
GOSU: computing GOal SUpport with commitments in
multiagent systems

Özgür Kafalı1 and Akın Günay2 and Pınar Yolum3

Abstract. Goal-based agent architectures have been one of the most
effective architectures for designing agents. In such architectures, the
state of the agent as well as its goal set are represented explicitly.
The agent then uses its set of actions to reach the goals in its goal
set. However, in multiagent systems, most of the time, an agent can-
not reach a goal only using its own actions but needs other agents
to act as well. Commitments have been successfully used to regulate
those interactions between agents. This paper proposes a framework
and an environment for agents to manage the relations between their
commitments and goals. More specifically, we provide an algorithm
called GOSU to compute if a given set of commitments can be used
to achieve a particular goal. We describe how GOSU can be imple-
mented using the Reactive Event Calculus and demonstrate its capa-
bilities over a case study.

1 Introduction
The Web is witnessing a shift of usership. The traditional Web has
been meant to be used for humans to access Web pages. However,
as the Web became a place to do business as well as daily activities,
humans are in need of software to manage their tasks. The abstraction
of an agent that can perceive the environment, reason on behalf of its
user, and act as well as communicate in accordance with its users’
goals is needed more than ever.

Various agent architectures exist. Among these, goal-based archi-
tectures have been especially useful in e-commerce, where the tasks
that a user is taking can be mapped to goal representations. Different
goal types, such as achievement or maintenance, have been identi-
fied and formalized in the literature [13]. The idea with goal-based
architectures is that if the agent actions and goals are known, then
the agent can act in order to achieve the goals. However, it is well-
known now that no agent is an island. Agents must communicate
and cooperate with others to satisfy certain goals. We capture these
interactions as commitments [9]. Through the abstraction of goals
and commitments two important aspects of cooperation can be ad-
dressed. First, each agent can represent and work toward its user’s
tasks and second each agent can interact and get help from other
users if needed. By representing the user’s goal, an agent can reason
on its current state to check if the goals have been achieved and if not
what actions need to be taken to achieve them. By representing, the
user’s commitments to others, it can manage the tasks that need to be
fulfilled and the tasks that will be done by others in return.

1 Department of Computer Science, Royal Holloway, University of London,
United Kingdom, email: ozgur.kafali@rhul.ac.uk

2 School of Computer Engineering, Nanyang Technological University, Sin-
gapore, email: akingunay@ntu.edu.sg

3 Department of Computer Engineering, Bogazici University, Turkey, email:
pinar.yolum@boun.edu.tr

Consider the dealings of a service provider with a user as a run-
ning example. The user has a goal of buying items and having them
delivered in the following day. The user is not necessarily aware of
the goals’ of the service provider but there is a commitment between
them that declares if the user pays a yearly premium, then the service
provider will deliver the following day. Such dealings are common
in e-commerce. When we, as humans are faced with such cases, we
make inferences as to whether our existing commitments will enable
us to reach our goal. When an agent faces this situation, it should do
the same and decide whether its commitments are good enough to
enable it to reach its goal.

This paper develops an algorithm for computing whether a given
set of commitments are enough to satisfy an agent’s goal. Each com-
mitment in the set can be temporal, therefore representing the con-
tractual agreements more realistically. Existing work that analyzes
some of these relations have looked at the relations statically without
taking into account the current state or constraints of the agent [8].
Contrary to that, here we represent the both current state of the agent
and the constraints it has explicitly. Further, the commitments are as-
sociated with temporal properties to reflect many natural situations
in real-life [1]. With the above setup, an agent can decide, whether it
can achieve a particular goal, given its set of existing commitments,
constraints, and current state.

The rest of this paper is organized as follows. Section 2 describes
our technical framework with background on goals and commit-
ments. Section 3 develops our algorithm for computing relations be-
tween goals and commitments. Section 4 examines the algorithms
over a case study. Finally, Section 5 discusses the work in relation to
related work.

2 Framework

A goal of an agent represents what the agent aims to achieve when
acting in a multiagent system. For instance, the user might have the
goal to receive an item by the next day that follows the purchase of
the item. Each agent in a multiagent system has its own goals, which
are not necessarily shared or agreed upon with others. The lifecycle
of a goal has been studied before [10, 13]. In this paper we consider
only active achievement goals of an agent. However, our work can
be extended to work with a more complex goal lifecycle. An active
goal is satisfied when the goal is achieved and failed, otherwise.

