
Engineering Conflict-Free Multiagent Systems∗

Akın Günay and Pınar Yolum

Computer Engineering Department, Bogazici University, Istanbul, Turkey
{akin.gunay,pinar.yolum}@boun.edu.tr

Abstract. Organizations have served an important metaphor for designing and
engineering multiagent systems. Usually, organizations are specified over abstract
roles, which specify what the enacting agents should or should not do. In order
to ensure that organizations work properly, we need to check that the roles have
been designed correctly in the first place. Accordingly, we analyze various rela-
tions between roles to check if they include conflicting terms, which can prevent
the enacting agents to conform with the obligations and prohibitions. We identify
various types of conflict that may occur in a role specification and between dif-
ferent roles in an organization. In order to formalize the discussion we represent
role specifications as sets of commitments. Then using the conflict relations be-
tween commitments, we define basic principles that should be followed in order
to develop role-based conflict-free multiagent organizations.

1 Introduction

Organizations have been an important metaphor in understanding, designing, and en-
gineering multiagent systems [1, 6]. Organizations allow division of tasks, assignment
of these tasks to different individuals and provide a mechanism for disseminating task
results between individuals. Many times, organizations are specified abstractly over
roles, rather than individual agents. This allows a generic specification so that at differ-
ent times different agents can be matched to various roles and realize the organization
as a multiagent system.

Organizations exist to carry out specific tasks or reach specific goals. A correct
specification of an organization should guarantee that the organization works in har-
mony and the overall goals of the organization are achieved. In order to achieve this
objective the specification of the organization should be conflict-free. Since roles are
the main building blocks of organizations, the first step of designing a conflict-free or-
ganization is to ensure that the roles in the organization are themselves conflict-free
and the agents that attempt to carry out the roles are not prevented from satisfying the
requirements of the roles out of their will. For example a program committee member
role in a conference organization should not concurrently require and prohibit the en-
acting agent to review a paper. This would be conflicting and would prevent the agent
to fulfill the requirements of the role event if it intends to do so, which in turn causes
also the organization to fail to achieve its objective.

∗ This work is partially supported by Boğaziçi University Research Fund under grant BAP5694,
and the Turkish State Planning Organization (DPT) under the TAM Project, 2007K120610.



Besides the conflicts within the role specification, another issue that may prevent an
organization to work in harmony arises when agents are allowed to enact multiple roles
simultaneously. In this case it is not enough only to ensure that the roles themselves
are conflict-free, but also the specifications of the roles that may be enacted by the
same agent should be conflict-free with each other. If an agent enacts to two roles at
the same time, it should not be required to bring about a condition as part of the first
role and required not to bring about the same condition as part of the second role. For
example in a conference organization agents usually enact both to program committee
member and author roles simultaneously. Program committee member role obligates
the enacting agents to review assigned papers. On the other hand author role prohibits
the enacting agents to see papers of other authors. When the mentioned obligation and
prohibition of these two roles are considered, it makes the impression that these two
roles should not be enacted by the same agent. However, these two roles actually can
be enabled to the same agent by allowing the agent to access only to certain papers
that are assigned to it. But, if this issue is not precisely specified, then the roles may
conflict with each other by obligating the agent to review papers while prohibiting it
from accessing to those papers.

Even if the roles in an organization are specified in a conflict-free manner while de-
signing the organization, problems may still arise at run-time due to certain affairs that
cannot be foreseen at design time. A major problem, which prevents the organization
to function properly, occurs at run-time when the enacting agents suffer from lack of
resources that are required to fulfill the obligations of their roles. For example, if five
papers would be assigned to an agent enacting the program committee member role
and the agent would have time only to review three papers, then the agent would fail to
fulfill its obligation. In some organizations role specifications may include expected re-
source requirements of the role, which can be used by agents to check their compliance
before enacting a role. However, making such predictions is usually challenging due
to open nature of multiagent systems. For example, the specification of program com-
mittee member role may state that three papers are expected to be assigned to enacting
agents for review. However, if the total number of submission would exceed the pre-
diction that had been made while designing the system, more papers might be assigned
to program committee members. Besides, in many situations it is not even possible to
make such predictions about resources (e.g., scheduling of events).

Various works exist where multiagent systems are engineered through their speci-
fication as organizations [4, 24]. Once an organization has been specified, the general
focus has been on assigning agents to particular roles. Most of these approaches rightly
focused on whether the agent has the necessary capabilities to bring about the require-
ments of the roles. Aiming to create more robust and conflict-free multiagent organiza-
tions, here, we consider various other aspects that might cause to conflicts in designing
and infeasibility while executing these organizations. To do so, we represent obliga-
tions and prohibitions of roles of an organization through commitments. We identify
situations where commitments would conflict thereby leading to a role conflict. Simi-
larly, we use the feasibility concept of commitments to capture infeasible situations at
run-time and we discuss several methods to deal with such situations.



