
Under consideration for publication in Knowledge and Information Systems

PISAGOR: a ProactIve Software AGent for
mOnitoring inteRactions
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Abstract. E-commerce has become an integral part of everyday life. Many e-commerce sys-
tems enable users to browse products, place orders, and track deliveries online. However, these
interactions are time-consuming, especially if they do not proceed as expected. Instead of a hu-
man user, software can offer automated support to monitor e-commerce transactions to ensure
that they are completed by the businesses as planned. Accordingly, this paper studies methods
to develop a software agent for monitoring its users’ interactions with businesses (PISAGOR).
The interactions are represented as commitments, which have been extensively studied in multia-
gent systems. With a commitment-based specification at hand, the agent knows what the meaning
of its interactions are and can therefore reason over its actions. The reasoning is accompanied
with the as-good-as relation that compares the agent’s current state with its expectations from a
transaction. This enables PISAGOR to decide whether the transaction is progressing as expected.
Moreover, we propose operational rules for the agent to create expectations based on its commit-
ments and check its progress towards them. We demonstrate via a case study how PISAGOR can
detect if a user’s interactions are not progressing well and identify a problem for the user to take
action.
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1. Introduction

An important part of commerce is being carried online through e-commerce systems.
These system have evolved considerably over the years to provide various functionali-
ties to its users, such as easy user interfaces, auction mechanisms, negotiation, recom-
mendation and reputation services, contract management, and so on (Özer and Özturan,
2011; Kersten, Vahidov and Gimon, 2013; Gupta and Chakraborti, 2013; Chang and
Wong, 2011; Morid and Shajari, 2012; Wood, Kafalı and Stathis, 2013; Yan, Fong and
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Shi, 2008). As a result, current e-commerce systems work effectively and serve human
users’ needs well. However, many times there is still a need for a human to be the user
of these systems. Ideally, it would be easier for humans if they could delegate their task
of interacting with the system to specialized software.

A major paradigm for realizing such software is agents: software that can perceive
and reason about the environment and act as a result of that (Singh and Huhns, 2005).
Agents represent users and fulfill the tasks that are cumbersome for them. Among the
tasks that are most time-consuming for the users is the task of monitoring the progress of
transactions. Even though the software support is there to enable and verify transactions
(Yao, Ruohomaa and Xu, 2012; Huang, Hua, Will and Wu, 2012), it is missing for
monitoring transactions once they are initiated. However, there are many situations that
need constant attention from users after a transaction is initiated.

Consider the following workflow for selling a house on the market. The landlord
goes to an estate agent, gets a quote for the house’s value and is advised to refurbish the
house before putting it on the market. The landlord then goes to a contractor to arrange
the refurbishment. The contractor first needs to get the payment from the landlord to
acquire the necessary materials from a supplier and the required tools from a manufac-
turer. The contractor will then hire a builder to do the job. Once the refurbishment is
done, the estate agent can then sell the house for a good price. If everything goes as
planned, the landlord expects to sell the house within two months.

Our aim in this work is to develop an agent that can reason about the user’s circum-
stances and detect unexpected situations. To do this, the agent would need to know the
contracts between the user and others, and create expectations based on the fulfillment
of the tasks that are specified by the contracts. If the agent is aware of the contracts and
expectations, it should be able to decide if the evolution of the interactions is aligned
with the expectations of its user. If there is discrepancy between the expectations and
the real life situation, then the agent would warn the user to take an action to deal with
this.

Example 1 demonstrates a detailed scenario for the above case and outlines possible
monitoring operations that can be performed.

Example 1. Bob wants to sell his house within two months. The estate agent tells him
that if the house is refurbished first, then he can sell it for a good price in a month’s time.
So, Bob meets with a contractor to see if the refurbishment can be done in a month. The
contractor requires the payment from Bob in advance to acquire the materials and tools
required for the job. Bob sends the payment in a week to make sure the job is completed
by the end of the month.

Following this example, the ideal situation is that the contractor delivers the task by
the end of the month. However, this might not always be the case. Various other things
might happen instead:

– Bob might not be in touch with the contractor during the refurbishment process and
it might be delayed due to a problem with the builder that the contractor has hired.
This would be a violation of the contract on the contractor’s side and would clearly
not meet Bob’s expectations. This is a bad outcome since the fact that the expectation
is not being met is only realized on the day of the deadline.

– The contractor could check the delivery status of the materials on a daily basis. If
they are not dispatched soon, he can decide to cancel the order and reorder from a
different supplier.

– Assume that Bob hears of news that the house prices in his area will go up in six
months due to new offices being built. Although the refurbishment is delayed and the



PISAGOR: a ProactIve Software AGent for mOnitoring inteRactions 3

house cannot be sold within two months, this would not be an exception for Bob as
he would want to wait until the house prices go up.

Ideally, the monitoring that is involved in the above cases could all be done with
a software agent. Moreover, an agent can tell the user whether there is a situation that
needs to be taken care of or whether the agent (or the user) needs to take action. For
example, the agent for the contractor itself can send a reminder to the landlord if the
payment is late.

This paper develops a principled, distributed approach to enable agents to specify
the agreements that their users are in, represent their expectations, and more importantly
compute whether their expectations are attainable via the current progress of the agent in
the system. Our proposed approach respects agents’ privacy and subjectivity in that each
agent is only aware of its own user’s status and expectations. The specific contributions
of this paper are as follows:

– We incorporate the well-studied commitment theory from multiagent systems (Torroni,
Yolum, Singh, Alberti, Chesani, Gavanelli, Lamma and Mello, 2009; Kafalı and
Yolum, 2011; Chesani, Mello, Montali and Torroni, 2013) to represent an agent’s in-
teractions and agreements with others. These commitments capture the participants’
transactions.

– In order to relate agents’ current states with their expectations, we propose the as-
good-as relation. In addition to the satisfiability relation in propositional logic, this
relation also compares stateful commitments with deadlines. If the current state of
the agent is not as-good-as its expected state, we conclude that there is an action that
needs to be taken.

– We propose operational rules that the agent uses to create and update expectations
based on the state of its commitments and check its progress towards them.

– We develop the PISAGOR agent for monitoring interactions. To enable this, we have
extend the Reactive Event Calculus (REC) (Chesani et al., 2013) to implement our
as-good-as relation.

– We analyze a case study to show that PISAGOR can successfully signal the right
places for its user to take an action, similar to the ones listed above.

The rest of the paper is structured as follows. Section 2 describes our general mul-
tiagent architecture. Section 3 explains our formalization. Section 4 formalizes the as-
good-as relation, and Section 5 describes how it is used by PISAGOR to operate. Section
6 explains our implementation and demonstrates how our approach works on a case
study. Finally, Section 7 concludes the paper by reviewing relevant literature, summa-
rizing our contributions, and proposing possible future directions.

2. Architecture

We focus on e-commerce systems where the sellers and buyers are bound with an agree-
ment (similar to a contract) (Jakob, Pěchouček, Miles and Luck, 2008; Telang and
Singh, 2012a; Wood et al., 2013), such that each clause in the agreement would de-
scribe a certain transaction between the participants. Each party in the system (buyer,
seller, and so on) is represented with an agent that manages its user’s interaction.