A commitment is a contractual binding between a debtor and a
creditor. A commitment is denoted by C(x, y, pant, pcon) and states
that the debtor agent x is committed to the creditor agent y to sat-
isfy the consequent pcon, if the antecedent pant holds [9]. For in-
stance,C(provider, user, paid, delivered) denotes that the service
provider is committed to the user to deliver an item (i.e., delivered

conditional

expired

active

fulfilled

violated

expire

detach

discharge

cancel

Figure 1. Lifecycle of a commitment.

holds), if the user purchases the item (i.e., paid holds). While the
goals of an agent can be private, a commitment between two agents
is public such that both parties are aware of its existence.

Temporal constraints may be associated with the antecedent and
consequent of a commitment, in order to capture real world situa-
tions, such as business contracts, more precisely. In this paper we
consider interval constraints over the antecedents and consequents
of commitments. These temporal constraints correspond to the fact
that the antecedent or the consequent need to be realized during the
associated interval. For instance, in order to get a discount, the user
might have to accept an offer within 24 hours. In another example,
the service provider might be committed to deliver a purchased item
within three days after the payment.

The lifecycle of a commitment has been studied extensively in the
literature, e.g., [1, 15]. Here, we use a simplified commitment lifecy-
cle that is sufficient to study whether an agent can support a goal of
interest with respect to its commitments. Figure 1 shows this lifecy-
cle, where rounded rectangles represent the states of the commitment
(bold ones are terminal states) and edge labels are the operations on
the commitment. Initially, the commitment is created in conditional
state. If the antecedent starts to hold (e.g., provider gets paid), the
commitment is detached and becomes active. If the antecedent fails
to hold (e.g., user does not pay), the commitment becomes expired.
If the consequent starts to hold (e.g., the item is delivered on time),
the commitment is discharged and becomes fulfilled. Finally, if the
consequent fails to hold while the commitment is active (e.g., the
item is not delivered on time), it becomes violated.

2.1 Formalization

In this section we formalize our framework elements (e.g., goals,
commitments, etc.). Below, Φ is a set of propositional symbols and
LΦ is a language of propositional logic over Φ, with operators
∧,∨,→,¬ in traditional semantics and symbols > and ⊥ to denote
true and false sentences, respectively.Agn is a set of agent identifiers
and Act is a set of action symbols.
P (φ, ts, te) denotes a property where φ is a disjunctive normal

form formula in LΦ and ts, te ∈ Z+. A property defines an interval
constraint for the satisfaction of a propositional formula. Technically,
the property is satisfied, if φ holds at some time t between ts and te
(i.e., ts ≤ t ≤ te). If φ does not hold at a particular time between ts
and te, then the property is pending. On the other hand, if φ does not
hold at any time between ts and te, then the property is failed.
A(x, p, a, φe) denotes an action where x ∈ Agn is the agent that

can take the action a ∈ Act, if property p, which is the precondition,
holds. φe is a conjunction in LΦ that represents the effect of this ac-
tion. G(p) denotes a goal where p is a property. The goal is satisfied
if p is satisfied and failed if p is failed. C(x, y, pant, pcon) denotes a
commitment. x, y ∈ Agn are the debtor and creditor agents, respec-
tively. pant and pcon are properties that represent the antecedent and
consequent of the commitment, respectively.

An agent is a tuple 〈x,G,A, C〉, where x ∈ Agn is an agent iden-
tifier, G is a set of goals, A is a set of actions and C is a set of com-
mitments. x is the unique identifier of the agent. G is the agent’s
goal set. A is the union of two disjoint action sets Ax ⊆ Act and
Ax̄ ⊆ Act. Ax consists of the actions that can be performed by x
(i.e., ∀A(y, p, a, φe) ∈ Ax : y = x). Ax̄ consists of the actions that
can be taken by the other agents (i.e., ∀A(y, p, a, φe) ∈ Ax̄ : y 6=
x). Intuitively, the latter set captures the beliefs of x about the other
agents’ actions. Finally, C is the set of commitments that x enacts.
Below, we use Px as the set of all properties in a given agent x (i.e.,
properties considered in x’s goals, actions and commitments).