The rest of this paper is organized as follows. Section 2 gives the necessary back-
ground on commitments and describes how roles are denoted through commitments.
Sections 3 and 4 develop what it means for roles to conflict and how they can be re-
solved. Finally, Section 5 discusses our work in relation to recent literature.

2 Technical Background

In the rest of the paper we use propositional symbols to represent domain dependent
concepts. We assume that these concepts are defined in a domain ontology that is avail-
able to all agents. We use the logical connectives ∧ and→ in their common semantics
and ¬ as logical negation. We use the variables x, y for agents, p, q, u, w for proposi-
tions, ci for commitments and ri for roles. Constant symbols start with capital letters. In
general we use a conference organization as a running example, as it is widely used in
the previous work about organizations. Besides, to make our discussion more refined in
some examples we also use some other related domains when these domains are more
intuitive.

2.1 Commitments

C(x, y, q, p) denotes a commitment from the debtor agent x to the creditor agent y to
bring about the consequent p, if the antecedent q holds [22]. The antecedent of a com-
mitment can be a conjunction of propositions, however we assume that the consequent
of the commitment is a single proposition. Let us consider the following example from
the conference organization domain. In this domain a member of conference’s program
committee (PCMember) is committed to review a paper (PaperReviewed), if the pro-
gram chair (Chair) assigns the paper to the program committee (PaperAssigned). We
denote this using the following commitment:

C(PCMember, Chair, PaperAssigned, PaperReviewed)

A commitment is a dynamic entity with a lifecyle [7, 17, 22]. A commitment’s
state evolves as the result of certain actions that are performed by the participating
agents. In order to focus on our contributions, in this paper we use a simplified life-
cycle of commitments as follows: A new commitment is created by its debtor using
the Create(x, y, q, p) action, which creates the conditional commitment c =C(x, y, q, p).
When the antecedent of the commitment starts to hold, the creditor performs Detach(c, q)
action that makes the commitment active. To represent an active commitment we re-
place the antecedent of the commitment to > symbol (i.e., C(x, y, >, p)). When the
consequent starts to hold, the debtor performs Discharge(c, p) action that makes the
commitment fulfilled. On the other hand, if the debtor cancels its commitment using
Cancel(c) operation, then the commitment is canceled. In addition to committing to
bring about a condition, agents may also commit to maintain a condition [2, 13, 23].
For instance, the web admin of a conference should keep the Web site of the conference
running. We represent such commitments by drawing a line on top of the corresponding
condition.



C(WebAdmin, Chair, >, KeepWebRunning)

Such commitments cease to exist only when the creditor of the commitment c re-
leases the debtor by performing the Release(c) action.

2.2 Role Specifications

A role describes what an agent should and should not be doing. For instance, an agent
in the program committee member role should review assigned papers by the program
chair. This can be seen as the agent’s obligation. On the other hand, the same agent
should not be reviewing a colleague’s paper. This can be seen as a prohibition. We
represent each such clause (i.e., obligation or prohibition) as a separate commitment.
Considering the program committee member role the obligation to review assigned
papers can be represented using the following commitment:

C(PCMember, Chair, PaperAssigned, PaperReviewed)

Similarly, the prohibition to not to review colleagues papers can be represented
using the following commitment:

C(PCMember, Chair, AuthorIsColleague, ¬PaperReviewed)

A role exists as part of an organization committee role exists because a conference is
being organized. Depending on the progress of this organization, each role can be active
or passive. The state of the roles are triggered by some conditions. For instance, the
program committee member role becomes active when the paper submission is closed.
That is, the requirements of the roles will apply on after this time. Similarly, the role
becomes passive after the authors are notified about the acceptance of papers. From this
point on, the role is not binding.

Definition 1 (Role). A role is a tuple 〈λ,L,C〉, where λ is the unique label of the role,
L is formulae to define the conditions that activate and passivate the role, and C is a
set of commitments that the enacting agent should create.

λ PCMember
L Activate:{SubmissionClosed}, Passivate:{AuthorsNotified}
C C(PCMember, Chair, PaperAssigned, PaperReviewed)

C(PCMember, Chair, AuthorIsColleague, ¬PaperReviewed)
Table 1. Specification of the program committee member role.

We present a simplified role specification for a program committee member in Ta-
ble 1. The unique label of the role is PCMember. The role is activated when the paper
submission is closed and passivated when the authors are notified about the results. The
program committee member is obligated to review assigned papers by the program chair



(represented by the first commitment). The program committee member is prohibited to
review papers if an author is also a colleague (represented by the second commitment).
Note that our role specification does not require any particular organization structure. It
can be used as part of any organizational schema that has roles as part of it.

