. The recurrence theorem for dynamical systems characterized by measure-
preserving maps.

9. Homoclinic chaos,

1.2,1 Ordinary Differential Equations in the Nineteenth
Century

Scientific treatises discussing ordinary differential equations in the nineteenth
century arc of three different types: books or papers on mathematical physics, on
special functions and separale (reatises on differential equations as we know them
nowadays. We will leave aside the books that are completely application oriented.
These books are of great interest but they merit a special study.

Special functions like the elliptic ones pose many difficult analytic problems. A
typical and important example is the monograph by Jacobi [9]. The book is devoted
to the analysis of elliptic functions (generalization of solutions of the mathematical
pendulum equation).

George Boole’s [4] is a text that deals mainly with elementary methods; it can
be compared with introductions as taught at present. It discusses exact first order
equations, integrating factors, special solutions and equations {Riccati equation) and
methods for linear equations (sometimes tricks), variation of constanis, geometric
methods (involutes, curvature, tangencies).

A similar elementary treatise was written by Duhamel [7]. Duhamel lectured at
the Ecole Polytechnique, where Poincaré studied. Henri acquainted himself already
with this course while still at the Nancy Lycée (see [31]). Part 4 on the integration
of ODEs contains material as in Boole [4] but with more geometric problems and
elementary Taylor series expansions for solutions,

We will pay special attention to the extensive treatises by Jordan [10] and Laurent
[13]. Although at the year of their publication, Poincaré had been publishing on
differential equations since 1879, his results are still ignored here. The books [10]
and [13] are typical for the knowledge of ordinary differential equations in the
aineteenth century before Poincaré.

Camille Jordan (1838-1922), see Fig. I.1, was professor at L'Ecole Polytech-
nique where he taught analysis. His three volumes Cours d’ Analyse are a rich and
didactical account of the analysis of his time. In vol. 3, pp. 1-296, two chapters
deal with ordinary differential equations. The first chapter introduces again exact
equations and integrating factors with examples from classical equations (Bernoulli,
Clairaut), but interestingly, Jordan extends this to the cases in dynamics where one
knows a number of integrals but not enough to solve the system. The integrals can
be used to reduce the dimension of the system.

f.verhulst@uu nl



I Henri Poincaré’s Inventions in Dynamical Systems and Topology 5

Allention is given to series expansions of solutions near regular and near singular
points. Cases like

dy 1 dy
= fey O i =f(x,y)
with f{(0,0) = O and series expansions near (0,0) are discussed extensively,

based on the theory of Briot and Bouquet [5]. It should be noted that in the
subsequent chapter on partial differential equations, the 1opic of series expansions
cannot be found (this would be the topic of Poincaré’s doctoral thesis). The second
chapter treats linear equations with variable and constant coefficients. The theory is
illustrated by the discussion of a number of special functions.

Hermann Laurent (1841-1908) published his seven volumes Traité d’Analyse
[13] in the period 1895-1891; he was “examinateur d’admission 4 I’Ecole Poly-
technique” and from 1889 on professor at the Ecole Agronomique in Paris, see
Fig. 1.1. Volume 5 of (13, pp. 1-320], contains an extensive didactical introduction
to ordinary differential equations. It has also special value because of the many
references and the exercises. The first three chapters follow the same path as present
day introductions: special methods, first order equations, equations of Bernoulli,
Clairaut, etc. The treaiment of linear equations becomes more interesting as Laurent
discusses for instance equations with periodic coefficients, Lamé’s equation and
Halphen’s theory of invariants. Chapter 4 summarizes the theory of special functions
but without the difficult questions raised by Riemann, see Sect. 1.3. Chapter 5 is on
nonlinear equations with emphasis on special integrable cases. Interesting is the
method attributed to Jacobi; consider the equation

Fig. 1.1 Camille Jordan (1838-1922) and Hermann Laurent {184 1-1908)
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6 F. Verhulst

with first integral

dy
e p{x.v.0),
¢ a constant of integration. Jacobi shows that in this case the differential equation
can be solved by quadrature, It can be considered a generalization of the method
of d"Alembert that solves a similar problem for linear equations, The last chapler
considers systems of first order linear equations including Cauchy’s introduction of
characteristic equations.

The exercises give an idea of the level of teaching and the requirements for
students. Many exercises are concerned with geometrical questions for instance
involving the curvature of certain solutions.

1.2.2 Poincaré’s Thesis

Poincaré was educated in geometry and analysis, but he did not restrict himself 1o
one particular mathematicali discipline. His major contributions regarding dynamical
systems, the Mémoire of 1881-82, the prize essay of 1889 and the Méthodes
Nouvelles de la Mécanique Céléste, are clearly characterized by the interaction of
analysis and geometry

The thesis [22] was presented in 1879 and is concerned with an extended study of
the known concepts of critical points and singularities of nonlinear first-order partial
differential equations of the form

dz dz

Flz.xy oo Xy —yeeey, —
( ! g a.\’[ B.r,,

The method of characteristics reduces the probiem to the integration of an n-
dimensional system of nonlinear ODEs. If n = 2 we can write the phase-plane
equation associated with the two characleristic equations as

dy
M= =flxy
7 =S
with f(x,y) a holomorphic function. If m = 0, y(x) is holomorphic near x = 0
and can be described by a corresponding series expansion. If m = 1, we have a
weakly singular case, if m > 1 and integer we have an irregular singularity, Poincaré
introduces algebroid function as follows: The function z of n variables x;,...,x, is

algebroid of degree m near (0, . .., 0) if z satisfies an equation of the form

ZF'+Am—|Zm_l + ...+ A2+ Ay =0,

t.verhulst@uu nl



1 Henri Poincaré’s Inventions in Dynamical Systems and Topology 7

where the functions Ay, ..., An— have a convergent power series in x|, ..., x, near
{0....,0}. If we can prove that the solution of the partial differential equation is
algebroid, we can formulate results on the existence of certain convergent series
expansions near (0, ...,0).

