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Abstract
Privacy on the Web is typically managed by giving
consent to individual Websites for various aspects
of data usage. This paradigm requires too much
human effort and thus is impractical for Internet
of Things (IoT) applications where humans inter-
act with many new devices on a daily basis. Ide-
ally, software privacy assistants can help by mak-
ing privacy decisions in different situations on be-
half of the users. To realize this, we propose an
agent-based model for a privacy assistant. The
model identifies the contexts that a situation implies
and computes the trustworthiness of these contexts.
Contrary to traditional trust models that capture
trust in an entity by observing large number of in-
teractions, our proposed model can assess the trust-
worthiness even if the user has not interacted with
the particular device before. Moreover, our model
can decide which situations are inherently ambigu-
ous and thus can request the human to make the
decision. We evaluate various aspects of the model
using a real-life data set and report adjustments that
are needed to serve different types of users well.

1 Introduction
We are surrounded with Internet of Things (IoT) applica-
tions that enable various devices to work together. These
devices operate by collecting, storing, and processing many
different types of user data. The main medium for han-
dling privacy constraints with these devices is to agree on
their privacy policies, where a user is consulted to give con-
sent, as with the policies in General Data Protection Regu-
lations (GDPR) [Voigt and Von dem Bussche, 2017]. While
giving consent enables to reflect users’ preferences to some
extent, it has also been shown that these approaches create an
incredible decision load on the user, usually leading to users
to ignore the details to be able to use the systems [Utz et al.,
2019]. The problem is amplified for IoT applications. The
number of devices and the way they would want to use data
creates an explosion in the number of situations that might
arise, requiring humans to be constantly probed for consent.
Previous work has shown that privacy assistants can learn the
privacy preferences of the users [Squicciarini et al., 2017;

Kurtan and Yolum, 2021] and take actions to inform and
help them appropriately [Das et al., 2018; Ulusoy and Yolum,
2021]. Recent work has shown that users are welcoming to
use privacy assistants beyond this; e.g., when privacy assis-
tants take some of the decisions on behalf of the users [Col-
nago et al., 2020]. Here, we propose a new model for pri-
vacy assistants that can make privacy decisions on behalf of
the users per situation, even when the user has not explicitly
been in a similar situation before. We identify three major
challenges that need to be addressed to realize this:

Context. An alternative formulation of privacy is contex-
tual integrity [Nissenbaum, 2004], where the privacy is un-
derstood to be preserved if appropriate information flows take
place as designated by contexts. Inspired by this, we inves-
tigate various definitions of context [Alegre et al., 2016] and
follow the widely accepted definition of Dey [2001]: “any in-
formation that can be used to characterize the situation of an
entity”. In terms of privacy in IoT, various types of informa-
tion have been identified as important. For example, it has
been established that users tend to give access to sharing data
if they know it will be used for a short duration but are un-
comfortable to share data when they do not know how long
it will be kept [Leon et al., 2013]. In a similar vein, knowing
the purpose of data collection or the benefit it will bring af-
fects the privacy decisions of users. The location in which the
data collection is taking place is sometimes important; e.g.,
restroom has been identified to be a blacklist concept [Naeini
et al., 2017]; while other locations, such as store or library
do not have a particular connotation in user studies. Consider
the following scenario [Naeini et al., 2017] that expresses a
situation that combines information about a user as well as an
IoT device.

Example 1. You are at a department store. This store has
presence sensors to detect whether someone is present. The
store management uses this data to keep track of when there
are few customers in the shop to determine whether they can
reduce the number of staff at these times. You are not told
how long the data will be kept.

When making a decision about Example 1, the contexts
that would influence the decision can be the limited nature of
personal data being collected (e.g., only presence), the pur-
pose of collection, as well as retention of data. Thus, multiple
contexts have to be formulated. Given such situations, how



