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Abstract: A natural example of evolution can be described by a time-dependent two degrees-of-
freedom Hamiltonian. We choose the case where initially the Hamiltonian derives from a general
cubic potential, the linearised system has frequencies 1 and ω > 0. The time-dependence produces
slow evolution to discrete (mirror) symmetry in one of the degrees-of-freedom. This changes the
dynamics drastically depending on the frequency ratio ω and the timescale of evolution. We analyse
the cases ω = 1, 2, 3 where the ratio’s 1,2 turn out to be the most interesting. In an initial phase we find
2 adiabatic invariants with changes near the end of evolution. A remarkable feature is the vanishing
and emergence of normal modes, stability changes and strong changes of the velocity distribution in
phase-space. The problem is inspired by the dynamics of axisymmetric, rotating galaxies that evolve
slowly to mirror symmetry with respect to the galactic plane, the model formulation is quite general.
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1. Introduction

There are many non-autonomous dynamical systems with evolutionary aspects but
the necessary theory for understanding them is still restricted to linear systems with
equations that have a limit as time increases (see [1] ch. 3). The main reason for this is
probably that understanding steady state, autonomous, nonlinear systems is already a
formidable task. Physical examples where explicit time-dependence plays a part are the
evolution to spherical structures in nature and on solar system scale planetary satellite
systems evolving by long-term tidal forces to more symmetric orbits (for references see [2]).
Explicit time-dependence also is ubiquitous in engineering systems but there it is usually
concerned with short-time transient phenomena or time-periodic influences.

We will consider Hamiltonian systems where explicit time-dependence slowly van-
ishes producing the transition from a system that is asymmetric in some sense to a Hamil-
tonian system with symmetry. In [3] a 1-dimensional cartoon problem is considered where
time-dependent asymmetric terms vanish with time; it is of the form:

ẍ + x = a(εt)x2. (1)

A dot means differentiation with respect to time, 2 dots second order differentiation with
respect to time, ε is a positive small pameter. The function a(εt) is monotonically decreasing
from the value 1 to zero. Equation (1) models slow evolution to symmetric dynamics in the
sense that the asymmetric potential vanishes with time; although the equation is simple it
shows already a relation with dissipative systems and the construction of a global adiabatic
invariant.

In [2] a 2 degrees-of-freedom (dof) system is considered with a cubic potential that is
discrete symmetric in one of the positions (q2) and asymmetric in the other position (q1).
The Hamiltonian is:

H =
1
2
(p2

1 + 4q2
1) +

1
2
(p2

2 + q2
2) + a(εt)(2q3

1 + q1q2
2). (2)
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As before the asymmetric term vanishes slowly, the system evolves to a 2 -dimensional
harmonic oscillator. Again a relation with dissipative systems can be established, 2 adiabatic
invariants can be found. The system displays overall dynamics that keeps some information
from its asymmetric past.

In the sequel we will study evolution in two dof Hamiltonian systems keeping nonlin-
earities. That makes the models both more realistic and more complicated.

In this paper we describe an evolutionary system (14) inspired by the evolution of
a rotating galaxy. It is important to note that this system in its general formulation of a
time-dependent Hamiltonian system extends to many other physical problems apart from
those derived from this particular application.

Set-Up of the Paper

In Section 2 we describe the dynamics of rotating stellar systems and we formulate the
equations for the axisymmetric case. These formulations have been known a long time in
astrophysics but we summarise this for a more general audience. In the sequel we describe
the dynamics of prominent resonances producing periodic solutions, adiabatic invariants
and stability changes during evolution.

In Section 3 we formulate the time-dependent Hamiltonian where the terms that are
not discrete (mirror) symmetric with respect to the galactic plane are slowly vanishing with
time. This leads to the slow-fast system (14) where the fast motion is described by a family
of discrete symmetric two dof freedom Hamiltonian systems with resonances.

Section 4 describes the reformulation of system (14) suitable for averaging-normalisation
while using a modification of averaging developed in an appendix (Section 9). It is shown
that the system for evolution to symmetry is equivalent with a dissipative system.

The prominent resonance 1:2 is studied in Section 5. The results are surprising as
first order averaging-normalisation producing approximations valid on an interval of size
O(1/ε) yields no epicyclic normal mode and an unstable vertical normal mode. Second
order averaging-normalisation producing approximations valid on an interval of size
O(1/ε2) show that after a long time the epicyclic and vertical normal modes arise and are
stable. These changes of presence and stability have drastic consequences for the evolution
of the overall dynamics of the system.

In contrast to the preceding case, the 1:3 resonance is dynamically less interesting
(Section 6). We have in this case basically the dynamics of the 2:6 resonance that is described
by higher order resonance techniques from [4].

In Section 7 the dynamics of the 1:1 resonance turns out to be the most complicated case.
Second order averaging-normalisation is necessary to describe the dynamics. Depending
on the system parameters we find again normal modes and stability changes during
evolution. Explicit examples include the evolution to the Hénon-Heiles potential.

After the concluding discussion we present in Section 9 a brief survey of the averaging
theorems we have used in this paper. For the proofs we indicate the relevant literature.

Numerics. For the computation of the figures we have used MATCONT (free access)
under MATLAB (licensed). The algorithm used is ode 78 with relative and absolute errors
exp.(−15).

2. The Dynamics of the Milky Way

In this section we will summarise the formulation for rotating stellar systems and we
will specialise this to the axisymmetric case. The modelling was used in [5] and can also be
found in [6].

2.1. The Collisionless Boltzmann Equation

The reasonable looking approximation of few collisions in stellar systems raises
questions on the statistical mechanics of these systems. Another basic assumption often
made in model building for galaxies is most of the systems being in equilibrium. A more
realistic assumption is quasi-static equilibrium that leaves room for evolution to this stage.
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In this paper the choice of a time-dependent Hamiltonian will be the basis for studying
such models of evolution and the quite remarkable consequences.

