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Many software systems, such as online social networks enable users to share information about themselves. While the action
of sharing is simple, it requires an elaborate thought process on privacy: what to share, with whom to share, and for what
purposes. Thinking about these for each piece of content to be shared is tedious. Recent approaches to tackle this problem
build personal assistants that can help users by learning what is private over time and recommending privacy labels such as
private or public to individual content that a user considers sharing. However, privacy is inherently ambiguous and highly
personal. Existing approaches to recommend privacy decisions do not address these aspects of privacy suiciently. Ideally,
a personal assistant should be able to adjust its recommendation based on a given user, considering that user’s privacy
understanding. Moreover, the personal assistant should be able to assess when its recommendation would be uncertain and
let the user make the decision on her own. Accordingly, this paper proposes a personal assistant that uses evidential deep
learning to classify content based on its privacy label. An important characteristic of the personal assistant is that it can
model its uncertainty in its decisions explicitly, determine that it does not know the answer, and delegate from making a
recommendation when its uncertainty is high. By factoring in user’s own understanding of privacy, such as risk factors or
own labels, the personal assistant can personalize its recommendations per user. We evaluate our proposed personal assistant
using a well-known data set. Our results show that our personal assistant can accurately identify uncertain cases, personalize
them to its user’s needs, and thus helps users preserve their privacy well.
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1 INTRODUCTION

Collaborative systems, such as online social networks (OSNs), enable users to share content with others. With the
plethora of online content that is being shared, users are faced with the task ofmanaging their privacy. Whenever
a user is sharing content, she needs to think through whom the content is shared with, whether the content
contains elements that would jeopardize her privacy, and so on. Some systems provide settings to conigure
sharing behavior, e.g., images can be shared only with friends. However, not all images are the same. For example,
a user might be comfortable sharing a landscape image publicly, while she might prefer a family image to be
shown only to friends. With current systems, identifying whether an image contains certain aspects that could
be considered private is left to the user. Moreover, the content may be shared by the user herself and others. For
a user to decide whether her privacy is being violated, she needs to check the contents related to her individually.
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This is obviously time-consuming and error-prone. Ideally, a personal assistant (software) could help the user
make decisions by signaling whether the content could be private.

Personal assistants help their users make decisions to ease their online interactions. Personal assistants have
been used to help users in various tasks, including time management [29], smart homes [6], voice-assistance [12],
and so on. Recently, personal assistants have been used for helping users manage their privacy online. Kökciyan
and Yolum [20] develop personal assistants to detect privacy violations in OSNs on behalf of their users. They
assume that the personal assistant has access to users’ privacy preferences through elicitation. Using these
preferences and a domain ontology, the personal assistant computes whether others in the OSN share content
about the user against her preferences. Kekulluoglu et al. [18] and Such and Rovatsos [37] develop techniques
to help users reach privacy decisions when a content being shared is owned by multiple users, such as a group
image. Both approaches assume that the personal assistants of the users know the privacy preferences of the
users and then they apply negotiation techniques to enable the personal assistants to reach a sharing decision
that both users are comfortable with.
Because many approaches depend on using users’ privacy preferences, there is a tremendous need to learn

users’ privacy preferences accurately. If a personal privacy assistant can represent the privacy expectations well,
then these privacy assistants can help the users in privacy dealings, such as warning the user when the user
attempts to share a private content, negotiate with other users on behalf of the user, and so on.
While learning privacy preferences of a user resembles a classical machine learning problem, there are two

properties of privacy that make the problem diicult. First, privacy by deinition is ambiguous, making it
challenging to specify. This makes the pattern that is searched malleable. Second, the users themselves are not
always certain about their own privacy preferences and may change their preferences based on other motives [1].
For these reasons, using a traditional predictive model is unreliable as the cost of making a wrong privacy decision
is high.