This is a useful generalization of the results of Briot and Bouquet [5], but the
thesis goes on with the treatment of more complicated cases. In this connection,
Poincaré introduces series expansions that exclude resonances of the form

MaAa -+ msds ... Mgk = Aq,

where the A; are determined by the differential equation, the m;, . .. , m, are positive
integers. In addition, the idea of non-resonance in celestial mechanics is generalized
to requiring that the convex hull of the A; in the complex plane does not contain
the origin. This precludes the theory of normal forms, see for instance Arnold [1],
where for the location of the A; we would nowadays say “the spectrum is in the
Poincaré domain™.

1.2.3 The Mémoire of 1881-82

The Mémoire [20] of 1881-82 is mainly concerned with two-dimensional problems
and so is very different from his three volumes Méthodes Nouvelles de la Mécanique
Céléste [14] where the first general theory of dynamical systems is found. The
Mémoire is restricted to aulonomous second order equations as many articles on
ODEs are in the nineteenth century, but the research programme sketched by
Poincaré breaks with the traditions of his time; it is very general and at present the
programme still dominates rescarch, In ODE rescarch, it is the first study of global
behaviour of solutions. Poincaré unfolds here the philosophy of studying nonlinear
dynamics as it is still practiced today:

Unfortunately it is evident that in general these equations [ODEs] can not be integrated

using known functions, for instance using functions defined by quadrature. So, if we would

restrict ourselves to the cases that we could study with definite or indefinite integrals, the

extent of our research would be remarkably diminished and the vast majority of questions
that present themselves in applications would remain unsolved.

And a few sentences on:
The complete study of a function [solution of an QDE] consists of two parts:

1. Qualitative part (to call it like this), or geometric study of the curve defined by the
function;
2. Quantitative part, or numerical calculation of the values of the function.

Consider the two-dimensional system

dx dy
5 = Xy, o =Ty)
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8 F. Verhulst

Fig. 1.2 Gnomonic
projection of a plane onto a
sphere

with orbits in the Euclidean (x,y)-phaseplane. For the analysis of the system,
Poincaré uses gnomonic projection; this is a cartographic projection of a plane onto
a sphere (in cartography of course the other way around), see Fig. 1.2.

The plane is tangent to the sphere and each point of the plane is projected through
the centre of the sphere, producing two points on the spherical surface, one on the
Northern hemisphere, one on the Southern. The equatorial plane separates the two
hemispheres. A point on the great circle in the equatorial plane corresponds with
infinity.

Each straight line in the plane projects onto a great circle. So a tangent to an
orbit in the plane projects onto a great circle that has at least one point in common
with the projection of the orbit on the sphere. Such a point will be called a contact,
The advantage of this projection is that the plane is projected on a compact set
which makes global treatment easier. We have to consider with special attention the
equatorial great circle which corresponds with the points at infinity of the plane,
A bounded set in the plane is projected on two sets, symmetric with respect to the
centre of the sphere and located in the two hemispheres.

If in a point (xp, ¥y) we have not simultancously X = Y = 0, (xp, yo) is a regular
point of the sysiem and we can obtain a power series expansion of the solution near
{x0, yo).

If in a point (xg, yo} we have simultaneously X = ¥ = 0, (x;.y0) is a singular
point. Under certain nondegeneracy conditions Poincaré finds four types for which
he introduces the nowadays well-known names saddle, node, focus and centre.
These are called singularities of first type. In the case of cerlain degeneracies
we have singularities of the second type. Points on the equatorial great circle
may correspond with singularities at infinity and can be investigated by simple
transformations. The next section of the Mémoire is remarkable; it discusses
the distribution and the number of singular points. Assuming that X and Y are
polynomials and of the same degree and if X,,, ¥,, indicate the terms of the highest
degree, while we have not x¥,, — yX,, = 0, then the number of singular points is

1. verhulst@uu.nl



1 Heari Poincaré's Inventions in Dynamical Systems and Topology 9

at least 2 (if the curves described by X = 0 and ¥ = 0 do not intersect on the
two hemispheres after projection, there must be an intersection on the equatorial
circle). In addition it is shown that a singular point on the equator has to be a node
or a saddle, in the plane one cannot spiral to or from a singularity at infinity. An
important new concept is index. Consider a closed curve, a cycle, located on one of
the hemispheres. Taking one tour of the cycle in the positive sense, the expression
Y/X jumps  times from —o0 t0 +00, it jumps k times from +oc to —oo. We call §
with
h—k

[ =

2

the index of the cycle. It is then relatively easy to see that for cycles consisting of
regular points one has:

* A cycle with no singular point in its interior has index 0.

« A cycle with exactly one singular point in its interior has index +1 il it is a
saddle, index —1 if it is a node or a focus.

« If N is the number of nodes within a cycle, F the number of foci, C the number
of saddles, the index of the cycleis C— N = F.

+ If the number of nodes on the equator is 2N, the number of saddles 2, the
index of the equatoris N' — C' — I.