The collisionless Boltzmann or Liouville equation describes the distribution of n
particles, stars in this case, in 6n dimensional phase-space. One has to add the Poisson
equation for self-gravitation. A good description with examples can be found in [6] ch. 4.
The equation for the distribution of particles f (t, x, v) where x indicates the position, v
the velocity, is the continuity or Liouville equation in 6n dimensional phase-space with
clearly the assumption that no particle escapes, is destroyed or is created in the system.
With Lagrangian derivative d/dt the Liouville equation is d f /dt = 0. If the collective
gravitational potential ruling the dynamics of the system is Φ(t, x), the Liouville equation
becomes explicitly:

∂ f
∂t

+
3

∑
i=1

(
vi

∂ f
∂xi
− ∂Φ

∂xi

∂ f
∂vi

)
= 0. (3)

The characteristics of this first order partial differential equation are given by the Hamilto-
nian equations of motion. The solutions of the Hamiltonian system produce according to
Monge the solutions of the Liouville equation as they represent the geometric sets where
the solutions of the Liouville equation are constant. This procedure is very effective if we
find not only solutions but integrals of motion that contain sets of solutions. Assuming for
instance a time-independent potential and axi-symmetry, we have already 2 independent
integrals of motion, energy E and angular momentum L with respect to the axis of rotation.
Any differential function f of E and L will satisfy the Liouville equation. It was noted very
early that such solutions will produce velocity distributions that are symmetric perpendic-
ular to and in the direction of the rotation axis. This does not agree with observations in
our own galaxy, in fact the two dispersions differ considerably; for velocity dispersions
in the plane of the galaxy see [7], for dispersions in the halo [8]. Velocity dispersions in
galaxies is an ongoing research topic, the reader interested in recent observational results
might google the authors Rachel Bezanson, M. Franx and P.G. van Dokkum.

The velocity asymmetry triggered off a long search for “a third integral of the galaxy”
that came to an important point in the 1960’s when it was shown in Arnold-Moser theory
that such 3rd integrals in general do not exist but that an infinite number of so-called KAM-
tori corresponding with approximate first integrals may survive. This near-integrability
caused a lot of confusion in the literature.

One of the aims of our study is to investigate whether evolution from an asymmetric
state to a near-integrable symmetric dynamical state might influence the velocity distribu-
tions as if the system “remembers” its asymmetric past.

From [6] ch. 4 we consider the dynamics in cylindrical coordinates R, φ, z with
Ṙ = vR, φ̇ = vφ/R, ż = vz; we have with potential Φ(t, R, φ, z) the equations of motion:

v̇R = −∂Φ
∂R

+
v2

φ

R
, v̇φ = − 1

R
∂Φ
∂φ
−

vRvφ

R
, v̇z = −

∂Φ
∂z

. (4)

Solving system (4) and obtaining (approximate) first integrals enables us to describe families
of distribution functions that satisfy the Liouville Equation (3).

In the sequel we assume that the systems to be considered have reached the axi-
symmetric state. Initially the systems are not mirror-symmetric with respect to a plane,
they evolve slowly in time to such a state.

2.2. Rotating Axi-Symmetric Models

We will consider models that are inspired by axisymmetric rotating galaxies. One can
think of disk galaxies or rotating flattened elliptical galaxies. The axisymmetry expressed by

∂Φ
∂φ

= 0, (5)
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produces the angular momentum integral J (in [6] called Lz) enabling us to reduce spatial
3-dimensional motion to 2 degrees of freedom (dof). We have with Equations (4) and (5)

v̇φ = −
vRvφ

R
or Rφ̈ + 2Ṙφ̇ = 0,

leading to the angular momentum integral

R2φ̇ = J. (6)

The equations of motion (4) can be written as

R̈ =
J2

R3 −
∂Φ
∂R

.

In the equatorial plane that is perpendicular to the axis of rotation we have circular orbits
at R = R0 where the rotation speed matches constant angular momentum:

J2

R3
0
=

∂Φ
∂R

(R0, 0). (7)

We will expand the Hamilitonian around the circular orbits. In most models, the potential
Φ is assumed to be mirror (discrete) symmetric with respect to the equatorial plane. In
cylindrical coordinates R, z with z in the direction of the rotation axis and z = 0 correspond-
ing with the equatorial plane we will put in a final stage of evolution Φ = Φ(R, z2). The
evolution towards this symmetric state is caused by mechanisms unknown to us, maybe
contraction combined with rotation or dynamical friction plays a part. We propose to avoid
the speculative description of complicated mechanisms by introducing a function of time
slowly destroying the asymmetric potential.

Around the circular orbits in the galactic plane we find epyciclic orbits in the R-
direction nonlinearly coupled to bounded vertical motion in the z-direction. An early study
of such orbits in a steady state galaxy model is [5], for a systematic evaluation of the theory
see [6]. A detailed analysis of the orbits can be found in [9]. A simplifying transformation
from [5] is to use the reduced potential

U = Φ +
1
2

J2

R2 , (8)

leading to the equations of motion:

R̈ = −∂U
∂R

, z̈ = −∂U
∂z

. (9)

3. Shortcut to a Model with Evolution

We want to describe the dynamical consequences of evolution to an axi-symmetric
state by expanding around the circular orbits at position (R, z) = (R0, 0) putting R = R0 + x.
To study evolution to symmetry we consider as a model the time-dependent two dof Hamil-
tonian:

H =
1
2
(ẋ2 + x2) +

1
2
(ż2 + ω2z2)− (

1
3

a1x3 + a2xz2)− α(δt)(
1
3

a3z3 + a4x2z). (10)

The epicyclic frequency in the galactic plane has been scaled to 1, the vertical frequency is ω,
so x corresponds with deviations of R0. The function α(δt) is continuous and monotonically
decreasing from α(0) = 1 to zero; we will usually choose α(δt) = e−δt with 0 < δ� 1. If
a1 = 1, a2 = −1, a3 = a4 = 0 we have the famous Hénon-Heiles problem [10].

A detailed modelling of the evolution of a large contracting cloud to an axisymmetric
galaxy is not available. The model presented here ignores all special types of dynamics as
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for instance the formation of new stars, dissipation by gas cloud motions or the spectacular
emergence of high-velocity stars by supernovae in binary stars.

The evolution to a time-independent Hamiltonian is also clear when considering the
Lagrangian derivative:

dH
dt

= δe−δt(
1
3

a3z3 + a4x2z). (11)

The energy given by (10) decreases slowly. Near the circular orbits, the time-dependent
perturbation factor decreases monotonically, the change of the energy will be small and
depends on the signs of a3, a4 and the behaviour of z(t). On the other hand the quantita-
tive dynamical consequences of the asymmetric potential in the transitional stage can be
considerable and depends on the size of a3, a4 and δ.

The quadratic part is called H2, the cubic part H3. The coefficients a1, . . . , a4 are free
parameters with a4 6= 0, ω represents the frequency ratio of the 2-dof oscillators with
prominent resonances ω = 1, 2, 3. The possible values of ω depend on the galactic potential
constructed. An example describing an axisymmetric rotating oblate galaxy can be found
in [6] eq. (3–50), leading to frequency ratios given by eq. (3–56).

