ON THE STATISTICAL INTERPRETATION OF BLACK HOLE ENTROPY

NITheP - Stellenbosch 24 July 2009 Bernard de Wit Utrecht University

Black hole solutions exist in Einstein's theory of general relativity

Black hole solutions exhibit a horizon: nothing can escape (at least not classically) from behind the horizon

Schwarzschild radius $R_{
m S}=2\,M\,G_{
m N}$

There is astrophysical evidence for black holes in Nature There is a surprising relation between:

- Laws of black hole mechanics
- Laws of thermodynamics

Bardeen, Carter, Hawking, 1973

$$\begin{split} \delta E &= T \, \delta S - p \, \delta V \\ \delta M &= \frac{\kappa_{\rm s}}{2\pi} \, \frac{\delta A}{4} + \phi \, \delta Q + \Omega \, \delta J \end{split}$$

Planck units!

 $T \leftrightarrow \frac{\kappa_{\rm s}}{2\pi}$

Hawking temperature Surface gravity

 $S \leftrightarrow \frac{A}{A}$

Bekenstein-Hawking area law

Charged Black Holes

Reissner-Nordstrom black holes:

charged, static, spherically symmetric, solutions to Einstein-Maxwell theory

P, Q magnetic/electric $G_{\rm N} M^2 > P^2 + Q^2$ $G_{\rm N} M^2 = P^2 + Q^2$ $G_{\rm N} M^2 < P^2 + Q^2$

non-extremal, two horizons

extremal, horizons coalesce

naked singularity, physically unacceptable

Extremal black holes have zero temperature

BPS — Partially supersymmetric

Naturally embedded in extended supergravity

Question: statistical interpretation of black hole entropy?

STRING THEORY provides new insights Strominger, Vafa, 1996

Important: string theory lives in more than 4 space-time dimensions

Compactification of extra dimensions — Kaluza-Klein

• effective field theory determines/describes geometry of extra dimensions

• extended objects may get entangled in non-trivial cycles

• $\frac{R_{\rm hor}}{l_{\rm s}} \sim g_{\rm s} Q$ • two phases: $g_{\rm s} Q \gg 1$ macroscopic black holes $q_{\rm s} \, Q \ll 1$ microscopic black holes

• generically: masses of order $\frac{1}{L}$

where L is the size of the extra dimension

- This describes the local degrees of freedom à la Kaluza-Klein
- at each point in space-time there exists an internal manifold of the same topology

More realistically there is no reason why these tori should have the same shape and size !

Shape and size of the internal manifold encoded in the 4-dimensional fields

black hole ?

How can black holes arise as consistent solutions of the low-energy effective field theory ?

Poincaré duality provides a relation between the wrapping of extended objects around non-trivial cycles and the fields of the low-energy effective action

CYCLES dual to HARMONIC FORMS

FLAT space-time CURVED space-time

EXTREMAL black hole ⇔ 1/2 *BPS* black hole

residual supersymmetry leads to stable extrapolation in g_s

microscopic macroscopic

microscopically relevant degrees of freedom : massless excitations of the wrapped 5-brane 11-dimensional space-time $\rightarrow Mink_4 \times CY_3 \times S^1$ 5-brane wrapped around P_4 \downarrow p^A q_0 momentum

these degrees of freedom are described by a 2-dimensional (super)conformal theory on $\ S^1$ with central charge defined by the $\ p^A$

Apply Cardy's formula for degeneracy of states at large q_0

MICROSCOPIC ENTROPY

$$S_{\text{macro}} = 2\pi \sqrt{\frac{1}{6}} \hat{|q_0|} \begin{pmatrix} C_{ABC} p^A p^B p^C + c_{2A} p^A \end{pmatrix}}{\uparrow}$$

$$i_{\text{triple intersection number}} \quad i_{\text{second Chern class}}$$

$$membrane \text{ charges}: \quad \hat{q}_0 = q_0 - \frac{1}{2}C^{AB}q_Aq_B \qquad C_{AB} = C_{ABC} p^C$$

$$p^0 = 0$$

 c_{2A} subleading correction !