Ideally, the personal privacy assistant should adhere to the followings properties:

• Unobtrusive: The privacy assistant should learn from the sharing behavior of the user without interrupting
the user (e.g., asking the user what to share or not) as well as without requiring additional information
about the user or the content, such as age or occupation of the user or the tags of a content. Thus, the
privacy assistant should only consult the user if necessary.
• Uncertainty-aware: As mentioned above, privacy decisions are many times ambiguous. A personal privacy
assistant may not always be able to decide if a content is private or not for the user. The assistant should be
uncertainty-aware of this uncertainty and be able to say łI don’t knowž rather than making an uncertain
decision. Hence, it should let the user know that it is uncertain and delegate the decision back to the user.
• Personalized: There are two aspects of personalization that are important for the personal assistant to
consider. First, to be able to understand the privacy expectations of its own user. This is important because
privacy is subjective and what one user considers private might not be private for another user. Second,
each user has a diferent risk associated with making a wrong decision. The risk here refers to classifying a
content as private when it should have been public and vice versa. For example, a user might prefer that
the personal assistant be risk-averse and classify a content as public when there is even a slight chance
that the user would prefer it private.

Existing privacy personal assistants that learn users’ privacy preferences do not address the uncertainty of
their predictions while making decisions [23, 27, 40] (see Section 2 for details). The idea of considering risk to
personalize decisions has been used before but not been coupled with privacy decisions as we have done here [32].
Accordingly, this paper proposes a personal privacy assistant (PURE) that helps its user to make privacy decisions
in a personalized way, taking into account the ambiguity of privacy predictions. An important aspect of PURE is
that it explicitly calculates the uncertainty of its decisions using evidential deep learning (EDL) [31], which
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quantiies the predictive uncertainty of deep neural networks (DNNs). When PURE is uncertain of its decisions,
it delegates the prediction back to the user. PURE uses publicly annotated data set to create an initial model for
privacy but also factors in persona of a user: person’s understanding of risk, personally labeled data, and when
she should be consulted. In this way, PURE behaves diferently for each user to minimize the user’s perceived
risk of privacy violations. Moreover, PURE does not need to have access to any other private information of the
user (e.g., personal details or usage patterns) as well as any of the users in the system, including the relations
among users.
The rest of this paper is organized as follows. Section 2 provides a detailed summary of related work in

techniques and tools to help users manage privacy. Section 3 explains our approach in detail. Section 4 provides
details on the evaluation setup. Section 5 evaluates the proposed approach on a widely used data set and
demonstrates the beneits of capturing and exploiting uncertainty. Finally, Section 6 concludes our work with
pointers to future directions.

2 RELATED WORK

The literature on approaches that help users manage their privacy is broad. One of the earlier works is due
to Fang and LeFevre [7], who introduce a wizard software based on an active learning paradigm. The wizard
generates a privacy preference model using extracted features from visible data and communities, and also user
input such as asking questions. The wizard recommends privacy preferences to users for diferent information
items on their proiles, such as birthday, address, or telephone number. One of their key indings is that a user’s
social network structure is an important resource when modeling the user’s privacy preferences. This idea has
been exploited also by Kepez and Yolum [19], where they propose a machine learning (ML) based model for
image privacy prediction. Their framework is based on several attributes about posts such as the sharing time,
the location, and the content of the post. They make use of the user’s social network to improve prediction. Both
of these approaches are important for the privacy prediction task because their approaches use information
about the user, her network, and her posts to improve prediction. However, in situations where such external
information is not available, there is still a need to make recommendations to the user based only on the content.

Squicciarini et al. [35] propose Adaptive Privacy Policy Prediction (A3P) system that predicts a privacy policy
for images based on the information available for a given user in the context of social networks. A3P needs a user
to specify some privacy policies before making a prediction of privacy policies. When recommending a privacy
policy for an image, A3P takes into account signiicant resources for the privacy concept such as actual image
content, metadata, and social circle. A3P consists of two main components: A3P-core and A3P-social. When a
user uploads an image, the A3P-core classiies the image irst based on their contents and then, updates each
category into subcategories based on their metadata (if exists). Then, A3P-core either predicts a policy based
on the historical behavior or invokes A3P-social. A3P-social inds a representative privacy policies using user’s
social circle. While the A3P achieves high accuracy, it makes use of information beyond the images themselves
and does not attempt to capture the uncertainty in the prediction as we have done here.