A time-independent example where in the centre of the galaxy a very massive nucleus
is found produces with mass M large the potential:

Φ = Φ0(
√

R2 + z2) + Φ1(R, z), Φ0 = − M√
R2 + z2

, (12)

where, at least near the centre, Φ1 is small with respect to Φ0. Assuming rotation and
expanding in a neighbourhood of the centre and near the circular orbits using (4) and (7)
we find with R = R0 + x:

ẍ = −M
R3

0
x + . . . , z̈ = −M

R3
0

z + . . . (13)

The dots represent the neglected Φ1 and nonlinear terms; this system in 1:1 resonance will
dominate the dynamics near the centre of a galaxy with a very massive nucleus.

The terms with coefficients a1, a2 in Hamiltonian (10) are discrete symmetric in z, de
terms with a3, a4 are not symmetric in z but the asymmetry vanishes as t→ ∞.

The dynamical system induced by (10) is not reversible as time-independent Hamilto-
nians are, the main question of interest is then whether after a long time the system induced
by the Hamiltonian shows traces of the original asymmetry. The answer will be positive
and the traces significant.

If δ = 0 (the time-independent case) the origin of phase-space in (x, z) coordinates is
Lyapunov-stable, the energy manifold is bounded in an O(ε) neighbourhood of the origin.

Consider now the time-dependent dynamics. To make the local analysis more trans-
parent we rescale the coordinates x = εx̄ etc. Dividing by ε2 and leaving out the bars we
obtain the equations of motion:{

ẍ + x = ε(a1x2 + a2z2) + εα(δt)2a4xz,
z̈ + ω2z = ε2a2xz + εα(δt)(a3z2 + a4x2).

(14)

Because of the localisation near the circular orbits represented by the origin of phase-space
we assume that ε is a small positive parameter. The parameter δ will also be small, the
ratio of ε and δ influences the dynamics and analysis. For instance if we want to study
the influence of dynamical friction in a galaxy we can choose δ = εn, this implies that for
n = 1 and so ε = δ we will consider a very small neighbourhood of the origin. On choosing
ε =

√
δ or n = 2, the neighbourhood will be larger. Again a larger neigbourhood is

obtained for n = 3, these different cases complicate the analysis and will produce different
local dynamics.
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4. First Order Averaging-Normalisation

To characterise the dynamics induced by Hamiltonian (10) we will use averaging-
normalisation, see [11] and Section 9. We transform to slowly varying polar coordinates
r, ψ by:

x = r1 cos(t + ψ1), ẋ = −r1 sin(t + ψ1), z = r2 cos(ωt + ψ2), ż = −ωr2 sin(ωt + ψ2), (15)

leading to the slowly varying system:

ṙ1 = −ε sin(t + ψ1)
(
a1r2

1 cos2(t + ψ1) + a2r2
2 cos2(ωt + ψ2)

)
−

εα(δt) sin(t + ψ1)2a4r1 cos(t + ψ1)r2 cos(ωt + ψ2),

ψ̇1 = −ε
cos(t+ψ1)

r1

(
a1r2

1 cos2(t + ψ1) + a2r2
2 cos2(ωt + ψ2)

)
−

εα(δt) cos(t + ψ1)2a4 cos(t + ψ1)r2 cos(ωt + ψ2),
ṙ2 = − ε

ω sin(ωt + ψ2)2a2r1 cos(t + ψ1)r2 cos(ωt + ψ2)−
ε
ω α(δt) sin(ωt + ψ2)

(
a3r2

2 cos2(ωt + ψ2) + a4r2
1 cos2(t + ψ1)

)
,

ψ̇2 = −ε
cos(ωt+ψ2)

ωr2
2a2r1 cos(t + ψ1)r2 cos(ωt + ψ2)−

−ε
cos(ωt+ψ2)

ωr2
α(δt) sin(ωt + ψ2)

(
a3r2

2 cos2(ωt + ψ2) + a4r2
1 cos2(t + ψ1)

)
.

(16)

Near the normal modes r1 = 0 and r2 = 0 we have to use a different coordinate transfor-
mation.

We can put τ = δt and treat τ as a new variable. It will also be useful to introduce the
actions E1, E2 by:

E1 =
1
2
(ẋ2 + x2) =

1
2

r2
1, E2 =

1
2
(ż2 + ω2z2) =

ω2

2
r2

2. (17)

As we shall see in subsequent sections, for each choice of ω ≥ 1 the average of
the terms in system (16) with coefficients a1, a2 vanish, so we can use the near-identity
transformation (45) of Section 9. The implication is that to first order in ε and on time
intervals of size 1/ε system (14) is described by the intermediate normal form equations:{

ẍ + x = εα(δt)2a4xz,
z̈ + ω2z = εα(δt)(a3z2 + a4x2).

(18)

We recognize the presence of the z, ż normal mode solution as x = ẋ = 0 satisfies sys-
tem (18); this can be found for slowly moving variables by using a coordinate system
different from polar coordinates.

As the nonlinear terms are homogeneous in the coordinates we can remove the
time-dependent term by a transformation involving α(δt). For instance if α(δt) = e−δt

we put x = α(δt)y1, z = eδty2 (note that such a transformation exists for any positive
sufficiently differentiable function of time that decreases monotonically to zero). System (18)
transforms to: {

ÿ1 + y1 = −2δẏ1 − δ2y1 + ε2a4y1y2,
ÿ2 + ω2y2 = −2δẏ2 − δ2y2 + ε(a3y2

2 + a4y2
1).

(19)

So the time-dependence that is removing the asymmetry transforms to a dissipative system
with friction coefficient 2δ. Another interesting aspect of system (19) is that the transforma-
tion decouples the parameters ε and δ. This is useful if δ is not a small parameter as we can
solve the system for ε = 0 and start perturbing the resulting dissipative system.

We will average the right-hand sides of system (16) over t keeping r1, r2, ψ1, ψ2, τ fixed.
We have τ̇ = δ, so to match the size of the other equations of system (16) we choose δ = εn

with a suitable choice of n ≥ 1; for simplicity we restrict n to natural numbers. As stated
above, by first-order averaging the terms with coefficients a1, a2 vanish, we can use system
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(18). The subsequent averaging results depend strongly on the choice of ω. To make the
calculations more explicit we put in the sequel

α(δt) = e−δt, δ = εn(n = 1, 2, · · · ). (20)

On choosing polynomial decrease of α(δt) we would have slower decrease with as a
consequence that we have to retain more small perturbation terms.

5. The 1:2 Resonance

The prominent case for 2 dof conservative systems is the 1:2 resonance (ω = 2). We
analyse the time-dependent system for different choices of δ.

