ztry of the

rstanding

ling, Mass.
127) .
rillator,

wematica,

Llow Water
w. 28 Math.

reresting?

xchanics,

ynlinear
. 46 (1978),

al

v b e e m e

Lect. Notes Fleth. 3 11 (P Vevhatst ed)
Springer 1gF9 , fP Log-~22¥

APPROXIMATIONS OF HIGHER ORDER RESONANCES
WITH AN APPLICATION TO CONTOPCULOS' MODEL PROBLEM

Ferdinand Verhulst

Mathematiseh Instituut
Rijksuniversiteit Utrecht
3608 TA Utrecht
The Netherlands

Jan A.Sanders

Wiskundia Seminarium
Vrije Universiteit
1081 HV Amsterdam

The Netherlands

SUMMARY

Higher order resonances in two degrees of freedom Hamiltonian systems

are studied by using Birkhoff normalization. The normal forms can be

used as a starting point to develop a theory of asymptotic approximations
on the natural time-scale of the resonances. The asymptotic expressions
are used to obtain a geometric picture of the flow in U4-space. An appli-
cation of the theory is found in the model problem of Contor-ulos for

the Hamiltonian H = 3(x®+y?) + 3(w?x*+wly®) - exy®. A comparison with
numerical results obtained earlier yields excellent agreement and we put
Contopoulos' formal << third > integral in a new perspective.

INTRODUCTION

We consider systems with two degrees of freedom which can be described
by a set of Hamilton equations. The Hamiltonian H depends on two con-
figuration coordinates (ql’qZ) and two momentum coordinates (pi,pz). The
usual procedure is to expand the Hamiltonian near an equilibrium position
in four-dimensicnal phase-space and we assume that we can write the ex-
pansion as follows

H(a,p) = dwiCal + pD + du,ta) + p D+ ... (1)
The dots denote higher order terms of the Taylor-expansion ¢f H; we took
H(0,0) = 0 which is no restriction of generality; w, and w, are real
constants.
One can summarize this by saying: the Hamiltonian is in Birkhoff normal
form until degree two (see for instance [1], appendix 7).
In the neighbourhood of an equilibrium point one can always transform a
Hamiltonian into Birkhoff normal form until degree two unless |w1/m2|=1.
The 1:1 resonance is not a higher-order resonance so that we omit this
exceptional case here,
Some examples of mechanical systems which can be described by such a
Hamiltonian have been treated in the thesis of Van der Burgh [2}; we
shall discuss an example later on.
The higher order terms of the Taylor expansion of H produce nonlinear

terms in the equations of motion. Before discussing nonlinear problems
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it is useful to understand the linear problem completely; we shall study

the phase-flow of the linearized system in section 2.
The starting point for the description of the nonlinear problem is to

put the Hamiltonian into Birkhoff normal form (section 3); it is then

pessible to obtain asymptotic approximations of the phase-flow
(section 4).

flow.

It is useful to try to obtain a geometriec picture of the
Pictures of the flow in Y-space are fairly complicated and in

section 5 we present two different 'projections' or visualizations of
the flow (figures 2 and 3).

Presented in figure 4.

In section 6 a third way of projection is

Starting with Jeans, there have been long discussions in astrophysics on

the so-called third integral of the galaxy. To illustrate some new de-

velopments in the theory, Contopoulos formulated a simple model problem;
the simplicity reduces the computing effort but is otherwise deceptive
as the problem contains all the essential difficulties and richness of
structure of nonlinear Hamiltonian mechaniecs. In sections 6 and 7 we
discuss the Contopoulos model problem using the theory of asymptotic
approximations and we compare with results obtained earliep,

2. THE PHASE-FLOW OF THE LINEAR SYSTEM

In the linearized system the energy in each of the separate degrees of
freedom is conserved; the existence of these two tndependent integrals
cause the system to be integrable, If we put

2 2 .
-1 P
T; = 3(qg + P;), 1=1,2 (2)
the integrals are T; = Ei (constant), i=1,2.
The following construction consists of trivial computations but it makes

the part played by the integrals transparant. We introduce action-angle
variables by the canonical transformation

