
Learning Privacy Rules Cooperatively in Online Social
Networks∗

Berkant Kepez
Department of Computer Engineering

Bogazici University
Istanbul,Turkey

berkant.kepez@boun.edu.tr

Pınar Yolum
Department of Computer Engineering

Bogazici University
Istanbul,Turkey

pinar.yolum@boun.edu.tr

ABSTRACT
The use of online social networks is growing rapidly. With this
rapid increase, preserving privacy of users is becoming harder and
harder. Typically, social networks address the privacy problem by
asking users to define their privacy constraints up front. However,
many times deciding on whom to show a post is dependent on the
post itself and its context. Hence, users are forced to configure
each post specifically, which is both cumbersome and prone to er-
ror. Accordingly, this paper first proposes an approach that suggests
privacy configurations for each post. The suggestions are based on
learning from users’ previous posts and configurations. However,
when the user does not have many previous posts, recommenda-
tions need to take other information into account. We propose a
multiagent system architecture where agents of the users consult
other users’ agents about possible privacy rules they can take into
account.

CCS Concepts
•Security and privacy→ Social network security and privacy;
•Computing methodologies→Multi-agent systems;

1. INTRODUCTION
Privacy has long been accepted as an important concept in de-

veloping and running software. A typical software publishes its
privacy agreement, which a user accepts. A similar pattern applies
to online social networks, with additional settings for customizing
the policy. For example, a user can choose to share content only
with her friends, whereas another user may choose to share content
with everyone in the system. While customization enables users to
configure their privacy better, it also brings a burden on the user as
she needs to decide for each post who should be in the audience [8].
This creates additional load on the users as well as introduces a fac-
tor of human error. For a person that shares content frequently, it
is easy to forget to add or remove a certain individual from a post’s
audience.

∗This work has been supported by TUBITAK.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PrAISe ’16, August 29-30, 2016, The Hague, Netherlands
c© 2016 ACM. ISBN 978-1-4503-4304-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2970030.2970036

EXAMPLE 1. Alice travels to New York. When she visits touris-
tic places, she likes to share them on her online social network
account. She plans to visit her friends, Bob and Carol, who live
there, too. However, she wants the visit to be a surprise. Thus, she
wants her friends not to see her posts. She successfully hides var-
ious posts from Bob and Carol by removing them from the post’s
audience. However, she forgets to set it correctly when she visits
Statue of Liberty. Both Bob and Carol see the post and the surprise
is ruined.

Ideally, if Alice’s software could learn over time that Alice is not
sharing her recent posts with Bob and Carol and if it could warn
Alice accordingly, it would be of tremendous help. We realize this
by employing machine learning (ML) techniques. The idea is that
Alice’s posts are classified over time based on whether they are
being shown to certain individuals (in this case Bob and Carol).
When Alice is in a position to share a post with others, the classifier
first checks whether this would cause any harm based on previous
sharing behavior. If so, the system interrupts upload and asks for
permission.

When a user has enough posts in the system, learning from pre-
vious posts is a good direction. However, many users face privacy
problems more when they first start to use a system, since the im-
plications of their action on the system are not clear. Consider the
following example:

EXAMPLE 2. Charlie is a new user of the online social net-
work. He does not know what types of things he needs to consider
to preserve his privacy. When he has a post, he would like to get
others’ opinion about how he should set the audience of the post.

In such cases, we need to have a software that can help users
in Example 2. One way of approaching this problem is from a sys-
tem’s point of view. That is, if overall the system data are available,
one can build clustering systems so that a user can be recommended
privacy policies based on what other users are doing. However,
when such data are not available, then the user is left to her own
resources to figure out. In offline world, users ask each other for
help. Here, we mimic a similar approach in a multiagent setting,
where a user in need of privacy recommendations turns to others in
the system for help. The user’s agent queries other agents, collects
their recommendations, and consolidates them for a final result. We
study various ways to realize this.

