
ON THE 
STATISTICAL INTERPRETATION 
OF BLACK HOLE ENTROPY

24 July  2009
NITheP - Stellenbosch S O L

I
U

S
T

I

T
IÆILL

U
S

T
R

A

N
O SBernard de Wit

Utrecht University



There is astrophysical evidence for black holes in Nature

Black hole solutions exist in Einstein’s theory of general relativity

Black hole solutions exhibit a horizon: nothing can escape 
(at least not classically) from behind the horizon

Laws of black hole mechanics

Laws of thermodynamics

Key facts :

There is a surprising relation  between: 

Schwarzschild radius RS = 2M GN



Bekenstein-Hawking area lawHawking temperature
Surface gravity

Black hole mechanics                   Thermodynamics

δE = T δS − p δV

δM =
κs

2π

δA

4
+ φ δQ + Ω δJ

T ↔ κs

2π
S ↔ A

4

Planck units!

Bardeen, Carter, Hawking, 1973



Charged Black Holes 

charged, static, spherically symmetric, solutions to Einstein-Maxwell theory 

Reissner-Nordstrom black holes:  

Extremal black holes have zero temperature

BPS Partially supersymmetric

Naturally embedded in extended supergravity 

P, Q magnetic/electric

GN M2 = P 2 + Q2

GN M2 < P 2 + Q2

GN M2 > P 2 + Q2

naked singularity, 
physically unacceptable 

extremal, horizons coalesce

non-extremal, two horizons 



Question: statistical interpretation of black hole entropy ?

STRING THEORY provides new insights Strominger, Vafa, 1996

Important:  string theory lives in more than 4 space-time dimensions

Compactification of extra dimensions                  Kaluza-Klein

effective field theory determines/describes geometry of extra dimensions

extended objects may get entangled in non-trivial cycles

two phases: macroscopic black holesgs Q! 1

gs Q! 1

Rhor

ls
∼ gs Q

microscopic black holes



space-time internal (compact) space⊗

FIELD THEORY Φ(x, y)
massless fields Φ(x, y) = φ(x) η(y)

!DΦ = !xΦ + ∆yΦ = 0

mass term

harmonic∆yη(y) = 0massless

non-compact space-time

compact internal space

xµ
ym



where      is the size of the extra dimension L

at each point in space-time there exists
an internal manifold of the same topology 

generically:  masses of order 
1
L

This describes the local degrees of freedom à la Kaluza-Klein



xµ

More realistically .........  there is no reason why 
these tori should have the same shape and size !



xµ

Shape and size of the internal manifold encoded in the 4-dimensional fields

curved space-time !

black hole ?



xµ

BLACK HOLE



How can black holes arise as consistent solutions of the 

low-energy effective field theory ?

Poincaré duality   provides a relation between the wrapping 

of extended objects around non-trivial cycles 

and the fields of the low-energy effective action

CYCLES    dual to    HARMONIC FORMS

harmonic one-forms

HOMOLOGY CO-HOMOLOGY

A− cycle

B − cycle



EXTREMAL black hole   ⇔    1/2 BPS black hole

FLAT space-time CURVED space-time

SUPERSYMMETRYsuperstrings supergravity

microscopic macroscopic

residual supersymmetry leads to stable extrapolation in gs



relevant degrees of freedom :

microscopically

massless excitations of the wrapped 5-brane

these degrees of freedom are described by a 2-dimensional 
(super)conformal theory on S1

with central charge defined by the pA

11-dimensional space-time → Mink4 × CY3 × S1

5-brane wrapped around P4
momentum

pA q0



Apply Cardy’s formula for degeneracy of states at large q0

MICROSCOPIC ENTROPY 

Smacro = 2π

√
1
6

|q̂0| (CABC pApBpC + c2A pA)

triple intersection number second Chern class

Maldacena, Strominger, Witten, 1997

Vafa, 1997
subleading correction !c2A

membrane charges : q̂0 = q0 − 1
2CABqAqB CAB = CABC pC

p0 = 0



macroscopic

CY3 × S1 :  32 → 8 supersymmetries 

classical solutions :
generalized (extremal) Reissner-Nordstrom black holes

how to calculate ?

vector supermultiplets coupled to N=2 supergravity : 

XI = X0, XAscalars: complex 

Wµ
I = Wµ

0, WA
µvectors: charges p0 q0 qApA

winding momentum membrane charges

p0

q0 qApA

effective field theory N=2 supergravity  



Bertotti-Robinson geometry flat Minkowski space-time

determined by determines black hole massXI |horizon p, q

ATTRACTOR MECHANISM Ferrara, Kallosh, Strominger, 1995

solitonic solutions with residual N=1 supersymmetry (BPS) 

r

horizon

N=2

spatial ∞
N=2

horizon fixed point

spatial infinity
XI N=1



ATTRACTOR MECHANISM

behaviour at the horizon is determined by the charges 

(special Kähler geometry)

which change as a function of  r

parametrize the CY3XI(r)the   (projectively)



N=2 supergravity Lagrangians are encoded in
holomorphic homogeneous functions:

HOW TO CALCULATE ?