(g B ¢2Ti sin b

* i=1,2
P; = Y21, cos ¢
The Hamiltonian H, corresponding with the linearized system becomes

in these variables
Hy = 097y + w1,

and the equations of motion
95 = wy

iz1,2

"
o

Ty

The solution



VTTT0Y sinl64(0)+u,t)

(g) ¢2T2i0§ sin(¢2(0)+w2t)
| /IO cos(o, (04w )
#212305 cos(¢2(0)+w2t)

One obvious question will be: is this solution periodic? Of course
this depends on w,/w, being rational or not. The second question might
be: is there a way of getting a geometric picture of the phase-flow?
Since phase-space is four-dimensional, the flow is difficult to visual-
ize. The existence of the two integrals, however, hands us the necess-
ary tools.

First of all, the energy E0 = W THE,T, is invariant under the flow and
its level surface is for ED > 0 a three-sphere 83. Note: the reader
should not be confused by the word is; of course the energy manifold is
actually an ellipsoid but any surface in R™ which is topologically
equivalent with an {(n=-1)-sphere will be identified with stL
Secondly both T, and T, are conserved quantities., What does the, in

general two-dimensional, surface

w111+m2T2 = EO

1% Eq

T
look like?
Considering again the coordinate transformation q,p -+ T,$, we see that
if the T, are fixed, the ¢i are left to be varying and will describe

the surface which we are looking for. So this is a torus Tz.

There is a way of degeneration of the torus: if E, or E, = 0, T2 re-
duces to a circle Sl. These two circles are the normal modes of the
linear system. Note that the coordinate transformation is degenerate in
these two cases.

The picture becomes as follows: looking at 53 we see that it is foli-
ated in a continuum of tori, with two circles as extreme cases.

Consider one of these circles, lying in three-space

5.

Figure la
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The other cirele passes through the centre of the first one, because
the centre of the cirecle corresponds to a point where T,, say, is zero,
and therefore T, is maximal, i.e. it belongs to the normal mode. We

have the following situation

Figure 1b

On the other hand, if we draw the second circle first, the picture is

the same, be it in another plane. This leads to

Figure le (Two normal modes)

The normal modes are linked. They are the centre lines for the tori
which exist in the general case (E4E, # 0), It may be difficult to
visualize a torus having two circles as centre lines but remember that
the tori are imbedded in a three-sphere. This is not an Euclidean space;
there is no inside and outside here, only two 'insides' divided by a

torus.

If m1/m2 is rational, the solutions are periodic and the orbits on the
invariant tori are closed (the orbit is 31). If w1/m2 is irrational each

orbit is densely imbedded in an invariant torus (the orbit is R).

3. BIRKHOFF-TRANSFORMATION OF THE NONLINEAR PROBLEM

At this point we have a fairly complete picture of what is happening in
the linear case. How much of this picture does survive if we take into
account the higher-order terms, i.e. if we consider nonlinear Hamilton-
ian systems with two degrees of freedom? In this paper an answer to
this question will be given by constructing asymptotic approximations
of the solutions corresponding with an approximate phase-flow.
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in which H2 e

and HS is a he

Since we con:
point it is n:
i=1,2 where

Hamiltonian b;
the bars we o

H = H2 + eH3

We ehall say
wy =mi and Wy

quire |m/n| #

The lower-ord
[21 and [3] a
sonance probl

A canonical | |

been worked c |

The technique |

see also [1], |

facilitates t

%5

¥4

We find Tj =
transformatic

:y. alone tc |
%593

normal form ! |

ones)

H,

A near-identi-

degree are o

(x !

in which my



one, because
, say, is zero,
al mode. We

he picture is

‘or the tori
fficult to

: remember that
Euclidean space;
divided by a

» orbits on the
3 iprational each
it is R ).

is happening in
if we take into
linear Hamilton-
an answer to
approximations

e=flow.

213

Consider the Hamiltonian in expanded form (1)

H = H, + H3 + H, + ...

2 y

. . o 2 2 5 2 2
in which Hy = 3w, (g  + p1) + iwchz + py)
and Hs is a homogeneocus polynomial of degree s € N in p,q.