5.1. First Order Averaging

Averaging system (18), see Section 9, we find:{
ṙ1 = −εe−τ a4

2 r1r2 sin χ, ψ̇1 = −εe−τ a4
2 r2 cos χ,

ṙ2 = εe−τ a4
8 r2

1 sin χ, ψ̇2 = −εe−τ a4
8

r2
1

r2
cos χ,

(21)

with combination angle χ = 2ψ1 − ψ2 and for χ the equation:

dχ

dt
= εa4e−τ(−r2 +

1
8

r2
1

r2
) cos χ. (22)

The vertical z normal mode (x = ẋ = 0) exists and is unstable, see [11]; the epicyclic x
normal mode does not exist on the interval of time O(1/ε). We will see what happens on
longer intervals of time in the next subsection.

Remarkably, system (47) admits families of solutions with constant amplitude on
intervals O(1/ε) if:

χ = 0, π, r2
1 = 8r2

2. (23)

The solutions with χ = 0 are called in-phase, the solutions with χ = π out-phase. If
δ = ε, the corresponding phases are slowly decreasing with rate exp (−εt). If we choose
δ = εn, n ≥ 2, the amplitudes r1,2 and phases ψ1,2 will be constant with error O(ε) on
intervals of time of size 1/ε, changes will arise on longer intervals of time.

System (47) admits 2 time-independent integrals of motion:

1
2

r2
1 + 2r2

2 = E0 and a4r2
1r2 cos χ = I3, (24)

with constants E0, I3; In the original coordinates we have:

1
2
(ẋ2 + x2) +

1
2
(ż2 + 4z2) = E0, a4(x2z− ẋ2z + 2xẋż) = I3.

The solutions and integrals (adiabatic invariants) of system (47) have the error estimate
O(ε) on time intervals of size 1/ε. On this long interval of time and longer ones we expect
the terms O(ε2) to play a part as the solutions of system (47) with coefficients a3, a4 will
vanish and other terms of system (14) will become important.

5.2. Second Order Averaging

Improving the approximations by second order averaging [11] of system (16), see
Section 9, produces the system:

ṙ1 = −εe−τ a4
2 r1r2 sin χ, ṙ2 = εe−τ a4

8 r2
1 sin χ,

ψ̇1 = −εe−τ a4
2 r2 cos χ− ε2

(
1

24 a2
1r2

1 +
1
2 a1a2r2

2 + e−2τ( 1
8 a3a4r2

2 +
1

64 a2
4(9r2

1 + 4r2
2)
)

,

ψ̇2 = −εe−τ a4
8

r2
1

r2
cos χ− ε2

(
1
4 a1a2r2

1 +
1

30 a2
2r2

1 +
29

120 a2
2r2

2 + e−2τ( 1
16 a3a4r2

1 +
1

32 a2
4r2

1 +
5

96 a2
3r2

2)
)

.

(25)
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The result is surprising as we would expect τ-dependent terms for the amplitudes
at second order; such terms arise only for the angles. Also combination angles for ψ1, ψ2
are not present at this level of averaging-normalisation. The 2nd order system (25) was
computed with time-independence in [4], eq. (4.2); leaving out the time-dependent terms
the results agree. The implication is that near the 1:2 resonance the dynamics after mirror
symmetry has set in behaves like a system in higher order resonance.

We give a more precise formulation of the interesting implications:

1. During an interval of time of order 1/ε the integrals (adiabatic invariants) (24) are
active, the system is dominated by the asymmetric a4 term. On this interval of time
it will govern the orbital dynamics and accordingly the corresponding distribution
function in phase-space. This holds for n = 1, 2, . . .

2. If δ = ε, on time intervals of order 1/ε2 (and longer) the time-independent system
involving the coefficients a1, a2 dominates the dynamics. In [4] it is shown that for this
system, depending on a1, a2, 2 resonance manifolds can exist on the energy manifold
(see also Section 9). Introducing the combination angle:

χ2 = 4ψ1 − 2ψ2, (26)

we find according to [4] that on intervals of time asymptotically larger than 1/ε
we have:

dχ2

dt
= ε2

(
(−1

6
a2

1 +
1
2

a1a2 +
1

15
a2

2)r
2
1 + (−2a1a2 +

29
60

a2
2)r

2
2

)
. (27)

Resonance manifolds exist if the right-hand side of Equation (27) has a zero, the
combination angle χ2 is locally not timelike. In this case the resonance manifold
with 4ψ1 − 2ψ2 = 0 has stable 2:4 resonant periodic orbits surrounded by tori, for
4ψ1 − 2ψ2 = π the 2:4 resonant periodic orbits also exist but are unstable. The
resonance manifolds have size O(ε), the dynamics takes place on intervals of time of
order 1/ε3; for details on higher order resonance see [4].
Outside the resonance manifolds the dynamics is characterised by the quadratic
integrals E1, E2 for each of the 2 dof. For the interaction of the 2 modes on these
long time intervals coefficient a2 is essential, but note that if a1 = 0, the resonance
manifolds do not exist as the right-hand side of Equation (27) has no zero.

3. An interesting consequence arises when considering orbits that change stability dur-
ing the process of evolution to mirror symmetry. The instability of the z, ż normal
mode persists at second order but leads to stability in the final stage of mirror symme-
try after a time dependent on 1/εn. The implication is that this will generally produce
a drastic change of actions. Another qualitative consequence is that the epicyclic
x, ẋ normal mode does not exist in the first stage (time order 1/ε) but the normal
mode exists in the final stage of mirror symmetry; again we can expect action changes.
Similar considerations hold for the unstable out-phase periodic solutions derived
before. For illustrations see Figures 1 and 2 and the discussion below. In Figure 1 the
corresponding action E1(t) is not shown; it exchanges energy met the z-mode.
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Figure 1. The behaviour of action E2(t) of system (14) in 2 cases near the z-normal mode; (left n = 2
and 2000 timesteps and right n = 3, 6000 timesteps). We have x(0) = 0.1, z(0) = 1 with initial
velocities zero, α(δt) = exp (−εnt), ε = 0.1, ω = 2, a1 = 0.5, a2 = 1, a3 = 0, a4 = 1. After around
600 timesteps the time-dependent interaction vanishes if n = 2. In the case n = 3 it takes more than
6000 timesteps. In both cases the dynamics and velocity distribution has changed considerably by
the evolution to mirror symmetry.

Figure 2. The behaviour of the velocities v1(t), v2(t) of system (14) in 1:2 resonance for the case
n = 3, it takes longer for the time-dependent interaction to vanish. The initial conditions are
x(0) = 0.1, z(0) = 1 and initial velocities zero.