2. SUGGESTING PRIVACY CONFIGURA-
TIONS: AN ML APPROACH

We envision a system where each user is represented by a soft-
ware agent. An agent is a computation that can perceive, reason,

http://dx.doi.org/10.1145/2970030.2970036

act and communicate with other agents [6]. The agent’s broad aim
is to help its user manage her privacy. Contrary to current social
network applications, where humans are the only users of the sys-
tem, we envision a system where the user actions are supported by
the agent. For example, when a user is about to upload a photo,
her agent can warn her about particular consequences (e.g., an un-
intended audience will see the post because the audience is set to
public). The user is free to override the agent.

The agent has three main sources of information, on which it
can act. The first source is the user’s own privacy rules. If the user
already has predefined privacy rules, then enforcing them over a
post is easy. Since this case is generally straightforward, we do not
explicitly address this.

The second case is where the user might not have specified its
privacy rules explicitly but has shared many posts in the system. A
user that enters the system can share posts as she sees fit and she
can set the audience of the posts.

Since we are concerned with the individuals to whom the post is
not intended to be shown, the agent can track cases where a user
has explicitly removed a certain individual from an audience and
learn over time a privacy policy for the user.

Following Example 1, this would correspond to Alice sharing
a post of Brooklyn Bridge and restricting Bob and Carol. While
other individuals are allowed to see the post, Alice’s agent records
the fact that Alice has disallowed Bob and Carol. The idea then is
to generalize whom the posts are not shown to.

Machine Learning techniques are well-suited for the task of learn-
ing privacy preferences of the user. The idea is to learn whom
a given type of post is shared with based on the audience of the
post. The techniques which are used in our study are Decision
Trees, Random Forests (RF), Support Vector Machines (SVM),
Naive Bayes (NB), and Extreme Learning Machines (ELM). De-
cision trees are trees of which each interior node represents a fea-
ture of an instance, each of their branches represents a value range
for that feature, and each leaf node represents the class labels [3].
To generate the tree, ID3 algorithm has been used [10]. Random
Forest (RF) consists of a collection of decision trees generated with
random subsets of the original training data or random subsets of
the input features [2]. Then, the final label is determined by ma-
jority voting of those decision trees. An SVM model is built by
finding an hyperplane which minimizes the functional margin of
the training data [12]. Then, this model is used to classify the test
data. Naive Bayes classifier is one which assigns a class label to
an instance based on its maximum likelihood using Bayesian-rule
and independence assumption [7]. ELM is a feed forwarded neural
network of which weights of hidden nodes are randomly assigned
and output neurons are optimized with linear regression [5].

Each recorded post can be interpreted as a training data instance
that is fed to a machine learning classifier. When converting the
posts to the instances for the classifier, following attributes of posts
are selected: the type, the sharing time, the location, the location
context of posts and the ids of tagged friends in them. For each post,
an instance with those features are created. Additionally, using the
access rules, for each friend of the user, each instance is reproduced
and their ids are added as a feature. Whether a friend is denied to
access or not to a post is added into the instance as class label.

When user shares a post, our system intervenes the sharing pro-
cess and suggests people who should be denied to access to that
post. Then user decides the final access rule.

The third case is when the user has not shared many posts in the
system. In that case, making a decision only based on the user’s
past posts will not yield accurate results. In that case, the agent can
make use of the other agent’s knowledge in the system to reach a

Size of Training (& Test dataset) Accuracy
400 (400) 100.00
200 (200) 100.00
100 (100) 100.00
50 (50) 100.00
25 (25) 86.00
13 (13) 80.77
7 (7) 64.28

Table 1: The decrease in accuracy as the training data size de-
creases

decision. One approach to realize this could be if the other agents
share their privacy rules with the agent.

However, sharing of privacy policies with others is another type
of privacy violation for the other agents.

Another approach would be to ask others to classify a given post,
which would not lead to privacy violation since the reasons would
still be hidden. Thus, here we opt for such an approach. The agent
then retrieves the results and makes a decision, as explained in Sec-
tion 3.2.

In the first step, an instance of PostRequest is generated in the
ontology with a unique identifier based on the time of generation.
Then, elements of the post are created as their corresponding classes
such as Location if they do not already exist in the ontology. Then
they are linked with PostRequest or each other as properties by
keeping the original structure of the post.