can a privacy assistant formulate the context(s) of a situation
in hand? Is it better to consider a dominant, single context or
factor in all contexts that a situation belongs to?
Decision. When contexts are decided, the privacy assistant
needs to make a decision to share information or not. Making
a privacy decision in a situation requires factoring in whether
the particular set of IoT devices involved are indeed trustwor-
thy [Chung et al., 2017]. Ideally, with increasing number of
interactions, a privacy assistant would learn whom to trust
and to what extent. Many successful trust models exist in
the literature to address this [Teacy et al., 2012]. However, in
an IoT system, a user will interact with the same device rarely
and will have to decide on whether to trust without prior inter-
actions with that device [Kökciyan and Yolum, 2020]. How
can a privacy assistant make sharing decisions based on trust
in contexts, rather than trust in an entity?
Collaboration. Privacy is personalized; so are the privacy
assistants. Some users are happy to allow data collection in
Example 1, while some are not, requiring the privacy assistant
to take personalized sharing decisions. Moreover, it is even
possible for humans to make conflicting privacy decisions on
occasions that are similar [Acquisti and Grossklags, 2005].
These require privacy assistant to assess whether its decision
could be faulty and if so delegate the decision back to the
user. However, delegating too much to the user will make
the use of assistants pointless. How can a privacy assistant
decide when to delegate to the user? Would different types of
users benefit from different delegation frequencies from their
privacy assistants?

We propose a situation-based privacy model to realize
agent-based privacy assistants (PAS). PAS derives contexts
automatically from the situations that the user has previously
been in. Using subjective logic, PAS determines the trust
for a context, based on positive and negative privacy expe-
riences of the user in that context. This handles the problem
of not having many interactions with the same device. By ex-
plicitly modeling inconsistencies between experiences of the
user, PAS determines when to make a decision on behalf of
the user, and when it can abstain and delegate the decision
to the user. We implement the proposed agent and experi-
mentally evaluate its workings over a case study that uses an
anonymized IoT dataset [Naeini et al., 2017]. We show that
PAS can capture policies that pertain to multiple privacy con-
texts and combine them to reach a sharing decision as well as
personalize it for different users.

2 Situation-Based Privacy Model
Typical approaches to trust would make use of the experi-
ences with an individual to create a model. The more expe-
riences there are (direct or indirect), the more accurate the
model [Teacy et al., 2012]. However, in an IoT setting, an
agent would have few experiences with the same device, but
overall many experiences with different devices. Thus, mod-
eling the trust in a device based on the experiences of that
device would create an insufficient model.

One possible way to study this question is through cate-
gories by identifying the device as belonging to a particular
group and assigning trust based on that. Recent work has

demonstrated that in certain domains assigning trust based
on categories and indirect experiences have been success-
ful [Sapienza and Falcone, 2020]. However, in IoT appli-
cations, collecting indirect experience is also difficult and
would require interactions with unknown entities.

We propose to estimate trust by only considering the con-
text that the interaction will take place in. This has the advan-
tage that even when there is no specific prior evidence about
a device, a decision can be made by considering the context.
For example, in Example 1, the user might have never en-
tered this store before. Hence, it is not possible to model trust
in the sensor based on previous interactions. However, the
user might have been exposed to situations where she did not
know how long her data will be stored. If the user can formu-
late this as a context, it can use it to decide whether to share
or not share information with the sensor.

2.1 Identifying Contexts
A typical way of thinking of contexts is to pre-define them
at design time, so that the agent can categorize the policies
based on their contextual properties [Kökciyan and Yolum,
2017; Fogues et al., 2017]. However, the set of contexts
would depend on the domains that the agent engages in, the
granularity of experiences, and the variance between them.
For some settings a context that can be associated with med-
ical situations would be sufficient to capture interactions,
whereas sometimes there would be a difference between in-
tensive care unit and check-up situations, as they pertain to
different information. This creates a need to derive contexts
dynamically.

In our model, each privacy situation consists of a set of
features that describe the IoT device (e.g., its type) as well as
the dealings (e.g., purpose of interaction) (Definition 1).
Definition 1 (Privacy Situation). P x

y = ⟨text, F ⟩ denotes a
situation of x concerning y, where x is of type PAS and y is
an IoT device, text is a textual representation of a situation,
F denotes a set of features derived from text. P x is the set of
all situations of x, and pi refers to the ith item in P x.

The privacy situation in Example 1 as perceived by
x concerning presence sensor ps can be represented as
P x
ps = ⟨t, {location = store, data = presence, device =
ps, retention = unspecified, purpose = reducestaff}⟩,
where t is the privacy text used in the example.
PAS interacts with IoT devices all the time, collects various

privacy situations, and groups similar situations together to
derive relevant contexts (Definition 2).
Definition 2 (Context). A context is a collection of similar
privacy situations based on a similarity metric (Method 1).
Given a context c and two situations pi and pj , if pi ∈ c and
sim(pi,pj) holds then pj ∈ c also holds, where c ∈ Cx and
{pi, pj} ⊆ P x. Cx is the set of all contexts known by x.
Method 1 (Situation Grouping). PAS implements a cluster-
ing technique to take the set of privacy situations and a simi-
larity metric sim for generating the set of contexts.

