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Abstract—A penduium is attached to one mass of a chain of n masses, connected by » linear springs.
One of the masses is harmonically excited. The stability of the semi-trivial solutions, representing
vibration of » masses without pendulum oscillation, is investigated in general, Using this approach,
the occurrence of all autoparametric resonances can be determined. As an illustration, a two-mass
subsystem with two degrees of freedom, where the pendulum is attached to the upper mass, is
analysed.

{. INTRODUCTION

In this paper a rather general formulation is given of the problem of interaction between
a chain of linear springs—with damping and forcing—and a non-linear system. This is
a basic and important problem in mechanics (see [1-5]). It poses a formidable mathemat-
ical problem involving many phenomena, like bifurcations of various types and chaos; in
this paper we shall be concerned only with the first steps, i.e. formulation of the problem,
resonances and stability and an example.

Autoparametric systems represent an interesting group of excited systems with specific
characteristic properties. Such a system is composed of two subsystems with a non-linear
coupling and a periodic excitation which acts on one of the subsystems only; this is called
the excited linear subsystem. In this paper we assume that the subsystem consists of n linear
oscillators. The coupled subsystem is not affected by this, i.c. it does not oscillate, except for
certain intervals of the excitation frequency. The solutions of the corresponding differential
equations of motion with the non-excited subsystem at rest and the excited linear subsystem
oscillating, will be called semi-trivial solutions.

Such a solution is stable, with the exception of the mentioned intervals of the excitation
frequency. In these intervals the semi-trivial solution is destabilised by the oscillatory
solution of the excited linear subsystem because the vibration of this subsystem produces
parametric excitation of the non-excited subsystem. Autoparametric resonances occur in
these intervals of the excitation frequency. This resonance is characterised by vibration of
the whole system and by the differences in the character of vibrations of both subsystems:
the dominant vibration component of the excited linear subsystem, for instance, has
a frequency which is twice the frequency of the dominant component of the non-excited
subsystem.

The aim of this contribution is to show that investigation of the semi-trivial solutions can
disclose all intervals where autoparametric resonance arises and it forms the first step of the
analysis of these systems. Leaving out this step of investigation some intervals of the
autoparametric resonance occurrence could be missed. This can be demonstrated by
a simple example of an autoparametric system which has been studied by several authors
(see, e.g. [1-3]). This system consists of a mass, m,, on a spring having stiffness k.
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A pendulum characterised by a mass m and length ! is attached to this mass (see Fig. 1). Two
alternatives are shown in Fig. 1: (a) the alternative with harmonic or periodic excitation of
mass my, (b) the alternative with kinematic excitation. Most authors have dealt with
alternative (a) with harmonic excitation and they have analysed directly the autoparametric
resonance of the system when tuned into internal resonance, ic. for the case when
Jkf(im + mo)/\/g—/l =2 and the excitation frequency w is close to /k/(m + m,). In
refs [1-3] the semi-trivial solution has not been investigated completely. In [4] the stability
of the semi-trivial solution is investigated for the case of harmonic excitation of one mass m,
with a constant amplitude as well as the case where the amplitude is proportional to the
square of the excitation frequency; the case is studied when the spring, carrying mass nt,, is
non-linear, the linear and cubic terms defining the spring characteristic. The stability
investigation of the semi-trivial solution for the alternative (b} with one mass is investigated
in [5]. In both these papers [4, 5}, it is proved that the case of a system tuned into internal
resonance is not the only possibility for autoparametric resonances to occur. In the present
paper a more complicated system is analysed having an excited linear subsystem with
arbitrarily many degrees of freedom.

2. EQUATIONS OF MOTION

We consider an n-degrees-of-freedom linear system, coupled with a one-degree-of-free-
dom non-linear system. The linear system consists of n masses m,,. .. ,m, connected in
a chain by linear springs having stiffness k;, i = 1,. .., n—the excited subsystem— and
a pendulum of mass m and length ! which is attached to mass m; (in Fig. 2 m; is m, ). One of
the masses m,,...,m, is excited harmonically, the amplitude of excitation is either
a constant or it is proportional to the square of frequency of excitation w.