5.3. Consequences for the Distribution Function at the 1:2 Resonance

Suppose we start with a collection of particles (stars) characterised by a distribution
function satisfying the Boltzmann equation that is nearly collisionless as it has small
dynamical friction added. The system is already in axi-symmetric state but the evolution to
mirror symmetry to the galactic plane is still going on. On an interval of time O(1/ε), the
first stage of evolution, we have, apart from angular momentum J, two active integrals of
motion: E0, I3 and a prominent resonance manifold for each value of the energy described
by Equation (23). The family of solutions with constant amplitude (constant to O(ε2)) on
the energy manifold will be stable for combination angle χ = 0. The distribution function
will be a function of the 3 integrals. The velocity distribution v1, v2 and their dispersion
will depend on the presence of these integrals.

On intervals of time asymptotically larger than O(1/ε), the primary resonance man-
ifolds described by Equation (23) vanish, they are replaced by the smaller resonance
manifolds (of size ε) located by the zeros of Equation (27) and χ2 = 0, π. The distribution
function will now evolve to a function of the actions E1, E2 but with an initial velocity
distribution obtained by the resonance on time intervals O(1/ε). See Figure 1 (left) where
n = 2 so that the symmetric state develops on intervals of time O(1/ε2). On an interval of
time order 1/ε2 there is first a typical 1:2 resonance exchange between the 2 dof after which
the dynamics settles at different actions. If n = 3 we find, as expected, that it takes much
longer to settle in a permanent state, see Figure 1. With the choice of ε = 0.1 the effect of
evolution to symmetry is much less.
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In Figure 2 we have n = 3 so that on intervals of size O(1/ε2) we have still resonant
interaction, the symmetric state develops on intervals of size O(1/ε3). The exchanges
and time evolution are first much more frequent as it takes longer for the asymmetric
terms to vanish. Then the system settles at a much lower oscillation amplitude, in a sense
experiencing more of its asymmetric past.

In Figure 3 we show the behaviour (left) near the z normal mode for different values
of the energy in the case n = 2. Interesting is that starting at E2(0) = 1.624 the resulting
values of E2 are lower than for a few orbits starting at still lower energy. This will be caused
by passage of more complicated structures like resonance manifolds in phase-space.

Figure 3. Left the behaviour of the action E2(t) of system (14) in 1:2 resonance for the case n = 3 and
4 initial conditions, successively E2(0) = 2, 1.624, 1.283, 0.982, starting near the normal z-mode, and,
E1(0) small. For n = 3 it takes longer for the time-dependent interaction to vanish. Velocity v2(t) in
the case E2(0) = 2, v2(0) = 0 is given in Figure 2 right.

When the system is close to mirror symmetry, we will find for each value of the energy
in a resonance manifold a family of tori around the stable periodic solutions, so for varying
energy values this will be a 2-parameter family. Outside these resonance manifolds the
orbits will move quasi-linearly, only the phases are position dependent.

The choice of δ, the parameter determining the timescale of destroying the asymmetry
of the potential field, together with the energy level will determine the resulting positions
and velocities.

6. The 1:3 Resonance

The 1:3 resonance is for Hamiltonian (10) dynamically very different and less interest-
ing. Most of the analysis can be deduced from [9], we will summarise the results. Putting
ω = 3 in (10) we find after 2nd order averaging:

ṙ1 = O(ε3), ṙ2 = O(ε3). (28)

The result is quite remarkable as this shows that for the 1:3 resonance the slowly vanishing
asymmetry of the potential plays no part for the amplitudes to order 3 in ε. For the phases
we find no asymmetric terms either but nontrivial variations depending on the symmetric
potential: ψ̇1 = −ε2

(
5

12 a2
1r2

1 + ( 1
2 a1a2 − 1

35 a2
2)r

2
2

)
,

ψ̇2 = −ε2
(
( 1

6 a1a2 +
1

105 a2
2)r

2
1 +

23
140 a2

2r2
2

)
.

(29)
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if δ = O(ε) or O(ε2) the asymmetry plays no significant part. The theory of higher order
resonance, see [11] and for extension and examples [4], shows that the combination angle
χ3 = 6ψ1 − 2ψ2 plays a crucial role. The equation for χ3 becomes:

dχ3

dt
= −ε2

(
(

5
2

a2
1 −

1
6

a1a2 −
1

105
a2

2)r
2
1 − (3a1a2 +

47
140

)r2
2

)
. (30)

Zero solutions of the right-hand side of Equation (30) produce, together with the condition
χ3 = 0, π resonance manifolds of size O(ε2) with characteristic timescale O(1/ε4) for the
orbits and motion on the corresponding tori; these estimates follow from the analysis in [4].
With high precision the distribution function will depend on J and the 2 actions.

It is clear that if a1 = 0, system (29) has no nontrivial zeros and so the resonance
manifolds of this type are not present.

7. The 1:1 Resonance

If the epicyclic frequency and the vertical frequency are equal or close, the 1:1 reso-
nance becomes important. As shown in Section 3 this happens for instance in the case of a
very large mass in the centre of the galaxy. With α(δt) given by Equation (20) the equations
of motion induced by Hamiltonian (10) are:{

ẍ + x = ε(a1x2 + a2z2) + ε exp(−εnt)2a4xz,
z̈ + z = ε2a2xz + ε exp(−εnt)(a3z2 + a4x2).

(31)

By averaging system (31) using amplitude-phase coorditates (15) we find that all first order
averaged terms vanish. Significant dynamics takes place on a longer timescale so we choose
n ≥ 2 to consider longer time scales. Second order averaging based on [11] produces with
χ = ψ1 − ψ2 the system:

ṙ1 = ε2( 1
12 a1a2 − 1

2 a2
2 + exp(−εnt)( 1

12 a3a4 − 1
2 a2

4))r1r2
2 sin 2χ,

ṙ2 = −ε2( 1
12 a1a2 − 1

2 a2
2 − ε2 exp(−εnt)( 1

12 a3a4 − 1
2 a2

4))r
2
1r2 sin 2χ,

ψ̇1 = −ε2
(

5
12 a2

1r2
1 + ( 1

2 a1a2 +
1
3 a2

2)r
2
2 − ( 1

12 a1a2 − 1
2 a2

2)r
2
2 cos 2χ

)
−

ε2 exp(−εnt)
(
( 1

2 a3a4 +
1
3 a2

4)r
2
2 +

5
12 a2

4r2
1 − ( 1

12 a3a4 − 1
2 a2

4)r
2
2 cos 2χ

)
,

ψ̇2 = −ε2
(
( 1

2 a1a2 +
1
3 a2

2)r
2
1 +

5
12 a2

2r2
2 − ( 1

12 a1a2 − 1
2 a2

2)r
2
1 cos 2χ

)
−

ε2 exp(−εnt)
(

5
12 a2

3r2
2 + ( 1

2 a3a4 +
1
3 a2

4)r
2
1 − ( 1

12 a3a4 − 1
2 a2

4)r
2
1 cos 2χ

)
.