Now, we define the semantics of an agent specification with re-
spect to a transition system. Given LΦ and an agent 〈x,G,A, C〉, a
transition system is a tuple 〈S, s0, T, δ, L〉, where:

• S is a set of states such that each state s ∈ S is a composition of
the following variables:

– A variable for each proposition φ ∈ Φ that captures the value
of φ, which is equal to either > or ⊥.

– A variable for each p ∈ Px that captures the state of p, which
is equal to one of the values Pending, Satisfied or Failed.

– A variable for each goal g ∈ G that captures the state of
g, which is equal to one of the values Active, Satisfied or
Faied.

– A variable for each commitment c ∈ C that captures the state of
c, which is equal to one of the following values Conditional,
Active, Expired, Fulfilled or V iolated.

– A variable clock that represents the time associated to the state
as an integer value.

• s0 ⊂ S is the initial state of the transition system.
• T = Act is the set of transition labels that is identical to Act.
• δ : S ×Act 7→ S is the transition function.
• L is a labeling function that assigns the values to the variables of

the states in S.

Below, the entailment relation s |= φ denotes that the formula
φ ∈ LΦ holds in state s with respect to the labeling of the variables
that correspond to the propositions of Φ in s. For convenience we use
pSt, gSt, cSt, and clk functions to access the variables that capture
the states of the properties, goals, commitments and clock in a given
state s, respectively (e.g., cSt(s, c) is the value of the variable that
represents the state of the commitment c in state s).

A transition a ∈ T is enabled in a state s only if the precondition
of the corresponding action inA holds in s. Technically, transition a
is enabled in s, if A(x, p, a, φe) ∈ A and pST (p, s) = Satisfied.

When a transition a from state s to s′ happens, the labeling func-
tion L assigns the values of the variables in s′ with respect to s and
a as follows. The propositions in Φ are assigned to > and ⊥ val-
ues with respect to the effects of a. The variable clock in s′ is set to
clk(s)+1. The value of a variable that capture the states of a pending
property p = P (φ, ts, te) is set by the following rules:

pSt(p, s) = Pending and s′ |= φ and ts ≤ clk(s′) ≤ te
pSt(p, s′)← Satisfied

A pending property is satisfied, if the proposition of the property
holds within its time interval.

pSt(p, s) = Pending and te < clk(s′)

pSt(p, s′)← Failed

A pending property is failed to be satisfied, if the proposition of the
property does not hold at any moment within its time interval (i.e.,
the property is still pending after te). Satisfied and Failed are
terminal states for a property.

The value of a variable that capture the state of a goal g = G(p)
is set by the following rules:

gSt(g, s) = Active and pSt(p, s′) = Satisfied

gSt(g, s′)← Satisfied

An active goal is satisfied, if the property of the goal is satisfied.

gSt(g, s) = Active and pSt(p, s′) = Failed

gSt(g, s′)← Failed

An active goal fails, if the property of the goal is failed. Satisfied
and Failed states of a goal are terminal.

Finally, the values of the variables that capture the states of a com-
mitment c = C(x, y, pant, pcon) is set by the following rules which
correspond to the commitment lifecycle in Figure 1.

cSt(c, s) = Conditional and pSt(pant, s
′) = Satisfied

cSt(c, s′)← Active

cSt(c, s) = Conditional and pSt(pant, s
′) = Failed

cSt(c, s′)← Expired

A conditional commitment becomes active, if the antecedent is satis-
fied, and becomes expired, if the antecedent is failed to be satisfied.

cSt(c, s) = Active and pSt(pcon, s
′) = Satisfied

cSt(c, s′)← Fulfilled

cSt(c, s) = Active and pSt(pcon, s
′) = Failed

cSt(c, s′)← V iolated

An active commitment becomes fulfilled, if the consequent is satis-
fied, and becomes violated, if the consequent is failed to be satisfied.
Expired, V iolated and Fulfilled are terminal commitment states.