* The total number of singular points on the sphereis 2 +4n, n =0,1,---.

A solution of the ODE may touch a curve or cycle in a point, a contact. In such a
point the orbit and the curve have a common tangent. An algebraic curve or cycle
has only a finite number of contacts with an orbit. Counting the number of contacts
and the number of intersections for a given curve contains information about the
geometry of the orbits.

A useful tool is the ‘théorie des conséquents’, what is now called the theory of
Poincaré maps. We start with an algebraic curve parametrized by 7 so that (x,y) =
(@ (0, Y () with (1), ¥ () algebraic functions; the endpoints A and B of the curve
are given by 1 = o and t+ = B. Assume that the curve AB has no contacts and so
has only intersections with the orbits. Starting on point M; with a semi-orbit (the
orbit traced for ¢ > 1}, we may end up again on the curve AB in point M| which
is the ‘conséquent’ of My. Nowadays we would call M, the point generated by the
Poincaré-map of My under the phaseflow of the ODE. It plays an important part
in understanding high-dimensional ODEs, anticipating the theory of fixed points of
maps of differential topology.

If My = M, the orbit is a cycle and Poincaré argues that returning maps
correspond with either a cycle or a spiralling orbit. It is possible to discuss various
possibilities with regards to the existence of cycles in which the presence or absence
of singular points plays a part.

This analysis has important consequences for the theory of limit cycles. Semi-
orbits will be a cycle, a semi-spiral not ending at a singular point, or a semi-orbit
going to a singular point. Interior and exterior to a limit cycle there has always to be

f.verhulst@uu.nl



10 F. Verhulst

at least one focus or one node. Of the various possibilities considered it is natural
to select annular domains, not containing singular points and bounded by cycles
without contact and so transversal to the phase-flow. Such annular domains are often
used to prove the existence of one or more limit cycles (Poincaré-Bendixson theory),

In the Mémoire, the topology of two-dimensional domains, either R? or for
instance 52, with the Jordan separation theorem as an ingredient, plays an essential
role.

Poincaré gave a few examples that were reproduced in [31, pp. 116-117],
however with disturbing misprints. We discuss the examples here.

Example I Consider the system with Euclidean variables x, y:

(2 4+ —2x—3)—y,
¥y o=y 4y -2x-3)+x

X

(L.1)

The origin (0, 0) is a stable focus corresponding with two foci on the sphere. Using
polar coordinates

x=rcos¢, y=rsing,
we find outside the origin:
F=r(r—2rcos¢—3), ¢ = 1.
Elimination of time produces the equation:

% = r(r* — 2rcos¢ — 3).

As drfd$(r = 1) = 2(cos¢p — 1) < Oand > —2rcos¢p < I forr < 1, we
have that within the circle r = 1| the flow is acyclic, the flow is contracting. As
dr/d¢(r = 3) = 18(1 —cos¢) > Oand ¥ — 2rcos¢ > 3 for r > 3, we have
that the flow outside the circle r = 3 is also acyclic, the flow is expanding. Within
the circle r = 1 and outside the circle r = 3 have opposite signs for dr/de, so the
annular region | < r < 3 is cyclic. As dr/d¢ changes sign only once in the annular
region, the annular region is monocyclic and contains one (unstable) limit cycle.

The second example shows a different phenomenon.

Example 2 Consider the system with Euclidean variables x, y:

P =2 +y —4x+3) -y,

(1.2)
y =@+ —4x+3)+x

{.verhulst@uu.nl



1 Henri Poincaré's Inventions in Dynamical Systems and Topology 11

The origin (0,0) is an unstable focus corresponding with two foci on the sphere,
Using again polar coordinates we find outside the origin:

F=2r(r —4rcosp+3), p=1.
Elimination of time produces the equation;

:—; = 2r(r* — 4rcos¢ + 3).

Rewrite the equation as

:_;. = 2r[(r— 1)(r — 3) + 4r{1 — cosg}].

Asdr/d¢(r = 1) = 8(1 —cos¢) > 0 and 2 — 4rcos¢ > =3 within the circle
r = |, we have that within the circle r = 1 the flow is acyclic, the flow is expanding.

Al r = 3 we have again dr/d¢ > 0; if r > 3, we have dr/d¢ > 0. The flow
outside the circle r = 3 is acyclic, the flow is also there expanding. The annular
region | < r < 3 has to be considered more closely. By analyzing the expression
(P — 4rcos¢ + 3), we see that dr/d¢ cannot change sign in the annular region, so
the annular region is also acyclic. There exist no limit cycles in a finite domain of
the system.

We add a note on the behaviour near infinity of the solutions of the two examples.
The systems (1.1) and {1.2) can be written as:

f = Al y) -y, (1.3)
¥ =yA(xy) +x

We add the initial conditions x(0) = xy # 0, y(0) = y,. Putting # = y/x we find:

dﬂ 2 Yo
— =1 =, n(0) = —,
" + 1, (0} o

with solution

_Yn _»
) = m = + tan(r).

Inside the limit cycle of Example 1, the rotation of the orbils toward the origin causes
the orbits to cross the positive y-axis with period 27 (alternating with crossing the
negative y-axis).

In both examples, the solutions starting at a point r(0) > 3 tend to infinity. The
equation ¢- = 1 suggests rotation, but this is not the case as the solutions tend 10

f verhulst@uu ni



12 F Verhulst

infinity in a finite time. Assuming r(0) > 3, this can be seen from the following
estimates:

Example I, 7 > r(r* — 2r = 3) = (r = 3)°.