Since we consider the phase-flow in the neighbourhcod of an equilibrium
point it is natural to scale the coordinates q; = Eai’ p; = eEi s

i=1,2 where € is a small, positive parameter. Dividing the induced
Hamiltonian by 82 (to keep the scaling process canonical) and omitting
the bars we obtain

2

H = H2 + ¢H, + e"H,, + ...

3 4

We shall say that we have a higher-order pesonance if we can write
wy =mA and Wy = nA with myn € N and relatively prime; moreover we ne-
quire |m/n| # },3,1,2,3.

The lower-order resonance cases which we excluded have been treated in
[2} and [3]) and by many other authors. The starting point in most re-
sonance problems is to put the Hamiltonian in Birkhoff normal form.
A canonical perturbation theory which contains the same elements has
been worked out in remarkable detail by Born (see [16] chapter 4).
The technique was introduced by Birkhoff [4] in a rather implicit way;
see also [1], appendix 7. A small excursion into the complex domain
facilitates the computations., We follow the analysis in [5] and put

X5 7 95 *+ 1py

Yj = Qj - 1Pj

j=1,2,

We find Ty ° x.yj » J=1,23 Birkhoff-transformation is a canonical
transformation such that the new Hamiltonian is a funetion of T. or

xjyj alone to a degree as high as possible. H, is in so-called Birkhoff
normal form (we denote the new variables by the same symbols as the old

ones)
H2 = 1A(mx1y1 + nxzyz).
Anear-identity transformation does not change H,, the terms of higher

degree are of the form

My My M3 My .
(x,¥,) (x,¥,) (x?yg) (y?x?) > my €N, d=1,...,4

in whieh m; or m, can be taken equal to zero.
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Because of the condition of higher-order resonance m#n > 5 and we have

for the transformed Hamiltonian H

~ . 2 2.2 2
H = 1[l(mx1y1+nx2y2) + € (;Ax1y1-+Bx1y1x2y2+ %szy%) 800

m+n-2 =
vee + E (ngygi-Dy?x?)+ 800! (3)

The dots stand for terms which are in normal form and terms which are
of higher order; A,B,C € R, D€ &, D is the complex conjugate of D.
The original purpose of Birkhoff's transformations was to obtain a new
Hamiltonian which is a function of Tj or xjyj onlys; such a system is
integrable. One can succeed in this, at least formally, by taking m/n
irrational. The corresponding transformation takes the form of a series
which in general, however, diverges. The phenomenon is known in the
literature as the small divisor problem. Our purpose will be to use
Birkhoff-transformation as far as possibleand analyse the remaining
terms by the theory of asymptotic approximations.

The induced equations of motion of (3) are

m+n=-2 =

nDy .

. . 2 m
Xq 1[mx1 + € (Ax1y1 + Bnyz)x1 ...t € x5 o4
m+n-2 1

n
1

g . 2 n_m-=

X, 1[nx2 + € (Bxly1 + szyz)x2 ...+ € meiy2 +...1]

(there are four real equations as Xy and X, are complex valued), We

will absorb the absolute value of D into €, so we may as well put

D= e with o € si, Two equivalent real systems will turn out to be

useful.

With a,b € IR, a,b >0 and ¢,» € S} we transform
. Lald
Xq 2 ae‘
X, = be1¢

The induced equations are

3= (M2 n-im sin(né-mp+a) + ...
b o= ™0 20" ™ L sin(ng-mpta) + ...
$ =m + ez(Aazi-Bbz) tooat Em+n-2nan-2bm cos{nd¢-mP+at) + ... (%)
ben+ elBa? +0b?) ...t €™N20NM2 Coonompra) + ...
N

[

At the same tinm

E
a==

¥
b =L

v
X ==
$ = ¢

System (4) becc

E=0+ o0

n
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e
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At the same time we use the variables defined by

a = E cos ¥ E EIR, E>0
/m
¥y € (0,n/2)
b = %ﬁ sin ¥
X = nd-mb+a
¢ = ¢

System (4) becomes (N can be taken high enough)

E=o0+ O(EN)