Let y; denote the defiection of the mass m;, ¢ the angular deflection of the pendulum and
b and b; the linear viscous damping coefficients of the damping forces acting on the
pendulum on the pair of masses my;, m;.., respectively.
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Fig. |. System of onc mass with a pendulum.

Fig. 2. System of n masses with a pendulum.
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The kinetic energy T and potential energy V are defined by relations
.. . Ll |
=30+ Isin @) + Z (i cos ¢ + 3. smyit,

=]

ui | 1
V=mgl(l —cos¢)+ ) kilyi— Yim )l + ik.y.%.
i=]
Using the Lagrange equations of the second kind, with the Lagrange function L= T — ¥,
d /oL oL d (oL oL
—_—— | —-— = — | ——— .=l, veey
at (a¢) a6~ d:(ay',) gy =0 U=12....m
and adding the damping and forcing terms, the following system of equations of motion is
obtained:
m*@ + b + mglsin ¢ + mlysing = 0,
(m+m)y, + b3 — Yyer) = bj=1(y=y = 9) + ky(y; = Yja1) = kj- s (j=1 = ¥3)
+ ml(@sing + dcos ) =0,
myy + by (yy — y2) + ki{yy — y2) =0,

mefy = b1 (Pa~1 = P) + Be(Pa — Fra1) = ki1 (Vi-1 = Wi)
acos wt

+ k(yx = Ye+1) = {m,,ew"coswt,

ma.';n - bn—l().’n—l - }"n) + bn"’u - l-l(yn-l - Yu) + kwyl =0. (1)

In system (1), we envisage two natural types of harmonic excitation: the cases with
constant amplitude and with the amplitude proportional to the square of the excitation
frequency. With respect to further analysis, it is useful to transform these equations into
dimensionless form. Putting

wo=./g/l, wlwo=n  x=blwml, k;=bjwe(m+ my),
K =bjwom;,  qf =kjdm,  q} = kjwdm+ my),
= my—fmy, sy =my_fim + my), Mi+1 = (m + my)/mysy,

{w/m:g . {w/(m+m1)g
e/l " Lmefm+ m)l’

system (1) is transformed (using wqt = 1) to the form:
@" + k¢’ + sing + wising =0,
Wi 4 k(W) — Wiay) ~ K- (Wi g — W) + qFWs — wiay) — g (wyoy — wy)

= l"m,@" sing + ¢cos @) =0,

Wi + ki (Wi — w2) + gi(w — wa) =0,

w; = y/l, @

+

Wi = Mikp— s (Wioy — Wi) + Ku(Wi — Wi ) — igd- ((Wi-g — Wa)
£cosnt

+ qi(Wy — Wiesy) = {5'12 cos gz’

Wa — fiaKn— 1 (Wemy = Wi) + KaWy — g2 _ 1 (Wa—y — Wo) + g3w, =0, 3)

3. SEMI-TRIVIAL SOLUTION OF THE SYSTEM AND ITS STABILITY

A semi-trivial solution (¢, w,,. .., ®,) = (0,u,,. .., u,) of system (3) is defined by the
condition
#(1)=0, 20 @

N 28:2-1
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Note that for a semi-trivial solution, system (3) decouples into a linear system of the (matrix)
form

" , _ jecosyr
u” + xu +qu-{sq’cosnr’ 5
with vectors
£
u=(u;,...,u,), £T=(0’- --1oul|0s-- -30)'{8"2
and matrices
Kl —Kl 0 eree 0
— UKy 2Ky F Ky =Ky
K= 0 = Hak3 '
: = Kn-1
0 — UaKpo1  HnKy-y T K,
d  -ad - 0
2 2 2
— Kaq q1+q
q= :z 1 MHa2di 2 ) 6)
0 —~ UnGa-1  HaGi-1 + Gn

Because of the forcing (e # 0), the deflections of the linear springs u will never be collectively
zero for t > 0. The solution of equation (5) consists of a homogeneous part which vanishes
with time and an inhomogeneous part of the form

Acosnt + Bsinyr.