Maldacena, Strominger, Witten, 1997 Vafa, 1997

macroscopic $CY_3 \times S^1: 32 \rightarrow 8$ supersymmetries

→ effective field theory N=2 supergravity

winding	momentum	membrane charges
p^A	${q_0\over p^0}$	q_A

vector supermultiplets coupled to N=2 supergravity :

scalars: $X^{I} = X^{0}, X^{A}$ complex vectors: $W_{\mu}{}^{I} = W_{\mu}{}^{0}, W_{\mu}^{A}$ charges $p^{0} q_{0} p^{A} q_{A}$

classical solutions :

generalized (extremal) Reissner-Nordstrom black holes *how to calculate ?*

solitonic solutions with residual N=1 supersymmetry (BPS)

ATTRACTOR MECHANISM

Ferrara, Kallosh, Strominger, 1995

ATTRACTOR MECHANISM

behaviour at the horizon is determined by the charges the $X^{I}(r)$ parametrize the CY_{3} (projectively)

which change as a function of r

(special Kähler geometry)

HOW TO CALCULATE ?

N=2 supergravity Lagrangians are encoded in holomorphic homogeneous functions:

$$F(\lambda X) = \lambda^2 F(X)$$

At the horizon, use rescaled variables reduces to an algebraic problem

$$X^I \longrightarrow Y^I$$

attractor equations

$$Y^{I} - \bar{Y}^{I} = i p^{I}$$
$$F_{I}(Y) - \bar{F}_{I}(\bar{Y}) = i q_{I}$$
$$F_{I}(\bar{Y}) = i q_{I}$$

 $F_I(Y) \equiv \partial_I F(Y)$

$$\frac{\mathrm{AREA}}{G_{\mathrm{N}}} = 4\pi \, |Z|^2 \qquad \mathrm{with}$$

$$|Z|^2 = p^I F_I(Y) - q_I Y^I$$

EXAMPLE
$$F(Y) = -\frac{1}{6} \frac{C_{ABC} Y^A Y^B Y^C}{Y^0}$$

AREA LAW \Rightarrow entropy \Rightarrow

$$S_{\text{macro}}(p,q) = \pi |Z|^2 = 2\pi \sqrt{\frac{1}{6}} |\hat{q}_0| C_{ABC} p^A p^B p^C$$

this represents the leading term of the microscopic result : it scales quadratically in the charges!

Subleading corrections:

extend with one 'extra' complex field, originating from pure supergravity. homogeneity preserved:

$$F(\lambda Y, \lambda^2 \Upsilon) = \lambda^2 F(Y, \Upsilon)$$

dependence leads to terms $\propto (R_{\mu\nu\rho}{}^{\sigma})^2$ in effective field theory

attractor mechanism: at the horizon

$$\Upsilon = -64$$

EXAMPLE:

$$F(Y,\Upsilon) = -\frac{1}{6} \frac{C_{ABC} Y^A Y^B Y^C}{Y^0} - \frac{c_{2A} Y^A}{24 \cdot 64 Y^0} \Upsilon$$

to ensure the validity of the first law of black hole mechanics, one must modify the definition of black hole entropy.

INSTEAD: use Wald's prescription based on a Noether surface charge.

Wald, 1993

general N=2 formula:

leads indeed to the microscopic result

$$S_{\text{macro}} = 2\pi \sqrt{\frac{1}{6}} |\hat{q}_0| \left(C_{ABC} \, p^A p^B p^C + c_{2A} \, p^A \right)$$

full agreement!