-2
SR (eE)™N n-1 . m=1 . N
Y m(n/?)-l n(m/2)—1 cos Y sin ¥ sin x + 0(e)
.. 2:1, o 2, .1, o . 2
x = (gE) [E(nA mBlcos“y + n(nB mClsin“yl+ ... (5)
m+n-2
o004 (£E)

n/27-1 (/=1 cosnth sinm—zy(n sinzy -m COSZY)cos X +
m n

+ oMy

¢ = m + (aE)Z[% coszy + % sinzyj oot

-2
(eg)™*" n-2_ _. m N
SO0 = cos Y siny cos ¥ + 0(e)
n(m/2) 1 m(n/2)

In system (5) we recognize the remarkable fact that the equations for
E, ¥y and ¥ to a high order in e do not depend on the variable ¢. This
fact becomes less remarkable if one realizes the close relation between
Birkhoff normalization and averaging. This means that to a certain
approximation in € we can approximate E, y and ¥ while ignoring ¢ and
after that calculate an approximation for ¢ by direct integration of
the last equation of (5). This procedure leads to 0(g) approximaticns
on the time-scale 1/32; see [5]) or in a somewhat less general setting
[3]. One of the conclusions of these calculations is that on this
time-scale and to this order of accuracy no exchange of energy between
the two degrees of freedom (internal resonance) takes place; the ampli-

tudes a and b in system (4) are approximated by their initial values.

We shall look now for approximations on a longer time-scale which pro-
vide us with new qualitative information on the flow.
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4. APPROXIMATIONS ON A LONGER TIME-SCALE.

The results stated in this section were derived in [5]. On considering
the equations for E, vy and x in system (5) one observes that with
respect to the variables E and v the angle x is rapidly varying. This
suggests that we can obtain approximations by averaging the right-hand
sides over y. Of course this procedure breaks down if the right-hand
side of the equation for y becomes small; this happens in a neighbour-

hood of values for which

nA=-mB
m

coszy " nB;mC s 2

sin“y = 0 (6)

The manifold M in four dimensional phase-space defined by equation (B)

is called the resonance manifold. Having fixed E and y with equation (6),

i.e. having fixed the amplitudes a and b, the two angles ¢ and ¥ are

still varying in 81; so the restriction of the resonance manifold to a
surface with E = constant is a torus.

We expect the form of the approximations and the flow to be different
in two domains:

DR’ the neighbourhood of the resonance manifold M; introducing the

distance d(x,M) for a point x in Y-space to the manifold M we have

m+n-Y
Dp = {x | d(x,M) = O(a 3 )}
We call DR the resonance domain.

Dy, the remaining part of 4-space in which we study the Hamiltonian

system. We call Dy the outer domain.

We then have the following result

THEOREM 1.

Consider equations (5) in the outer domain DO and the equations
A
E=0, ¥=0
. 7
X (eE)z[%(nA—mB)cosz? + %(nB-mC)sin27]

X

with the same initial values as fer E, v and y. Then we have

m+n=-u _mn+n
E-E, y-¥, X=X = O(e . ) on the time-scale ¢ °

In this approximation the behaviour of the flow in the outer domain is
*quasi-linear', there is no exchange of energy between the two degrees
of freedom. If m+n = 5, the error of the approximation is of 0(51%) on
the time=-scale 5_5&; this is the worst possible case. In section 3 we

found an 0(e) approximation on the time-scale 3-2.
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The behaviour of the flow is different in the resonance domain Dg.
Suppose that equation (6) has a solution, say y = Yp+ We associate
with equation (5) the system valid in D

R
E=0
= ¢ (efymtn-2  n-1 1ot in ¥ + 0(e™n g4 N)(a)
Y = - Y, sin" Ty sin X € sin ¥
~ 2.0 . y
X = 20y Y.)Cq sin v, cos v, + 0(e")

ni—m/gml-nlz’ Cy = 2nt-n2A-mZC; the right-hand sides

have been obtained by expansion of equaticn (5} in a Taylor series near

in which Cnm =
Y = Y,- From the equation for ¥ and ¥ we find

X + 20eE)™P (coe sin™y cos Y, + 0(e?) sin ¥ = 0. ()

Since equation (9) is the pendulum equation we have for each value of E
two periodic solutions at vy = Y, and X =00or Y = w; one is elliptie

and the other one is hyperbolic. The asymptotic estimates are given by

THEOREM 2.
We associate with equations (5} in the resonance domain Dp the equations

(8) and (8) with the same initial values as for E, ¥ and x. We have

( Zmn-w)y ( menoh
y-¥ = ole s> E-E, x=% = O\e

_m+n
on the time-scale € 2 .

m+n
In the resconance domain e 2 is the natural time-scale of the reson-

ance. The theory should be completed by a discussion of the part played

by the constants arising in the equations and a bifurcation analysis of
| the normal modes. For these technically complicated questions and the
proofs of theorem 1 and thecrem 2 the reader is referred to [5]; ex-

pPlicit examples of higher-order resonance are analysed in the next
sections.