2.2 Goal Support
Now, we are ready to define when an active goal of an agent is sup-
ported. Basically, a goal g of an agent x is supported, if g can be
satisfied at some future moment as a result of the agents’ actions.
However, since other agents are autonomous, it is not rational to ex-
pect them to perform certain actions unless they are committed to
do so. For instance, the service provider would not deliver items un-
less she is committed to do so. Accordingly, we first define when one
agent’s beliefs about other agents’ actions are rational.
Rational belief constraint: Given an agent 〈x,G,A, C〉 over lan-
guage LΦ and the corresponding transition system 〈S, s0, T, δ, L〉,
the agent’s beliefs are rational only if there exists a com-
mitment C(y, x, P (ψ, tas , tae), P (φ, tcs , tce)) for each action
A(y, P (ψ′, t′s, t

′
e), a, φ′) ∈ Ax̄ such that ψ → ψ′, φ′ → φ and

t′s ≤ tas < tae ≤ t′e.
That is, it is rational for x to believe that y will perform an action a,

if y is the debtor of a commitment c, such that the effect of a implies
the consequent of c and the antecedent of c implies the precondition
of a. Hence, when c becomes active, a is enabled and moreover y is
committed to do a.

Now, we define an accessibility relation between states, which es-
sentially shows that it is possible to move from one state to another
state via a given set of actions.

Algorithm 1: bool GOSU(s, g,A, C)
Input: g, goal to check for support
Input: s, current state
Input: A, set of actions
Input: C, set of commitments
Output: true if g is supported in s, false otherwise
if gSt(g, s) = Satisfied then1

return true;2

else if gSt(g, s) = Failed then3
return false;4

else5
foreach6
A(y, p, a, φe) ∈ A such that pSt(p, s) = Satisfied do

s′ ← progress(s, a, g,A, C);7
if GOSU(g, s′,A, C) then8

return true;9

return false;10

Accessible state: Given two states s and s′, s′ is accessible from s
(denoted as s s′), if there is a set of transitions such that s× ai ×
si × . . .× a′ × s′.

Finally, we define support for a goal in the context of commit-
ments. The idea we capture is that, an agent with a goal can possibly
reach its goal if it has commitments such that when the other agents
involved in these commitments fulfill their actions, then the goal can
be satisfied. For the other agents to fulfill their commitments, the
agents should as well have the necessary actions, with the right tem-
poral constraints (defined above as rational belief constraint).
Support: Given an agent 〈x,G,A, C〉 that satisfies the rational belief
constraint over language LΦ and the corresponding transition system
〈S, s0, T, δ, L〉, an active goal g ∈ G is supported in s ∈ S, if
there exists a state s′ that is accessible from s (i.e., s s′) and
gSt(g, s′) = Satisfied.

3 Computing Goal Support

Algorithm 1 proposes our procedure, which we call GOSU, to com-
pute whether a goal g is supported in a given state s. GOSU is based
on the definition of accessible state. Basically, GOSU checks whether
there exists a state s′ in which g is satisfied and s′ is accessible from
s. To realize this, GOSU uses depth-first search strategy.

GOSU has the following four input parameters: (i) g is the goal
to check for support, (ii) s is the current state, (iii) A is the set of
actions, and (iv) C is the set of commitments. GOSU returns true if
g is supported in s. Otherwise, it returns false.

GOSU first checks the situation of the goal in the current state of
the agent. If g is already in the satisfied state in s, then there is no
need to check for future states and GOSU returns true (lines 1-2).
Similarly, if g is already in the failed state in s, GOSU immediately
returns false (lines 3-4) since it is not possible to satisfy g any more
in any future state that is accessible from s.

If g is neither satisfied nor failed in the current state s, GOSU starts
to explore the states s′ that are directly accessible from s. For this
purpose, GOSU iterates over the actions in A, which have a satisfied
precondition in s (line 6). For each such action a, GOSU creates the
state s′ that is accessible from s as a result of performing a using the
auxiliary progress function (line 7). This function uses the transition
rules (see Section 2.1) to create s′. We do not repeat the details of this

function here for brevity. After s′ is created, GOSU checks whether
g is supported in s′ (line 8). This recursive process goes on until a
state s′ is found in which g is satisfied. In this case, GOSU returns
true (line 9). This concludes that g is supported given the current
context of the agent. On the other hand, if all the actions that can be
performed in s are considered, but none of them reaches a state s′

in which g is satisfied, GOSU returns false (line 10). That is, there
does not exist an accessible state s′ from the current state s in which
g is satisfied. This concludes that g is not supported in the agent’s
current context.