Example 2, 7 > 2r(r? — 4r + 3) > 2(r — 3)°.

Integration of the differential inequalities (with r{0) > 3) gives the desired result.

Al the equator of the Poincaré sphere, we find no limit cycles. Transforming
x=1/uandy = 1/v, we find from the transformed system that the singularities at
the equator are not regular.

1.2.4 The Prize Essay for Oscar II, 1888-89

The famous prize awarded by King Oscar Il of Sweden and Norway on the occasion
of his 60th birthday in 1889 has become a well-known story, mainly because
Henri Poincaré, who won the prize (see [23]), had to admit and 1o correct an error
after the event. For detailed accounts see [2] and [31]. Not so well-known is that
apart from the error to be correcied, the first version of the prize essay contained
already fundamental theorems. Important results from the prize essay involve series
expansions, periodic solutions and bifurcations. Series expansions with respect to
a small parameter were the main tool in celestial mechanics of that time, but these
expansions were formal. Comparison with results of various authors was not easy
as many different transformations of the equations of motion were in use. Poincaré
gave explicit criteria for the convergence and divergence of such series based on
holomorphic expansion theorems of differential equations and the implicit function
theorem. At the same time, his insight in the causes of the break-up of validity
of expansion procedures, inspired him to the first set-up of a very important field:
bifurcation theory. All these topics would be treated more extensively in [14].

Series expansion produce always local information. An important global result
is the recurrence theorent:

Consider a dynamical system defined on a compact set in R" with the property
that the flow induced by the system is measure-preserving. Poincaré uses the term
volume-preserving as the notion of measure does not exist at this time. Examples
are the motion of an incompressible fluid in a nondeformable vessel or the phase-
flow induced by a time-independent Hamiltonian system without singularities on a
compact domain. Using the invariance of the domain volume, it is proved that most
particles or fluid elements return an infinite number of times arbitrarily close to their
initial position. The recurrence time is not specified but depends in general on the
required closeness to the initial position and of course on the dynamical system at
hand.

The interpretation of the recurrence theorem in the case of a chaotic system is
interesting. In a two degrees-of-freedom Hamiltonian system near stable equilib-
rium, the KAM theorem guarantees in most cases the existence of an infinite number
of two-dimensional invariant tori that separate the energy manifold into small
chaotic regions, In these sysiems the recurrence phenomena near stable equilibrium

fverhulst@uu nl



1 Henri Poincaré’s Inventions in Dynamical Systems and Topology 13

are quite strong. Moving further away from stable equilibrium, the recurrence times
will be more and more dependent on the initial positions.

In the case of more than two degrees-of-freedom, resonances will produce
more active sets of chaolic orbits near stable equilibrium producing very different
recurrence times.

Another basic result is the non-integrability of conservative systems.

In the corrected version of the prize essay [23], Poincaré overturned the general
philosophy that Lagrangian or Hamiltonian systems are always integrable. The
traditional idea was that if one could not find the integrals of for instance the
gravilational three-body problem, this was caused only by lack of analytic skill. In
fact, in his first submission of the prize essay, Poincaré set out to prove integrability
of the circular, plane, resiricted three-body problem. This can be written as a two
degrees of freedom Hamiltonian system which takes the form of four first-order
equations with periodic coefficients. He identified an unstable periodic solution and
approximated its stable and unstable manifolds by series expansions. Poincaré calls
these invariant manifolds “surfaces asymptotiques”. He concluded (incorrectly in
the first version) that the continuations of stable and unstable manifolds could be
glued together to form integral surfaces corresponding with a second first integral
of the system.

After a query of the editor of the Acta Mathematica asking for more deiails,
Poincaré found out that this gluing was not possible in this particular example.
He found an infinite number of intersections instead of merging of the manifolds.
These results preclude the existence of homoclinic manifolds that would indicate
the presence of a second integral. In the prize essay, the description of the geometry
of the dynamics of the two degrees-of-freedom circular, plane, restricted three-body
problem is tied in with the non-integrability results. In [14], the analysis will grow
to its full generality for n degrees of freedom Hamiltonian systems.

1.2.5 Les Méthodes Nouvelles de la Mécanique Céleste
1892-1899

The three volumes of the Méthodes Nouvelles appeared in the same period (1892-
1899) as the Analysis Situs and its supplements (1892-1903). The reference 1o
celestial mechanics in the title of the three volumes is misleading, they contain
the first general theory of dynamical systems describing both conservative and
dissipative systems by analytical and geometric methods. Celestial mechanics is
often used in [14] as an illustration of the theory.

To solve ODEs, in particular in problems of celestial mechanics, the use of
series expansions is ubiquitous. Poincaré formulated and proved a basic series
expansion theorem in vol. 1, Chap.2 of [14]. At the same time he demonstrates
how the convergence of such series can break down. This involves conditions of
the implicit function theorem with consequences for the bifurcation of solutions.
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14 F. Verhulst

The use of the implicit function theorem was known at that time for sets of
polynomial equations, but to apply these ideas to ODEs was new. Poincaré
introduces the notion of bifircation set with medifications for the dissipative and
the conservative case (for more details see {31]). Particularly interesting is that
in Chap.3 a very general discussion is presented of what is now called the Hopf
bifurcation.