5. A GEOMETRIC PICTURE OF THE FLOW.

The usual procedure in quantitative analysis is to construct a two-
dimensional surface of section, which can be interpreted as a Poinecaré
mapping of the flow for a fixed value of the energy. To visualize the
flow it can be helpful to construct surfaces of section in different
directions, e.g. the ql,pl—plane or the qz,pz—plane. Here we shall tpy
to visualize the complete flow on the energy manifold, which is diffeo-
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morphic to the 3-sphere 83. One may wonder, why does one bother at all
about a global geometric picture? The answer is basically a philosophi-
cal one. We take the point of view that to understand what is going on
in a dynamical system it is not enough to produce only numbers or ana-
lytical expressions. To understand what is going on it is essential to
obtain a geometric picture which is as complete as possible and for
which the quantitative results are necessary prerequisites.

In [5] one of the authors presented a picture of the flow on the energy
manifold; this picture has been reproduced as figure 2. Think of 83 as
sonsisting of two solid tori, linked together along their common bound-

ary; the normal modes are the centre lines of these solid tori. Around

The 2:9 resonance. The -.-.- lines are the linked normal
modes arcund which we find an elliptic and an hyperbolic
periodic solution ——. The dotted surface is the stable
and unstable manifold of the hyperbolie solution. There

is one section transversal to the elliptiec orbit to show
what the inside looks like. (Courtesy D.Reidel Publ.Co.)

Figure 2.

the elliptic orbit we find in the resonance manifold the surrounding in-

variant tori (shown in a transversal section) which together constitute

the solid tori. The size of the resonance domain increases with the en-
ergy, which is 0(82), and decreases with the order of resonance, charac-

terized by m+n. For reasons of comparison we consider a similar picture

constructed by a polynomial mapping R* + R’ of periodic functions of the

form
8 cos nt m,n € Q

x1 o cos mt x3

a sin mt Xy B sin nt a,B € R

X9

Figure 3. Peri
mapp
and
feon
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6. THE CONTOPOULOS MODEL PROBLEM.

In this section we shall illustrate the preceding theory of higher-
order resonance by treating an explicit example; moreover we shall
generalize the theory somewhat, The example is a model problem for re-
sonances in axi-symmetrie galaxies which was formulated by Contopoulos
[8). For numerical explorations in more pealistic models of galaxies
the reader is referred to [6) and [7].

Consider the real Hamiltonian

H = i(i2+§2) + %(wixz + mgyz) - exy2 (10)

with € a small parameter, wy and w, pesitive real numbers. If

2
w1/w2 € Q, the preceding theory of higher-order rescnance applies. If
m1/w2 € IR each neighbourhoocd of m1/m2 contains infinitely many rational
numbers and we shall use this fact in our perturbation theory.
The corresponding equations of motion are

X o+ wzx = ey2

1 (1)

y o+ mgy = 2exy

In (3] a discussion has been given of this problem in a more general
context for the case of first and second order resonances in whieh
w1/m2 is near i/1, 1/2, 2/1, 1/3 {(the case 3/1 has been omitted). We
assume here that w1/m2 is not near these first and second order reson-
ance values.

We express the near-ratiocnality of wllm2 as follows

mg n?
7 = (1 + 8§(e)) (i2)
h m

in which n,m € N, (n,m) = 1; &(e) is called the detuning. We intro-
duce the time-scale 1 by

wlt = mT

and the transformation

X = a cos(mt+¢)} ¥ = b cos(nt+y)
(13)
%% = -am sin(mTt+4) %¥= -bn sin(nt+y)
The equations of motion become
2 2
d°x 2 m 2
—_— e + m x = E —
dr? mf Y
42 ) m2 , (i1a)
LY & ¥y = 2¢ —5 xy - n“6(e)
dt? m12 y

Note that in
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Note that in the context of the theory of higher order resonance we
shall look for periodic solutions with x,y-frequency ratio m/n while
the x,y-frequency ratioc of the linearized system equals mllmz.

