ON.THE
STATISTICAL INTERPRE TATION
OF BLACK HOLE ENTROPY

NITheP - Stellenbos?:h " Bernard de Wit*

24 July 2009 . Utrecht University m




Key facts :

Black hole solutions exist in Einstein’s theory of general relativity

Black hole solutions exhibit a horizon: nothing can escape
(at least not classically) from behind the horizon

Schwarzschild radius Rs =2 M Gy

There is astrophysical evidence for black holes in Nature

There is a surprising relation between:

= Laws of black hole mechanics

= Laws of thermodynamics




Black hole mechanics =@ Thermodynamics

Bardeen, Carter, Hawking, 1973
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Charged Black Holes

Reissner-Nordstrom black holes:

charged, static, spherically symmetric, solutions to Einstein-Maxwell theory

P, Q magnetic/electric

Gy M2 > P2 -+ Q2 non-extremal, two horizons

2 2 2

GN M* =P -+ Q extremal, horizons coalesce
2 2 2 : :

GN M~ < P? + Q naked singularity,

physically unacceptable

Extremal black holes have zero temperature
BPS —==== Partially supersymmetric

Naturally embedded in extended supergravity




Question: statistical interpretation of black hole entropy ?

STRING THEORY provides new insights Strominger,Vafa, 1996

Important: string theory lives in more than 4 space-time dimensions

Compactification of extra dimensions === Kaluza-Klein

@ effective field theory determines/describes geometry of extra dimensions

@ extended objects may get entangled in non-trivial cycles

@ twophases: g5 () > 1  macroscopic black holes

gs () <1  microscopic black holes




1 compact internal space
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FIELD THEORY (I)(ZE, y)

massless fields (I)(QZ’, y) — ¢($) 77(?/)

2P+ AP =0
\

mass term

massless <—> A, n(y) =0 <—>  harmonic




O generically: masses of order

L

where L is the size of the extra dimension

O This describes the local degrees of freedom a la Kaluza-Klein

O at each point in space-time there exists
an internal manifold of the same topology
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More realistically there is no reason why
these tori should have the same shape and size !
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Shape and size of the internal manifold encoded in the 4-dimensional fields

=» curved space-time !

black hole ?







How can black holes arise as consistent solutions of the
low-enerqgy effective field theory ?

Poincaré duality provides a relation between the wrapping
of extended objects around non-trivial cycles

and the fields of the low-energy effective action

CYCLES HARMONIC FORMS
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~LAT space-time CURVED space-time

EXTREMAL black hole & 1/2 BPS black hole

residual supersymmetry leads to stable exirapolation in gs

superstrings <—— SUPERSYMMETRY —>  supergravity

MICrOSCOoPIC Macroscopic




microscopically

relevant degrees of freedom :
massless excitations of the wrapped 5-brane

11-dimensional space-time — Mink, x CY3 x S

5-brane wrapped around l
momentum
l >

A
P qo

these degrees of freedom are described by a 2-dimensional
(super)conformal theory on S

with central charge defined by the pA




Apply Cardy’s formula for degeneracy of states at large g

MICROSCOPIC ENTROPY

L.
Smacro = 27?\/ 6\610\ (Capc p?pPp© + coa p?)
A 1

triple intersection number second Chern class

membrane charges : qAO = (o — %CABQAQB OAB — CABC pC

p’ =0

C2A subleading correction ! Maldacena, Strominger, Witten, 1997
Vafa, 1997




Macroscopic
CY5 x St: 32 = 8 supersymmetries
—> effective field theory N=2 supergravity

winding momentum membrane charges

pA qo dA

pO

vector supermultiplets coupled to N=2 supergravity :

scalars: X! = XO, x4 complex

vectors: WMI =Ww,", W:‘ charges p°’ qo p” qa

classical solutions :
generalized (extremal) Reissner-Nordstrom black holes

how to calculate ?




solitonic solutions with residual N=1 supersymmetry (BPS)

x! < N=1
A

horizon fixed point

/

N=2

horizon

Bertotti-Robinson geometry

X' horizon determined by p, ¢

ATTRACTOR MECHANISM

spatial infinity

\

N=2
spatial OO

flat Minkowski space-time

determines black hole mass

Ferrara, Kallosh, Strominger, 1995




ATTRACTOR MECHANISM

behaviour at the horizon is determined by the charges

the X! (r) parametrize the CY 3 (projectively)

which change as a function of 1

(special Kédhler geometry)




HOW TO CALCULATE ?