Next, we present formal properties of GOSU and provide proof
sketches.
Proposition: Given an agent 〈x,G,A, C〉 that satisfies the rational
belief constraint over language LΦ as input, GOSU terminates.
Proof sketch: GOSU is a depth-first search procedure that terminates
if the state space is finite. The state space may be infinite in two situa-
tions: (i) there are infinitely many actions inA , or (ii) there are cycles
in the state space. We assume thatA is finite. Hence, first situation is
not possible. Moreover, the monotonically increasing clock variables
in the states make them unique and prevent cycles which may occur
due to non-monotonicity of propositional symbols. Hence, second
situation is not possible either. Therefore, GOSU terminates.

Note that cycles may occur between commitments. However,
those are eventually violated due to temporal constraints. If the prop-
erty involved in such cyclic commitments affects agent’s goal, then
GOSU returns false. Moreover, agents can repeatedly take the same
action causing loops. However, since our goal definition is temporal,
those branches will terminate when goal becomes failed over time.
Soundness: Given an agent 〈x,G,A, C〉 that satisfies the rational
belief constraint over language LΦ and the corresponding transition
system T , GOSU is sound if the following conditions hold:

• if GOSU(g, s,A, C) returns true, then g is supported in s of T
with respect to the support definition (see Section 2.2),

• if GOSU(g, s,A, C) returns false, then g is not supported in s of
T with respect to the support definition.

Proposition: Given an agent 〈x,G,A, C〉 that satisfies the rational
belief constraint over language LΦ as input, GOSU is sound.
Proof sketch: Suppose that S′

T is the set of directly accessible states
from s in transition system T that corresponds to 〈x,G,A, C〉 and
S′

GOSU is the set of directly accessible states from s which is cre-
ated by GOSU using progress function. The first condition does not
hold only if GOSU creates some extra states (i.e., S′

GOSU\S′
T 6= ∅).

The second condition does not hold only if GOSU does not create
all states (i.e., S′

T \S′
GOSU 6= ∅). Neither first nor the second case is

possible since progress function utilizes the same rules that are used
by T to create accessible states.
Completeness: Given an agent 〈x,G,A, C〉 that satisfies the rational
belief constraint over language LΦ and the corresponding transition
system T , GOSU is complete if the following conditions hold:

• if g is supported in s of T with respect to the support definition
(see Section 2.2), then GOSU(g, s,A, C) returns true,

• if g is not supported in s of T with respect to the support defini-
tion, then GOSU(g, s,A, C) returns false.

Proposition: Given an agent 〈x,G,A, C〉 that satisfies the rational
belief constraint over language LΦ as input, GOSU is complete.
Proof sketch: Completeness can be proved in a similar manner to
soundness.

4 Implementation and Case Study

We use the dealings of a service provider (seller) with a user (buyer)
to demonstrate the workings of our approach. According to the con-
tract among them, the seller commits to its prime customers (who
pay a yearly premium) that their orders will be delivered within the
following day. However, the seller requires payments to be confirmed
before dispatching the items. In our scenario, the bank has the con-
straint that it confirms buyers’ payments during weekdays only.

� �
initiates(_, goalNotSupported, T):-

\+ goalSupported(T).

terminates(_, goalNotSupported, T):-
goalSupported(T).

initiates(exec(confirm(bank, buyer, Item)),
confirmed(Item),

T):-
item(Item),
(T mod 7) >= 1,
(T mod 7) =< 5.

ccreate(
exec(offer(Seller, Buyer, Item, Deadline)),
c(T, Seller, Buyer, and(paid(Item), confirmed(Item)),

delivered(Item), Deadline),
T):-

prime(Buyer),
item(Item).

ccreate(exec(offer(Bank, Buyer, Item, Deadline)),
c(T, Bank, Buyer, paid(Item),

confirmed(Item), Deadline),
T):-

item(Item).� �
Listing 1. Domain model in REC.