2.2 Assigning Trust to Contexts
PAS assigns trust not to individuals but to specific contexts.
To do this, PAS processes a new situation by first decid-
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Figure 1: (a) Initialization: PAS analyzes the privacy situations (pi in short) collected from other IoT devices during previous interactions.
The similar situations are grouped into contexts according to a similarity metric (Method 1). The positive and negative experiences (ei in
short, Definition 4) associated with the privacy situations are used to compute context-based experience bases (Definition 5). (b) Decision-
making: PAS computes the likelihood of an “unseen” situation belonging to various contexts (Ci) with varying degrees (di) (Method 2). It
computes a weighted probability expectation value (Equation 2) considering opinions about contexts. PAS evaluates the privacy situation to
make a decision on behalf of the user, or to delegate the decision to the user. PAS finally updates its experience.

ing on which contexts it belongs to, and then by considering
how much it trusts these contexts. Our model uses subjective
logic (SL) [Jøsang et al., 2006] to associate trust to contexts.
SL is a belief calculus to capture trust among individuals as
opinions. In Definition 3, we describe an opinion (wx

c ) as the
trust of PAS (i.e., x) in context c.

Definition 3 (Opinion). wx
c = ⟨b, d, u, α⟩ denotes an opinion

in context c, with the degrees of belief (b), disbelief (d), uncer-
tainty (u) and a base-rate parameter (α); where b+d+u = 1
and b, d, u, α ∈ [0, 1].

PAS needs to construct experience bases first before it
computes context-based opinions to make a sharing decision.
Each interaction with a device results in the user allowing
data collection or not, which we call an experience (Defini-
tion 4). In Example 1, if x declines data collection request,
⟨P x

ps,−⟩ would represent this negative experience.

Definition 4 (Experience). exc,i = ⟨P x
y ,v⟩ denotes ith experi-

ence in context c, where P x
y is a privacy situation, v shows if

the interaction with y was perceived as positive (+) or nega-
tive (−). Ex

c denotes all experiences of x in context c.

In IoT applications, each PAS values privacy differently
and each experience is unique to the agent. We focus on ag-
gregating the experiences of PAS with IoT devices that are
deployed in the same context (Definition 5). Figure 1(a) de-
picts the grouping of situations and construction of context-
based experience bases.

Definition 5 (Context-based Experience Base). EBx
c =

⟨r, s⟩ denotes a context-based experience base, where r and s
are the numbers of positive and negative experiences in con-
text c; i.e., c ∈ Cx, r =

∑|Ex
c |

i=1 e
x
c,i.+ and s =

∑|Ex
c |

i=1 e
x
c,i.−.

EBx denotes the context-based experience bases of x.

Given a context-based experience base, we derive opinions
of agents about contexts using Wang and Singh’s formulation,
which supports that fact that uncertainty does not always de-
crease with more data and that uncertainty remains high when

the numbers of positive and negative experiences are close to
each other [Wang and Singh, 2007]. Definitions 6 and 7 show
the mapping from an experience base to opinions.
Definition 6 (Certainty). Given EBx

c = ⟨r, s⟩, the certainty
function cert(r, s) = 1

2

∫ 1

0
| xr(1−x)s∫ 1

0
xr(1−x)s dx

− 1| dx.

Definition 7 (Mapping). Given EBx
c = ⟨r, s⟩, the map-

ping to an opinion wx
c = ⟨b, d, u, α⟩ is defined as: b =

β×cert(r, s), d = (1 − β)×cert(r, s), u = 1 − cert(r, s);
where α is the base-rate and β = (r + 1)/(r + s+ 2).

2.3 Multi-context Decision-making
PAS should be able to make a decision for unseen privacy
situations. First, PAS will compute which contexts an unseen
situation belongs to (Method 2).
Method 2 (Situation Categorization). PAS trains a multi-
label classifier to take a privacy situation and the set of con-
texts for assigning a privacy situation to every context with a
varying degree between 0 and 1. The sum of all degrees is 1.