3 Role Conflicts

While acting in a multiagent system, an agent usually participates in multiple commit-
ments at the same time. In such situations, the commitments of an agent may conflict.
For instance, if a program committee member agent would be (somehow) obligated and
prohibited to review a paper simultaneously because of its two different commitments,
these commitments would cause a conflict and as result of this conflict the agent would
be unable to fulfill both commitments. In other words the agent would inevitably violate
one of its commitments because of the conflict between the commitments and nothing
that the agent can do can fix this. This is an undesired situation and should be avoided
whenever possible. In this section we first give a formal definition of such commitment
conflicts. Then in the rest of the section we discuss such conflicts in the context of role
specifications.

As the above example demonstrates, a conflict occurs between two commitments
of an agent when the consequences of the commitments are inconsistent with each
other and hence cannot be brought about at the same time. In this context we provide a
simplified version of a commitment conflict between two commitments as follows [9].

Definition 2 (Commitment Conflict). Given two (active or conditional) commitments
ci =C(x, y, w, u) and cj =C(x, y’, w’, u’), ci and cj conflict with each other, denoted by
ci⊗cj , if;

– it is not the case that w→ q and w’→ ¬q, and
– it is the case that u→ p and u’→ ¬p.

In order for two commitments to conflict, their consequences should be inconsistent.
That is, while one commitment is telling the agent to do one thing, the second commit-
ment should say the opposite. We capture this by requiring that while one consequent
implies a proposition, the other one implies the negation of the same proposition. The
second condition in the previous definition captures this. If both commitments are ac-
tive commitments (i.e., their antecedents already hold), then this is the only condition
that needs to be checked. However, if either or both of the commitments are in the con-
ditional state, then first a check is necessary to see if both commitments can actually
end up in active state. For this to happen, the antecedents of both commitments should
not be inconsistent; that is they should be able to hold at the same time. This will enable
both commitments to become active at the same time. The first condition in the previous
definition ensures this.

3.1 Conflicts in a Role Specifications

Development of a role-based organizational model requires accurate analysis of obli-
gations and prohibitions that are associated with each role. However, such analysis is



a challenging task and may create conflicts if not done properly. If a role is not de-
signed carefully and the specification includes conflicting obligations and prohibitions
(i.e., conflicting commitments), then the enacting agent ends up in a situation where
it inevitably violates its commitments, which in turn affects proper working of the or-
ganization. For instance, consider again the program committee member role and the
associated commitments to review assigned papers and not to review colleagues’ pa-
pers, which are represented as follows:

c1 =C(PCMember, Chair, PaperAssigned, PaperReviewed)

c2 =C(PCMember, Chair, AuthorIsColleague, ¬PaperReviewed)

These two commitments are in conflict (c1⊗c2), since the consequences are incon-
sistent, while the antecedents are not. Once a paper is assigned to a program committee
member (i.e., PaperAssigned holds), then c1 is detached. Hence, the program commit-
tee member is obligated to review the paper (i.e., committed to bring about PaperRe-
viewed). On the other hand, if the author of the assigned paper is a colleague, then c2 is
also detached (i.e., AuthorIsColleague holds). Hence, the program committee member
is prohibited to review the paper (i.e., committed not to bring about PaperReviewed).
When both commitments become active, then the conflict between the commitments
prevents the program committee member to fulfill c1 and c2 simultaneously.

This conflict occurs due to the imprecise description of the commitments’ antecedents.
The above conflict can easily be avoided by making the antecedents more specific.

c′1 =C(PCMember, Chair, PaperAssigned ∧¬AuthorIsColleague, PaperReviewed)

c′2 =C(PCMember, Chair, PaperAssigned ∧ AuthorIsColleague, ¬PaperReviewed)

The modified antecedents are inconsistent (i.e., cannot hold at the same time).
Hence, the commitments do not conflict anymore. More specifically, if the author of
the assigned paper is not a colleague, then the antecedent of c′2 fails to hold. Hence, the
only active commitment can be c′1. On the other hand, if the author of the paper is a
colleague, then the antecedent of c′1 fails to hold and the only active commitment can
be c′2.

The above conflict is a result of poor analysis of the situation. However it can be
resolved with certain modifications of the commitments. On the other hand, some fal-
lacies in the analysis may lead to fatal cases in which conflicts cannot be avoided. Such
situations usually occur when a role is overloaded with obligations and prohibitions that
actually should not be a part of the role. For instance, in a blind-review process the pro-
gram committee member is prohibited to see author information of the papers. Assume
that the program committee member role is analyzed inaccurately and the task to assign
reviewers to submitted papers, which is normally a task of the program chair, is associ-
ated with the program committee member role. In this case the following commitments
are part of the role specification of the program committee member:

c1 =C(PCMember, Author, PaperSubmitted, ReviewerAssigned)

c2 =C(PCMember, Author, >, ¬AuthorInfoAccessed)



Note that in order to assign a paper, the program committee member should see
the author information of the paper (i.e., ReviewerAssigned → AuthorInfoAccessed).
Hence, the propositions PaperAssigned and ¬AuthorInfoAccessed are inconsistent. Ac-
cordingly, c1 and c2 do conflict with each other. Different than the previous example,
here it is not possible to avoid this conflict by modifying the commitments, which in-
dicates that the existence of one of these commitments in the context of the program
committee member role is conceptually wrong. That is c2 should not be a part of this
role specification in the first place. The above discussion leads us to the following result.