We have implemented a prototype of our framework using the Re-
active Event Calculus (REC), which is a tool for tracking commit-
ments at run time [1]. The Event Calculus [7] is a logic for mod-
elling events and their effects through time. This is a suitable logic
to realise our transition system as well as describing an agent’s con-
text. Listing 1 presents a sample code fragment fromREC, showing
how the agent’s domain can be modelled as part of above scenario.
Events and their can effects can be described using the initiates/3
and terminates/3 predicates in Prolog fashion (head ← body),
e,g,. an event initiates a fluent at a specific time if the certain pre-
conditions hold at that time. Similarly, an event can terminate the
existence of a fluent. Note that, events and fluents correspond to the
actions and propositions of our transition system described in Sec-
tion 2.1, respectively. The current state of a agent can be queried
using the holds at/2 predicate. For brevity, we omit the details of
the EC formalisation here4.

In our scenario, we describe the bank’s constraint on confirming
payments as a precondition of the confirm event (see Listing 1).
Note that exec is the prefix to describe events. According to the initi-
ates clause, the fluent confirmed is only initiated between Monday
and Friday ((Tmod7) >= 1 and (Tmod7) =< 5). Similarly, com-
mitments are represented as fluents and they change state based on
events. For example, the seller’s commitment to the buyer is initiated
using an offer event. Note that for this commitment to be created, the
buyer has to be a prime customer as a precondition.

Next, we consider several cases for the scenario. The following
is an example narrative of events that we can feed REC with. For
simplicity, we treat time points as days in the following discussion.

4 The complete implementation can be downloaded from http://mas.
cmpe.boun.edu.tr/ozgur/code.html.

Figure 2. Goal not supported due to bank’s constraint.

� �
intent(buyer,and(paid(Item),7,

delivered(Item),abs(7,8))) 1
offer(seller,buyer,Item,rel(0,1)) 2
offer(bank,buyer,Item,rel(0,2)) 3
tick 4
tick 5
tick 6
pay(buyer,seller,jacket) 7
confirm(bank,buyer,jacket) 8
dispatch(courier,buyer,jacket) 8
tick 9
tick 10� �

First, the buyer’s goal is created such that if she pays on Sunday,
then she wants to receive the item by Monday. Then, the seller cre-
ates the commitment towards the buyer which states that paid and
confirmed items are sent within one day (see Listing 1). Similarly,
the bank creates the commitment towards the buyer. Following her
goal, the buyer makes the purchase of a jacket on Sunday. However,
due to the bank’s constraint, the confirmation can only be done the
following day. Upon confirmation of payment, the seller dispatches
the buyer’s order.
REC supports concurrent events (confirm and dispatch both

happen at time 8). Moreover, we have added the functionality to sup-
port events that take time. For example, dispatch initiates delivery
in the next time point. When run with the above trace of events,REC
produces the output shown in Figure 2. The horizontal axis shows the
timeline of events that have occurred during execution. Notice a tick
event is associated with every non-occupied discrete time-point. This
is required for REC to process properly since it is event-driven, i.e.,
a new event triggers REC to process further. The fluents are posi-
tioned vertically, and their truth values (and the corresponding states
for commitments) are computed according to the events.

Now, let us see whether the buyer’s goals is supported with re-
spect to Algorithm 1. Note that, GOSU is executed for each state
of the agent to see whether the goal is supported at that specific
time point (see the progression of the fluent goalNotSupported in
Figure 2). Initially, the goal is not supported since there is no com-

mitment created until time 2. That is, GOSU searches through every
possible future state where the seller’s delivery action would be in
the rational belief constraint of the agent. But, there is no commit-
ment towards delivery yet. Therefore, the goal is not supported. Af-
ter the commitment is created, now the seller’s delivery action will
be in the agent’s rational belief constraint. That is, there is an ac-
cessible state in which the fluent delivered can become satisfied.
However, due to the bank’s constraint on confirmation of payments,
it can only be satisfied at time 9, which exceeds the deadline for
the agent’s goal. Therefore, the goal becomes failed and the fluent
goalNotSupported stays false.