The detuning does not interfere with the Birkhoff-transformation of
section 3 if &8(e) = 0(52); we shall assume from now on that this
estimate holds. Birkhoff-transformation of the Hamiltonian and intro-
ducing (13) or using averaging techniques (see [3]) produces, after
lengthy caleulations

da _ 3 db _ 3
a—T--o+0(e) a?-°*°‘*=’
2 3
%% N | W b2 4+ o(ed) (14)
ml(m ~4n°)
2 4 2 2 2
g% = —ﬁf—ﬂﬁ———i— aZ 4+ g2 -ﬂﬁigﬁﬁléﬂfl b? + %5(8) + o¢e?y,
uln(m -4n) umln(m -4n”)

Omitting the 0(e?) terms in equation (14) one obtains 0(e) approximations
of the amplitudes and phase-angles on the time-scale 1/52. To describe
the higher~order resonances as explained in sections 3 and 4 we have to
calculate the terms of 0(em+n—2)- This leads to the determination of the
constant & in the expression ¥ = n¢-my+a. Because of the particular
form of the Hamiltonian we can predict the result without long caleu-
lations. This follows from

THEOREM 3.
Consider the real Hamiltonian

H= 3(x%+9%) + Ulx,y)
in which U(x,y) <& analytic near (0,0) and has a Taylor-ezpansion which
gtarts with quadratic terms: U(x,y) = i(wix2 + m%yz) ..,
|m1/w2| not near 1:2, 2:1, 1:1, 1:3, 3:1. Then Birkhoff-transformation
of this Hamiltonian into the normal form (3) implies that the constant
D i8 a real number.

The proof will be given by one of the authors (F.V.) in a subsequent
paper.
Theorem 3 has as a consequence that o = 0 and
X = n¢ - my.
For the angle x we find from (1u) the equation
& . _e’n’
G wgn(mz-unz)

2 2
[3m =L P a2] - B sce) + 0ted)  (18)
%m

As in section 4 we obtain the resonance manifold by putting the right-
hand side of equation (15) equal to zero. So the resonance manifold can
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be approximated by the expression

m' am?-4n? §2 .32 | . n sCe) (18)
4 2 2 2 - 2
min(m -4n®) 4m 2 e
The approximate energy integral is
22 2 _
1la? 4 gmg's = E, (17}

From equations (16) and (17) we ecan compute the amplitudes of the

periodic solutions in the resonance manifold and the conditions of
existence. An example is given in

LEMMA 1.

For the Hamiltonion (10) with ezact resonance, t.e, m1/m2 s m/n with

m,n € IN, (m,n) = 1 (80 6(c)'= 0), periodie solutions with frequency
ratio m/n exist if and only if m1/m2 > 2/3+ 0(e). In that case the
amplitudes a., br of the periodiec solutions are approximated by

~2 3m2-1m2

2 )
3= 2E b= 2_¢p
r 3m2m1 0 r Swf 0
Proof.

Putting 6(e€)

0 in equation (18) produces the relation

3mZ-yn? §2 . 32
42 r = %p
m

This relation together with equation (17) yields the expressions for

d, and 3r. The conditions of existence are with the energy integral

0

HA
E
na
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13, 2E0 and 0 g mzﬁr ZEO.

This together with the expressions for Er and BP leads directly to the
inequality given in the lemma.

In [8] Contopoulos conjectured the non-existence of pericodie solutions
with frequency ratio m/n at exact resonance (8(e) = 0) when m/n < 1.
This conjecture was based on numerical experiments. From lemma 1 we

know this conjecture to be true and morecver that the conjecture holds
for m/n < 2//3,

Another straightforward application of our theory is the following. In
a number of numerical studies projections of orbits into x
been given,

»¥-space have

Certain periodic and quasi-periodic orbits have been called 'tube orbits!

by Gllongren [6); in [8] tube orbits have been studied in the dynamical

system (11).
orbits aroun
and unstable

LEMMA 2.