Substitution of this expression into equation (5) yields for the vectors A and B the 2n-
dimensional algebraic system

q-n*1 nx Al _[e
[—mt q—n’l] [B “lof @
To investigate the asymptotic stability of the semi-trivial solutions we use the well-known

results of Poincaré and Lyapunov (see [6, Chap. 7]). We introduce
¢=0+¢, wW=u+y,

AJ =gA, BJ =¢B. (8)
From system (3), we obtain in linear approximation
¥” + k¢’ + [1 + e(Acosnt + Bsinpt)]y = Q. 9)

The equation for v is of the form
v + kv + qv=1{(--),

where {(--- ), after climination of ", is non-linear, starting with quadratic terms. It follows
from the Poincaré-Lyapunov theory that the asymptotic stability of the 2(n + 1)-dimen-
sional semi-trivial solution is completely determined by the asymptotic stability of = 0in
equation (9). This is a solved problem (see for instance [13 or [6]).

The solution on the stability boundary can be approximated by (see [1,2,6])

¢ = Ccosint + Ssindnr. (10)
For the non-trivial solution of C, S, the following condition must be met:
(t—4n* + 2x*n® — en*(4* + B) =0. (1
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The values of ¢ on the stability boundary are therefore determined by the relation

O (R T Ual s
""1 A% 4+ B?

It follows from the analysis of relation (12) that minimum values of ¢ can be expected at
n = 2 and for those values of n, where A? + B? reaches a maximum, i.e. close to the values of
n corresponding to the relative natural frequencies of the excited subsystem and the
pendulum.

Note that a similar approach can be used when several masses of the excited subsystem
are harmonically excited. Only vector £ will be different from that in expression (6).

A second remark is that in system (3) the explicit form of the non-linear oscillator is not
important for the determination of the asymptotic stability of the semi-trivial solution. For
instance, sin ¢ in system (3) may be replaced by f(¢) as long as it can be expanded, starting
with a linear term: f(¢)=a¢ + ... (¢ #0). The explicit form of the non-linearity is
important if one wants to study the behaviour of the solutions in the case of an unstable
semi-trivial solution.

= e(n). (12)

4. EXAMPLES

In [5] the case is studied where n = 1, i.. a system in which one linear spring is coupled to
a pendulum. This case models the phenomenon of a ship rolling in longitudinal or oblique
sea waves. The instability threshold in (g, )-parameter space turns out to have two minima
in & for values of n close to 2 or g, the possibility of unstable parametric excitation of the
semi-trivial solution is maximal,

Here, we consider the case n = 2, i.e. we have a subsystem of two linear springs and
masses coupled to a pendulum (see Fig. 3). Two alternatives are considered: in case (a) the
upper mass m; is excited; in case (b) the exciting force is applied to the lower mass m,. The
exciting force is also comsidered in two alternatives: with a constant amplitude of the
exciting harmonic force or with an amplitude proportional to the square of the exciting
frequency. This system is governed by the following differential equations, transformed into
the dimensionless form:

Alternative (a)

@" + k¢’ + sing + wising =0,

Ul o LA ’ 2 — m w2 12 = GCOSﬂ‘t,
wi + Ky (W) — wy) + gi(w — wp) + Sk m,@ sin ¢ + ¢'*cos ¢) {sq’cosnt’
, m+m , ,
w3 — L[k (wh — wh) + gi(ws — w2)] + KW + giw; = 0. (13)
Alternative (b)
@" + kd' + sing + wising =0,
m

(@"sing + ¢*cos ) =0,

wi + K (W) — wy) + qi(wy — wa) +

m <+ m,
m4+m , , , £COS NT,
wy — 2[K1(wh ~ wh) + qi(wy — w2)] + Kawh + gdwy = {5')‘2 c:s ' (14)
where
k k b g
2 = 1 2 = __2_ = = <
q1 (m +my )w%' 42 mzwé ! x mwor = J;’
s 4
b, b, (m+m)g mag
= ’ = s = . b = .
Ky (m F )wo K2 M2t (a) & e m ( ) €
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Fig. 3. Systems, consisting of a two degrees of freedom linear subsystem attached to a pendulum,
analysed in the examples of Section 4.
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Fig. 4. Stability threshold surface £{n, 4, ) of the semi-trivial solution; alternative (a) excitation with
constant amplitude, q; = 2.