3. EVALUATION
In the evaluation, a set of various agents in terms of privacy rules

and the amount of decision noise are employed. These agents de-
cide whether an access of an audience to a post should be accepted
or not according to those privacy rules and then they flip their deci-
sion based on the probability determined by the amount of decision
noise.

3.1 Single-Agent Results
In the first setting, we study a case where a single agent (e.g.,

Alice) uses her previous posts to predict the privacy status of a new
post she is about to share.

In order to decrease the effect of structure of the training data
on the evaluation results, 10 experiments were conducted for each
machine learning algorithm. Each experiment was conducted with
a new set of data for both training and testing. In each of them,
the model is trained with 400 instances while it is tested again with
400 instances. Then, the accuracy of each ML method (such as
SVM) is calculated as the average of accuracy of experiments of
that method. A benchmark dataset was created based on content
from Flickr and Reuters.

Table 1 shows that when data set has at least 50 training items,
the change of size of training data set does not affect (average) ac-
curacy. However, below 50, it starts to decrease. If we examine
those with lower accuracy than 100% further, it is observed that
some of the individual experiments with lower accuracy are caused
by the training data in only one class. In 2, 4, and 6 individual
experiments of the experiments with, respectively, 25, 13, and 7
training instances, that is the situation. In that case, the SVM mod-
els trained predicts the instances as the only class which they have
learned. This affects the accuracy. Since those cases are also possi-
ble in practice, their results have taken place here. In order to ignore
their effect, the accuracy of the rest of the individual experiments
are calculated, which can be seen in Table 2:

Size of Training (& Test dataset) Accuracy
25 (25) 100.00
13 (13) 100.00
7 (7) 78.57

Table 2: The decrease in accuracy as the training data size de-
creases

Only the one with 7 training instances has the accuracy less than
100 percentage.

It has been widely known that users may end up sharing infor-
mation that they think is private, possibly because they do no think
about the consequences up front [4]. It is also common to regret
such posts later[13]. Since a user does not always behave in paral-
lel with her privacy preferences in her mind, we have added noise
to our dataset in order to reflect that gap. The noise is added at
the step of determination of decision of whether access for an OSN
post by another user should be allowed or denied. Without noise,
an agent evaluates a post by taking privacy rules of its user in the
Semantic Web Rule Language (SWRL) format into account and ac-
cepts the result of reasoning of the post based on SWRL rules as
the final decision. However, after adding noise, it decides in the
opposite direction of the result of reasoning with a probability pn.
For example, consider adding the noise with the probability (pn)
0.1 to Example 1. Then, Alice’s agent tries to decide whether a
post which has the location information USA should be shared with
Bob or not. As a consequence of reasoning on Alice’s rules, specif-
ically on the rule of not sharing USA posts with Bob and Carol, it
concludes that the access for that post should be denied. However,
with the probability 0.1, it allows the access.

To observe the effect of noise on the accuracy of classifiers, we
have carried out again 10 experiments with the dataset with 400
training and 400 test instances. Accuracies are again calculated as
the average of 10 experiments for each pair of classifier and noise
value. As noise values, 0.05, 0.1, 0.2 and 0.4 has been employed.
Furthermore, the case of 0 noise (no noise) has been also added in
order to develop a comparison of the experiments with the noise,
with the previous experiments, which are the ones without noise.
Figure 1 shows that the accuracy of each classifier decreases as the
noise increases. This is expected. However, up to pn=0.1, except
those of SVM and slightly ELM, none of the accuracies of classi-
fiers are acceptable. They are below 85%. After pn=0.1, none of
the classifiers perform well. At that point, there is a trade-off be-
tween noise value and accuracy. For the sake of high accuracy, the
gap between behaviors and expectations of a user, thus, noise can-
not be ignored and cannot be assumed as 0. However, after a point,
it may not reveal the actual influence of the gap. When pn=0.1,
the accuracy of SVM does not decrease below the 90%. Thus, we
employ a noise value of 0.1 in the following experiments.