The projeetd
solutions of
represented

Proof .
Substituting
an approxima
fold

The right-ha
cos(T+P(T)/m
dependent cc
The same rea

y

)

Figure 4. P:
8
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v
8



(16}

(17)

des of the
nditions of

w, = m/n with
ith frequency
hat case the

mated by

pressions for

ergy integral

iirectly to the

iodie solutions
1en m/n < 1.
n lemma 1 we

mjecture holds
: following. In
1 X,y-space have

.led 'tube orbits'
.n the dynamical

223

system (11). Using our results we identify the tube orbits with the
orbits around the stable periodic orbit; the positions of the stable
and unstable periodic solutions are given by the following lemma.

LEMMA 2.
The projections into x,y-space of the approximations of the periodic

solutions of aystem (11} which are lying in the resonance manifold are
represented by algebraic curvee.

Proof.

Substituting Er and B, into equation (14) and putting ¥ = 0 we obtain
an approximation for the stable periodic solution in the resonance mani-
fold

X(1) = 3} cos{mlT+$(t)/m])

{(18a)

¥ Sr cos(nlt+¢(1)/m))

The right-hand sides of these equations can be written as pelynomials in
cos(T+§(1)/m) of degree m and n respectively. Elimination of the time-
dependent cosine produces an algebraic relation between %(T)} and F(r).
The same reasoning applies to the unstable pericdic solution where

¥ ¥

“

da 4b 4o

Figure 4. Projections of the stable and unstable (dotted) periodie
solutions lying in the resonance manifold obtained from
equaticng (18a-b). The closed boundary is the curve of zero-—
veloeity. In fig.da-b min = 4:1 and m:n = 4:3; they corre-
spond with Contopoulos [10] fig.3 and 5. In fig.dc m:n = 9:2.
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X(1)

Er cos(ml[T+§(t)/ml)
(18b)
FiO)

3P cos(nft+F(T)/m] - 7/m)

The projections of these periodic solutions have been plotted in

figure 4; the cases m:n = 4:1 and 4:3 have been studied by Contopoulos,
[10, figures 3 and 5].

Another applieation concerns the effect of detuning. From the equation
for the resonance manifold (16} and equation (12) we find

E — -

Wy n m m? 3m2-'+n2 2 2 2 4
T [ - B - @ ] e + 0(e’)  (19)
@ m n w, (m“=4n") Lm

1 1
Putting 3 = ¢ or B = 0 and eliminating % or 3 with the energy integral
(17) produces extreme values of the 0(32) term. It is then possible, by
fixing w,, to calculate the interval of w,; values for which periodic
solutions with m/n frequency ratio exist. The result will depend on the
energy EO‘
Contopoulos chooses in [11]): E, = .00765, mg = .9 and looks for

periodic solutions with m = 2, n= 3. Note that it follows friom lemma 1

that these periodic solutions do not exist if mi = .4. Contopoulos
finds existence of these periodic solutions in [11] if
©39989 < w? ¢ .39993.

Using equation (19) we find precisely the same numbers.

We present another consequence of equation (19):

LEMMA 3.

Let a higher-order resonance with frequency ratic n : m exist in the
interval I; in order that a higher-order resonance with frequency ratio
n:m exists tn I, N : m is necesgsarily an approzimation of n i m

in the sense

n n 3E 52 w2
S : 3 Z 7
m m 2(m1m2) |w1—4m2|

The proof follows directly from equation (19) by estimating the extreme
values of the 0(e?) term with the energy integral (17).
It has been checked that in the case of the 2 : 3 resonance with

Ey= .00765, m§= .9 there are no other resonances n: m in I with n+m < 100.