Note that, comparing with equations (1) and (3), the excitation m, ew? cos wt—alternative
(a)—or myew? cos wi—alternative (b)—is considered for the case where the amplitude is
proportional to the square of the excitation frequency.

The results of the stability investigation of the semi-trivial solutions are presented in the
form of stability threshold surfaces where ¢ is expressed as a function of the relative exciting
frequency 5 and of the tuning coefficient g, for several values of the tuning coefficient g,. In
these diagrams, for convenience of presentation, the positive direction of the e-axis is
changed by orienting it downwards. In this way, the stability region is located under the
surface and the minima appear as maxima. In the stability threshold surfaces (Figs 4-7) the
two relative natural frequencies (relative to the pendulum natural frequency) of the excited
subsystem without damping, are indicated by dotted lines. The periphery of the instability
threshold surfaces is marked by broken lines. In all examples, the following parameter
values were used:

x = 0.05, K; =k =01, m4 my =m,.

The results for alternatives (a) and (b) with the two types of excitation are presented in
Figs 4-7 (g, = 2).

We can see that, for a given value of g,, the curve representing a section of the threshold
surface can have three local minima of ¢ which appear as maxima when viewing the
diagrams: at n ~ 2 and at the values of  corresponding to the relative natural frequencies of
the excited subsystem. The absolute minimum of ¢ lies in most cases at the values of #, g,
when the relative natural frequency equais 2 (see, e.g. Fig. 4 at g, ~ 1.5, Fig. 5at g, = 2).
Generally, alternative (a) and the excitation having the amplitude proportional to the
square of the excitation frequency manifest themselves to be less resistant to the instability
of the semi-trivial solution. These results are in full agreement with general experience, For
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Fig. 5. Stability threshold surface 2(z, ¢,) of the semi-trivial solution; alternative (a), excitation with
the amplitude proportional to the square of the excitation frequency, g; = 2.
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Fig. 6. Stability threshold surface (y, g, ) of the semi-trivial solution; alternative (b), excitation with

constant amplitude, g; = 2.
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Fig. 7. Stability threshold surface e(n, q; ) of the semi-trivial solution; alternative (b), excitation with
the amplitude proportional to the square of the excitation frequency, g, = 2.

alternative (a), the limit case g, = O represents a pendulum whose hinge point is harmon-
ically excited in the vertical direction. Of course, only one instability interval of 7 can exist in
this limit case.
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When the semi-trivial solution is unstable an autoparametric resonance occurs which is
characterised by the oscillation of the whole system. For certain values of the tuning
coefficients g,, g, even three autoparametric resonances can occur.

It is clear that for resonance instability to arise, the system need not be restricted to
tuning into internal resonance frequencies as was conjectured by various investigators.

5. CONCLUSIONS

Studying autoparametric systems consisting of linear and non-linear subsystems, it is
convenient, as a first step, to investigate the stability of the semi-trivial solutions in which
the non-linear system is at rest. In this case all possible autoparametric resonances, which
initiate instability, can be determined. The analysis here has demonstrated that, apart from
tuning into internal resonance, there are more possibilities to generate autoparametric
excitation. In particular, when attaching a pendulum subsystem to a certain mass of the
excited linear subsystem consisting of n masses with n degrees of freedom altogether the
initiation of autoparametric resonances can be expected at the following values of the
excitation frequency: at double frequency of the pendulum subsystem’s natural frequency
and at frequencies close to any natural frequency of the excited linear subsystem. This
means that for certain open parameter sets of the system, when changing the excitation
{requency, there exists n + 1 intervals where autoparametric resonance can be initiated.

A possible application of these results might be the quenching of oscillators in linear
systems by coupling them to a non-linear subsystem. To realise this we have to investi-
gate the behaviour of the excited non-linear system. This will be the subject of future
investigations.
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