Definition 3 (Incoherent Role Specification). A role specification r is incoherent, de-
noted by I(r), if there is a conflict between two commitments that are part of the role.
Formally:

∃ ci, cj : ci ∈ r.C ∧ cj ∈ r.C ∧ ci⊗cj ⇒ I(r)

Conjecture 1 If a role specification is incoherent, then the agent that enacts the role
cannot fulfill all commitments.

Conjecture 1 points out to a conceptual problem in the design of the incoherent
role, which should be fixed either by modifying the commitments or reconsidering the
involvement of some commitments as part of the role specification.

3.2 Conflicts between Roles

In many situations agents in an organization enact more than one role at the same time.
For instance, in the conference organization an agent that enact to the program com-
mittee member role may also enact for the paper author role at the same time. In such
situations, even if the role specifications enacted by the agent are individually coherent,
conflicts may still arise between the agent’s commitments that belong to different roles.
Assume that an agent enacts both the program chair and program committee member
roles at the same time. The program chair role involves the obligation to assign a re-
viewer to the submitted papers as represented by the following commitment:

c1 =C(Chair, Author, PaperSubmitted, ReviewerAssigned)

On the other hand the program committee member role prohibits the enacted agent to
see the author information of papers as the following commitment states:

c2 =C(PCMember, Author, >, ¬AuthorInfoAccessed)

As we have mentioned in the previous section, these two commitments conflict since
assignment of a paper to a reviewer requires the agent to access the author information
of the paper which is inconsistent with the prohibition of the program committee mem-
ber role to access author information of papers. Assuming that the program chair and
program committee member roles are coherent in themselves, such a conflict indicates
that these two roles should not be enacted by the same agent at the same time. We call
such roles as mutually exclusive roles.

However, in many real life situations conflicts between the commitments of differ-
ent roles may not always require the roles to be mutually exclusive. For instance, a



program committee member is allowed to see the contents of the papers she has been
assigned. On the other hand, an author should not be seeing the contents of others’
papers. However, if an agent enacts to both roles (assuming the agent is qualified for
both), the agent can actually access the content of other authors’ papers without vio-
lating its role as an author. In this case the commitment of to the program committee
member overrides the commitment of to the author role. Hence, the prohibition of the
author role to not view others’ papers is not valid anymore. When such a case is a part
of the modeled organization, then the override relation of the commitments should be
explicitly represented.

Definition 4 (Override Relation of Commitments). Given two commitments ci and
cj , ci � cj denotes that ci overrides cj .

Definition 5 (Mutually Exclusive Roles). Two roles ri and rj are mutually exclusive,
denoted by ri ./ rj , if there is a conflict between at least one commitment of each role
and there is no override relation between the conflicting commitments. Formally;

∃ci, cj : ci ∈ ri ∧ cj ∈ rj ∧ ci⊗cj ∧ ci 6� cj ∧ cj 6� ci ⇒ ri ./ rj

Conjecture 2 If two roles are mutually exclusive, then these roles cannot be enacted
by the same agent simultaneously.

Again, understanding whether two roles are mutually exclusive can be detected dur-
ing design time. Since, an agent that is enacting mutually exclusive roles are doomed to
violate some of its commitments, it is wise to design the organization to avoid mutually
exclusive roles.

4 Run-time Feasibility

The reason of the conflicts we describe in the previous section is the inconsistency of
the commitments (i.e., obligation and prohibition of an agent simultaneously to bring
about the same condition). Such conflicts should be avoided at design time in order to
come up with a conflict-free multiagent system.

Even though a multiagent system is designed free of conflicts by making the role
specifications coherent and by restricting enactment of mutually exclusive roles by the
same agent, agents may still face up with challenges at run-time when they enact the
roles. One important reason for this is the lack of resources needed to satisfy the com-
mitments that the agents are involved in. Such situations arise when the commitments
of an agent are infeasible [10].

In general, a role specification covers the capabilities of an agent that are required to
enact the role. However, the actual resources that are required while performing these
capabilities are usually revealed only at run-time1. For instance, remember the commit-
ment of the program committee member role to review the assigned papers. By the role
specification it is clear that the agent that enacts this role should have the capability to

1 We assume that the resource types and their amounts that are required to perform certain
capabilities are represented in a domain ontology.



review an assigned paper. However, the actual number of papers that may be assigned
is not pointed out in the role specification. If the agent would be capable to review only
a certain number of papers and the number of assigned papers would exceed this limit
at run-time, then the commitments of the agent would be infeasible and the agent would
have no way to fulfill its commitments.

Note that in some situations the amount of resources required while enacting the
role can be defined at design-time. For instance, the maximum number of papers that
would be assigned to a program committee member agent might be defined in the role
specification. However, due to the open nature of multiagent systems making such as-
sumptions is usually not possible. For instance, the actual number of submissions at
run-time might exceed the number that has been predicted at design-time. In such a
situation more papers than it is defined in the role specification might be assigned to
program committee member agents.