Figure 1 shows an initialization of our architecture with our previous scenario in
mind. Note that each agent has access to a portion of the protocol that is relevant for
itself. This is to ensure autonomy and privacy in the system. Similarly, expected states
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Fig. 1. Pictorial representation of the scenario (Example 1) and its components that fol-
lows a distributed multiagent architecture. Circle nodes denote the agents that represent
Bob, the estate agent and the contractor. Each agent enacts a protocol, which is shown
with a rounded rectangle. At the core of the system is the commitment theory shown
with a rectangle, which formalizes the agents’ interactions. Each agent has an expected
state depicted by a cloud, and a separate reasoner to monitor its interactions. The arrows
show which information is fed into the agent’s reasoner.

are private to agents, and they denote what the agent expects from its transactions as an
outcome. For example, the expectation on the left is only connected to the related agent
Bob, whereas the protocol description on the top is connected to the two related agents
Bob and the seller. Each agent has a reasoner that enables it to infer whether expected
states are reached or not.

Overall, the agents enact a distributed protocol described by a set of interaction
and commitment manipulation rules, and they constantly check if the transactions are
progressing as planned. To do so, an agent compares its expectations with its current
state of the world at a given point in time. Agents may have different expectations about
their future. By sensing the differences between their expectations and the reality they
face, they should be able to signal problems, recover from them, and continue proper
working.

Below, we describe each element in more depth and then give a sample execution to
demonstrate the usage of the overall system.
Protocol rules: A protocol is described by a set of rules defining the consequences
of agents’ actions (Mallya and Singh, 2007; Kafalı and Yolum, 2011). Following a dis-
tributed execution, protocol descriptions are shared among related agents, so that an
agent only has access to protocol rules concerning itself. This is important for preserv-
ing privacy. In real life, each agent would be aware of the protocol that it is involved
in, but would not know the agreements among other parties. In addition, by coupling
the protocol descriptions among agents, we ensure that they share the same semantics
for the protocol rules (e.g., infer the same consequences for actions), thus providing
interoperability.
Commitment theory: Commitments are an important abstraction for understanding



PISAGOR: a ProactIve Software AGent for mOnitoring inteRactions 5

and reasoning about agent interactions (Torroni et al., 2009). A commitment captures a
promise from a debtor to a creditor to bring about a condition. They enable flexible inter-
actions among agents. The key idea in modeling agent interactions with commitments
is that messages are given a meaning based on creation and manipulation of commit-
ments. That is, each message among agents either commits an agent to bring about a
proposition or alters one of the existing commitments of an agent. Knowing the meaning
of each message in the system empowers the agents to decide on their actions on their
own. The commitment theory in the architecture defines the rules for creating and ma-
nipulating commitments. In our architecture, the commitment theory is shared among
all the agents. This is required so that all agents can manipulate their commitments in
the same way and to prevent commitment misalignments from occurring (Chopra and
Singh, 2009; Kafalı, Chesani and Torroni, 2010). We describe the formal theory abut
commitments in Section 3.
Expectations: Each agent may have several expectations about its future. For example,
after transferring the funds, Bob expects the house to be refurbished by the end of the
month. We develop the theory on expectations in Section 3 using agent states.
Events: Events correspond to the actions of the agents as well as any external activities.
For example, transfer funds is an event. Each event is associated with a time point that
describes at which time the event has occurred. Certain properties of the system are
initiated or terminated as consequences of events. We exemplify the usage of events in
the case study (see Section 6).
Reasoner: Each agent has a separate reasoner that it uses to check whether its expecta-
tions are being met. The reasoner is fed with the protocol rules, the commitment theory,
the agent’s expectations, and a sequence of events that are significant to the agent’s ex-
ecution. If its expectations are not being met, the agent creates a warning for the user to
take an action. We describe how reasoning in PISAGOR is performed in Section 5 via
the as-good-as relation.

Now, let us see how Example 1 can be connected with the above elements to identify
a problem for Bob regarding his intention to sell the house in two months. The protocol
is described by the following actions:

– Offer (contractor): The contractor offers Bob to refurbish his house.
– Transfer funds (landlord): Bob sends the payment to the contractor.
– Send materials (supplier): The supplier sends the materials to the contractor.
– Send tools (manufacturer): The manufacturer sends the tools to the contractor.
– Refurbish (builder): The builder completes the refurbishment of the house.
– Sell house (estate agent): The estate agent sells the house.

In this work we provide a systematic way for the users to decide when there is some-
thing wrong regarding their interactions. Note that the process afterwards is not within
the scope of this work, e.g., Bob might switch to a new contractor if refurbishment is
not performed on time. The following trace demonstrates a possible execution of the
protocol:

1. The contractor makes the offer (event),
2. A contract has been created telling that the contractor will refurbish the house within

a month if Bob transfers the funds in ten days (protocol description),
3. Bob transfers the funds (event),
4. Following timely payment, the contractor becomes committed to Bob (commitment

theory),
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5. Based on the contract, Bob expects the house to be refurbished by the end of the
month (expectation),

6. Bob checks his progress to see whether his expectation is satisfied, and finds out it
is not since refurbishment is delayed. Based on this finding, he identifies a problem
(reasoner).

In order to detect such cases, we need a reasoner that can interpret our commitment
theory and compare agent states to decide if the current state is as-good-as the expected
state. In order to realize this reasoning, we develop a formal model of the as-good-as
relation in terms of propositions, commitments and states.

3. Formal Model

Our formal model is based on the description of the world through states and the evo-
lution of the states through agents’ commitments (Kafalı and Yolum, 2011; Torroni
et al., 2009; Chesani et al., 2013).

Each agent views a part of the world since the execution of the multiagent system is
distributed among the agents. Hence, a state is subjective to an agent and captures the
agent’s view-point at a given point in time.

Definition 1. A time point is a discrete measure of time and is totally ordered. We use
t1, t2, . . . , tn to denote time points.

A state consists of propositions that are known to be true at that time point and
commitments that are represented via their states. Propositions tell what has happened
in the system so far (i.e., facts) to the agent’s perception. We assume that the system is
monotonic. Thus, once a proposition becomes true, it cannot become false.

Definition 2. A proposition can be an atomic proposition, its negation or the conjunc-
tion of atomic propositions.

A commitment represents a contract from a debtor agent towards a creditor agent
about a specific property (Torroni et al., 2009). Definition 3 defines a commitment for-
mally. Below, Ad and Ac denote agents; Ant and Con are propositions.

Definition 3. CSt
Ad,Ac

(Ant[ta], Con[tc]) denotes the commitment between the agents
Ad and Ac, such that if the antecedent Ant is satisfied (i.e., becomes true until the
deadline ta), then the debtor Ad becomes committed to the creditor Ac for satisfying
the consequent Con until the deadline tc (Torroni et al., 2009; Yolum and Singh, 2007;
Mallya and Singh, 2007). St denotes the state of the commitment.

Consider the following commitment from the contractor (cnt) to Bob about refur-
bishing the house: CSt

cnt,bob(funds[10], refurbished[30]), where funds means that
the funds is transferred to the contractor’s bank account and refurbished means that
the house is refurbished. The commitment states that if Bob transfers the funds in
ten days, then the contractor will make sure the house is refurbished by the end of
the month. When the commitment is first created, it is in conditional state, denoted
Cc

cnt,bob(funds[10], refurbished[30]). At this point, neither funds nor refurbished
hold. If funds starts to hold before the deadline, then the contractor will be committed
to bring about refurbished. We call this state active and denote it asCa

cnt,bob(funds[10],
refurbished[30]). If funds does not hold before the deadline, then the commitment
is expired Ce

cnt,bob(funds[10], refurbished[30]). If the commitment becomes active
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Fig. 2. Lifecycle of a commitment extended with deadlines. A commitment can be cre-
ated as conditional or base-level. Double ellipses represent terminal commitment states
(i.e., the commitment’s life-cycle ends in those states).

and refurbished is not realized before the deadline, then the commitment is violated
Cv

cnt,bob(funds[10], refurbished[30]). This is the case where Bob has transferred the
funds, but the house is not refurbished on time. When the commitment is conditional
or active, if refurbieshed starts to hold before the deadline, then the commitment is
fulfilled Cf

cnt,bob(funds[10], refurbished[30]).
In certain cases, a commitment can be created without a precondition. That is, Ant

is set to be true (>). In such cases, we say that the commitment is already active since
there is nothing to be realized to make the precondition true.