Various approaches have exploited using textual and visual features to train classiiers. An earlier work is by
Zerr et al. [45], where they identify that combination of textual and visual features produces the best performance
in terms of prediction. However, they do not consider personalization or uncertainty. Tran et al. [41] propose a
privacy framework, called Privacy-CNH that consists of object and convolutional features using a convolutional
neural network (CNN) for image privacy detection. Similarly, Squicciarini et al. [34] present a learning model
to privacy labels of images for binary privacy labels as private and public as well as multi-class privacy labels
such as Only You or Family. They show that combining scale-invariant feature transformation (SIFT) and tag
features perform better than the other two or three combinations such as sentiment, RGB, or facial detection.
The results of these approaches have been improved by Tonge and Caragea [40], who tackle the same problem
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using deep visual semantic and textual features, namely deep tags and user tags. While extracting deep features,
they use pre-trained CNN architectures such as AlexNet [22], GoogLeNet [38], VGG-16 [33], and ResNet [13]
with Support Vector Machine (SVM) classiiers for the privacy prediction task. Deep tags of images are top k

predicted object categories that are extracted from pre-trained models. Using user-created tags, they create deep
visual features by adding highly correlated tags to visual features extracted from the fully connected layer of the
pre-trained models. Their results show that a combination of user tags and deep visual features from ResNet with
the top 350 correlated tags yield the best performance. Moreover, based on their experimental results, ine-tuned
networks perform better than learning models trained on the pre-trained features. While their focus has been on
classiication alone, here, we attempt to take into account both the uncertainty and the personalization associated
with making privacy decisions, which is critically important for real-life use cases.

Alternative to approaches that use the image content, some recent approaches have used the tags associated
with the content to predict privacy labels of images. Squicciarini et al. [36] introduce Tag-To-Protect (T2P) system
that automatically recommends privacy policies using the image tags and privacy policies. Their proposed system
is useful for both newly uploaded images and cold-start problems when there are very few tags available. One of
the prominent results from their experiment is that the prediction accuracy decreases when there is a large set
of tags. Since, if the number of tags per image increases, inding a pattern becomes diicult. Kurtan and Yolum
[23] propose an agent-based approach that predicts the binary privacy labels of images such as private or public
using automatically generated content tags. The system keeps track of content being shared using tag tables.
The internal tag table stores the data of privacy labels that are collected from images that the user shares herself.
The external tag table stores the data collected from the images that the user’s friends have shared with the user.
Using metrics inspired by information retrieval, they deine metrics to measure how informative a tag is to assess
the privacy of an image. Contrary to previous approaches, this system performs well even the personal assistant
has access to small data. However, they are not concerned about capturing the uncertainty explicitly or take into
account personal risk factors as we have done here.

An alternative set of approaches make use of groups of users, considering various similar aspects among users
to make recommendations. Misra and Such [27] develop PACMAN, a personal assistant that recommends access
control decisions. Their approach is based on identifying communities (such as friend networks) from the OSN
structure of a user and information about the content, such that users manually select tags to extract information
about the content. Zhong et al. [47] propose Group-Based Personalized Model (GBPM) for an image privacy
classiication task. Their proposed model learns privacy groups and private content types. Using addition proile
information (e.g., gender or age-range), they estimate new users’ privacy decisions. They evaluate their proposed
model on a randomly selected subset of the PicAlert dataset [45] by irst extending it with by adding demographics
and social network usage information. They show that GBPM (with proile information) outperforms several
baselines such as SVM approaches.
Fogues et al. [8] present a personal agent, SoSharP that recommends sharing policies in multiuser scenarios.

SoSharP uses contextual-based, user-based, preference-based, and group-based features. These features help to
provide personalized recommendations in three rounds. SoSharP makes recommendations to each user by using
context-based and user-based features in the irst round. It moves to the second round if at least one user has not
accepted sharing policy. It uses preference-based features in addition to the features used in the irst round. In the
inal round, it makes a recommendation for all users by using group-based features. As a result of the last round,
SoSharP recommends manual resolution if most of the users do not agree with the recommendation. Mosca
and Such [28] also propose an agent, ELVIRA, that for multi-user settings that beneits from recommending
individual decisions to each user. While we do not consider multi-user settings here, our work can be applied in
multi-user settings to recommend privacy labels to each user before a group decision is taken.