The flexibility of Poincaré’s mind shows again when he introduces divergent
or asymptotic series in Chap. 8 as a legitimate tool. This went against the general
mathematical philosophy of that time that required series to be convergent, but
it agreed with the practice of many scientists working in applications. Divergent
series can be used to obtain approximations of solutions but the difficult ques-
tion of concluding existence of solutions and other qualitative questions from
asymptotic approximations were not touched upon by Poincaré, this came after his
time.

In [14], the fundamental non-integrability theorem is formulated and proved in
the general case of the time-independent 2n dimensional Hamiltonian equations of
motion

aF aF

=—,y= -

dy ax

with small parameter 2 and the convergent expansion F = Fy 4+ uFy 4 p2Fy +---;
Fy depends on x only and its Jacobian is non-singular, |3F,/dx] # 0. Suppose
F = F(x,y) is analytic and periodic in y in a domain D; the first integral ®(x, y) of
the system is analytic in x, ¥ in D, analytic in ¢ and periodic in y:

D(x,y) = Gy(x,y) + pdi(x,y) + @2 Oa(x, y) + -+

The statement is then that with these assumptions, ©(x, y) can not be an independent

Jirst integral of the Hamiltonian equations of motion unless we impose further
conditions.

In the Méthodes Nouvelles [14, Chap.5 of vol. 1], chapter 5 of volume 1, the
technique is first analytic: a second integral should Poisson-commute with and be
independent of the Hamiltonian; expanding the second integral with respect to a
suitable small parameter and applying these conditions leads to a contradiction
unless additional assumptions are made (see also [31]). It is undersiandable that
the geometric aspects of non-integrability could not be understood at that time for
more than two degrees of freedom. Very few contemporaries of Poincaré understood
these aspects, even for two degrees of freedom (phasec-space dimension 4). It is not
clear whether Elie Cartan [6] understood non-integrability or, if he did, knew what
o0 make of it. In his book [6] he recalls Poincaré’s definition of integral invariant but
he ignores existence questions.

There are more geometric details given in vol. 3, Chap. 32 of [14]. As in the
prize essay, the analysis is inspired by the actual Hamiltonian dynamics of stable
and unstable manifolds. Here we find the famous description of chaotic dynamical
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1 Henri Poincaré’s Inventions in Dynamical Systems and Topology 15

behaviour when considering the Poincaré-section of an unstable periodic solution in
a two degrees of freedom Hamiltonian system:
If on tries to represent the figure formed by these two curves with an infinite number
of intersections whereas each one corresponds with a double asymptotic solution, these
intersections are forming a Kind of lattice-work, a tissue, a network of infinite closely
packed meshes. Each of the two curves must not cut itself but it must fold onto itself in
a very complex way to be able to cut an infinite number of times through each mesh of the
network.

One will be struck by the complexity of this picture that I do not even dare to sketch.
Nothing is more appropriate to give us an idea of the intricateness of the three-body problem
and in general all problems of dynamics where one has not a uniform integral and where
the Bohlin series are divergent.

In this case of two degrees of freedom, the energy manifold is 3-dimensional in
4-dimensional phase-space.The flow on the energy manifold is visualized by the
corresponding Poincaré-maps (“théorie des conséquents™). The double asymptotic
solutions are the remaining homoclinic solutions that are produced by the inter-
sections. The Bohlin series mentioned in the citation are formal series obtained by
Bohlin for periodic solutions in celestial mechanics,

The picture Poincaré sketches destroys the possibility of a complete foliation
into tori of the energy manifold, topologically §*, induced by a second independent
integral of motion.

1.2.6 The Poincaré-Birkhoff Theorem

This theorem appeared in 1912, a long time afier the Analysis Situs and its
supplements. However, it is typical for Poincaré’s interest in the global character of
dynamical systems. It bothered him thal so many resulls in this field are local, series
expansions, normal forms, bifurcations, and he formulaied a more global geometric
theorem [24]. The reason to postpone its publication was that he found his reasoning
not satisfactory; the actual proof was given by Birkhoif [3].

The idea is to characterize certain dynamical systems by an area-preserving,
continuous twist-map of an annular region into itself. Such a map has at least
two fixed points corresponding with periodic solutions of the dynamical sys-
tem. The applications Poincaré had in mind were the global characterization of
periodic solutions of time-independent Hamiltonian systems with two degrees
of freedom. The dynamics of such a system restricted o a compact energy
manifold is three-dimensional. The Poincaré maps of the orbits can provide the
twist map described by the theorem. After 1912, fixed point theorems would
play an important part in general and differential topology and in dynamical
syslems.
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16 F. Verhulst
1.3 Topology

A number of topological concepts were known before Poincaré’s time, but, as in
the case of the theory of dynamical systems, he invented its questions and the
modern form of this field single-handedly. Poincaré used the term Analysis Situs
(‘analysis of place’) for topology in a paper that appeared in 1892. It was followed
up in typical Poincaré ‘second-thoughts’ style by five supplements, the last one in
1905. A translation into English and an introduction can be found in [26). As stated
before, the three volumes on dynamical systems [14] and the Analysis Situs were
wrilten in the same period of time. Before this period, Poincaré started his work on
automorphic (Fuchsian) functions. We will argue that automorphic functions and
dynamical systems, in particular the step from local to giobal considerations, were
both instrumental in the creation of the Analysis Situs.
New concepts and inventions:

1. Triangularization of manifolds, the Euler-Poincaré invariant
2. Homology

3. The fundamental group

4. Algebraic topology

1.3.1 Topology Before Poincaré

We will briefly describe topology before Poincaré and we will discuss in subsequent
subseciions various topics in Poincaré’s work of the period 1878-1892 that might
have inspired his ideas. We conclude with discussing some of his inventions of the
Analysis Situs, see also [30]. A few aspects of our reasoning can be found in [32].

