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Key facts :

Black hole solutions exist in Einstein’s theory of general relativity

Black hole solutions exhibit a horizon: nothing can escape
(at least not classically) from behind the horizon

Schwarzschild radius Fs = 2 M Gy

There is astrophysical evidence for black holes in Nature

There is a surprising relation between:

= |Laws of black hole mechanics

= Laws of thermodynamics




Black hole mechanics = [hermodynamics

Bardeen, Carter, Hawking, 1973
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Charged Black Holes

Reissner-Nordstrom black holes:
charged, static, spherically symmetric, solutions to Einstein-Maxwell theory

P, Q magnetic/electric charges

GN M2 > P2 — Q2 non-extremal, two horizons

2 2 2

GN M* =P -+ Q extremal, horizons coalesce
2 2 2 . .

Gn M~ < P2+ Q naked singularity,

physically unacceptable

Extremal black holes have zero temperature
BPS === Partially supersymmetric

Naturally embedded in extended supergravity




Question: statistical interpretation of black hole entropy ?

STRING THEORY provides new insights Strominger, Vafa, 1996

Important: string theory lives in more than 4 space-time dimensions

Compactification of extra dimensions === Kaluza-Klein

© effective field theory determines/describes geometry of extra dimensions

@ extended objects may get entangled in non-trivial cycles

@ twophases: Js &) > 1  macroscopic black holes

gs () < 1  microscopic black holes
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O compact internal space

m

Y

massless fields (I)(f, y) — Qb(x) 77(:‘/)

p® =0,®+ A,® =0
\

mass term

in this case
constant

massless «<— A,;n(y) =0 «<—> harmonic




O compact internal space

m

Y

non-compact space-time U

space-time (X) internal (compact) space

feLo Theory. P (I, y)

massless fields (I)(QIZ‘, y) — qb(ilf) n(y)
D(I) — x(I) -+ qu) =0 A in this case

\ constant
mass term

massless «<— A,;n(y) =0 «<—> harmonic

NOTE: [ non-harmonic «— massive «—> Kaluza-Klein charges)




O generically: masses of order

L

where L is the size of the extra dimension

O This describes the local degrees of freedom a la Kaluza-Klein

O at each point in space-time there exists
an internal manifold of the same topology
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More realistically there is no reason why
these tori should have the same shape and size !
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Shape and size of the internal manifold encoded in the 4-dimensional fields

=¥ curved space-time !

black hole ?







How can black holes arise as consistent solutions of the
low-energy effective field theory ?

Poincare duality provides a relation between the wrapping
of extended objects around non-trivial cycles
and the fields of the low-energy effective action

CYCLES HARMONIC FORMS
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A — cycle

HOMOLOGY CO-HOMOLOGY







CHARGES:

electric charges: due to the (local) dependence of the
fields on the extra coordinates

magnetic charges: due to the wrapping of branes around
non-trivial cycles in the internal manifold




CHARGES:

electric charges: due to the (local) dependence of the
fields on the extra coordinates
local phenomenon

KK or graviphoton charge

magnetic charges: due to the wrapping of branes around
non-trivial cycles in the internal manifold




CHARGES:

electric charges: due to the (local) dependence of the
fields on the extra coordinates
local phenomenon

KK or graviphoton charge

magnetic charges: due to the wrapping of branes around
non-trivial cycles in the internal manifold

global phenomenon







~LAT space-time CURVED space-time

EXTREMAL black hole & 1/2 BPS black hole

residual supersymmetry leads to stable exirapolation in gs

superstrings «<—— SUPERSYMMETRY —> supergravity

MICroSCoOpIC Macroscopic




~LAT space-time CURVED space-time

EXTREMAL black hole & 1/2 BPS black hole

residual supersymmetry leads to stable exirapolation in gs

superstrings «<—— SUPERSYMMETRY —> supergravity

MICroSCoOpIC Macroscopic

Supersymmetry offers an excellent environment for
the study of black hole entropy




microscopically

relevant degrees of freedom :
massless excitations of the wrapped 5-brane

11-dimensional space-time — Mink, x CY3 x S

5-brane wrapped around l
momentum
l >

A
P qo

these degrees of freedom are described by a 2-dimensional
(super)conformal theory on S

with central charge defined by the pA




Apply Cardy’s formula for degeneracy of states at large g

MICROSCOPIC ENTROPY

L.
Smacro = 27?\/ 6\610\ (Capc p?pPp© + coa p?)
A 1

triple intersection number second Chern class

membrane charges : qAO = (o — %CABQAQB OAB — CABC pC

p’ =0

C2A subleading correction ! Maldacena, Strominger, Witten, 1997
Vafa, 1997




Macroscopic
CY5 x St: 32 = 8 supersymmetries
—> effective field theory N=2 supergravity

winding momentum membrane charges

pA qo dA

pO

vector supermultiplets coupled to N=2 supergravity :

scalars: X! = XO, x4 complex

vectors: WMI =Ww,", W:‘ charges p°’ qo p” qa

classical solutions :
generalized (extremal) Reissner-Nordstrom black holes

how to calculate ?




solitonic solutions with residual N=1 supersymmetry (BPS)

x! < N=1
A

horizon fixed point

/

N=2

horizon

Bertotti-Robinson geometry

X' horizon determined by p, ¢

ATTRACTOR MECHANISM

spatial infinity

\

N=2
spatial OO

flat Minkowski space-time

determines black hole mass

Ferrara, Kallosh, Strominger, 1995




ATTRACTOR MECHANISM

behaviour at the horizon is determined by the charges

the X! (r) parametrize the CY 3 (projectively)

which change as a function of 1

(special Kédhler geometry)




HOW TO CALCULATE ?