Sensoy et al. [32] propose risk-calibrated evidential deep classiiers to make a better classiication by decreasing
the costs of misclassiied predictions. They reformulate EDL method in order to accomplish this goal. Their
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experiments show that the proposed Risk EDL method has lower misclassiication costs compared to EDL,
standard learning with cross-entropy loss, and cost-sensitive learning methods for MNIST, FashionMNIST, and
CIFAR10 datasets. They also report that their method is robust for out-of-distribution samples. However, they do
not apply their model on privacy as we have done here.
Yu et al. [43] propose an algorithm to recommend privacy labels of images in OSN. Their recommendation

algorithm takes into account two approaches: an image content sensitiveness and trustworthiness of a user.
To train a tree classiier, the algorithm uses feature-based and object-based approaches for the image content
sensitiveness and characterization of users’ trustworthiness based on social behaviors. Through extensive
evaluations over user study and two publicly available datasets (such as PicAlert and MIRFLICKR), they have
shown that the proposed algorithm is efective. However, PURE is both uncertainty-aware and risk-aware model
for predicting privacy labels of images. It can achieve high performance without using the proile information of
a user, his/her social connections, or organizing diferent types of image privacy concerns.

Kokciyan and Yolum [21] propose an approach, TURP, that manages the trustworthiness of information sources,
Internet of Things (IoT) devices, for making context-based privacy decisions. They represent IoT devices and
users as software agents. Each agent has a conidence value when it shares information with another agent. In
the beginning, each device has the same trust value. These values are updated based on feedback that is given
from multiple agents. TURP uses Disjunctive Datalog while reasoning about information collected from multiple
agents. It would be interesting to couple TURP with our proposed approach in IoT context so that the privacy
decisions are augmented with trust.

Jiao et al. [15] design a system, IEye, that provides a personalized and interpretable privacy model. They irst
extract features from images and use multi-layered semantic graphs for feature representations of images. Then,
they learn personalized privacy rule sets from images using the rule-based classiication algorithm RIPPER. They
compare their methods with SIFT and deep features extracted from pre-trained networks AlexNet, VGG16, and
ResNet152. They evaluate the performance of their method IEye on the PicAlert dataset and a small dataset called
PPP, which consists of 8744 images of 20 users. IEye has a better accuracy result on the PPP dataset than the
baseline approaches. However, the proposed method is not better than deep features for the PicAlert dataset.

Yuan et al. [44] propose a context-dependent and privacy-aware model for images. The model uses the image’s
content and contextual information about the image and a speciic requester. Their proposed framework irst
extracts general features (e.g., people, location, time, activity) and contextual features of the sender’s images. The
system collects information about the sender’s preferences by asking questions to the sender in diferent scenarios.
It trains a classiier on this information. When a requester exists, the classiier makes a decision based on the
sender’s information and the requester’s contextual features. They then evaluate their approach to conducting a
user study on manually annotated images with personalized contextual sharing decisions through the ProShare S
application that they developed. However, they do not focus on uncertainty as we have done here.
Dammu et al. [3] develop a system for the image privacy prediction task. Their approach is capable of

personalization, explainability, conigurability, and customizable privacy labels. The system has four modules
such as object detection, location detection, object localization, and explicit content extraction. The decision
network aggregates outputs of modules for personalized privacy predictions. This comprehensive approach help
make personalized prediction of the image labels. To provide such a personalized system, their approach gets
feedback from users for misclassiied images. Because of the subjectivity privacy, asking users and using their
explanations have an important role. However, it is not clear how this would scale in applications that use large
image sets.
Han et al. [11] propose a method which uses multi-level and multi-scale deep representations for the image

privacy prediction task. First, they obtain these deep representations CNN based model. Then, they propose two
feature aggregation models such as Privacy-MSML and Privacy-MLMS based on diferent aggregation strategies
using Bi-LSTM and self-attention. They evaluate the performance of proposed models on a subset of PicAlert
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dataset. They show that their proposed aggregation models yield better performance by F1-score compared with
ResNet-18, CNN-RNN, and concatenated multi-level features. However, they are not concerned with capturing
the uncertainty in their predictions as we have done here.