Leibniz

The term ‘Analysis Situs’ is attributed to Gottfried Wilhelm Leibniz (1648-1716)
whose optimistic view considered our world the optimal one among possible worlds.
The symbolism that he successfully applied in calculus was probably an inspiration
for him to wish for symbolic ‘calculus’ in philosophy, sociology and geometry.
For geometry this would imply an extension to forms and spaces characterized by
algebraic symbols; this extension was called analysis situs, but the idea, although
interesting, got no substance in Leibniz’ subsequent work.

Euler

One of the mathematicians who thought about structures and forms in geometry was
Leonhard Euler (1707-1783), see Fig. 1.3. He considered a convex two-dimensional
polyhedron in Euclidean 3-space with V the number of vertices, E the number of
edges and F the number of faces. The Euler characteristic for polyhedrons y is an
invariant of the form:

x=V-E+F=2
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1 Henri Poincaré's Inventions in Dynamical Systems and Topology 17

Fig. 1.3 Leonhard Euler
(1707-1783), drawing by
Giovanni Batista Bosio
(1764-1827), engraved by
Francesco Rebagli (courtesy
private collection)

el{'m (H‘Jo’ ézzé/ ro

Interestingly, the Euler characteristic was generalized by Poincaré 1o more general
closed, non-convex surfaces like tori or spheres with handles,

Abel, Miébius and Jordan

A handle, a ‘look-through hole’, in a surface is nol so easy to characterize
mathematically. Niels Henrik Abel (1802-1829) called the number of handles g,
the genus of a surface in 3-space; for a sphere g = O, for a torus g = |
elc. August Ferdinand Mobius (1790-1868) developed ideas about non-orientable
surfaces in Euclidean 3-space. Both Mobius and Camille Jordan (1838-1922)
thought and formulated ideas about topological maps of surfaces. In their view,
correspondence (“Elementarverwandschaft” in Mébius view) between two surfaces
was not primarily characterized by point mappings but by considering the surfaces
dissected in infinitesimal elements where neighboring elements of one surface
correspond with neighboring elements of the other surface. For more details and
references see [29].
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18 F. Verhulst

Betti

Enrico Betti (1823-1892) gave a more precise description of tori and handles by
defining his so-called Betti numbers. Betti uses the idea ol connectivity and the
number of closed curves separating a closed surface to characterize handles and
more complicated structures.

The Influence of Riemann
The successes of analysis in dynamics, in particular in celestial mechanics, had its
counterpart in applied mathematics in Germany, but meanwhile geometric thinking
went there its autonomous course. This becomes clear in the mathematics of
Bernhard Riemann (1826-1866), see Fig. |.4. Poincaré notes in La valeur de la
science [15):
Among the German mathematicians of this century, two names are particularly famous;
these are the two scientists who have founded the general theory of functions, Weierstrass
and Riemann. Weierstrass reduces everything to the consideration of series and their
analytical transformaticns. To express it better, he reduces analysis to a kind of continuation
of arithmetic; one can go though all his books without finding a picture. In contrast with this,
Riemann calls immediately for the support of geometry, and each of his concepts presents an
image that nobody can forget once he has understood its meaning. {[15], essay ‘L'intuition
el la logique en mathématiques’)

It is interesting to consider Riemann's papers in the light of Poincaré’s remarks.

At the occasion of his ‘Habilitation’ in Gottingen (1854), Riemann lectured on
the foundations of geometry [28], see also [27] and for the historical context [29].
Riemann starts with experience and notes thai the Euclidean foundations are not
necessary, but that they have an acceptable certainty. He formulates a research plan
for n-dimensional manifolds and spaces without precise descriptions. Weyl [28]
links these considerations with later results in geometry, for instance by Kiein, and
with general relativity,

The coliected works of Riemann [27] start with a treatise on the foundations
of compiex function theory, without figures but, as noted by Poincaré, “each of

Fig. 1.4 Bernhard Riemann (1826-1866) and Henri Poincaré (1854-1912)
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1 Henri Poincaré’s Inventions in Dynamical Systems and Topology 19

its concepts presenting an image”. The interpretation of a complex function in
the neighbourhood of a singularity plays a prominent part. In Riemann’s articles,
analysis and geometry go hand in hand, producing new insights in both fields.

A long article on Abelian functions in [27] is written in the same style, it contains
four figures. The integration of differential equations leads more ofien than not to
solutions that are defined implicitly. We are then faced with an inversion problem
to find the explicit solution. Consider for instance a simple implicit relation in
complex variables: w = 22 with inversion, z = /W, this leads to the well-known
problem that, starting, say on the real axis, and moving on a circle around the
origin (the singularity), will produce a different value when arriving again at the
real axis. An ingenious solution for the problem of many-valuedness to obtain
unique continuation of such a function was proposed by Riemann. Using several
sheels (complex planes) when moving around the singularity and joining them, one
obtains the so-called Riemann surface. In the example of the quadratic equation
above, one needs two sheets to be joined. For more general algebraic implicit
cquations, one needs for such an inversion a finite number of sheets and so a
more complicated Riemann surface, A clear and systematic treatment of Riemann
surfaces with historical remarks can be found in [12].