The issue is even more challenging if temporal constraints are introduced to the de-
signed multiagent system. For instance, consider an agent that plays a professor role.
The agent is obligated to conduct research and submit papers to conferences to pub-
lish results. The agent is also obligated to attend a conference to make a presentation,
if a submitted paper is accepted. These obligations are represented by the following
commitments in the professor role specification.

c1 =C(Professor, Department, >, PaperSubmitted)

c2 =C(Professor, Department, PaperAccepted, ConferenceAttended)

Another obligation of the professor role is giving lectures, if a lecture is assigned.

c3 =C(Professor, Department, LectureAssigned, LectureGiven)

Assuming that the agent cannot attend to a conference and give a lecture simultane-
ously (i.e., ConferenceAttended and LectureGiven cannot hold at the same time) one of
c2 or c3 would be violated by the agent, if these two events are scheduled to the same
time. However, it is not possible to determine exact times of these events while design-
ing the professor role. On the other hand, it is also not rational to remove one of c2 or
c3 from the role specification, only because they may introduce a potential infeasibility
at run-time. Nevertheless, in order to build a solid multiagent system, both the agents
that aim to enact roles and the design of the multiagent system should be fitted out with
mechanisms in order to deal with infeasibility.

In the rest of this section we first give a definition of feasibility adopting the defi-
nition we have developed in our previous work [10]. Then we define rules-of-thumb in
the context of roles and commitments to deal with infeasibility, once it is detected.

Definition 6 (Running Multiagent System). A running multiagent system m is a two-
tuple 〈A, C〉, in which A is a set of agents and C is a set of commitments created by the
agents in A.

Note that we do not mention the roles in the definition of a running multiagent
system. However, we assume that the agents in the system create commitments in ac-
cordance with the role specifications they enact following to the role based design of
the multiagent systems.



Definition 7 (Snapshot). st is a snapshot of the commitments in m.C and their states
in a running multiagent system m at moment t.

Hence, from a snapshot one can induce what commitments have been created, which
one have been fulfilled, and so on.

Definition 8 (Commitment Feasibility). In a running multiagent system m, a given
set of active or conditional commitments C ⊆ m.C in snapshot st is feasible, if there is
a snapshot st′ in which every commitment in C is fulfilled and t < t′.

The feasibility definition states that a commitment set is feasible at a given moment,
if the multiagent system may progress in such a way that all commitments in the ini-
tial set are fulfilled. A multiagent system progresses based on the rules of commitment
lifecycle. For example, an active commitment can either be fulfilled or violated, but a
violated commitment can never become fulfilled. By generating possible future snap-
shots, one can infer it is possible for all the commitments to be successfully fulfilled.
Hence, feasibility does not guarantee fulfillment of commitments, but only states that
this is possible. On the other hand, once infeasibility of commitment is detected, then it
is certain that the commitments cannot be fulfilled as they are.

Achieving Feasibility by Delegation: In many organizational models (e.g., hierarchies)
agents who enact certain roles may have the power to delegate some of their respon-
sibilities to other agents [12]. For instance, a professor may delegate lecturing duty to
a teaching assistant (TA). In terms of commitments, delegation can be performed using
the Delegate(c, a) operation, which states that the commitment c is delegated to the
agent a. This operation is equal to releasing c and creating a new commitment with
identical conditions, but new debtor a [17]. Although delegation provides an intuitive
mechanism to resolve infeasibility, it should be used carefully. In this context, two ma-
jor issues should be considered. The first issue is the problem to precisely define the
delegation power over roles. This can be achieved by introducing new commitments to
define delegation power. Although the same functionality can be achieved by expanding
the notion of role specifications, commitment based approach is advantageous, since it
eliminates introduction of new structures to the role specifications. For instance, in the
specification of a teaching assistant role there might be a commitment, which states if a
commitment is delegated (CommitmentDelegated) by the Professor (actually the agent
who enacts this role), then the teaching assistant is committed to accept the delegation,
i.e, create the delegated commitment (CreateCommitment).

C(TA, Professor, CommitmentDelegated, CreateCommitment)

Note that in our conference organization examples in the previous sections, assign-
ment of a submitted paper from the program chair to a program committee member for
review is also kind of a delegation. However, in that case the details of the delegation
is explicit and well defined in the role specification as part of the conceptual design of
the organization. The delegation mechanism that we discuss here is a loose one. In the
above example, the professor is free to delegate any commitment to the teaching assis-
tant, which takes us to the second important issue about the delegation. That is whether



the deputy agent (e.g., the teaching assistant) is capable to fulfill the delegated commit-
ment. Two things should be considered in this context. First, it is necessary to determine
whether the capabilities of the deputy agent is compatible with the requirements of the
commitment in order to fulfill it. For instance, if the teaching assistant is not capable of
giving lectures, then the delegation does not resolve the infeasibility. Second, it is nec-
essary to check that the result of the delegation does not cause to another infeasibility,
due to lack of resources of the deputy agent. For instance, if the teaching assistant is
scheduled for another event at the lecture time, then the infeasibility persists.