When PAS determines the opinions about multiple con-
texts (Definition 3), it then needs to reach a decision (i.e.,
allow data collection or not). PAS handles interactions in two
categories. Category 1 is the set of interactions where PAS
chooses not to make a decision on behalf of the user because
its knowledge about the situation is uncertain. This corre-
sponds to a case where PAS identifies one dominant context
(i.e., a context with a degree higher than 0.5) for a privacy
situation, but the level of conflict in that context is high (Def-
inition 8). Hence, PAS delegates the decision to the user.
Definition 8 (Conflict). Given EBx

c = ⟨r, s⟩, b, d, u values
can be computed according to Definitions 6 and 7. The con-
flict is then computed as |b − d|, and is evaluated against a
threshold ψ (a value between 0 and 1). If |b − d| < ψ holds,
there is a high conflict in experience in a given context c.

Category 2 includes all other cases, where PASmakes a de-
cision on behalf of the user. An opinion’s probability expecta-
tion value can be computed according to Equation 1 (adapted



Algorithm 1: decide(p, ψ, θ, γ)
Data: EBx, set of context-based experience bases
Data: Cx, set of contexts

1 dec← 0; i← 0;wProb← 0; cat1 ← False
2 confSet← categorizeSituation(p, Cx)
3 domC ← getDominantContext(confSet)
4 if domC then
5 b, d, u← computeBDU(Ex

domC)
6 if |b− d| < ψ then
7 cat1 ← True
8 if cat1 then
9 dec← askUser(p)

10 else
11 foreach c ∈ Cx do // p is of type cat2
12 b, d, u← computeBDU(Ex

c )
13 α = |0.6− d|
14 prob← getProb(b, u, α)
15 wProb← wProb+ confSet[i] ∗ prob
16 i← i+ 1
17 if wProb > θ then
18 dec← 1
19 i← 0
20 foreach c ∈ Cx do
21 if confSet[i] > (max(confSet)− γ) then
22 EBx

c ← updateExpBase(Ex
c , dec)

23 i← i+ 1
24 return dec

from [Jøsang et al., 2006]). A base-rate parameter α is used
to define the contribution of the uncertainty to the probability
expectation value. If PAS interacts with a context few times
(i.e., uncertainty is high), α ensures that an initial trust is as-
signed for the new context.

Prob(wx
c ) = b+ α× u (1)

Since PAS considers multiple contexts in making a deci-
sion, it computes a context-based weighted probability ex-
pectation value (P ) according to Equation 2. The weights are
the degrees associated with each of the contexts. Note that
the degrees are normalized values, dc denotes the degree of
belonging to context c.

P =
∑
c∈Cx

dc × Prob(wx
c ) (2)

PAS then compares this value (P ) against a threshold θ (a
value between 0 and 1) to make a final decision while dealing
with a situation of type Category 2. The sharing decision gets
a value of 1, when P is above θ (i.e., PAS allows data col-
lection); and 0 otherwise. Higher θ values will result in less
data sharing by PAS. After each decision, PAS updates its
context-based experience bases according to a defined confi-
dence threshold γ (e.g., Algorithm 1). Each interaction with
an IoT device is treated as a positive experience if the data
collection is allowed and negative otherwise. For each rele-
vant context, r and s values are incremented accordingly.

3 The Formal Model in Action
The decision-making process of PAS is depicted in Fig-
ure 1(b) and realized with Algorithm 1. The algorithm takes
the situation p to be categorized, the conflict ratio ψ, the deci-
sion threshold θ and the confidence threshold γ as input. The
decision dec, the counter i, the combined probability expec-
tation valuewProb and the category information cat1 are ini-
tialized first (line 1). In line 2, PAS uses categorizeSituation
function (Method 2) to assign the situation p to all the con-
texts with varying confidence scores denoted as confSet.
The nth value in confSet gives the confidence score for p
to belong to context n. PAS first checks if there is a dominant
context given confSet (line 3), if so it checks the level of
conflict in the dominant context regarding the specified con-
flict ratio ψ. In the case of a high-conflict (Definition 8), the
situation p is of type Category 1 (lines 4-7). If PAS deals with
a situation of type Category 1, the user will be asked to de-
cide to allow data collection or not (line 9). Otherwise, PAS
will make an automated decision based on previous contex-
tual experiences (lines 11-18). For each context, PAS com-
putes belief, disbelief and uncertainty values for the specific
context-based experience base (Definitions 6 and 7). α is set
to |0.6−d| per context, which ensures that when the disbelief
is low, uncertainty contributes more to the computed proba-
bility expectation value (line 15) (Equation 1). The probabil-
ity value is updated for each context so that if PAS is more
confident about a context assignment, the corresponding con-
text probability will influence the resulting decision more. If
wProb is above the decision threshold θ, the decision dec is
set to 1 to allow data sharing. Then, PAS updates the experi-
ence base for each context with acceptable confidence scores
according to the decision. The confidence interval is set to
(max(confSet)− γ), which defines the distance to the max-
imum confidence score for a context (lines 20-23). Finally,
the algorithm returns the privacy decision (line 24).