Figure 2 summarizes the commitment lifecycle. Whenever the debtor and creditor
are not relevant to the discussion, we remove them from the commitment notation to
reduce clutter. We formally describe each commitment state in Section 3.1.

Next, we describe agent states.

Definition 4. A term T is either a proposition φ or a commitment C.

Definition 5. A state contains terms that hold at a particular time point T (Kafalı and
Yolum, 2011; Mallya and Singh, 2007). To keep processing simple, we partition propo-
sitions Φ and commitments C in two different sets. Hence, ST (X) = 〈Φ, C〉.

We differentiate between two types of states:

– Current state: ST (A): Each agent A has a local state (i.e., its local world model),
which is a subset of the real world at time T . In a distributed execution, agents per-
ceive the real world from different view-points. Thus, their states may differ from
each other based on their perceptions.

– Expected state: ST (Ap): In order to enable agents to reason about the future, it is
important to represent how the agent expects the future. That is, based on its current
state and its current commitments in this state, how does the agent expect the world
to evolve at a future time point? We describe this with the notion of an expected state,
which represents an expectation of A for the world at time T . The expected state is a
representation of what the agent expects when time has evolved to that point.

Figure 3 shows examples for different types of states for the same time point 25.
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(a) S25(bob) = 〈{funds}, {Cacnt,bob (funds[10], refurbished[30])}〉

(b) S25(estate agent) = 〈{}, {}〉

(c) S25(bobp) = 〈{refurbished}, {}〉

Fig. 3. Sample states.

In (a), Bob’s actual state is shown. It contains a single proposition, which tells that the
funds has been transferred, and an active commitment from the contractor to Bob, which
tells that the refurbishment is still in process. Bob fully perceives its environment at this
point. However, it is not always the case that the agents can perceive everything in their
environment. For example, in (b), the estate agent is neither aware of the commitment
between Bob and the contractor, nor aware of the fact that Bob has transferred the funds.
In (c), Bob’s expected state is shown. One can easily see that Bob expects refurbishment
to be completed for this time point. However, from the local state of Bob, we see that the
commitment for refurbishment is still active. Indeed, there is an discrepancy between
what Bob perceives and expects.

3.1. Commitment Theory

We now describe each commitment state with respect to the corresponding world states.
Assume the following state St(A) = 〈Φ, C〉 and CSt(Ant[ta], Con[tc]) ∈ C. Let’s walk
through different values of St (see also Figure 2).
Conditional: When the commitment is in conditional state, denoted Cc(Ant[ta],
Con[tc]), if Ant is brought about by the deadline ta, then the debtor will be committed
to bring about Con by the deadline tc. When the state is conditional, then Ant, Con
6∈ Φ. In other words, the commitment Cc(Ant[ta], Con[tc]) cannot coexist in the same
state with its antecedent or consequent:

– If the commitment’s antecedent Ant already holds before ta, then the commitment is
no longer conditional (i.e., its condition is satisfied), and it will become active.

– If the commitment’s consequent Con already holds before tc, then the commitment
is no longer conditional, and it will become fulfilled.

Expired: The commitment is in expired state, denoted Ce(Ant[ta], Con[tc]), when
CSt(Ant[ta], Con[tc]) ∈ C, Ant 6∈ Φ and ta < t. That is, the antecedent of the com-
mitment has not been brought about before its deadline has passed. The conditional
commitment’s life-cycle ends with this state. Note that we do not use the expired com-
mitment state in this paper.
Active: A commitment can be in an active state following two different paths:

– The commitment is initially created without a condition, denoted as Ca(>, Con[tc]).
We require that Con 6∈ Φ. In other words, the commitment Ca(>, Con[tc]) cannot
coexist in the same state with its consequent. If the commitment’s consequent Con
already holds before tc, then the commitment is no longer active, and it will become
fulfilled.
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– Alternatively, a conditional commitment may be detached into an active commitment,
when CSt(Ant[ta], Con[tc]) ∈ C, Ant ∈ Φ and ta ≥ t. That is, the antecedent of the
commitment has been brought about before its deadline.

Fulfilled: The commitment is in fulfilled state, denoted Cf (Ant[ta], Con[tc]), when
CSt(Ant[ta], Con[tc]) ∈ C, Con ∈ Φ and tc ≥ t. That is, the consequent of the com-
mitment has been brought about before its deadline. The commitment’s life-cycle ends
with this state.
Violated: The commitment is in violated state, denoted Cv(Ant[ta], Con[tc]), when
CSt(Ant[ta], Con[tc]) ∈ C, Ant ∈ Φ, Con 6∈ Φ and tc < t. That is, the commitment
has become (or started) active, but the consequent has not been brought about before its
deadline has passed. The commitment’s life-cycle ends with this state.

3.2. When to Take Action

A rational agent tries to perform actions that will enable its expected state to be realized.
However, note that an expected state may not be realized solely by the agent itself since
it may contain propositions or commitments that can only be satisfied by others. For
example, even if Bob expects timely refurbishment of the house, he can’t ensure it by
himself. Given the current state, we are interested in computing if the current state yields
a lower benefit for the agent than an expected state. This would mean that things are not
progressing as planned and that an action needs to be taken. For example, Bob needs to
take an action if the house is not refurbished on time.

Recall that a given state ST (A) consists of terms that are either propositions or
stateful commitments. We refer to all terms in a given state (that include Con) with
TCon(S) as described in Definition 6.

Definition 6. The set TCon(S) contains all the terms in state S that are either a propo-
sition Con, a proposition ¬Con, or a commitment whose consequent is the proposition
Con.

The utility of a term x ∈ TCon(S) shows how desirable x is in the execution. We
assume a function u from terms into real numbers so that each agent can compute and
compare the utilities of terms.

Definition 7. From the creditor’s point of view, the following is meaningful: u(¬Con)
= u(Cv(Ant, Con)) < u(Ca(Ant, Con)) < u(Cf (Ant, Con)) = u(Con). For sim-
plicity, deadlines are omitted here. The creditor would benefit most if the commitment
is fulfilled. Less beneficial is an active commitment and the worst is a violated commit-
ment. This ordering is compatible with the commitment valuations proposed by Yolum
and Singh (Yolum and Singh, 2007).

Figure 4 demonstrates the condition where the agent will take an action. When an
agent ends up achieving a term that has lower utility than its expected term, then this
will yield a problem. For example, if the agent expects Cf (Con), but in reality, the
world has Ca(Con), then it should take an action. Based on this intuition, we formally
define when an agent needs to take an action in Definition 8. This definition captures the
idea that the decision to take an action is agent-specific in the sense that one agent may
identify a particular situation as a problem while another agent may not, depending on
its expectations.
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u(Cv(Con))

u(Ca(Con))

u(Cf (Con))

u(Con)

u(TCon(ST (A)))

u(Cv(Con)) u(Ca(Con)) u(Cf (Con)) u(Con)

u(TCon(ST (Ap)))

TAKE ACTION

Fig. 4. Understanding when to take actions. The X axis shows expected terms, whereas
the Y axis shows the actual terms. The dashed area shows the cases where the agent
would take an action.