N=2 supergravity Lagrangians are encoded in
holomorphic homogeneous functions:

FIAX)=MNF(X)

At the horizon, use rescaled variables X' —— Y/
reduces to an algebraic problem

attractor equations

AREA
GN

=47 |Z|*  with




EXAMPLE

AREA LAW = entropy =

L,
Smacro(pa Q) — T ’Z‘Z — 271—\/6‘(]0‘ CABC pApoC

this represents the leading term of the microscopic result :
it scales quadratically in the charges!




Subleading corrections:

extend with one ‘extra’ complex field,
originating from pure supergravity. Y
homogeneity preserved:

FOY,\*T) = F(Y,T)

dependence leads to terms o (pr")2 in effective field theory

attractor mechanism: at the horizon YT = —64

EXAMPLE:

1 CABC’ YAYBYC Co2A YA
Yo 24 - 64 Y

F(Y,T) =




to ensure the validity of the first law of black hole mechanics,
one must modify the definition of black hole entropy.

INSTEAD:
use Wald'’s prescription based on a Noether surface charge.

Wald, 1993
general N=2 formula:

Sinnero = 7 | Z|2 — 256 Im Fy (Y, T)‘

l l

AREA modification
4 GN

leads indeed to the microscopic result

T=—-64

L .
Smacro — 27—‘-\/6‘QO| (CABC’p P pC + CoA D )

full agreeme nt! Cardoso, de Wit, Mohaupt, 1998




violates the Bekenstein-Hawking area law !
A(p,q)  Capcp?®p®p® + 5c2ap?

4 G Capc pApBpt + caa pA

Smacro (p7 Q)

LARGE black holes: Capc p-pPp® # 0

finite classical area and entropy S=0 (QZ) Ruor > [

SMALL black holes:  Canc p’ pPp =0

vanishing classical area and finite entropy S = O(Q) Rhor ~ ls




Indicative of a more general situation: BPS entropy function

entropy function (Y, Y, p, q)
stationary ayE(Y, Y,p, q) -0 —-Y" (p, q) (attractor equations)

Smacro = T X
Y*(p,q)

variational principle !

How to further explore the relation between
macroscopic and microscopic descriptions ?

-3 (Consider heterotic black holes




Heterotic black holes

on T®, dual to type-lIAon K3 x T?
also for CHL black holes Chaudhuri, Hockney, Lykken, 1995
N=4 supersymmetry, |- and S-duality

A
classical result :  Shacro = — W\/q2p2 — (6] -p)2
4 GN

q2 p2 D - q  T-duality invariant bilinears Cvetic, Tseytlin, 1995

Bergshoeff et. al., 1996

two types of BPS states :
1/4BPS  ‘dyonic’ ¢°p> — (p-q)* >0

1/2 BPS ‘electric’ q2p2 — (p : q)2 =0

zero classical area




microscopic results

1/4 BPS states - . i [p P2 +0 ¢ +(20—1)p-q]
dyonic degeneracies dp. p,q) = ]{d
P (©2)

3 — cycle

k=10,6,4,2,1
Dijkgraaf, Verlinde, Verlinde, 1997

Shih, Strominger, Yin, 2005

) = (U (1;) period matrix of g=2 Riemann surface

formally S-duality invariant Jatkar, Sen, 2005

1/2 BPS states
C
electric degeneracies dk (Q) — j{d(f Ok+2 f(k) (_1/0)

1 — cycle

177 q20

related to perturbative string states Dabholkar, Harvey, 1989




Asymptotic growth (7/4 BPS)

for ‘large’ dyonic charges q2, p2, p-q

dilaton S can remain finite Cardoso, dW, Képpeli, Mohaupt, 2004 (k = 10)
Jatkar, Sen, 2005 (k = 6,4,2,1)

saddle-point approximation reproduces the macroscopic results
based up to terms inversely proportional to the charges !

Corresponding entropy function: Cardoso, de Wit, Mohaupt, 1999
2 . _ 2 2
. qgc —ip-q(S —S) + p*|9]
E S 3 S s M — =~
( f” S+ 25

Q= T logn™(S) + T logn™(S) + (Y + 1) log(SJrS)G]

non-holomorphic

+4Q(8,5,1T,7)

this reproduces instanton corrections and non-holomorphic terms!




CONCLUSIONS

@ The statistical interpretation of black hole entropy as inspired
by string theory can successfully describe, both qualitatively
and quantitatively, the black hole degrees of freedom.

@ At the moment there exists a large variety of models where
this interpretation applies, in both four- and five-dimensional
space-times.

@ Many open questions remain. For instance, can these results
be extended beyond the leading and subleading level? Or
can one also consider more ‘realistic’ black holes? And what
about non-BPS and/or non-extremal black holes?

@® In other words, do we really understand why things work
so well?