Conjecture 3 If the commitments of an agent are infeasible and the agent has dele-
gation power to resolve the infeasibility, then the agent should delegate one or more
commitments, only if the deputy or deputies are capable of and have enough resources
to fulfill the delegated commitment(s).

As generally accepted in multiagent systems, the capabilities and state (e.g., existing
resources to the agent) of an agent are private to that agent. Hence, in general the del-
egating agent may not know whether the deputy is capable of or has enough resources
to fulfill the delegated commitment. Therefore, in order not to create a new infeasibility
as a result of the delegation, an interaction should be carried out between the delegating
agent and the deputy before the delegation.

Compensation of Violation: Delegation may not be used always to deal with infea-
sibility (e.g., the agent may not have power for delegation, etc.). In such situations,
compensation may be used as an alternative method to expel the noxious effects of vio-
lation [19, 21]. In compensation, when a commitment is violated, another commitment
(usually including a sanction) is created by the debtor to compensate the violation of
the earlier commitment. Although compensation does not prevent violation, it still pro-
vides a mechanism to bring the system back into a healthy state. For instance, if the
conference and the lecture of the professor would be scheduled for the same time and
accordingly the professor would violate its commitment, the professor might commit to
give another lecture at a later time to compensate the missing lecture. However, as in
the case of delegation, it is necessary to take into account another infeasibility that may
occur due to creation of the commitment for compensation (e.g., new schedule of the
lecture for compensation may cause to another infeasibility).

Compensation can be performed using the commitment operation Compensate(ci,
cj), which states that if the commitment ci is violated then the commitment cj is created
as a compensation. As in the case of delegation, compensation can also be represented
as a commitment in the role specification, without introducing a new notion. For in-
stance, the compensation of a missing lecture can be represented using the following
commitment:

C(Professor, Department, LectureMissed, ScheduleLectureToCompensate)

In this example, LectureMissed holds when the professor’s commitment to give the
lecture is violated and ScheduleLectureToCompensate holds only when a new commit-
ment is created by the professor to give another lecture for compensation.



Note that in this example the commitment that will be created for compensation is
well defined at design time, which is scheduling of another lecture. In some situations it
may not be possible to determine a compensating commitment for each possible viola-
tion while designing the role specification. In such situations it may be a good practice
to integrate a generic commitment, which states that when a commitment is violated
then a compensating commitment should be created, into role specifications to enforce
the agents to compensate their violated commitments. However, in such a situation con-
text of the compensation should be agreed by both the debtor and the creditor that are
subject to the violated commitment, which may require additional interaction between
the agents.

C(x, y, CommitmentViolated, CreateCommitmentToCompensate)

Preference for Fulfillment Although delegation and compensation provide intuitive
mechanism to deal with infeasibility, in many situations it may not be possible to apply
these approaches (e.g., the role may not have delegation power, compensation cannot
be scheduled, etc.). In such situations it is inevitable for the agent to violate one or more
of its commitments. Even in this case, it is important to decide which commitments to
fulfill and which ones to violate. This decision can be made by taking different factors
into account. For example, consider an agent that has two commitments to two different
creditors and has to violate one of these commitments because of infeasibility. If the
agent would care about the opinion of one creditor more than the other, it would be
reasonable for the agent to violate the commitment of the less cared creditor. On the
other hand, if there would be many number of infeasible commitments and violation of
a single commitment, which requires the most resources, would resolve the infeasibility,
then it would be reasonable to violate that commitment instead of violating several
commitments with less resource requirements.

In order to deal with such situations, if it is possible at design-time, a role specifi-
cation may include a preference relation over the commitments which defines a partial
or total order to indicate which commitments to fulfill and which ones to violate in the
case of infeasibility.

Definition 9. Given two commitments ci and cj ,ci . cj states that ci is preferred for
fulfillment over cj .

For instance, considering the two following commitments of the professor role, the
commitment to attend a conference may be preferred (based on importance from the
point of the role) for fulfillment over the fulfillment of the commitment to give a lecture.

c2 =C(Professor, Department, PaperAccepted, ConferenceAttended)

c3 =C(Professor, Department, LectureScheduled, LectureGiven)

If this is the case, then the professor role specification should involve the preference
order c2 . c3 to state this situation. On the other hand, when it is not possible to define
such a preference relation at design-time, then the agent itself should decide on which
commitments to fulfill and which ones to violate in the case of infeasibility at run-time
using other reasoning mechanisms.