Definition 8. Agent A at time T needs to take an action related to proposition Con,
denoted takeAction(A, T , Con), iff

–the expected state contains a term but the real state does not contain any terms; that
is: ∃ x: x ∈ TCon(ST (Ap)) and TCon(ST (A)) = ∅, or

–the expected state contains a term that is higher in utility than the related term in the
real state; that is: ∃ x, y: x ∈ TCon(ST (Ap)), y ∈ TCon(ST (A)), and u(x) > u(y).

Note that Definition 8 does not compare the total utility value of the states but of
individual terms. The intuition is that we do not want the summation of utilities to
cover for the differences in individual differences. For example, assume that there are
two terms in the real state as well as in the expected state. It might be the case that
when analyzed individually one of the terms in the real state has lower utility than
its associated term in the expected state. Once there is a problem related to a single
proposition in an agent’s state, then the agent needs to take an action. Our definition
follows this idea and signals a problem. However, if we had looked at the utilities of
the states as a whole, it might have been the case that the utility gained from the second
term is much higher in the real state, yielding a high utility for the real state than the
expected state. Since the utility had been higher in the real state, the agent would not
have identified a problem, missing a possible problem regarding the first term.

4. Comparing States with As-Good-As

We capture the expectations of an agent through expected states. On one hand, an ex-
pected state is similar to a temporal achievement goal (Chopra, Dalpiaz, Giorgini and
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funds
1

refurbished
2

Cf (>, refurbished)
3

Ca(>, refurbished)
4

Cv(>, refurbished)
5

Cv(funds, refurbished)
6

Cf (funds, refurbished)
7

Ca(funds, refurbished)
8

Cc(funds, refurbished)
9

Fig. 5. A partial view of the “as-good-as network”. Given two atomic propositions funds
and refurbished, the network depicts some possible terms that can be derived from them
and draws the as-good-as relation in between. Arrows show the direction of the rela-
tion. To reduce clutter, we remove the agents’ names as well as the deadlines from the
commitments.

Mylopoulos, 2010; Telang, Meneguzzi and Singh, 2013), where the agent plans to reach
some properties or be involved in some commitments at a certain time point. On the
other hand, expected states do not necessarily represent goals. They model the agent’s
expectations about the future, which might be good or bad. That is, the agent may as-
sume certain properties to hold in the future even though it does not wish so, e.g., the
contractor may expect a late delivery of the material if he is informed of a car accident
covering the territory. Next we develop the theory for the as-good-as relation, that is
used by PISAGOR to reason about its interactions.

It is important that an agent can compare its actual and expected states. For that
purpose, we propose the as-good-as relation. It compares two states and decides if one
is as-good-as the other. This is a strong relation in the sense that once a state is as-
good-as another, then the two states are either equal or the former can replace the latter.
This captures our intuition that if the current state of the world is equivalent to or better
than the expected world state, the execution is in order and no action needs to be taken.
However, if the comparison yields that the current state is not as-good-as the expected
state, then there is a problem and it should be handled by the agent.

Our understanding of the as-good-as relation is inspired from satisfiability in propo-
sitional logic. However, in this case, we do not only have propositions but also commit-
ments with states. Hence, we need a relation that can also take care of comparisons of
stateful commitments.

Our as-good-as relation is denoted by X �Y , and is read as “X is as-good-as Y ”.
Since the proposed relation will be used to compare the current state of an agent with an
expected state,X will correspond to the real state and Y will correspond to the expected
state of the agent.

We develop the as-good-as relation via the following axioms by extending and for-
malizing the ideas reported in (Kafalı and Yolum, 2011). Figure 5 is an aid in following
the axioms. Note that the figure does not include deadlines for simplicity. In order to
understand the relation between states, we start with studying the as-good-as relation
between terms.

Axiom 1. Proposition φi is as-good-as proposition φj at time t, denoted φi �φj , iff φi
` φj .

Axiom 1 follows directly from logic entailment in propositional logic. When com-
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paring propositions, we assume that they are described by the same time point, e.g.,
comparing the current state of the agent with its expected state for the same time point.
When commitments are involved, we need to go beyond basic logic entailment. Accord-
ingly, Axiom 2 states that if a proposition entails a commitment’s consequent, then the
proposition is as-good-as the commitment independently of its state.

Axiom 2. Proposition φ is as-good-as commitment CSAi,Aj
(Ant[ta], Con[tc]) at time t,

denoted φ�CSAi,Aj
(Ant[ta], Con[tc]), iff φ ` Con and tc ≥ t.

We can study Axiom 2 as four cases that correspond to the different commitment
states {c, f , a, v}.

– A proposition entailing a conditional commitment’s consequent is more beneficial
than than the conditional commitment itself. The interpretation is that if the con-
tractor expects that when he pays then the delivery takes place, and if the materials
are actually delivered before him making the payment, then the current state of the
world is more beneficial than his expectation. Hence, the proposition is as-good-as
the fulfilled commitment.

– A proposition entailing a fulfilled commitment’s consequent possesses the same out-
come as the commitment itself. For example, in Figure 5, nodes 2 and 3 (refurbished
�Cf (>, refurbished)) exhibit this relation. The interpretation is that if Bob has an
expectation that the commitment to him for refurbishment will be fulfilled and if he
perceives that the house is indeed refurbished, then his expectation is satisfied. Hence,
the proposition is as-good-as the fulfilled commitment.

– A proposition entailing an active commitment’s consequent is more beneficial than
the commitment itself. For example, in Figure 5, nodes 2 and 4 (refurbished�Ca(>,
refurbished)) exhibit this relation. That is, if Bob has an expectation that his com-
mitment will be active (such that the refurbishment will take place later) but perceives
that the house is already refurbished, then he is indeed in a better situation. Hence,
the proposition is as-good-as the active commitment.

– A proposition entailing a violated commitment’s consequent is more beneficial than
the commitment itself. For example, in Figure 5, nodes 2 and 5 (refurbished�Cv(>,
refurbished)) exhibit this relation. Now, if Bob expects that his commitment will be
violated (such that the house will not be refurbished on time), then he will be satis-
fied when he actually sees that the refurbishment is finished. Hence, the proposition
is as-good-as the violated commitment.

Axiom 3. Commitment CSAi,Aj
(Ant[ta], Con[tc]) is as-good-as proposition φ at time t,

denoted CSAi,Aj
(Ant[ta], Con[tc]) �φ, iff

–Ant ` φ and S ∈ {a, v}, or

–Con ` φ and S ∈ {f}.

Axiom 3 describes the two ways that a conditional commitment is considered as-
good-as a proposition. The first case states that if a conditional commitment reaches an
active state, then it satisfies its antecedent. This is straightforward since the only way
to reach an active conditional commitment is by having the antecedent hold. Further, if
the consequent never becomes true (i.e., the commitment is violated), the commitment
would still satisfy the antecedent; hence for example, in Figure 5, node 6 would satisfy
node 1 (Cv(funds, refurbished) �funds). Note that the fulfilled state is not included
in this case, because the conditional commitment may have been fulfilled directly from
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–funds

–Cfcnt,bob(>, refurbished[30])

S25(bob)

–funds
–refurbished

S25(bobp)
�

Fig. 6. As-good-as for states.

the conditional state leaving us with no information about the antecedent itself. The
second case states that a fulfilled conditional commitment satisfies its consequent. In
Figure 5, a similar example would be among nodes 7 and 2 (Cf (funds, refurbished)
�refurbished).