Liu et al. [25] present problems, challenges, approaches, and future directions of ML in privacy. By taking into
account the roles of ML in privacy, they divide existing works into three categories; private ML, ML enhanced
privacy protection and ML-based privacy attacks. In the irst category, the aim is to develop a private ML system
including model parameters, training/test datasets, and predictions. Diferential privacy is one of the popular
ML solutions that is capable of protecting the privacy of the individual data items [5]. In the second category,
ML approaches are used to make decisions for content to preserve privacy and predict information leakage.
For instance, ML-based models predict applications’ privacy risks, identify contents’ sensitive information, and
learn users’ privacy preferences. The third category presents the importance of ML attack models, including
re-identiication and inference attacks. Preserving privacy under such attacks becomes more challenging with
the rapid increase in the usage of online social networks and the recent advances in DNNs. However, DNNs are
vulnerable to adversarial perturbation. Goodfellow et al. [10] propose the Fast Gradient Sign method to generate
adversarial examples. Diferently from such kind of attacks, Miao et al. [26] introduce the controlled (protected)
information stealing attack. They explain the phases of ML-based attack methodology, discuss the challenges of
such attacks, and share the defense mechanisms. The work that we present here falls into the second category,
such that we use ML methods to enhance privacy protections.

3 PURE: UNCERTAINTY-AWARE PRIVACY ASSISTANT

We envision PURE to work side-by-side with its user when the user is about to share content and help its user
make privacy decisions (Figure 2). PURE uses a learning model that predicts a privacy label of a given image
either private or public. The image is considered to be private if it belongs to the private sphere or contains objects
that the user cannot share with the world and public otherwise. Figure 1 shows examples of images annotated as
private and public in the PicAlert dataset by two diferent annotators.

(a) Private images (b) Public images

Fig. 1. Examples of images labeled as private and public by the annotators.

PURE consists of two modules. The main module is the personalized learning module and serves as the core of
the personal assistant. The purpose of this module is three-fold. First, using publicly annotated data, it learns to
classify images as private or public. Second, it quantiies uncertainties in predictions, such that when it estimates
a prediction to be highly uncertain, it can delegate the decision making to the user. Three, it incorporates the
user’s expectations in privacy, as each user might have diferent persona when it comes to how they would like to
treat certain factors in the learning. The learning model uses evidential deep learning to realize these goals. The
learning module produces a classiication model that can label a given image and estimate the uncertainty in the
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Fig. 2. System Overview Schema: OSN user has a personal assistant PURE. She can share persona with her personal assistant.
First, PURE has Publicly Annotated Data collected from diferent annotators available in the PicAlert dataset. It learns privacy
preferences using visual features in the Learning Module and produces Model. While learning, the user can share her persona
type (i.e., sensitive, semi-sensitive, and non-sensitive) that she can be sensitive about classifying private images as public
or not. In this case, the personal assistant is risk-averse. Moreover, the user can share personal data that the user herself
annotates allowing learning the user’s privacy preferences. Then, PURE makes privacy decisions for its user’s content (e.g.,
image) in the Decision Module. While making a prediction for each image, it also generates an uncertainty value for that
prediction. To reach a privacy decision, PURE decides whether to use prediction results (i.e., share or not share) or to delegate
the decision to the user (i.e., delegate) by comparing the uncertainty value with the threshold received from its user.

prediction. Whenever user provides personally labeled data, this module uses that to tune the personal assistant
using the images of the user. This is important because privacy is inherently subjective and the publicly annotated
dataset that is used for the learning module may not relect the privacy expectations of the user. Moreover, due
to the subjectivity, PURE might assign high uncertainty to some images. By ine-tuning using personal data, we
aim to decrease the uncertainty that PURE might observe with some images. The second module is the decision
making module. When a user needs to make a privacy decision, this is the module that is invoked. This module
obtains a prediction and an uncertainty value from the model. Each user deines for themselves when to let
PURE make a decision and when they would want to be involved. By setting a threshold, a user can choose to
decide on the privacy labels when the uncertainty is above the set threshold. Otherwise, the prediction of the
model is assigned as the label.