(32)

From system (32) we can derive the equation for χ. The dynamics of the 1:1 resonance
turns out to be more complicated than the cases 1:2 and 1:3 as both time-dependent and
independent terms are strongly active on intervals of time O(1/ε2), see again Section 9.
From the equations for the amplitudes we find:

r2
1 + r2

2 = 2E0 (constant),

so for the actions we have an adiabatic invariant for system (32):

E1(t) + E2(t) = E0. (33)

For bounded solutions invariant (33) is valid for all time with error O(ε2). System (32)
yields O(ε2) approximations for the epicyclic x and the vertical z normal modes. As we
shall see, in-phase and out-phase solutions with constant amplitudes or actions exist in
general position. For the combination angle χ we find using actions:

dχ
dt = −ε2

(
( 5

6 a2
1 − a1a2 − 2

3 a2
2)E1 + (a1a2 − 1

6 a2
2)E2 − ( 1

6 a1a2 − a2
2)(E2 − E1) cos 2χ

)
−

ε2 exp(−εnt)
(
( 1

6 a2
4 − a3a4)E1 + (a3a4 +

2
3 a2

4 −
5
6 a2

3)E2 − ( 1
6 a3a4 − a2

4)(E2 − E1) cos 2χ
)

.
(34)
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Putting sin 2χ = 0 in system (32) we find with cos 2χ = ±1 and Equation (34) condi-
tions for solutions with constant amplitudes (actions). However, behaviour of constant
amplitudes (or actions) is only valid with error O(ε) on intervals of time O(1/εn−1); see for
an example subSection 7.2.

The solutions of the averaged system to second order with appropriate initial values
produce an O(ε2) approximation on an interval of time order 1/ε of system (16) with
ω = 1 but an O(ε) approximation on an interval of time O(1/ε2). The second estimate is
a kind of “trade-off” of error estimates valid under special conditions formulated in [12];
see also [11]. It is remarkable that system (32) shows full resonance involving exchange
of energy between the 2 dof even when the asymmetric potential terms have become
negligible.

A systematic study of the symmetric case (α(δt) = 0, t ≥ 0) can be found in [9].
The condition dχ/dt = 0 determines stationary solutions of the combination angle χ, it
produces conditions on the amplitude r1, r2 and so on the actions (E1 = r2

1/2, E2 = r2
1/2).

We summarise from [9] the results for the symmetric, time-independent case a3 = a4 = 0:

• System (32) has in the symmetric case 2 integrals of motion:

E0 =
1
2
(r2

1 + r2
2) =

1
2
(ẋ2 + x2 + ż2 + z2) (35)

which is basically (33) and:

I3 = r2
1r2

2 cos 2χ + αr4
1 + βr2

1, (36)

with α, β rational functions of a1, a2. The notation for constant I3 is for historical
reasons. We leave out some degenerate cases of the coefficients, see [9].

• The epicyclic x, ẋ normal mode is an exact solution, it is unstable for −1/3 <
a1/(3a2) < 2/15 and 1/3 < a1/(3a2) < 2/3.

• The vertical z, ż normal mode is obtained from the system (32) as an O(ε) approxima-
tion. It is unstable for −1/3 < a1/(3a2) < 1/3.

• The in-phase periodic solutions χ = 0, π exist for a1/(3a2) < 2/3 and are stable for
−1/3 < a1/(3a2) < 2/3.

• The out-phase periodic solutions χ = π/2, 3π/2 exist and are stable for a1/(3a2) <
2/15.

We expect the dynamics of the symmetric case to describe the orbits of system (31) on
intervals of time larger than 1/εn. During evolution the in-phase and out-phase solutions
are present with constant amplitude and approaching periodicity. The dynamics will after
long time be governed by the integrals (35) and (36) producing a complicated velocity
distribution and varying actions.

On the long (starting) interval of order 1/ε2 system (32) has also 2 integrals. As noted
before integral (35) holds for all time t ≥ 0.

As the 1:1 resonance occurs in applications and has been studied in many papers we
will consider examples in more detail.

7.1. Avoiding Degenerate Cases

Special values of parameters may produce degenerations that produce dynamics that
is not typical. We illustrate this by looking for solutions of system (31) of the form x = λz
with λ a suitable parameter. This assumption implies a degeneration as it means that there
is no exchange of energy between the 2 modes. Substituting this relation into system (31)
we find the conditions:

λ2 =
a2

2a2 − a1
, λ2 = 2− a3

a4
. (37)

If conditions (37) are satisfied we find for z the equation:

z̈ + z = 2ε(a2λ + exp (−εnt))z2. (38)
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Using 2nd order averaging as in example 12.20 of [13] with n ≥ 2 we find:

ṙ2 = O(ε3), ψ̇2 = −ε2 5
12

2(a2λ + exp (−εnt))r2
2 + O(ε3). (39)

This type of special solutions shows only variation of the phases. Although interesting
in itself, we have to avoid the parameter values of conditions (37) when studying more
general behaviour. Other parameter values that may lead to degenerations and should be
avoided are the bifurcation values of existence and stability of normal modes and other
periodic solutions listed in the preceding subsection.

7.2. An Example of Evolution

In Figures 4–8 the choice of a1, a2 gives the system stable epicyclic and stable vertical
normal modes if we would have the time-independent case. However, our choice of a3, a4
keeps the normal modes but destabilises them; we have a1 = −1.5, a2 = 1, a3 = 0, a4 = 4.
When the time-dependent perturbation has become negligible after roughly 200 timesteps
if n = 2 and 3000 timesteps if n = 3, the orbits have moved into general position. The
time-independent case will approximate the dynamics after a long initial period of time,
the in- and out-phase periodic solutions exist if a3 = a4 = 0, the out-phase solutions are
stable.