Axiom 4. Commitment CS1

Ai,Aj
(Ant1[ta1], Con1[tc1]) is as-good-as commitment

CS2

Ak,Al
(Ant2[ta2],Con2[tc2]), denoted CS1

Ai,Aj
(Ant1[ta1],Con1[tc1]) �CS2

Ak,Al
(Ant2[ta2],

Con2[tc2]), iff

–Ant2 ` Ant1, Con1 ` Con2, S1 ∈ {f} and tc2 ≥ tc1, or

–Ant2 ` Ant1, Con1 ` Con2, S1 ∈ {a}, S2 ∈ {a, v, c} and tc2 ≥ tc1, or

–Ant2 ` Ant1, Con1 ` Con2, S1 ∈ {v}, S2 ∈ {v}, or

–Ant2 ` Ant1, Con1 ` Con2, S1 ∈ {c}, S2 ∈ {c} and tc2 ≥ tc1, or

–Ant1 ` Con2, S1 ∈ {a, v} and tc2 ≥ ta1.

Axiom 4 compares two commitments with each other. The antecedent in each com-
mitment can be >. Here the general idea is that, one commitment is more beneficial
than a second one from the perspective of the creditor if the creditor gets more by doing
less. This clause is formalized by Ant2 ` Ant1, Con1 ` Con2. This is similar to the
strength relation as proposed in (Chopra and Singh, 2009). Moreover, the deadline com-
parisons are compatible with (Kafalı et al., 2010; Kafalı and Torroni, 2012). Among two
commitments, if their states are identical or a state is more beneficial than a second state
(Definition 7), then the commitment is as-good-as the second commitment. For exam-
ple, Cf (funds, refurbished[25]) �Cf (>, refurbished[30]) (denoted with nodes 7
and 3 in Figure 5). Here both commitments are fulfilled with the same consequent and
the first commitment has an earlier deadline. Moreover, Cf (funds, refurbished[25])
�Ca(funds, refurbished[30]). Here, the fulfilled commitment entails refurbished,
thus is as-good-as the active commitment towards refurbished.

Theorem 1. �relation is a preorder, i.e., it is reflexive, non-symmetric, and transitive.

Our as-good-as relation is a preorder. The proof can be found in the Appendix. The
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above development shows how a term is as-good-as another term. Starting from that, we
need to show how a state is as-good-as another state. As a motivating example, consider
the states in Figure 6. To decide whether the top state is as-good-as the bottom state, we
need to figure out whether there exists a conjunction of terms on the top state for each
term on the bottom state such that the conjunction of terms on the top is as good as the
term on the bottom. That is, the term funds in state S25(bob) is as-good-as the term
funds in state S25(bobp). Similarly, the term Cfcnt,bob(>, refurbished[30]) is as good
as the term refurbished.

Definition 9. State ST (X) = 〈Φ, C〉 is as-good-as term Tj , denoted ST (X) �Tj , iff ∃
α = Tn ∧ ...Ti... ∧ Tm: for each Ti ∈ α, Ti ∈ Φ ∪ C and α�Tj .

According to Definition 9, a state is as-good-as a term if there is a conjunction of
terms in the state that is as-good-as the term.

Definition 10. State STm(X) is as-good-as state STn(Y ), denoted STm(X)�STn(Y ),
iff ∀ T ∈ STn(Y ): STm(X) �T .

According to Definition 10, a state is as-good-as another state if the former state
is as-good-as every term in the latter state. By computing the as-good-as relation as
explained above, an agent can identify a problem and take an action as it sees fit.

Theorem 2. For an agent A, at time T , given a proposition Con, ST (A) 6�ST (Ap) iff
takeAction(A, T , Con).

Our as-good-as relation is sound and complete. That is, it identifies that the agent’s
current state is not as-good-as its expectation only when there is a problem (soundness),
e.g., the agent needs to take an action, and if there is a problem it always identifies that
the agent’s current state is not as-good-as its expectation (completeness). The proof can
be found in the Appendix.

Finally, the agent can check its progress at any time using the state comparison
described in Definition 10. This is explained in Definition 11.

Definition 11. Agent A checks whether ST (A) is as-good-as ST (Ap) with
checkProgress(A, T )=Φunsat. If ST (A) is not as-good-as ST (Ap), then Φunsat con-
tains the terms that are not satisfied in ST (Ap).

5. Operational Reasoning in PISAGOR

We now build the operational rules for PISAGOR to follow, that make use of the as-
good-as relation. We group these rules in three different categories:
Manage expectations: Based on the creation of new commitments, the agent should
update its expectations about the subject commitment’s propositions. The agent can
create or update its expectations following the below rules.

Create initial expectation: When a new commitment is created, the agents partici-
pating in the commitment create expectations about the antecedent and the consequent
if no such expectations exist before.

create(Cc(Ant[ta], Con[tc])) ∧ @St(p) = 〈Φ, C〉 : Ant ∈ Φ

create(St(p) = 〈{Ant}, C〉)
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create(Cc(Ant[ta], Con[tc])) ∧ @St(p) = 〈Φ, C〉 : Con ∈ Φ

create(St(p) = 〈{Con}, C〉)
Update existing expectation: When a new commitment is created and a participating

agent already has expectations about the antecedent or the consequent, then it will only
update its expectation if the new deadline proposed by the commitment is earlier than
the existing one.

create(Cc(Ant[ta], Con[tc])) ∧ ∃St(p) = 〈Φ, C〉 : Ant ∈ Φ ∧ ta < t

remove(St(p) = 〈{Ant}, C〉) ∧ create(Sta(p) = 〈{Ant}, C〉)

create(Cc(Ant[ta], Con[tc])) ∧ ∃St(p) = 〈Φ, C〉 : Con ∈ Φ ∧ tc < t

remove(St(p) = 〈{Con}, C〉) ∧ create(Stc(p) = 〈{Con}, C〉)

Check progress: When the time reaches a point where the agent has an expectation,
then the agent has to check its current progress against the expectation using the as-
good-as relation as follows:

currentT ime = t ∧ ∃St(Ap) = 〈Φ, C〉 : Φ ∪ C 6= ∅
checkProgress(A, t) = Φunsat

Take action: If the current state is not as-good-as the expectation, then the agent has to
take appropriate action as follows, e.g., create a new commitment about the unsatisfied
proposition:

checkProgress(A, t) = Φunsat ∧ ∃φ ∈ Φunsat

create(Cc(Ant[t], φ[t]))

Next, we demonstrate how these rules can be operated by the agent to manage its
progress throughout the protocol, via a case study based on Example 1.

6. Implementation & Case Study

We have implemented PISAGOR using the Reactive Event Calculus (REC). REC has
been developed to monitor commitments in run-time (Chesani et al., 2013; Kafalı et al.,
2010; Wood et al., 2013), and it is a logic used for representing events and their out-
comes. While the Event Calculus, in its nature, is used for backward reasoning (e.g.,
goal-driven), REC enables forward reasoning (e.g., event-driven) as well. We employ
REC as the reasoner component of the agent shown in Figure 1. Note that each agent
has a separate REC engine that it can run at any time throughout the execution. The
REC engine takes three types of input:

– Commitment theory contains the rules on how commitments are manipulated. This is
a shared rule-base for all the agents.

– Protocol rules contains the domains rules that describe the consequences of the agents’
actions as well as other domain facts. This is an agent-dependent as well as domain-
dependent rule-base as each agent has a separate protocol description that covers its
own view.
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– Event trace contains the actions that the agents perform throughout time. Like the
protocol description, the event trace is also agent-dependent. That is, each agent is
aware of the events that are related to it, but does not see the events that might take
place among other agents.� �

1 % create as conditional
2 initiates(E, status(C, conditional), T):-
3 ccreate(E, C, T).

5 % conditional to active
6 terminates(E, status(C, conditional), T):-
7 detach(E, C, T).

9 initiates(E, status(C, active), T):-
10 detach(E, C, T).

12 detach(E, c(X, Y, Ant, Ta, Con, Tc), T):-
13 conditional(c(X, Y, Ant, Ta, Con, Tc), T),
14 T =< Ta,
15 initiates(E, Ant, T).