Let us now consider another case where the deadline of the com-
mitment is extended to [2, 5] as follows:� �

offer(seller,buyer,Item,rel(2,5)) 2� �
Again, the goal is not supported since the buyer’s goal is not cov-

ered by the seller’s commitment. If we go back to the first case and
the bank’s constraint is removed so that payments can be confirmed
any day of the week, then the goal will be supported as soon as the
commitment is created, i.e., the fluent goalNotSupported becomes
false from time 3 onwards (see Figure 3).

5 Discussion
GOSU is intended for run-time monitoring of goals. The agent does
not need global knowledge of the interactions in the protocol. It ver-
ifies goal support via its commitments as well as beliefs about other
agents’ actions. We useREC for our prototype, because it is suitable
for state-based approaches and run-time (distributed) verification.

Goals and commitments have both been studied extensively in the
literature. Most work consider these concepts in isolation. Different
types of goals and their characteristics have been identified in the
literature [13]. The authors propose a formal framework to describe
various goal types such as achievement and maintenance. Here, we
only focus on achievement goal types where the goal is satisfied if
it is realized at one single time point. However, that work assume
the agents realize the goals on their own and does not study the link
between goals and commitments. Works such as [16, 3] study the
lifecycle of commitments, their verification, as well as ways to im-
plement commitments in agent systems. However, they are not con-
cerned about how these commitments are related to the agent goals.

More recent work study goals and commitments in relation to each
other. Marengo et al.[8] define control of a proposition (which po-
tentially serves as a goal for the agent) and safety of a commitment.
An agent has control over a proposition, if it can realize the propo-
sition, either on its own or by means of a commitment from another
agent that has direct control of the proposition. The underlying idea is
that if the agent has such control over a (goal) proposition, then the
proposition is attainable. Our notion of support is similar, however
we consider a set of commitments (rather than a single commitment)
as well as the temporal constraints in computation. Conceptually, our
work is on run-time and includes temporal commitments and goals.

Another relevant work connecting goals and contracts is that of
Weigand et al.[14]. They focus on designing organizations for a set
of goals, whereas we focus on the execution of such organizations
from the point of view of each individual agent. We have temporal
goals and contracts to mimic dynamism. Moreover, we propose an
algorithm for computing goal support.

Two important works are the generation of a set of commitments
to realize a goal that an agent has. Telang, Meneguzzi and Singh [11]

Figure 3. Goal supported (no constraint on confirmation of payments).

use Hierarchical Task Network (HTN) planning: given a set of agents
and their goals, their objective is to come up with a global plan to
satisfy these goals. The resulting plan is a set of commitments and
the operations that are required to fulfill these commitments, which
lead to the achievement of the agents’ goals. By contrast, Günay,
Winikoff, and Yolum [4] propose a distributed algorithm that can be
run by any agent in the system to generate a commitment protocol,
such that if the protocol is executed by the involved parties, the goal
of the agent is realized. Neither of these two lines of work consider
temporal aspects of commitments,

An important aspect of commitment support is the available re-
sources. Günay and Yolum [5] incorporated resources into commit-
ments and developed an algorithm to compute if the resources would
be available to fulfill a set of commitments. The algorithm kept track
of the available resources as well as the resources that will be made
available through other commitments and used constraint satisfaction
as a method to compute resource necessity. However, that work did
not consider temporal commitments or constraints as we have done
here. Hence, the two work can be thought as complementary.

Kafalı and Torroni consider exceptions in the context of temporal
commitments [6]. They extend Chopra and Singh’s work on mis-
alignment [2] by integrating temporal aspects and effects of delega-
tion. As a main theme, they identify what can go wrong in satisfying
a commitment. The temporal aspects that are captured by Kafalı and
Torroni are identical to those here, however their work does not have
any notions of goals or their support.

This work opens up an interesting line of research. First, while this
work has studied commitments in relation to achievement goals, un-
derstanding the dynamics of commitments in the existence of other
goal types is crucial. Especially, maintenance goals play an impor-
tant role in representing business policies. Hence, it would be useful
to extend this work to handle such goals. Second, our framework
here does not consider the suspension of goals or the conflicts that
might exist between them [12]. Many times a goal can be suspended
based on the context. When this is the case, commitments that serve
to fulfill a goal need to be handled appropriately as well. This could

require a commitment lifecycle that depends on a goal lifecycle. One
other direction we are currently pursuing is the integration of trust
and reputation within the relation of goals and commitments. This
will enable us to make a more accurate judgment of which pending
commitments are likely to be fulfilled. These are interesting direc-
tions that we will study in our future work.