With the chosen parameter values we find from system (32) for the angles:{
ψ̇1 = −ε2

(
15
8 E1 − 5

6 rE2 +
5
4 E2 cos 2χ + exp (−εnt)( 32

3 E2 + 16E1 cos 2χ)
)

,

ψ̇2 = −ε2(− 5
6 E1 +

5
6 E2 +

5
4 E1 cos 2χ + exp (−εnt)( 32

3 E1 + 16E2 cos 2χ)
)
,

(40)

leading to:

χ̇ = −ε2
(

65
24

E1 −
5
3

E2 +
5
4
(E2 − E1) cos 2χ + exp (−εnt)16(E2 − E1)(

2
3
− cos 2χ)

)
. (41)

For the actions: we have from system (32):

dE1

dt
= ε2c(t)E1E2 sin 2χ,

dE2

dt
= −ε2c(t)E1E2 sin 2χ, (42)

with c(t) = 1
6 a1a2 − a2

2 + exp (−εnt)( 1
6 a3a4 − a2

4). In our example we have c(t) = − 5
4 −

16 exp (−εnt).

Figure 4. Left the behaviour of the action E1(t) of system (31) in 1:1 resonance for the case n = 2
near the epicyclic normal mode; initial conditions x(0) = 1, z(0) = 0.1, E1(0) = 0.5, E2(0) = 0.005.
Parameter values a1 = −1.5, a2 = 1, a3 = 0, a4 = 4, ε = 0.1. Right we display the corresponding z
behaviour by plotting E2(t). It takes around 200 timesteps to settle in the stationary state which is
drastically different from the initial state.
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Figure 5. Left the behaviour of the action E1(t) of system (31) in 1:1 resonance for the case n = 2
near the vertical (z) normal mode; initial conditions x(0) = 0.1, z(0) = 1, E1(0) = 0.005, E2(0) = 0.5.
Parameter values a1 = −1.5, a2 = 1, a3 = 0, a4 = 4, ε = 0.1. Right we display the corresponding z
behaviour by plotting E2(t). It takes around 200 timesteps to settle in the stationary state which is
drastically different from the initial state.

Figure 6. Left the behaviour of the action E1(t) of system (31) in 1:1 resonance for the case n = 3
near the epicyclic normal mode; initial conditions x(0) = 1, z(0) = 0.1, E1(0) = 0.5, E2(0) = 0.005.
Parameter values a1 = −1.5, a2 = 1, a3 = 0, a4 = 4, ε = 0.1. Right we display the corresponding z
behaviour by plotting E2(t). It takes around 3000 timesteps to settle in the stationary state which is
drastically different from the initial state.

Figure 7. Left an enlargement of E1(t) of Figure 6 (the 1:1 resonance for the case n = 3 near the
epicyclic normal mode). The initial phase where the asymmetric potential is active takes around 500
timesteps. Right we show the Hamiltonian H(t) in this case. It shows monotonic behaviour.
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Figure 8. Left the behaviour of the action E1(t) of system (31) in 1:1 resonance for the case n = 3
near the vertical (z) normal mode; initial conditions x(0) = 0.1, z(0) = 1, E1(0) = 0.005, E2(0) = 0.5.
Parameter values a1 = −1.5, a2 = 1, a3 = 0, a4 = 4, ε = 0.1. Right we display the corresponding z
behaviour by plotting E2(t). It takes around 3000 timesteps to settle in the stationary state which is
drastically different from the initial state.

Solutions with constant amplitude are obtained when putting dχ/dt = 0; they are
valid with error O(ε) on intervals of time O(1/εn−1). On these intervals time-dependent
terms are important. In our example, the in-phase and out-phase periodic solutions with
constant amplitude exist if also a4 = 0 for each small value of the energy where averaging-
normalisation is valid. They represent, like the normal modes, continuous families of
periodic solutions parametrised by the energy. Adding the time-dependent terms destroy
the periodicity but these terms become negligible after a long time.

In Figures 4 and 6 we start near the epicyclic normal mode, in Figures 5 and 8 near
the vertical normal mode; in both cases the solutions move into general position on tori
around periodic solutions. The asymmetric past of the system has changed the overall
dynamics drastically, but this depends strongly on the initial phase where the potential is
still asymmetric.

The initial phase on intervals of size 1/ε(n−1).

If n ≥ 2 we will have that c(t) changes O(ε) on this interval, in our example
c(t) = −16 5

4 + O(ε). The adiabatic invariant (33) will be active on an interval of size
1/ε(n−1). As we observe in Figure 6, (enlarged in Figure 9) the initial phase takes around
500 timesteps if n = 3, ε = 0.1. In the initial phase we have for the dynamics:{

dE1
dt = −ε2 69

4 E1(E0 − E1) sin 2χ,
dχ
dy = −ε2(9E0 − 25

24 E1 − 59
4 (E0 − 2E1) cos 2χ

)
.

(43)
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Figure 9. Enlargement of E1(t) of Figure 8 (the 1:1 resonance for the case n = 3 near the epicyclic
normal mode). The initial phase where the asymmetric potential is active takes around 500 timesteps.

7.3. Evolution to the Hénon-Heiles Potential

The Hénon-Heiles potential is slightly degenerate as we have to normalise to terms of
degree 6 (H6) to obtain structurally stable results, see [14]. There are many details available
on this system. If a3 = a4 = 0 and ε = 1 the system is chaotic but large-scale chaos sets in
at E0 ≥ 1/12 = 0.083, the energy manifold is bounded if 0 ≤ E0 ≤ 1/6. In Figure 10 (left)
we present for ε = 1 action E1(t) close to the chaotic stage. The first 600 timesteps shows
irregular motion, then the dynamics settles in motion on tori. The normal forms obtained
before will not be valid for these parameter values.

Figure 10. Left E1(t) of the Hénon-Heiles system for the case n = 2, a3 = 0, a4 = 4 with ε = 1
close to the chaotic stage, x(0) = 0.4, z(0) = 0.1, E1(0) = 0.083, E2(0) = 0.005. Right the Hénon-
Heiles system for the case n = 2, a3 = 1, a4 = 4, ε = 0.1 and for E1(0) = 0.005(x(0) = 0.1) 3 cases:
E2(0) = 0.08(z(0) = −0.4), E2(0) = 0.125(z(0) = −0.5), E2(0) = 0.18(z(0) = −0.6); we find small
oscillations of E1(t) around a long-time oscillation (increase of E2(0) produces higher maxima and
shorter return times.

Consider the Hamiltonian (10) with a1 = 1, a2 = −1, a3 = 6, a4 = 0.5, ε = 0.1
where the normal forms can be used. For the coefficient in Equation (32) we have
c(t) = −7/6 + 0.25 exp (−εnt).
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8. Conclusions and Discussion

1. The resulting dynamics of a rotating axisymmetric galaxy to a state of mirror sym-
metry with respect to the galactic plane depends on at least three aspects: the local
resonance ratio of epicyclic and vertical frequencies, the timescale of evolution to
symmetric equilibrium characterised by εnt, n = 1, 2, 3, . . . and the initial phase-space
distribution.