5 Discussion

The abstraction of roles has been important in designing organization-based multiagent
systems. However, understanding what goes into a role and how roles affect each other
is an ongoing research question. This paper illustrates various problems that can arise in
designing roles and suggests ways to overcome them. Once roles are conflict free, the
next step is to study how the agents will enact these roles. To this end, various existing
work studies, whether agents that enact these roles are fit to do so [3]. While this is
important, there is not sufficient work on how an agent can stop enacting a role, how
this would affect the agent’s existing commitments, and so on. Intuitively, the agent can
be released from its conditional commitments. With active commitments, the problem
is more tricky. For instance, assume that a review period is over before a program com-
mittee member fulfills its commitment of reviewing a paper. Would this commitment
be considered violated even if the role no longer exists and thus binds the agent?

Commitment conflicts and norm conflicts, which are closely related to commitment
conflicts, are studied in multiagent research literature [9, 16, 20]. These studies focus
on the formal definition of different conflict types, such as conflicts due to logical in-
consistencies and temporal disputes. Here, we use a general notion of conflict based
on the concurrent obligation and prohibition of the same condition via commitments.
However, the points we emphasize here such as the conflict-free role specifications and
mutually exclusive roles are mainly independent from the specific definition of con-
flict. Hence, these points should be taken into account while designing any role based
multiagent system.

In this paper we adapt a generic definition of commitment feasibility from our pre-
vious work [10]. Computing an agent’s commitments feasibility in practice is a chal-
lenging problem which requires to consider various resources of the agents, temporal
constraints and also expectations of the agent in the interactions with others. In our
previous work we use constraint satisfaction methods in order to achieve this objective.
Here, we do not consider how feasibility of the agents commitments are computed. This
can be done in different ways taking the structure of the considered multiagent system
into account. On the other hand, we focus on what agents can do once an infeasibility is
detected. However, the approaches that we present here are not the only responses that
can be given by the agent to deal with infeasibility. For example, once infeasibility is
detected an agent may take action to acquire more resources to resolve infeasibility. We
left the investigation of such approaches as future work.

There are a lot of work on specifying organizations. AGR [6], Gaia [24], Tropos [1]
and OperA [5] are important examples. AGR model specifies an organization through
agents, groups, and roles. The interactions are generally specified with conditional ac-
tions. Both Gaia, Tropos and OperA focus on design of organizations with various rich
constructs, such as capabilities, goals, and so on. Thus, their focus is on a global view
of how these constructs exist together. Here, our aim is not on the interplay between
various organizational constructs but on the conflicts that can arise within and among
roles in an organization. On the other hand, integration of the concepts we present in
this work into these frameworks would be beneficial for these approaches. Accordingly,
we aim to extend at least one of these frameworks by introducing especially the conflict
concept into the framework in our future research.



Formalization of organization level constraints is studied by van Riemsdijk et al. [15]
using linear temporal logic in the context of MOISE+ organizational modeling lan-
guage [11]. An organizational constraint is a meta-constraint in the level of organiza-
tion, which specifies how an organizational action such as enacting to a role restricts an
agent’s behavior (e.g., agent should adopt obligations of the enacted role) or cardinality
requirements on the number of agents that enact a given role. While enforcing those
constraints are obviously important, they are different than the constraints we are inter-
ested in here. Our concern here is at a lower-level to ensure that the roles are designed
correctly to begin with.

Fornara, Viganò and Colombetti use institutional actions to define semantic of com-
mitments mapping messages, which manipulate the state of a commitment, to institu-
tional actions [8]. Beside institutional actions, they also consider norms in the form of
event driven rules, which fire under certain conditions and cause creation of commit-
ments that correspond to the norms. However, they are not concerned about the possible
conflicts between the norms or roles as we have done here.

Dastani, Dignum and Dignum model a role as a set of goals and plans [3]. Obliga-
tions and prohibitions in the form of norms conceptually exist, but they are basically
used to generate goals to be achieved and goals to be avoided, respectively. These type
of conflicts are closely related to our definition of feasibility. However, our and their ap-
proaches consider this issue from different perspectives. In their perspective the conflict
occurs with respect to a specific plan. On the other hand, in our perspective feasibility
is independent from a specific plan or execution. Instead we use it as an indication of
possible fulfillment and violation of agents’ commitments.

Odell et al.discuss temporal aspects of roles [14], where they consider active and
suspended states of roles. To capture the transitions between these states (and also for
creation and termination) they define a set of operations. The first operation is classify,
which is used to occupy a to an agent. The complementing operation declassify is used
to make the role unoccupied again. Activate and suspend operation are used for the
transitions from suspended to active and active to suspended states, respectively. In this
paper, we use a simplified model through making roles active and passive based on some
preconditions. This simplification is enough in our case, since we consider conflicts
only when roles are active. However, it is straightforward to integrate our definitions
into a more complete model of roles with more states.