17 ...

19 % active to violated
20 terminates(E, status(C, active), T):-
21 violate(E, C, T).

23 initiates(E, status(C, violated), T):-
24 violate(E, C, T).

26 violate(E, c(X, Y, Ant, Ta, Con, Tc), T):-
27 active(c(X, Y, Ant, Ta, Con, Tc), T),
28 T > Tc.� �

Listing 1: Commitment theory inREC.

� �
1 checkProgress(Term, satisfied, T):-
2 asGoodas(Term2, Term, T).

4 % Axiom 1 (proposition is as-good-as proposition)
5 asGoodas(Con, proposition(Con), T):-
6 holds_at(Con, T).

8 % Axiom 2 (proposition is as-good-as commitment)
9 asGoodas(Con, commitment(c(X, Y, Ant, Ta, Con, Tc), State), T):-

10 holds_at(Con, T),
11 T =< Tc.

13 % Axiom 3 (commitment is as-good-as proposition)
14 asGoodas(c(X, Y, Ant, Ta, Con, Tc), proposition(Ant), T):-
15 active(c(X, Y, Ant, Ta, Con, Tc), T).
16 ...

18 % Axiom 4 (commitment is as-good-as commitment)
19 asGoodas(c(X1, Y1, Ant, Ta1, Con, Tc1),
20 commitment(c(X2, Y2, Ant, Ta2, Con, Tc2), State), T):-
21 fulfilled(c(X, Y, Ant, Ta1, Con, Tc1), T),
22 Tc1 =< Tc2.
23 ...� �

Listing 2: Formulating as-good-as inREC.

Once the REC engine is run with above input, it produces an outcome that demon-
strates the fluents the agent is aware of through time (e.g., states of commitments). This
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process is often called commitment tracking (Chesani et al., 2013). Listing 1 describes
in part how the commitment theory is implemented in REC. A commitment can be
created as conditional (lines 2-3). That is, when an event happens that conditionally
creates a commitment, then the state of the commitment becomes conditional active.
This is done through the domain-independent EC predicate initiates/3. Similarly, when
an event happens that detaches the commitment, then the state of the commitment is
no longer conditional (lines 6-7) and it becomes active (lines 9-10). A commitment is
detached when its antecedent is initiated before the deadline Ta (lines 12-15). When
the commitment is active and its consequent is not initiated before the deadline Tc, then
the commitment is violated (lines 26-28).

In this paper, we do not use REC only for monitoring commitment states, but also
to identify problems at run-time. Thus, we further integrate the agent’s expectations as
well as the as-good-as relation for determining when to take actions. Listing 2 describes
in part how the as-good-as relation is implemented in REC. When checking for the
agent’s progress, if there is a term in the agent’s current state that is as-good-as the term
in the expected state, then its expectation is satisfied (lines 1-2). The rest of the listing
develops this theory for the four axioms described in Section 4. An expected proposition
is satisfied if the same proposition holds in the current state at that time (lines 5-6).
Similarly, an expected commitment is satisfied if the consequent of the commitment
holds in the current state T before the deadline Tc. Note that we only give the first rules
for Axioms 3 and 4. Other rules are described similarly.

Listing 3 describes in part how the operational rules are implemented inREC. When
a new commitment is created, the agent creates an expectation about its antecedent if
no such expectation holds before (lines 2-4). If such an expectation already holds, then
the agent only updates it if an earlier deadline is proposed by the new commitment, i.e.,
removes the previous expectation (lines 8-11) and creates a new expectation (lines 13-
16). The rules for the consequent are described similarly. The agent takes an action if it
finds out that an expectation is not satisfied after checking the progress (lines 20-22).� �

1 % create expectation when a commitment is created
2 initiates(E, expectation(proposition(Con), Tc), T):-
3 ccreate(E, c(X, Y, Ant, Ta, Con, Tc), T),
4 \+ holds_at(expectation(proposition(Con), _), T).
5 ...

7 % update expectation if an earlier deadline is proposed
8 terminates(E, expectation(proposition(Ant), Te), T):-
9 ccreate(E, c(X, Y, Ant, Ta, Con, Tc), T),

10 holds_at(expectation(proposition(Ant), Te), T),
11 Ta < Te.

13 initiates(E, expectation(proposition(Ant), Ta), T):-
14 ccreate(E, c(X, Y, Ant, Ta, Con, Tc), T),
15 holds_at(expectation(proposition(Ant), Te), T),
16 Ta < Te.
17 ...

19 % check progress and take action
20 initiates(E, takeAction(Term), T):-
21 holds_at(expectation(Term, T), T),
22 \+ checkProgress(Term, satisfied, T).� �

Listing 3: Operational rules inREC.

Listing 4 describes how the domain model of Bob is implemented inREC. Actions
of the agents initiate the corresponding fluents (lines 1-3). The offer from the estate
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Fig. 7.REC interface for the output of Case I. It is made up of three tabs (shown on the
left): (i) metamodel includes the commitment theory and as-good-as axioms, (ii) model
describes the domain model of the agent, and (iii) run enables execution given a trace
of events that correspond to the agent’s actions (shown on the right). The plot in the
middle shows the progression of fluents through time (i.e., according to the effects of
agent’s actions).

agent to Bob creates the conditional commitment between them: if Bob refurbishes the
house by the deadline Ta, then the estate agent sells the house by the deadline Tc (lines
5-6). Similarly, the offer from the contractor to Bob creates the conditional commitment
between them (lines 7-8). The completeREC implementation can be found online1.� �

1 initiates(exec(pay(bob, contractor)), funds, T).
2 initiates(exec(refurbish(builder, contractor)), refurbished, T).
3 initiates(exec(sell(estateAgent, bob)), sold, T).

5 ccreate(exec(offerSold(estateAgent, bob, Ta, Tc)),
6 c(estateAgent, bob, refurbished, Ta, sold, Tc), T).
7 ccreate(exec(offerRefurbished(contractor, bob, Ta, Tc)),
8 c(contractor, bob, funds, Ta, refurbished, Tc), T).� �

Listing 4: Domain model for Bob inREC.

Let us now review two cases following Example 1 to demonstrate the usage of the
as-good-as relation for determining when PISAGOR needs to take action.
Case I: Consider the following trace of events:

1 offerSold(estateAgent,bob,30,60)
3 offerRefurbished(contractor,bob,15,45)

10 pay(bob,contractor)
40 refurbish(builder,contractor)

1 http://mas.cmpe.boun.edu.tr/ozgur/code.html

http://mas.cmpe.boun.edu.tr/ozgur/code.html
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Fig. 8.REC output for Case II.

At time 1, the estate agent offers Bob to sell his house by time 60 if Bob refurbishes
the house by time 30. Then, at time 3, the contractor offers Bob to refurbish his house
by time 45 if Bob sends the payment by time 15. Accordingly, Bob pays at time 10 and
the contractor gets the house refurbished at time 40. Figure 7 shows the REC interface
that corresponds to this case. When run,REC produces the figure shown in the middle.
The horizontal axis shows the timeline of events that happened during Bob’s execution.
Notice a tick event is associated with some non-occupied (i.e., no protocol events) dis-
crete time points. This is required for REC to process properly since it is event-driven,
e.g., a new event triggers REC to process further. The fluents are positioned vertically
and their truth values (and the corresponding states for commitments) are computed
according to the events.