ACKNOWLEDGEMENTS
This work has been supported by Bogazici University Research Fund
under grant BAP 03A102P and by TUBITAK under grant 113E543.

REFERENCES
[1] Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni,

‘Representing and monitoring social commitments using the event cal-
culus’, Autonomous Agents and Multi-Agent Systems, 27(1), 85–130,
(2013).

[2] Amit K. Chopra and Munindar P. Singh, ‘Multiagent commitment
alignment’, in Proceedings of the 8th International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS), pp. 937–944,
(2009).

[3] Mohamed El-Menshawy, Jamal Bentahar, Hongyang Qu, and Rachida
Dssouli, ‘On the verification of social commitments and time’, in Pro-
ceedings of the Tenth International Conference on Autonomous Agents
and Multiagent Systems, pp. 483–490, (2011).

[4] Akın Günay, Michael Winikoff, and Pınar Yolum, ‘Dynamically gener-
ated commitment protocols in open systems’, Autonomous Agents and
Multi-Agent Systems, (2014). To appear.

[5] Akın Günay and Pınar Yolum, ‘Constraint satisfaction as a tool for
modeling and checking feasibility of multiagent commitments’, Ap-
plied Intelligence, 39(3), 489–509, (2013).

[6] Özgür Kafalı and Paolo Torroni, ‘Exception diagnosis in multiagent
contract executions’, Annals of Mathematics and Artificial Intelligence,
64(1), 73–107, (2012).

[7] R Kowalski and M Sergot, ‘A logic-based calculus of events’, New Gen.
Comput., 4(1), 67–95, (1986).

[8] Elisa Marengo, Matteo Baldoni, Cristina Baroglio, Amit K. Chopra,
Viviana Patti, and Munindar P. Singh, ‘Commitments with regulations:
reasoning about safety and control in REGULA’, in Proceedings of the
10th International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pp. 467–474, (2011).

[9] Munindar P. Singh, ‘An ontology for commitments in multiagent sys-
tems’, Artificial Intelligence and Law, 7(1), 97–113, (1999).

[10] Pankaj R. Telang, Munindar P. Singh, and Neil Yorke-Smith, ‘Relating
goal and commitment semantics’, in Programming Multi-Agent Sys-
tems, eds., Louise Dennis, Olivier Boissier, and RafaelH. Bordini, vol-
ume 7217 of LNCS, 22–37, Springer, (2012).

[11] R. Pankaj Telang, Felipe Meneguzzi, and Munindar P. Singh, ‘Hierar-
chical planning about goals and commitments’, in Proceedings of the
Twelfth International Conference on Autonomous Agents and Multia-
gent Systems, AAMAS, pp. 877–884, (2013).

[12] M. Birna van Riemsdijk, Mehdi Dastani, and John-Jules Ch. Meyer,
‘Goals in conflict: semantic foundations of goals in agent program-
ming’, Autonomous Agents and Multi-Agent Systems, 18(3), 471–500,
(2009).

[13] M. Birna van Riemsdijk, Mehdi Dastani, and Michael Winikoff, ‘Goals
in agent systems: A unifying framework’, in Proceedings of the 7th
International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 713–720, (2008).

[14] Hans Weigand, Virginia Dignum, John-Jules Ch. Meyer, and Frank
Dignum, ‘Specification by refinement and agreement: Designing agent
interaction using landmarks and contracts’, in Engineering Societies in
the Agents World, pp. 257–269, (2003).

[15] Pınar Yolum and Munindar P. Singh, ‘Flexible protocol specification
and execution: Applying event calculus planning using commitments’,
in Proceedings of the First International Conference on Autonomous
Agents and Multiagent Systems, pp. 527–534, (2002).

[16] Pınar Yolum and Munindar P. Singh, ‘Enacting protocols by commit-
ment concession’, in Proceedings of the Sixth International Conference
on Autonomous Agents and Multiagent Systems, pp. 116–123, (2007).