Telang and Singh extend the TROPOS methodology [1] with commitments to model
agent interaction [18]. In order to identify the commitments during the development,
they first determine the major roles and goals of these roles. These high-level goals are
decomposed into more fine-grained sub-goals. Finally, the goals are mapped to tasks
that are required be performed by the agents who enact the roles to achieve the goals.
They use these tasks and their dependencies to identify the commitments required to
model the interaction in the system. Our approach can be coupled with theirs as a post-
processing capability to check if the resulting roles are conflict-free.

References
1. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-

oriented software development methodology. Autonomous Agents and Multi-Agent Systems



8(3), 203–236 (2004)
2. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment tracking via the reactive event

calculus. In: Proceedings of the 21st International Joint Conference on Artifical Intelligence.
pp. 91–96 (2009)

3. Dastani, M., Dignum, V., Dignum, F.: Role-assignment in open agent societies. In: Pro-
ceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent
Systems. pp. 489–496 (2003)

4. DeLoach, S.A.: Multiagent systems engineering of organization-based multiagent systems.
ACM SIGSOFT Software Engineering Notes 30(4), 1–7 (2005)

5. Dignum, V., Dignum, F., Meyer, J.J.: An agent-mediated approach to the support of knowl-
edge sharing in organizations. Knowledge Engineering Review 19(2), 147–174 (2004)

6. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organizational view
of multi-agent systems. In: Proceedings of the Workshop on Agent Oriented Software Engi-
neering. pp. 214–230 (2003)

7. Fornara, N., Colombetti, M.: Operational specification of a commitment-based agent com-
munication language. In: Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems. pp. 536–542 (2002)

8. Fornara, N., Viganò, F., Colombetti, M.: Agent communication and artificial institutions.
Autonomous Agents and Multi-Agent Systems 14(2), 121–142 (2007)

9. Günay, A., Yolum, P.: Detecting conflicts in commitments. In: Sakama, C., Sardina, S., Vas-
concelos, W., Winikoff, M. (eds.) Declarative Agent Languages and Technologies IX. LNAI,
vol. 7169, pp. 51–66. Springer (2011)

10. Günay, A., Yolum, P.: Constraint satisfaction as a tool for modeling and checking feasibility
of multiagent commitments. Applied Intelligence (2013), to appear.

11. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems using the
MOISE+ model: Programming issues at the system and agent levels. International Journal
of Agent-Oriented Software Engineering 1(3/4), 370–395 (2007)

12. Kolp, M., Giorgini, P., Mylopoulos, J.: Multi-agent architectures as organizational structures.
Autonomous Agents and Multi-Agent Systems 13(1), 3–25 (2006)

13. Mallya, A.U., Huhns, M.N.: Commitments Among Agents. IEEE Internet Computing 7, 90–
93 (2003)

14. Odell, J.J., Parunak, H.V.D., Brueckner, S., Sauter, J.: Temporal aspects of dynamic role as-
signment. In: Giorgini, P., Müller, J.P., Odell, J. (eds.) Agent-Oriented Software Engineering
IV. LNCS, vol. 2935, pp. 201–213 (2004)

15. van Riemsdijk, M.B., Hindriks, K.V., Jonker, C.M., Sierhuis, M.: Formalizing organizational
constraints: a semantic approach. In: Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems. pp. 823–830 (2010)

16. Sensoy, M., Norman, T.J., Vasconcelos, W.W., Sycara, K.: OWL-POLAR: A framework for
semantic policy representation and reasoning. Web Semantics: Science, Services and Agents
on the World Wide Web 12–13, 148–160 (2012)

17. Singh, M.P.: An ontology for commitments in multiagent systems. Artificial Intelligence and
Law 7(1), 97–113 (1999)

18. Telang, P., Singh, M.: Enhancing tropos with commitments. In: Borgida, A.T., Chaudhri,
V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications.
LNCS, vol. 5600, pp. 417–435 (2009)

19. Torroni, P., Chesani, F., Mello, P., Montali, M.: Social commitments in time: Satisfied or
compensated. In: Baldoni, M., Bentahar, J., van Riemsdijk, M.B., Lloyd, J. (eds.) Declarative
Agent Languages and Technologies VII. LNCS, vol. 5948, pp. 228–243 (2010)

20. Vasconcelos, W.W., Kollingbaum, M.J., Norman, T.J.: Normative conflict resolution in multi-
agent systems. Autonomous Agents and Multi-Agent Systems 19(2), 124–152 (2009)



21. Wan, F., Singh, M.P.: Commitments and causality for multiagent design. In: Proceedings of
the International Conference on Autonomous Agents and Multiagent Systems. pp. 749–756
(2003)

22. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: Applying event cal-
culus planning using commitments. In: Proceedings of the 1st International Conference on
Autonomous Agents and Multiagent Systems. pp. 527–534 (2002)

23. Yolum, P., Singh, M.P.: Reasoning about commitments in the event calculus: An approach
for specifying and executing protocols. Annals of Mathematics and Artificial Intelligence
42(1-3), 227–253 (2004)

24. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: The gaia
methodology. ACM Transactions on Software Engineering Methodology 12(3), 317–370
(2003)