When the estate agent makes the offer, Bob creates expectations about the two
propositions: refurbished for time 30 and sold for time 60. Then after the offer from
the contractor, Bob creates another expectation about proposition funds for time 15.
Note that Bob does not update its expectation about refurbished for 45 since he al-
ready has the expectation for an earlier deadline. When the time is 15, Bob checks
his progress and sees that proposition funds already holds. Thus, there is no need to
take an action about it. When the time is 30, Bob again checks his progress and this time
PISAGOR identifies a problem, i.e., the fluent takeAction(proposition(refurbished))
becomes true. Note that the contractor’s commitment is not violated. However, Bob
needs to take action, e.g., create a new commitment to get a quicker refurbishment for
the house.
Case II: Consider the following trace of events:

1 offerRefurbished(contractor,bob,15,45)
3 offerSold(estateAgent,bob,30,60)
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10 pay(bob,contractor)
40 refurbish(builder,contractor)

Notice that the offers are reversed from the first case. The rest of the trace is the
same. Figure 8 shows the REC output that corresponds to this case. Bob creates an
expectation about refurbished for time 45 initially. But, when the second commitment
is created, Bob updates this expectation for time 30. When the time is 30, although the
contractor’s commitment is not violated, again Bob needs to take an action about the
refurbishment of the house since his deadline for the estate agent’s commitment has
come.

7. Discussion

In this section, we first compare our work with relevant literature. Then, we review our
contributions and provide directions for possible extensions.
Related Work: Agents have been utilized to support users in e-commerce, providing
content support, interface support and decision support for making optimal purchas-
ing decisions (Menczer, Street, Vishwakarma, Monge and Jakobsson, 2002; Chang and
Wong, 2011). These approaches offer search and choice behaviors for different pur-
chasing alternatives. In (Shimazu, 2002), the authors build automated salesclerks based
on real conversations of humans to propose sample products by observing customer re-
sponses. The idea of artificial shopping agents is discussed to maximize benefits, min-
imize time and effort, and determine possible concerns. While these directions help
improve the customer experience in e-commerce markets, they do not provide support
for the customers when unexpected situations occur, e.g., a late delivery. We, on the
other hand, provide a systematic way to detect such cases based on the expectations of
users. Privacy of users and fraud detection are other concerns in e-commerce (Berendt,
Günther and Spiekermann, 2005; Huang et al., 2012). In (Berendt et al., 2005), the au-
thors compare users’ privacy concerns with their actual behaviors via monitoring and
controlling their actions. In a sense, we take a similar approach, and compare the users’
expectations with the actual events happened in their environment to see whether they
are progressing as expected (e.g., catch abnormal interactions in the case of frauds).

Detecting problematic situations is of utmost importance in many computational
environments including distributed systems and multiagent systems. This presents it-
self especially when autonomous entities need to interact with each other (Moubaiddin
and Obeid, 2013; Nguyen and Katarzyniak, 2009). When software agents enact busi-
ness protocols together, problems might take place and diagnosing their cause allows
entities to deal with the problem in a timely manner. Hence, instead of a failed execu-
tion, the entities, either individually or cooperatively, can work to solve the problem.
In this work, we focus on a subset of e-commerce protocols where the interactions
among participants are governed by contracts. Contracts and norms have been exten-
sively studied to regulate agent interaction also in other domains (Meneguzzi, Modgil,
Oren, Miles, Luck and Faci, 2012). The monitoring and verification of contracts has
been covered before in the literature (El Menshawy, Benthar, Qu and Dssouli, 2011; Gi-
annikis and Daskalopulu, 2011). However, these works take a centralized perspective
where reasoning on contracts are performed by a single entity that has a global view
of the environment. Moreover, since monitoring is done centrally, they do not provide
subjective reasoning as we do here, e.g., a problem situation for a participant might be
considered normal by another participant based on their expectations from the contract.
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This type of reasoning would support participants with their decision making (Huang
and Kuo, 2012).

In central monitoring systems, tracking the states of individual commitments is an
effective way to detect problems, since all the interactions of agents are observable.
Such tracking of commitments can be done with REC (Chesani et al., 2013). In this
paper, we are interested in monitoring interactions when agents have local views of
the environment and their ideas of problematic situations vary. Thus, we do not take
a centralized approach. Instead, we need to treat multiagent systems as embodying in-
teraction protocols that are only partially shared and analyze problems as cases raising
through discrepancies in agent’s expectations of the system. Another approach that uses
the Event Calculus is described in (Farrell, Sergot, Sall and Bartolini, 2005). The authors
use an XML-based formalisation called ecXML, and a GUI-based program for visually
tracking the states of contracts. Moreover, we do not have the aim of analyzing the sys-
tem at design time in the case of model checkers (El Menshawy et al., 2011; Telang and
Singh, 2012b; El Kholy, El Menshawy, Bentahar, Qu and Dssouli, 2013). While this
is certainly useful, many times certain problems may not be detected at design time.
Hence, our development in this paper is towards creating methods to determine when
agents need to take actions at run time.

Commitments account for the constitutive specification of a protocol. They provide
flexible execution for the agents as long as their commitments are satisfied. When a
problem occurs (e.g., a commitment is violated), there may be several reasons behind
it. One such reason is the misalignment of agents’ commitments. That is, the debtor
and the creditor have different understandings for the same commitment (Chopra and
Singh, 2009; Kafalı et al., 2010). In order for agents to interoperate correctly in a dis-
tributed protocol, their commitments should be aligned. For example, if Bob expects
delivery today, and the seller thinks the payment is not processed yet (assume payment
is required prior to delivery), then there is obviously a problem between the two agents.
In this work, we do not consider problems caused by misalignment, e.g. different obser-
vations of the agents. Rather, we focus on the expectations of agents, and the problems
that stem from the differences of their expectations.

Rittgen discusses two types of contracts: behavior-based and outcome-based (Rittgen,
2008). While the author claims that an outcome-based approach should be favored since
it might be costly to monitor agents, a contract-based architecture for behavior-based
contracts is given for interorganizational processes. In this sense, our approach can be
considered outcome-based as we do not focus on the behavior of the agents as long as
their commitments are fulfilled. However, by taking into account expectations, we can
also represent expected behaviors from agents.

Other key properties of multi-party business processes are the conformance and
interoperability of agents. First, the agent’s design should conform to the protocol’s
standards (Chopra et al., 2010; Telang and Singh, 2012a). In other words, the agent
should have the necessary capabilities to satisfy its commitments. Moreover, the agent
should be interoperable with other agents. That is, all agents should infer the same
semantics for the protocol rules. Consider the following intuitive example: Bob wishes
to pay using his credit card, however the seller only accepts bank transfer as payment.
Obviously, these two agents are not interoperable, since payment by credit card is not
defined in the seller’s rule-base. Assume they have a commitment which tells if payment
is processed, then delivery will be done. Now, when Bob pays by credit card, he thinks
that the seller will deliver. However, looking from the seller’s point of view, the seller is
not committed to deliver since the payment is not processed via a bank transfer. Here, we
assume the agents both conform to the protocol they are executing and are interoperable
with each other. Even then, problems might occur. We investigate such cases.



22 Ö. Kafalı and P. Yolum

Governatori discusses the compliance of business processes to a normative system
(Governatori, 2013). They model business processes with the standard BPMN notation,
in which tasks can be related to each other via different relations, e.g., xor. A normative
system is described in terms of a set of different obligation types. Firstly, they differ-
entiate between punctual (that are in force for a given task) and persistent obligations.
In our framework, all commitments are persistent as we do not associate the lifecycle
of a commitment with a task’s duration. Moreover, we only support achievement type
commitments in this work. Maintenance commitments is left for future work. When
there is a single conditional commitment, this corresponds to a preemptive obligation.
Non-preemptive obligations can also be modelled using another base level commitment
for the antecedent, which forces an obligation on the antecedent as well. In addition,
compensable obligations can be represented by having another conditional commit-
ment with the antecedent being the negation of the former commitment’s consequent
and the consequent being the proposition for the actual compensation. When check-
ing for compliance, they assume that the obligations are already in force as well as the
tasks that make up the process. We also propose operational rules to describe how an
agent’s expectations can be established based on the created commitments. Moreover,
in (Governatori and Milosevic, 2006) the authors propose an XML-based contract lan-
guage to reason about violations and their possible compensations.