A prominent mathematician after Riemann was Felix Klein (1849-1925). His
papers, books and lectures have a strong intuitive and geometric flavor. His work on
automorphic functions, although considerable, was overshadowed by the results of
Poincaré at the same time; see also [8] and [31]. Both mathematicians elaborated on
the geometric aspects of Riemann surfaces.

1.3.2 Local Versus Global in Poincaré’s Fuchsian Functions

Many results on the local behaviour of functions were known in the 18th and 19th
centurics. A few mathematicians aimed at a more global understanding ; Poincaré
shared this ambition with Felix Klein (1849-1925). In his lecture notes on linear
differential equations [11] Klein notes that we can make series expansions near the
singularities of the coefficients, but this does not help global understanding. A basic
tool for these problems is the geometric theory of automorphic functions developed
both by Klein and Poincaré. Klein, while referring to an earlier lecture, states in the
beginning of [11] (lecture of April 24, 1894);

... filr hypergeometrische Functionen trat in meiner Vorlesung das Bestreben hervor den

Gesamtverlauf der durch die Differentialgleichung defininen Funktionen zu erfassen.

(... for hypergeometric functions, | wished to get a grip on the overall behaviour of the
functions defined by the differential equation.)

The theory of Fuchsian (automorphic) functions is a successful synthesis of
function theory and geomeltry, at the same time the concepts that were developed
stimulated the emergence of topological concepts. Poincaré started to publish about
Fuchsian functions in 1881, see vol. 2 of [19] and [25]. He was inspired by the
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20 F. Verhulst

German mathematician Fuchs (1833-1902) who considered a second order, linear,
ordinary differential equation of the form

¥y +AQY +B@Ry=0

with A(z) and B(z) holomorphic functions of the complex variable z in a region
S ¢ C. There are two independent solutions y,(z) and y2(z) and Fuchs started to
consider theratio ) = y;/y2. He was interested in the behaviour of the solutions near
singular points of A(z) and B{z) and performed analytic continuation of y(z) and
y2(z) along a closed curve around such a singularity and inversion of the function
n(z). This led him to consider a linear transformation of » and, more in general, to
look for functions that are invariant under a substitution of the form

a+b
—

Z t
cz+d

(1.4)

with coefficients a, b, ¢, d. So we have

f(az+b) - (0.

cz+d

The substitution (1.4) (or transformation as we call it nowadays) is very rich; it
consists of translations and rotations in the complex plane or, in the language of
dynamical systems, expansions and contractions. The ratio 7(z) of the solutions
should be invariant under these linear substitutions which is a more general property
than periodicity that corresponds with the special casea =c=d =0, b % 0 and
real.

1.3.3 Fuchsian Groups

Poincaré put the results at a higher level of abstraction. He called the functions
which are invariant under transformation (1.4) Fuchsian, they are now called
automorphic. The group of transformations acts usually on the upper complex half-
plane Im(z) > O or on the disk |z| < 1. It is still removed from our present abstract
concept of a group as a set of elements with cerlain operations defined on it. For
his analysis, Poincaré had to distinguish between continuous and discontinuous
transformation groups. He undersiood by a flash of intuition that the continuation
of these complex functions, the use of Riemann surfaces and transformations in the
complex plane correspond with geometric structures that can be understood only in
terms of non-Euclidean geometry. In fact, until Poincaré looked at these problems,
non-Euclidean geometry was considered as an artificial playground without much
relevance to mathematics in general.
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Fig. 1.5 Fundamenta) parallelogram comresponding with a torus

In the analysis of functions with singularities, lundamental polygons and cover-
ings of Riemann surfaces by polygons play an important part. For some functions
a covering by triangles is suitable. In the case of elliptic functions we have the
inversion of an elliptic integral that produces double periodicity;

n{x + may + maws) = n(x)

which keeps n(x) invariant (m;,m: € Z). In this case one uses a covering
of parallelograms. Identifying several parts of the boundary of a fundamental
polygon leads for the triangle to genus zero (one can deform to a sphere), for the
parallelogram to g = 1 (identifying the opposite sides two by two leads to a torus,
see Fig. 1.5). Poincaré shows that fundamental polygons bounded by more sides lead
to arbitrary large genus. For an introduction to polygon coverings see [12, Chap. 12].
In [11] Klein discusses the relations between a [undamental parallelogram and a
torus (see Fig. 1.5) and between a fundamental octagonal and a surface with genus
two.

Closely related to this is Poincaré’s theory of uniformization problems. Differ-
ential equations lead to the integration and inversion of algebraic functions; their
analytic continuations produce multi-valued analytic functions. Uniformization
of such functions corresponds to obtaining a parametrization by single-valued
meromorphic functions. The development has led to the relation between complex
function theory and hyperbolic gecometry, and also to many results in the study of
quadratic forms and arithmetic surfaces. The theory of uniformization contains still
many fundamental open questions.

1.3.4 Covering an Analytic Curve in 1883

In [21] Poincaré considers a complex vector function y;{x), y2(x), ..., y(x); he lets
the complex variable x describe a closed contour C on a Riemann surface 5. When
x traces the contour C, the function is restricted to an analytic curve on §. The
idea is to show that there exists a transformation x — z such that after applying the
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transformation, the vector field y can be parametrized by single-valued meromorphic
functions of z. There are two types of contours:

1. When x traces C once, at least one of the components of y does not return to its
starting value.

2. All components return to their starting value when tracing the contour C once,
There are two subcases;

1. By slight deformation of C this property persists;
2. Applying slight deformation of C the property does not persist.

The proof that such a transformation exists rests on two ideas. First, one knows that
if C is a closed contour, one can find a holomorphic function u(£, ) inside C which
takes prescribed values on C. This is based on solving the Dirichlet problem of the
Laplace equation in two dimensions.