4 A Real-World Case Study
To apply the model in real life, an IoT stack should be in
place [Chow, 2017] to enable communications. We focus on
the application layer and study the workings of the model us-
ing an anonymized dataset [Naeini et al., 2017], which has
been collected through surveys with users of IoT devices. The
dataset includes 380 privacy scenarios that are split into 40
surveys, where each survey includes 14 scenarios. The par-
ticipants are asked questions about particular scenarios (e.g.,
if the user would allow data collection) and their privacy con-
cerns. Each survey includes responses from 20-25 partici-
pants. A scenario contains a textual description of features
such as data type being collected, the purpose of data col-
lection, the location where the data collection is happening
and how long the data will be kept (e.g., Example 1). In our
experimental setup, we keep one survey apart to conduct a
qualitative and quantitative analysis (Section 4.2). Our sup-
plementary material demonstrates how our approach works
on two different examples for different participants as well as
additional information on the participants’ data. This material
together with our code base is available online1.

1https://git.ecdf.ed.ac.uk/nkokciya/pas-privacy

https://git.ecdf.ed.ac.uk/nkokciya/pas-privacy


4.1 Situation Clustering, Context Classification
We use 366 scenarios from remaining surveys to: (i) generate
contexts using clustering techniques, (ii) train a multi-label
classifier to infer multiple contexts for unseen privacy sce-
narios. We use well-known Python libraries such as NLTK,
Gensim and scikit-learn to implement our approach.

We train a Doc2Vec model to represent each scenario as
a numeric vector by providing the normalized scenarios [Le
and Mikolov, 2014]; such a model helps PAS to capture the
semantic similarity of words in the text-based scenarios. The
Elbow method suggests grouping scenarios into four clusters.
In our setting, PAS uses a hierarchical clustering algorithm
to discover clusters by using ward linkage criteria, where
the similarity function sim is set to euclidean (Method 1).
Hence, the algorithm minimizes the sum of squared differ-
ences within the clusters while merging or splitting clusters.
The four clusters identified are C0(140), C1(27), C2(39),
C3(160); where the number of instances belonging to that
particular cluster is shown in parentheses.

Most scenarios fall into C0 and C3, where the former is
broadly focused on non-personal data (e.g., temperature sens-
ing in a room) and the latter unspecified data collection. C1

spans situations where sensitive data (e.g., face) are used for
identification and C2 covers situations where the users are
told how they will benefit from data collection. Each clus-
ter corresponds to a context in our setting, where the context
does not only capture location, or a topical setting but situ-
ations that differ from each other. This satisfies the points
raised in Section 1. For example, library as a location is part
of each context that we identify; showing that being in a li-
brary by itself is not significant for making privacy decisions.

To classify unseen situations into multiple contexts, we
train a multi-label classifier. We have tried several classifi-
cation models (SVM models with linear/rbf kernel, logistic
regression models and so on), applied 5-fold cross-validation
for model selection, and chose the model performing the best
on average. In this case, this is the SVM model with a linear
kernel (Method 2). The macro-averaged precision, recall and
f1-score values on the test set are 0.91, 0.88, 0.9 respectively
with an average accuracy of 0.86.

4.2 Experimental Results
We apply PAS for 25 participants to make a privacy decision
on the scenarios specific to one survey. Each participant has
only 14 scenarios labeled with privacy decisions, far less than
a realistic setting. For this reason, for this case study, we pop-
ulated the experience base of each participant by using similar
participants’ experiences, where the similar participants were
chosen from the remaining 39 surveys. Two participants are
considered similar if the difference between their average In-
ternet Users’ Information Privacy Concerns (IUIPC) scores
is less than 1. This information was already present in the
dataset. Note that in real life only the experiences of the user
will be used. Since there is no dataset with this information,
we are resorting to using similar users’ data as well, while
knowing that this will create approximation and lower accu-
racy in our results.