3.2 Multi-Agent Results
As can be seen in Table 2, when the number of training data

instances decreases, the accuracy of predicting the label also de-
creases. When an agent has been trained with a few instances, the
agent can guess that its predictions will not be too accurate. In
such cases, the agent can use (some of) the other agents to reach a
decision.

In this evaluation, we have created six more agents that make up
the multiagent system. Bob has exactly the same privacy require-
ments as Alice. Carol’s privacy requirement is more restrictive. She
denies posts from both USA and Canada. Dave denies posts from
Canada and Japan. The fourth agent is a random agent that picks

randomly what the outcome will be. The last two agents are YES
and NO agents. The former always allows posts and the latter al-
ways denies them. Note that Alice is not aware of these behaviors.
For those multi-agent experiments, datasets for each agent were
created in the same procedure with the single-agent experiments.
The noise probability, which is used when determining the decision
of sharing, has been chosen as 0.1 due to the reason mentioned in
the Section 3.1. SVM has been selected as the classification method
since it had the highest accuracy in the single-agent experiments.
Alice’s agent has been trained with 14 instances while agents of
Bob, Carol and Dave have been trained with 100 instances. In the
first experiment, Alice asks all the agents for the first of her test
instances and gets the results. Since the answers vary and Alice
has no other means to decide whom to trust, she applies majority
voting where every agent’s vote is equally weighted.

Figure 1: The effect of noise on the accuracy of each classifier

trustsa,i =

0 if i equals 0
trustsa,i−1 + 1 if a labels ith instance

as labeled by the owner
trustsa,i−1 otherwise

(1)

Then, the trust levels are calculated with the Equation 1, where i
is the number of support posts and a represents the agent to whom
Alice asks. In that way, the original labels by Alice and the labels
by other agents are compared, which are handled by second and
third conditions in the equation. These trust values, trustsa,i, are
returned directly by the method CALCULATETRUST and assigned
to trusts matrix (line 2). Then, responses, the list which stores the
responses of those agents for the test instance, and results, the list
which stores the final collective results for the instance, are initial-
ized via INITLIST, which returns a list filled with zeros in the given
length (line 3-4). Since she has trust values for each agent, she
firstly gets the responses of other agents for ins and stores them in
responses (lines 5-7). For each case with different number of sup-
port posts (lines 8-20), she calculates the total weight, totalweight,
by summing the trust values for each agent, and the total response,
totalresponse, by summing the weighted responses of each agent
for that instance, which are weighted by agents’ trust values (lines
9-14). Following it, Alice’s agent calculates a weighted average re-
sponse by dividing them and it is compared with 0.5. If it is higher
than 0.5, then result in that case is assigned as 1 (YES), otherwise
0 (NO) (lines 15-19). At the end, results are returned.

Algorithm 1: COLLECTIVEDECISION(owner,n,ins)
Input: owner, the post owner
Input: n, the max number of support posts of owner
Input: ins, the instance to be classified
Output: results, the labels of ins for the cases with 1 to n

support posts
1 A← owner.getConnections();
2 trusts← calculateTrust(owner,A);
3 responses← initList(A.length) ;
4 results← initList(n) ;
5 foreach a in A do
6 responses[a]← a.classify(ins);
7 end
8 for i← 1 to n do
9 totalweight← 0;

10 totalresponse← 0;
11 foreach a in A do
12 totalresponse += trusts[a][i] ∗ responses[a];
13 totalweight += trusts[a][i];
14 end
15 if totalresponse / totalweight > 0.5 then
16 results[i]← 1;
17 else
18 results[i]← 0;
19 end
20 end
21 return results

Our preliminary results indicate that agent s need a few interac-
tions to identify the trustworthy agents and then successfully choose
agents for the remaining interactions.

4. DISCUSSION
We have developed a framework in which agents can learn their

users’ privacy constraints. While it focuses on learning the privacy
constraints regarding posts (including web links, location informa-
tion, texts, multimedia content such as photos and videos), relevant
works in the literature focus on those regarding only location, or
only image.