The second point concerns us here. Poincaré states in the proof that the analytic
curve on the Riemann surface § is covered by an infinite number of feuillets, the
infinitesimal elements of Mobius and Jordan. This construction of the covering is
later used and extended by Poincaré as a general covering procedure for manifolds.

1.3.5 The Analysis Situs and Its Supplements

On reading the Analysis Situs of 1895 and its later supplements [26), one notes that
the conciseness and abstraction of modern mathematics is missing; reading the text
is relatively easy. This is deceptive as the ideas and new concepts go very deep. Its
readability is misleading.

Introductions to Poincaré’s topological papers are found in [29] and [26). We
will discuss a number of basic concepts from the papers referring sometimes to
his earlier work. Poincaré was not an avid reader but usually gave carefully credit to
ideas and results of colleagues if he knew about them. There are nol many references
in the Analysis Situs as the material was so new,

1. Introduction of the concept of manifold in arbitrary dimension (by construction).
The idea of a manifold has a long history with contributions from many
mathematicians. Poincaré introduced the covering of an analytic curve in [21].

It is generalized to two and higher-dimensional manifolds.

In the first section of the Analysis Situs, manifolds are described by sets of
algebraic equations in R". A new approach is given in the third section where
manifolds are defined by continuous parametrizations; they can be replaced
by analytic parametrizations as we can approximale continuous functions by
analytic ones. In this way, manifolds of the same dimension that have a common
part can be considered an analytic continuation of each other.

Thus far, the analysis of Poincaré of the treatment of manifelds was a natural
extension of ideas of older mathematicians and the theory of complex functions
on Riemannian surfaces, see [29].
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. The use of local parametrizations that become global by overlap like in analytic
conlinuation was a new idea. Another new element arises in Sect. 10 of the
Analysis Situs [26]: geometric representation by gluing together polyhedra
identifying faces and manifolds. Consider a manifold M and replace the manifold
by approximating simplexes with adjacent boundaries, forming a simplicial
complex. In this way, using polygons like triangles, we obtain a triangulation
of a manifold that makes it easicr to apply homology (the next item).

. Homology.

Suppose a manifold M contains r-dimensional submanifolds, Poincaré calls
them cycles. If M has a (r 4 1)-dimensional submanifold with as a boundary one
given r-dimensional cycle, the cycle is homologous to zero in M. Consider as an
illustration an annular region in the plane where r = 1, see Fig. 1.6.

. Homology theory and the fundamental group.

In Sect. 11 of [26], Poincaré considers domains in 4-space with 3-dimensicnal
surfaces as boundaries that can be subdivided and homeomorphically trans-
formed into polygons. Regarding such transformations, the inspiration from
Fuchsian groups becomes explicit in the Sects. 10-14. In Sect. 11, Poincaré
writes

The analogy with the theory of Fuchsian groups is too evident to need stressing. {transl,
J. Stillwell [26])

One of the results is the emergence of algebraic structures between Betti numbers
and a generalized topological Euler invariant (uswally called now Euler-Poincaré
invariant). Consider a group I" of translations y of the complex plane C (or a
suitable other domain) which is fixed-point free. A typical case is when [ is
generated by two Euclidean translations in different directions.

Associated with T is a fundamental domain D which is a polygon. In the case
of C we can take for the fundamental domain a parallelogram. The translations
of this polygon in two directions fill C, see Fig. 1.5.

Fig. 1.6 Consider the T ey

annular region bounded by C,
and C3. A closed curve with
interior in the annular region
has homology zero, a closed
curve encircling €, has
nonzerc homology
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Another aspect brings us to algebraic topology: we can identify opposite sides
of the fundamenial parallelogram to obtain a torus which is in this special case
C/T. Considering other domains and polygons we may find manifolds with
genus higher than one.

5. Associated with homology is also Poincaré duality. It was stated in terms of Betti
numbers; The &th and {n — k)th Betti numbers of a closed, orientable n-manifold
are equal. Criticism of his work by Poul Heegaard led him to discuss (so-called)
torsion in the second supplement.

1.3.6 Conclusions

The Analysis Situs was created as a completely new mathematical theory. Its
inventions are geometrical representation, triangulation of manifolds, homology and
algebraic topology. In particular:

1. To study the connectedness of a manifold Poincaré developed a calculus of
submanifolds. The relations involved were called homologies, they could be
handled as ordinary equations. This started algebraic topology and what Leibniz
would have called “an algebra of surfaces”,

2. Technically, Fuchsian transformations and the fundamental group played an
inspiring and important part in the set-up of the Analysis Situs.

3. Geometrically, the picture is more complex. Riemann surfaces, global consid-
erations from ODEs and Hamiltonian dynamics were another inspiration. In
the dynamical systems theory of Poincaré [20] and [I4], an important part of
the considerations are local like series expansions, bifurcation theory etc. The
development of global insight in dynamical systems like the reasoning needed
to describe homoclinic chaos and the use of fixed point results to find periodic
solutions (Sect. 1.2.6) was new, it needed consideration of the dynamics on
3-dimensional compact manifolds embedded in 4-space,
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