There has been some work in the literature on comparing agents’ states as we do
in this work. One related work is that of Mallya and Singh (Mallya and Singh, 2007),
which focuses on similarity relations for protocol runs. In parallel with our work, a state
is described as a set of propositions and commitments, and several similarity relations
are given to compare states. The idea is to compare protocol runs in terms of states. One
major difference between their similarity relations and our as-good-as relation is that
their relations are equivalence relations (e.g., supports symmetry) while ours is not. This
is mainly related to the motivation behind those relations. That is, they aim to merge
smaller protocols into larger ones by comparing protocol states. We, on the other hand,
provide a one-way relation (e.g., not necessarily symmetric) to compare states. Since
our main motivation is to ensure that an agent’s state complies with its expectations,
the inverse direction is not significant at all (e.g., whether expectations support actual
states). Moreover, it is not necessary to ensure that both states are equivalent.

Contributions: In this paper, we have proposed the as-good-as relation that can be
used to compare agents’ states. We have implemented PISAGOR: a software agent that
realizes this relation to tell whether there is a problem and that the user needs to take an
action. That is, if the agent’s current state is not as-good-as its expected state, then the
agent identifies a problem. Moreover, we proposed operational rules so that PISAGOR
can create expectations based on its commitments.

We extend the concept of problematic situations that are described in the literature.
Often, a problem is considered identical to a contract violation. While we accommodate
that perspective, we also take into account the agent’s expectations from their commit-
ments. Note that we would normally identify a problem when a commitment is still ac-
tive when it should be fulfilled. However, by letting the expected state to be constructed
according to the agent’s expectations, a significant problem is avoided.

Future work: For this work, we have focused on commitments where the proposition
needs to be achieved once for the commitment to be fulfilled. It is also interesting to
capture cases where the proposition needs to be maintained over a period of time, e.g.,
the contractor committing to Bob for the house staying in good condition for two years
after the refurbishment. We plan to investigate the relations among maintenance type
commitments in the future.
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The as-good-as relation can also be utilized to perform prediction of problems. One
way to do so is to compare the expected states of agents. For example, assume that the
contractor expects delivery of materials today. However, the supplier has additional in-
formation about an accident that the contractor is not aware of, and does not foresee
delivery any time soon. Now, if the contractor can compare its expectation with that of
the supplier, then he may predict that there will be a problem. Such reasoning would
require parties to share their expectations and other relevant information, e.g., the con-
tractor reviews the website of the supplier for delivery times. This is another direction
that we would like to pursue in a future work.
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Appendix

Theorem 1 �relation is a preorder, i.e., it is reflexive, non-symmetric, and transitive.

Proof. It is trivial that �is reflexive and non-symmetric. For atomic propositions, re-
flexivity follows from Axiom 1 and for commitments it follows from Axiom 4. For
showing non-symmetry, any unidirectional edge in Figure 5 serves as a counter-example
for symmetry. Consider the edge between nodes 2 and 5. The proposition refurbished
satisfies the violated base-level commitment Cv(>, refurbished), but the other direc-
tion is not true. The edges between nodes 6–7 and 1–6 show similar properties.

For transitivity, we need to show that if α �β and β �γ then α �γ. Assume α is
a proposition Con, β and γ are both base-level commitments with consequents Con.
By Axiom 2, α �β, independently of the state of β. Now, when (1) the state of β is
fulfilled, by Axiom 4, β �γ, independently of the state of γ. Then, α �γ, by Axiom
2. When (2) the state of β is active, by Axiom 4, β �γ, if the state of γ is active or
violated. Then, again α�γ, by Axiom 2. When (3) the state of β is violated, by Axiom
4, β �γ, if the state of γ is also violated. Then, again α �γ, by Axiom 2. Thus, �is
transitive. Other combinations of α, β and γ follow similarly.

Theorem 2 For an agent A, at time T , given a proposition Con, ST (A) 6�ST (Ap) iff
takeAction(A, T , Con).

Proof. We prove both directions by contradiction.

I. Forward direction (Completeness): If takeAction(A, T ,Con), then ST (A) 6�ST (Ap).

Let ∃Con: takeAction(A, T , Con). Then, by Definition 8, either TCon(ST (A)) =
∅, or ∃ x: x∈ TCon(ST (A)). First, consider the former case. Assume ST (A)�ST (Ap).
This will occur only if TCon(ST (Ap)) = ∅ also. Otherwise, a term that includes Con
cannot be satisfied according to the satisfiability axioms. This is a contradiction, be-
cause, by Definition 8, TCon(ST (Ap)) cannot be empty.

Now, consider the latter case. Again, assume ST (A) �ST (Ap). There are three
possibilities:

1. ST (Ap) = 〈∅, ∅〉. Then, every state is as-good-as the empty state since there are no
terms in it to satisfy (Definition 10). This is a contradiction, because, by Definition 8,
TCon(ST (Ap)) cannot be empty.
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2. TCon(ST (Ap)) = ∅. Then, there is no need to satisfy a term that includes Con. This
is a contradiction, because, again by Definition 8, TCon(ST (Ap)) cannot be empty.

3. ∃ y: y ∈ TCon(ST (Ap)). Then, x is as-good-as y (since both are the terms that include
Con). There are three possibilities:

(a) x = Con or x = Cf (Con). Then, according to the satisfiability axioms, x �y
for any y. This is a contradiction, because, by Definition 8, u(x) cannot be greater
than or equal to u(y).

(b) x = Ca(Con) and (y = Ca(Con) or y = Cv(Con)). Then, by Axiom 4, x�y.
This is a contradiction, because, by Definition 8, u(x) cannot be greater than or
equal to u(y).

(c) x = Cv(Con) and y = Cv(Con). Then, by Axiom 4, x�y. This is a contradic-
tion, because, by Definition 8, u(x) cannot be equal to u(y).

Hence, we conclude that whenever the agent takes an action, ST (A) 6�ST (Ap).

II. Backward direction (Soundness): If ST (A) 6�ST (Ap), then ∃Con: takeAction(A,
T , Con).

Let ST (A) 6�ST (Ap). Then, by Definition 10, ∃ y: y ∈ ST (Ap) and ST (A) 6�y.
That is, there is at least one term that is not satisfiable. Let y ∈ TCon(ST (Ap)). That is,
Con be the proposition related to the term y (either y itself or the consequent of y in
case y is a commitment). Now, assume takeAction(A, T , Con) does not hold. Then, ∃
x: x ∈ ST (A) and u(x)≥ u(y). Otherwise, takeAction(A, T , Con) would hold. There
are three possibilities:

1. x = Con or x = Cf (Con). Then, u(x) ≥ u(y) for any y, and no action needs to be
taken. This is a contradiction, because, according to the satisfiability axioms x would
be as-good-as any such y.

2. x = Ca(Con) and (y = Ca(Con) or y = Cv(Con)). Then, u(x) ≥ u(y), and no
action needs to be taken. This is a contradiction, because, by Axiom 4, x would be
as-good-as y.

3. x = Cv(Con) and y = Cv(Con). Then, u(x) = u(y), and no action needs to be
taken. This is a contradiction, because, by Axiom 4, x would be as-good-as y.
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