Squicciarini et al. propose a privacy policy inference mechanism
of images which are shared by users on online social networks [11].
The mechanism classifies images based on their content and meta-
data. Then policy for an image is chosen by using the policies of
other images in its class. Their approach generally assumes that a
centralized system can be used to find related policies. In our case,
each agent has access to its own data and can request a content to be
classified from a selected set of other agents. This enables agents
to track who has access to their policies.

Bilogrevic et al. develop an information sharing system regard-
ing privacy of location of the user, people around her and her avail-
ability [1].

While they just take the privacy of location information into ac-
count, we consider the whole structure of a post as our privacy
problem. Furthermore, we aim to help users with few data items by
employing trust in a multi-agent setting.

In order to learn users’ privacy preferences regarding location
information and help users with no or few data, Mugan et al. also
employ machine learning techniques [9]. Observing the patterns
in the data gathered from participants of the study, the exact val-
ues of features of location shares are mapped to the categorical

values determined by them, each combination of which creates a
state. By applying decision trees on users’ data, privacy policies of
users, their sharing decisions for each state, is learned. By cluster-
ing policies and again applying decision trees on each cluster, they
learn default personas, which represents the common characteris-
tics of users in terms of privacy. Compared to our approach, again
they only focus on the location attribute while we focus on shar-
ing posts which can have location information. Furthermore, they
decreases the input space to a small value, while ours’ input space
depends on the training da taset.

Our work here opens up interesting directions for further re-
search. One direction is to add inference to the work [8]. More
specifically, in Example 1, Alice tries to achieve location anonymity
by hiding her location explicitly from her friends. However, in real-
ity, many other details could give away the fact that Alice is actually
in the US. It would be ideal if the agent could make the necessary
inferences to help the user manage her privacy.

5. REFERENCES
[1] I. Bilogrevic, K. Huguenin, B. Agir, M. Jadliwala,

M. Gazaki, and J.-P. Hubaux. A machine-learning based
approach to privacy-aware information-sharing in mobile
social networks. Pervasive and Mobile Computing, 2015.

[2] L. Breiman. Random forests. Machine learning, 45(1):5–32,
2001.

[3] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and regression trees belmont. CA: Wadsworth
International Group, 1984.

[4] R. Gross and A. Acquisti. Information revelation and privacy
in online social networks. In Proceedings of the ACM
Workshop on Privacy in the Electronic Society, pages 71–80,
2005.

[5] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning
machine: theory and applications. Neurocomputing,
70(1):489–501, 2006.

[6] M. Huhns and M. P. Singh, editors. Reading In Agents.
Morgan Kaufmann, San Fransisco, 1998.

[7] G. H. John and P. Langley. Estimating continuous
distributions in bayesian classifiers. In Proceedings of the
Eleventh conference on Uncertainty in artificial intelligence,
pages 338–345. Morgan Kaufmann Publishers Inc., 1995.

[8] N. Kokciyan and P. Yolum. PRIGUARD : A semantic
approach to detect privacy violations in online social
networks. IEEE Transactions on Knowledge and Data
Engineering, 2016. In press.

[9] J. Mugan, T. Sharma, and N. Sadeh. Understandable learning
of privacy preferences through default personas and
suggestions. Technical Report CMU-ISR-11-112, Carnegie
Mellon University, School of Computer Science, 2011.

[10] J. R. Quinlan. Induction of decision trees. Machine learning,
1(1):81–106, 1986.

[11] A. C. Squicciarini, D. Lin, S. Sundareswaran, and J. Wede.
Privacy policy inference of user-uploaded images on content
sharing sites. IEEE Transactions on Knowledge and Data
Engineering, 27(1):193–206, 2015.

[12] V. N. Vapnik. Statistical learning theory, volume 1. Wiley
New York, 1998.

[13] Y. Wang, G. Norcie, S. Komanduri, A. Acquisti, P. G. Leon,
and L. F. Cranor. I regretted the minute i pressed share: A
qualitative study of regrets on facebook. In Proceedings of
the Seventh Symposium on Usable Privacy and Security,
page 10. ACM, 2011.

	Introduction
	Suggesting Privacy Configurations: An ML Approach
	Evaluation
	Single-Agent Results
	Multi-Agent Results

	Discussion
	References