Cardoso, de Wit, Mohaupt, 1998

violates the Bekenstein-Hawking area law !

$$\frac{A(p,q)}{4G_{\rm N}} = \frac{C_{ABC} p^A p^B p^C + \frac{1}{2} c_{2A} p^A}{C_{ABC} p^A p^B p^C + c_{2A} p^A} S_{\rm macro}(p,q)$$

LARGE black holes: $C_{ABC} p^A p^B p^C \neq 0$ finite classical area and entropy $S = \mathcal{O}(Q^2)$ $R_{hor} \gg l_s$

SMALL black holes: $C_{ABC} p^A p^B p^C = 0$ vanishing classical area and finite entropy $S = \mathcal{O}(Q)$ $R_{\rm hor} \approx l_{\rm s}$

Indicative of a more general situation: BPS entropy function

entropy function
$$\Sigma(Y, \bar{Y}, p, q)$$

stationary $\partial_Y \Sigma(Y, \bar{Y}, p, q) = 0 \rightarrow Y^*(p, q)$ (attractor equations)
 $S_{\text{macro}} = \pi \Sigma \Big|_{Y^*(p,q)}$

variational principle !

How to further explore the relation between macroscopic and microscopic descriptions ?

Heterotic black holes

on T^6 , dual to type-IIA on $K3 \times T^2$ also for CHL black holes N=4 supersymmetry, T- and S-duality

classical result :
$$S_{\text{macro}} = \frac{A}{4 G_{\text{N}}} = \pi \sqrt{q^2 p^2 - (q \cdot p)^2}$$

 $q^2 p^2 p \cdot q$ T-duality invariant bilinears

Cvetic, Tseytlin, 1995 Bergshoeff et. al.,1996

two types of BPS states :

1/4 BPS'dyonic' $q^2p^2 - (p \cdot q)^2 > 0$ 1/2 BPS'electric' $q^2p^2 - (p \cdot q)^2 = 0$

zero classical area

microscopic results

1/4 BPS statesdyonic degeneracies $d_k(p,q) = \oint d\Omega \frac{e^{i\pi[\rho p^2 + \sigma q^2 + (2v-1)p \cdot q]}}{\Phi_k(\Omega)}$ k = 10, 6, 4, 2, 13 - cycle $\Omega = \begin{pmatrix} \rho & v \\ v & \sigma \end{pmatrix}$ period matrix of g=2 Riemann surfaceDijkgraaf, Verlinde, Verlinde, 1997
Shih, Strominger, Yin, 2005
Jatkar, Sen, 2005

1/2 BPS states
electric degeneracies
$$d_k(q) = \oint_{1-\text{cycle}} d\sigma \ \sigma^{k+2} \frac{\mathrm{e}^{\mathrm{i}\pi \ q^2 \sigma}}{f^{(k)}(-1/\sigma)}$$

related to perturbative string states

Dabholkar, Harvey, 1989

Asymptotic growth (1/4 BPS)

for 'large' dyonic charges $q^2, p^2, p \cdot q$ dilaton S can remain finiteCardoso, dW

Cardoso, dW, Käppeli, Mohaupt, 2004 (k = 10)Jatkar, Sen, 2005 (k = 6, 4, 2, 1)

saddle-point approximation reproduces the macroscopic results based up to terms inversely proportional to the charges !

 $\begin{aligned} & \text{Corresponding entropy function:} & \text{Cardoso, de Wit, Mohaupt, 1999} \\ & \Sigma(S, \bar{S}, p, q) = -\frac{q^2 - ip \cdot q(S - \bar{S}) + p^2 |S|^2}{S + \bar{S}} + 4\,\Omega(S, \bar{S}, \Upsilon, \bar{\Upsilon}) \\ & \Omega = \frac{1}{128\pi} \Big[\Upsilon \, \log \eta^{12}(S) + \bar{\Upsilon} \, \log \eta^{12}(\bar{S}) + \frac{1}{2}(\Upsilon + \bar{\Upsilon}) \, \log(S + \bar{S})^6 \Big] \\ & \uparrow \\ & \text{non-holomorphic} \end{aligned}$

this reproduces instanton corrections and non-holomorphic terms!

CONCLUSIONS

The statistical interpretation of black hole entropy as inspired by string theory can successfully describe, both qualitatively and quantitatively, the black hole degrees of freedom.

At the moment there exists a large variety of models where this interpretation applies, in both four- and five-dimensional space-times.

Many open questions remain. For instance, can these results be extended beyond the leading and subleading level? Or can one also consider more `realistic' black holes? And what about non-BPS and/or non-extremal black holes?

In other words, do we really understand why things work so well?