We categorize the participants into three categories
based on their actual sharing behavior using the shar-

ψ = 0.1 ψ = 0.2 ψ = 0.3 ψ = 0.4

p1

PAS-S 0.43 0.43 0.43 0.43
PAS-M 0.50 0.50 0.50 0.50
PAS [0] 0.50 [0] 0.50 [0] 0.50 [4] 0.71

g1

PAS-S 0.41 0.41 0.41 0.41
PAS-M 0.41 0.41 0.41 0.41
PAS [2.4] 0.54 [2.4] 0.54 [2.6] 0.55 [4.8] 0.68

p4

PAS-S 0.43 0.43 0.43 0.43
PAS-M 0.50 0.50 0.50 0.50
PAS [0] 0.50 [2] 0.57 [4] 0.64 [4] 0.64

p3

PAS-S 0.78 0.78 0.78 0.78
PAS-M 0.71 0.71 0.71 0.71
PAS [4] 0.78 [5] 0.85 [5] 0.85 [5] 0.85

g2

PAS-S 0.52 0.52 0.52 0.52
PAS-M 0.57 0.57 0.57 0.57
PAS [0.7] 0.58 [1.3] 0.61 [3.4] 0.71 [4.3] 0.74

p6

PAS-S 0.57 0.57 0.57 0.57
PAS-M 0.78 0.78 0.78 0.78
PAS [0] 0.78 [0] 0.78 [4] 0.92 [4] 0.92

g3

PAS-S 0.60 0.60 0.60 0.60
PAS-M 0.83 0.83 0.83 0.83
PAS [0] 0.83 [1] 0.83 [3] 0.87 [4.5] 0.89

Table 1: The case study analysis results of participants (pi) and
groups (gi) based on 250 experiences. We report the accuracy re-
sults based on varying conflict ratios (0.1, 0.2, 0.3, 0.4) for three
different agents: PAS-S (single context + no human), PAS-M (mul-
tiple context + no human) and PAS (multiple context + human).

ing decisions [Baarslag et al., 2017]: Behavioral Uncon-
cerned (Group 1-g1) if they share more than 66% of the sce-
narios, Behavioral Pragmatists (Group 2-g2) if they share be-
tween 33% − 66% of the scenarios, and Behavioral Funda-
mentalists (Group 3-g3) if they share less than 33% of the
scenarios. The dataset consists of 5 users (20%) in g1, 16
users (64%) in g2 and 4 users (16%) in g3. Such a catego-
rization is useful to understand how to set and update model
parameters automatically as we discuss later.

Table 1 shows results from our experiments with differ-
ent conflict thresholds (0.1, 0.2, 0.3, 0.4) with a fixed set
of 250 experiences. We include results for one participant
from g1 (p1), two participants from g2 (p4 and p3) and one
participant from g3 (p6). We also include average values for
each of the groups. For each run, we report results for three
agents: PAS-S that does the computation based on single
context (i.e., the context that has the highest confidence score)
with no human intervention, PAS-M that does the computa-
tion based on multiple contexts with no human intervention
(i.e., Algorithm 1 with ψ = 0), and PAS (Section 2). In Ta-
ble 1, the number in the brackets is the number of times PAS
delegates the decision to the user. We report accuracy values
for all agents. The accuracy value for PAS is the value com-
puted when the user cooperates with PAS to make sharing
decisions. For example, in g2, when the conflict ratio is set
to 0.4; the users could see an average accuracy value of 0.74



by just making decisions for 4.3 scenarios in average. Hence,
PAS would handle the remaining scenarios. Our group-based
analysis could be summarized in three major themes.

Context. Deciding based on multiple contexts as opposed
to a single context helps the agent to achieve better results.
That is, PAS-M almost always performs either equally or bet-
ter than PAS-S. For g1, they perform equally. For g2, for
all values of conflict ratio ψ, PAS-M slightly outperforms
PAS-S. For g3, the difference is more pronounced; e.g.,
when ψ is 0.4, PAS-M achieves 0.83, whereas PAS-S can
only achieve 0.6. Note that these values do not factor in cases
when the agent detects uncertainty and consults the user.