In fact a stronger conclusion holds: for higher-order resonances m : n
with E0 and w, as before and m+n g 100 ml-intervals exist where we have
existence of n: m periodic solutions but in none of these cases other

regonances n : m  with h+m ¢ 100 can be found in these intervals.

e
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7. CONTOPOULOS' ({ THIRD » INTEGRAL.

kebtd The problem of the existence of a second integral of motion independent
of the energy (in astrophysics a third integral because of the existence
otted in of an additional integral : angular momentum) for two degrees of free-
by Contopoulos, dom Hamiltonian systems constitutes a problem with a long and interest-
ing history; see Ollongren [6} for a survey and references and Conto-
poulos {[12] for a recent survey.
m the equation Contopoulos has given an expansion for this second integral of motion
.| for Hamiltonians of the form (10) and slightly more general. The ex-
pansion has only a formal character, i.e. no proof of convergence has
+ 0(5”) (19) been given but there is good agreement with numerical results in
fg-12].
nergy integral In [3] the asymptotic character (in the mathematical sense of the ex-
en possible, by pression) of Contopoulos' second integral has been demonstrated at the
dch periodic main resonance w; ! wy, & 1 : 1.
1 depend on the ! For higher-order resonances we can understand these formal results as
fellows. The total energy E of the system is conserved. If the nonlinear
looks for coupling constant € equals zero, the energy of the motion in the two
tg from lemma 1 separate degrees of freedom is conserved. In that case these energies E,
Contopoulos and E2 (or E and El) correspond with two independent integrals of motion.
If ¢ # 0, we have the total energy as one integral and the Contopoulos'
formal integral of the form
¢, = E; + higher-order terms.
We remark that E1 = %(iz + wfxz), the higher-order terms start with a
cubie polynomial in x,X,¥,¥.
The asymptotic method gives us asymptotic integrals, i.e. functions I,
exigt in the i=1,2, such that
frequency ratio I (X(t)) - I;(X(0)) = 0(eM) on0g et el

on of n 1 om . ) . _ R .
in which N and M are certain constants; x(t) is the solution of the

differential equation (such as (14)) obtained after the normalizing
(averaging) coordinate transformations.

If one wants to use these integrals in the original coordinates, then
. one has to substitute X as an asymptotic expansion in e and functions
ting the extreme o i i

of x, the original coordinate, into the Ii's, up to the order of

e with accuracy one seeks to obtain.
ane

I with n+m g 300.
2gonances m : n

Our discussion of the topology of phase~space in sections 4 and § implies
that Conteopoulos' formal integral corresponds with asymptotie approxi-

{st where we have mations in the sense described in these sections. This replaces the
'formal character' of ¢, by 'asymptotic character in the mathematical
;e cases other 1

intervals.
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sense'. For the understanding of the nature of ¢1 we add two

remarks.

First it is elear that in the resonance manifold (the domain of tube
orbits) the higher-order terms are the most effective; here we have
behaviour of the orbits different from linear behaviocur.

Cutside the resonance domain E1 deminates in such a way that the orbits
behave nearly as linear ones; these orbits have been called box orbits
by Ollongren [B]. It is also understandable that there has been some
misunderstanding in the literature about the question whether Conto-
poulos’ <<third » integral ¢4 is independent of the energy or not. For
the independence is clear in the resonance domain, but to demonstrate
the independence outside the resonance domain one needs rather precise
calculations. One can formulate it differently: to a certain precision
cutside the resonance domain E is conserved and E1 is an asymptotically
conserved quantity, in the resonance domain E is conserved and by is an
asymptotically conserved quantity.

Secondly one may wonder whether it is possible to prove the convergence
of the expansion $, thus producing an exact second integral of motion.
The answer to this question is that one cannot expect the expansion to
be convergent for all permitted initial values. Convergence can be ex-
pected feor initial values on the invariant tori around the periodic sol-
utions which we have found. In this field, normal forms of differential
equations and the convergence of nermalizing transformations, considerable
progress has been made by the work of Brjuno [13-i4]. In these papers
one finds conditions for normalizing transformations to be convergent
and examples of divergence; also one can find here remarks on the re-
lation between various canonical normalizing transformations and on the
history of the problem. An interesting application of normal form theory
in celestial mechanics has been given by Brjuno in' [15].

Returning to the Contopoulos' model problem, one may wonder what happens
for the initial conditions, located between the invariant tori, for
which the expansion ¢1 is divergent. From various analytical and numeri-
cal results one expects to find , between the invariant tori, higher-
order resonances with m+n lapge. For increasing values of the energy
these resonances became more and more prominent thus dissolving and com-

plicating the basic picture of higher-order resonance which we sketched
in this paper.
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