2. The dynamics of a potential producing locally the 1:2 resonance shows surprisingly
that the main effects are described by an O(ε) approximation. Two adiabatic invariants
(approximate integrals) are active, an O(ε2) approximation shows only evolution in
the phases. If the evolution takes place with time-like variable ε2t the velocities (and
corresponding actions) settle quickly at values quite different from the initial ones.
Evolution with time-like variable ε3t produces strong interactions before settling in a
final symmetric state; see Figures 1–3.

3. For the 1:3 resonance the evolution to a symmetric state of mirror symmetry does
hardly affect the final dynamics. The distribution function for orbits in phase-space
depends to high approximation on the quadratic integrals E1, E2. See Section 5
for details.

4. The 1:1 resonance plays a natural part in galactic models, it turns out to have inter-
esting dynamics. An O(ε2) approximation on intervals of time O(1/ε) is in this case
equivalent to an O(ε) approximation on intervals of time O(1/ε2). We find 2 adiabatic
invariants that rule the dynamics on intervals of time O(1/ε2). If the evolution to
mirror symmetry takes place with timelike variable ε2t the dynamics starting near
normal modes changes to rather strong exchanges of energy between the modes, see
Figures 4–5. For evolution with timelike variable ε3t this effect is much stronger, see
Figures 6–8.

5. An interesting conclusion is that in the final stage of evolution to mirror symmetry
with respect to the galactic plane of a rotating axisymmetric galaxy their position
in phase-space depends strongly on its asymmetric past. The epicyclic and vertical
velocity dispersions will be different and are tied in with the resonance-dependent
adiabatic invariants.
One of the implications is that a statistical mechanics description of systems of parti-
cles in near-equilibrium and held together by mainly gravitational forces can not be
understood without considering earlier evolutionary states.

9. A Synopsis of Averaging Theorems

Averaging methods were used as a formal method in the 18th century. In the first
half of the 20th century proofs and extensions of the methods were developed in France
and in the Sowjet-Union. For a brief historical survey see appendix A of [11]. Sometimes
the methods are referred to as averaging-normalisation as there is a definite relation with
normal form methods, see [11] chs. 9–13.

Consider initial value problems of the form

dz
dt

= F(t, z, ε)

with z(t0) given and ε a small parameter, ε ≥ 0. To analyse this initial value problem as
a perturbation problem makes sense if we have knowledge about the system for ε = 0.
Using this knowledge and applying variation of constants one can often obtain a system of
slowly varying variables of the form where a T-periodic vector field plays a part. Consider
explicitly the T-periodic vector fields f1, f2 and the slowly varying ODE:

ẋ = ε f1(t, x) + ε f2(t, x), (44)
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With x, f1, f2 ∈ Rn and f1, f2 twice continously differentiable in a bounded domain D in
Rn, continuously differentiable in t. Suppose in addition that:

1
T

∫ T

0
f1(t, x)dt = 0,

where x is kept constant during integration. We will call the terms represented by f1
non-resonant to first order. We use the near-identity transformation:

x(t) = y(t) + εu(t, y(t)), u(t, y(t)) =
∫ t

0
f1(s, y(t))ds. (45)

Such transformations were also used in [12]. As the vector field f1 is t-periodic with average
zero, u(t, y(t)) is bounded in D by a constant independent of ε. Substituting x(t) with
Equation (45) in ODE (44) we have:

ẋ = ẏ + ε f1(t, y) + ε
∂u
∂y

ẏ = ε f1(t, y + εu) + ε f2(t, y + εu).

We expand ε f1(t, y + εu) + ε f2(t, y + εu) = ε f1(t, y) + ε f2(t, y) + O(ε2). and find:(
I + ε

∂u
∂y

)
ẏ = ε f2(t, y) + O(ε2).

I is the n× n unit matrix, the matrix I + ε∂u/∂y has a bounded inverse, so that:

ẏ = ε f2(t, y) + O(ε2). (46)

where the O(ε2) terms can be computed explicitly. The procedure removes the non-resonant
terms from the right-hand side of Equation (44); this is useful if we are able to perform
analysis on the resonant part with explicit slow time as in Section 3. In our models a second
small parameter δ plays a part. This is handled in various ways. We can assume a relation
between ε and δ. In our models we have that δ occurs in the combination δt so we can
introduce the independent slowly varying variable τ by τ̇ = δ.

In formulating next a number of theorems we omit detailed assumptions regarding
smoothness and dimensions.

Theorem 1. Consider the initial value problem

ẋ = f (t, x), x(0) = x0, (47)

with n-dimensional vector field f (t, x) T-periodic in t. Introduce the average

f 0(y) =
1
T

∫ T

0
f (s, y)ds, (48)

then we have for the solutions of the initial value problems (47) and

ẏ = f 0(y), y(0) = x0,

|x(t)− y(t)| = O(ε) on time intervals of order 1/ε.

For a proof and more detailed conditions see [11] ch. 4.2.
In many problems a second order approximation is necessary for qualitative and

quantitative reasons.
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Theorem 2. Consider the Jacobian matrix D f (t, x) = ∂ f (t, x)/∂x and the vector field

u1(t, x) =
∫ t

0
( f (s, x)− f 0(x))ds.

Introduce vector field

f1(t, x) = D f (t, x)u1(t, x)− Du1(t, x) f 0(x).

Average f1(t, x) over t producing f 0
1 (x) and consider the initial value problems (47) and

v̇ = ε f 0(v) + ε2 f 0
1 (v), v(0) = x0.

Then we have x(t) = v(t) + εu1(t, v(t)) + O(ε2) on time intervals of order 1/ε.

For a proof and more detailed conditions see [11] ch. 4.5.
A useful extension was given in [12], see also [11] ch. 2.9. It is:

Theorem 3. Consider the formulation of theorem 2 and in addition assume f 0(x) = 0. Then we
have that |x(t)− v(t)| = O(ε) on time intervals of order 1/ε2.

The theory of higher order resonance for 2 dof Hamiltonian systems was started in [15].
It was extended in [4], see for a summary [11] ch. 10.6.4. The theory is technically too
involved to give a summary here. We mention two typical aspects. On studying 2 dof
systems with basic k : l resonance, we have a higher order resonance if k + l ≥ 5; a lower
order resonance is also described by the theory of higher order resonance if there are
certain degenerations in the averaged system (this happens in our paper for the 1:2 and
1:3 resonance). In general the dynamics in phase-space is characterised by large domains
without much interaction between the two degrees of freedom whereas interaction takes
place in resonance manifolds with a fractal dimension in ε.
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