Collaboration. For any conflict ratio, when PAS con-
sults its user, PAS outperforms the other agents (PAS-S and
PAS-M) that run with no human intervention. For the previ-
ous case, when the agent consults the user for the ambiguous
cases the accuracy increases to 0.89. Regardless of the group,
when the conflict ratio increases, PAS accuracy values also
increase. This shows that the instances that PAS consults the
user for are mostly the ones it is making a mistake in. Thus,
PAS identifies ambiguous cases correctly and by delegating
those to the user enables PAS to reach a higher accuracy.

Personalization. We observe that different groups require
different values for threshold θ and conflict ratio ψ for their
PAS. g1 has a tendency to share data more than other groups.
This suggests that θ value should be set to a value less than
0.5. In other words, keeping θ high as in Table 1 requires
keeping the conflict ratio high for better PAS accuracy val-
ues. For g3, PAS performs well even for low conflict ratios;
hence, human intervention could be minimized for such users
by choosing low ψ values. For g2, θ and ψ should be ad-
justed according to where the user stands (i.e., closer to g1 or
g3). Thus, by observing its user’s sharing pattern and adapt-
ing its parameters accordingly, PAS can help its user suffi-
ciently while achieving a good accuracy.

5 Discussion and Conclusion
Most of the existing work on trust are based on the idea
to build a model per agent over many interactions. Teacy
et al. [2012] attack the problem by devising an algorithm
that benefits from capturing hierarchical Bayesian modeling.
Such an approach is successful in building trust models, but
require large number of interactions and thus not immedi-
ately applicable in IoT settings. Liu and Datta [2012] de-
velop a context aware dynamic trust, where they use a Hid-
den Markov Model to predict a service provider’s next move.
They consider interactions that are similar in certain features,
rather than all interactions. Our intuition to capture context
rather than previous interactions is similar but we estimate
trust in devices that might never have been seen.

Burnett et al. [2013] study trust in short-lived interactions,
similar to a setting as we have here. They propose a model of
stereotypes, which enables agents to generalize their experi-
ences with others over observable features. Fang et al. [2018]
generalize this idea using a fuzzy semantic process and ma-
chine learning methods. In privacy, the context in which an
agent resides has a tremendous effect, even when the agents
exhibit similar observable properties; e.g., a user can trust a

camera in a hospital but not in a bar. Thus, rather than stereo-
typing, our approach associates trust for each context.

Various techniques to enable agents to classify whether a
content in question is private or not using various supervised
machine learning algorithms or information retrieval tech-
niques exist [Squicciarini et al., 2017; Kurtan and Yolum,
2021]. These approaches either leverage big data sets or in-
teractions with others to make privacy decisions. However,
in IoT settings these are not available; hence, our focus has
been on situations where there is little data and others’ pri-
vacy opinions are not accessible.

Daidone et al. [2021] develop a blockchain-based frame-
work to check privacy compliance of devices. They assume
both user preferences and device policies are available in a
structured form. Baarslag et al. [2017] design a negotia-
tion strategy, where an agent makes partial offers based on
utility-based heuristics to manage app permissions. Contrary
to these, here we assume that the user preferences are derived
based on the trust from contexts and situations are not pro-
vided in structured form but in natural language. Kökciyan
and Yolum [2020] propose a multi-agent model, where an
agent collects information from other agents to evaluate the
trustworthiness of IoT devices before revealing its user’s data.
Differently here PAS does not keep individual trust values for
each device but instead compute opinions about contexts.

Ajmeri et al. [2020] design norm-aware agents to make
ethically appropriate decisions in social contexts. Mosca and
Such [2021] propose an agent model to support multiuser pri-
vacy in online social networks. Our focus here has been on
decision making with limited prior knowledge in new situa-
tions. The algorithm developed here is orthogonal to these
works such that it would be interesting to incorporate per-
sonal values in conjunction with contexts.

We propose a novel agent-based privacy assistant PAS to
handle interactions with IoT devices. PAS makes a sharing
decision on behalf of the user, or it delegates the decision to
the user, by modeling trust in multiple contexts. We show the
applicability of our approach on an IoT case study. This work
opens up interesting directions for research. Semantic rela-
tions between contexts could signal certain order to process
contexts when making a decision. Obtaining more elaborate
feedback from the user; e.g., “prefer not-share because the
purpose is not specified.” would enable PAS to assess a given
situation in more depth than the textual representation alone.
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