F (λ X) = λ2 F (X)
At the horizon, use rescaled variables XI −→ Y I

reduces to an algebraic problem

with
AREA

GN
= 4π |Z|2 |Z|2 = pI FI(Y )− qI Y I

attractor equations
Y I − Ȳ I = i pI

FI(Y )− F̄I(Ȳ ) = i qI
FI(Y ) ≡ ∂IF (Y )



EXAMPLE F (Y ) = −1
6

CABC Y AY BY C

Y 0

this represents the leading term of the microscopic result :  
it scales quadratically in the charges!

Smacro(p, q) = π |Z|2 = 2π

√
1
6

|q̂0| CABC pApBpC

AREA LAW ⇒ entropy ⇒



Subleading corrections:

F (λY, λ2Υ) = λ2 F (Y,Υ)
 dependence leads to terms                        in effective field theory ∝ (Rµνρ

σ)2

attractor mechanism:  at the horizon Υ = −64

EXAMPLE:

F (Y,Υ) = −1
6

CABC Y AY BY C

Y 0
− c2A Y A

24 · 64 Y 0
Υ

extend with one ‘extra’ complex field, 
originating from pure supergravity.
homogeneity preserved:

Υ



general N=2 formula:

leads indeed to the microscopic result

Smacro = 2π

√
1
6

|q̂0| (CABC pApBpC + c2A pA)

full agreement!

Smacro = π |Z|2 − 256 Im FΥ(Y,Υ)
∣∣∣
Υ=−64

modificationAREA
4 GN

Cardoso, de Wit, Mohaupt, 1998

Wald, 1993

to ensure the validity of the first law of black hole mechanics, 
one must modify the definition of black hole entropy. 

INSTEAD:
use Wald’s prescription based on a Noether surface charge.



A(p, q)
4 GN

=
CABC pApBpC + 1

2c2ApA

CABC pApBpC + c2A pA
Smacro(p, q)

violates the Bekenstein-Hawking  area law !

LARGE black holes: CABC pApBpC != 0
finite classical area  and entropy S = O(Q2) Rhor ! ls

CABC pApBpC = 0SMALL black holes:

vanishing classical area and finite entropy S = O(Q) Rhor ≈ ls



Indicative of a more general situation: BPS entropy function

variational principle ! 

entropy function 

stationary (attractor equations)

Σ(Y, Ȳ , p, q)
∂Y Σ(Y, Ȳ , p, q) = 0 → Y ∗(p, q)

Smacro = π Σ
∣∣∣
Y ∗(p,q)

How to further explore the relation between 
macroscopic and microscopic descriptions ? 

Consider heterotic black holes 



Heterotic black holes 

two types of BPS states :

on      , dual to type-IIA on T 6 K3× T 2

N=4 supersymmetry,   T-  and  S-duality

Smacro =
A

4 GN
= π

√
q2p2 − (q · p)2classical result :

zero classical area 

1/4 BPS        ‘dyonic’

1/2 BPS        ‘electric’

q2p2 − (p · q)2 > 0

q2p2 − (p · q)2 = 0

also for CHL black holes Chaudhuri, Hockney, Lykken,1995

q2 p2 p · q T-duality invariant bilinears

Bergshoeff et. al.,1996

Cvetic, Tseytlin, 1995



microscopic results

formally S-duality invariant 

related to perturbative string states

1/4 BPS states

Ω =
(

ρ υ
υ σ

)
period matrix of g=2 Riemann surface

1/2 BPS states

dyonic degeneracies

3− cycle

dk(p, q) =
∮

dΩ
eiπ[ρ p2+σ q2+(2υ−1)p·q]

Φk(Ω)

Shih, Strominger, Yin, 2005

Dijkgraaf, Verlinde, Verlinde, 1997

Jatkar, Sen, 2005

Dabholkar, Harvey, 1989

1− cycle

electric degeneracies dk(q) =
∮

dσ σk+2 eiπ q2σ

f (k)(−1/σ)

k = 10, 6, 4, 2, 1



Asymptotic growth  (1/4 BPS)

saddle-point approximation reproduces the macroscopic results 
based up to terms inversely proportional to the charges !

this reproduces  instanton corrections and non-holomorphic terms!

Cardoso, dW, Käppeli, Mohaupt, 2004 (k = 10)
Jatkar, Sen, 2005 (k = 6, 4, 2, 1)

for ‘large’ dyonic charges             
dilaton     can remain finite

q2, p2, p · q

S

Σ(S, S̄, p, q) = −q2 − ip · q(S − S̄) + p2|S|2

S + S̄
+ 4 Ω(S, S̄,Υ, Ῡ)

non-holomorphic

Ω =
1

128π

[
Υ log η12(S) + Ῡ log η12(S̄) + 1

2 (Υ + Ῡ) log(S + S̄)6
]

Corresponding entropy function: Cardoso, de Wit, Mohaupt, 1999



CONCLUSIONS

The statistical interpretation of black hole entropy as inspired 
by string theory can successfully describe, both qualitatively 
and quantitatively, the black hole degrees of freedom.

At the moment there exists a large variety of models where 
this interpretation applies, in both four- and five-dimensional  
space-times.

Many open questions remain. For instance, can these results 
be extended beyond the leading and subleading level? Or 
can one also consider more `realistic’ black holes? And what 
about non-BPS and/or non-extremal black holes?

In other words, do we really understand why things work 
so well?