N=2 supergravity Lagrangians are encoded in
holomorphic homogeneous functions:

FIAX)=MNF(X)

At the horizon, use rescaled variables X' —— Y/
reduces to an algebraic problem

attractor equations

AREA
GN

=47 |Z|*  with




EXAMPLE

AREA LAW = entropy =

L,
Smacro(pa Q) — T ’Z‘Z — 271—\/6‘(]0‘ CABC pApoC

this represents the leading term of the microscopic result :
it scales quadratically in the charges!




Subleading corrections:

extend with one ‘extra’ complex field,
originating from pure supergravity. Y
homogeneity preserved:

FOY,\*T) = F(Y,T)

dependence leads to terms o (pr")2 in effective field theory

attractor mechanism: at the horizon YT = —64

EXAMPLE:

1 CABC’ YAYBYC Co2A YA
Yo 24 - 64 Y

F(Y,T) =




to ensure the validity of the first law of black hole mechanics,
one must modify the definition of black hole entropy.

INSTEAD:
use Wald'’s prescription based on a Noether surface charge.

Wald, 1993
general N=2 formula:

Sinnero = 7 | Z|2 — 256 Im Fy (Y, T)‘

l l

AREA modification
4 GN

leads indeed to the microscopic result

T=—-64

L .
Smacro — 27—‘-\/6‘QO| (CABC’p P pC + CoA D )

full agreement! Cardoso, dW, Mohaupt, 1998




violates the Bekenstein-Hawking area law !
A(p,q)  Capcp?®p®p® + 5c2ap?

4 G Capc pApBpt + caa pA

Smacro (p7 Q)

LARGE black holes: Capc p-pPp® # 0

finite classical area and entropy S=0 (QZ) Ruor > [

SMALL black holes:  Canc p’ pPp =0

vanishing classical area and finite entropy S = O(Q) Rhor ~ ls




Indicative of a more general situation: BPS entropy function

entropy function Z(Y, Y, 2. Q)

stationary 8YE(Y, Y,p, q) -0 —-Y" (p, q) (attractor equations)

Smacro = T 2
Y *(p,q)

variational principle !

How to further explore the relation between
macroscopic and microscopic descriptions ?

- (Consider heterotic black holes




Heterotic black holes

on T°, dual to type-lIAon K3 x T
also for CHL black holes Chaudhuri, Hockney, Lykken,1995
N=4 supersymmetry, |- and S-duality

A
classical result :  Shacro = — W\/q2p2 — (6] -p)2
4 GN

q2 p2 D - q  T-duality invariant bilinears Cvetic, Tseytlin, 1995

Bergshoeff et. al.,1996

two types of BPS states :
1/4BPS  ‘dyonic’ ¢°p> — (p-q)* >0

1/2 BPS ‘electric’ q2p2 — (p : q)2 =0

zero classical area




microscopic results

1/4 BPS states - . i [p P2 +0 ¢ +(20—1)p-q]
dyonic degeneracies dp. p,q) = ]{d
P (©2)

3 — cycle

k=10,6,4,2,1
Dijkgraaf, Verlinde, Verlinde, 1997

Shih, Strominger, Yin, 2005

) = (U (1;) period matrix of g=2 Riemann surface

formally S-duality invariant Jatkar, Sen, 2005

1/2 BPS states
C
electric degeneracies dk (Q) — j{d(f Ok+2 f(k) (_1/0)

1 — cycle

177 q20

related to perturbative string states Dabholkar, Harvey, 1989




Asymptotic growth (7/4 BPS)

for ‘large’ dyonic charges q2, p2, p-q

dilaton S can remain finite Cardoso, dW, Kappeli, Mohaupt, 2004 (k = 10)
Jatkar, Sen, 2005 (k = 6,4,2,1)

saddle-point approximation reproduces the macroscopic results
based up to terms inversely proportional to the charges !

Corresponding entropy function: Cardoso, dW, Mohaupt, 1999

2 . Q 2 2

. ¢~ —ip-q(S —5) +p7[5]
>(S,5,p,q) = — _
( f” S+5

Q= T logn™(S) + T logn™(S) + (Y + 1) log(SJrS)G]

non-holomorphic

+4Q(8,5,1T,7)

this reproduces instanton corrections and non-holomorphic terms!




CONCLUSIONS

@ The statistical interpretation of black hole entropy as inspired
by string theory can successfully describe, both qualitatively
and quantitatively, the black hole degrees of freedom.

@ At the moment there exists a large variety of models where

this interpretation applies, in both four- and five-dimensional
space-times.

@® Many open questions remain and there are also discrepancies.
Can these results be extended beyond the leading and
subleading level? Or can one also consider more ‘realistic’
black holes, or non-BPS and/or non-extremal black holes?

® Multi-center solutions, domain of stability, etc. Why do
things work so well? More work is needed!