3.1 Learning Privacy Labels with Uncertainty

Evidential Deep Learning (EDL) [31] is based on Dempster-Shafer theory of evidence [4] and subjective logic
(SL) [16] to quantify uncertainty in classiication tasks. SL expresses degrees of uncertainty through subjective
opinions. Each subjective opinion corresponds to a Dirichlet distribution, a conjugate prior for the categorical
distribution. For a binary proposition (e.g., the image x is private), the subjective belief of a personal assistant for
the truth of this proposition [17, 46] is represented as a binomial opinion, which corresponds to a Beta distribution
Ð a special form of Dirichlet distribution. Since privacy classiication is a binary classiication task, a personal
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assistant’s belief for an image to be private is represented as a binomial subjective opinion. A binomial subjective
opinion for the classiication can be represented as a Beta distribution. That is why, in this section, we will
introduce EDL using Beta distributions. Beta probability density function (pdf) is expressed as:

Beta (p |α , β ) =
pα−1 (1 − p)β−1

B (α , β )
(1)

where B is the multivariate beta function [31] and [α , β] are the parameters of the Beta distribution. In Equation
1, p is the Bernoulli probability that the binary proposition is true, e.g., the probability that the image x is private.
A personal assistant has a belief (b) for the proposition that the image is private, a disbelief (d) for the same
proposition, and an uncertainty (u) that represents the inability to classify the image accurately. The personal
assistant’s uncertainty about an image may be due to the noise in the image or the lack of training data with
similar images. We can calculate these quantities as:

b =
α − 1

α + β
, d =

β − 1

α + β
, and u =

2

α + β
,

where b,d,u > 0 and b + d + u = 1. Furthermore, α − 1 and β − 1 are called the evidence for and against the
proposition: the image is private. Let us note that u is maximized when α = β = 1, corresponding to the uniform
Beta distribution. We can also call them the evidence for the private and public categories in the classiication of
the image.

The Beta distribution provides a probability distribution over p Ð the probability that the given image is private.
However, in classiication tasks, we need a predictive categorical distribution to decide. For this purpose, we use
the expected value of the Beta distribution, which is calculated as follows:

p̄ =

∫ 1

0
p
(pα−1 (1 − p)β−1

B (α , β )

)

dp =
α

α + β
(2)

The aforementioned calculations of belief masses and uncertainty are based on the parameters of the corre-
sponding Beta distribution. In order to model belief masses and learn Beta distribution parameters, EDL modiies
a vanilla neural network for classiication by replacing its softmax layer with a non-negative activation function
such as ReLU, softplus, and exponential functions. In our classiication problem, we have two categories: private
and public. Given a sample image x , we can use any neural network with two logits outputs: o0 (x ) and o1 (x ),
one for each category. Then, we use the exponential function to calculate evidence for each category as follows:
epub (x ) = exp (o0 (x )) and epr i (x ) = exp (o1 (x )), which represent the evidence for the public and private categories,
respectively. The Beta distribution parameters α and β for the classiication of the image x are calculated as
α (x ) = epr i (x ) + 1 and β (x ) = epub (x ) + 1, respectively.

Let y ∈ {0, 1} represent the category index of the sample image x . In standard neural networks for binary
classiication, the sigmoid function is used to calculate p (x ) = P (y = 1|x ), i.e., the probability that x is from
category y = 1. Then, the binary cross-entropy loss is calculated as follows:

y log
(

p (x )
)

+ (1 − y) log
(

1 − p (x )
)

There are also other loss functions for classiication, such as the Brier score, which is deined as

[p (x ) − y]2 + [1 − p (x ) − (1 − y)]2. (3)

The Brier score is a proper scoring function and is frequently used to measure the accuracy of probabilistic
predictions. Unlike vanilla neural classiiers, we do not predict p (x ) directly, so we cannot directly use any of

these loss functions. However, we predict its Beta distribution Beta
(

p (x ) |α (x ), β (x )
)

; hence, we may calculate
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the expected loss by integrating out p (x ) in the classiication loss of our choice. We can calculate the expected
Brier score for privacy classiication as follows:

L (x ,y) =

∫ 1

0

[

p (x ) − y
]2
+

[

1 − p (x ) − (1 − y)
]2

p (x )α (x )−1 (1 − p (x ))β (x )−1

B (α (x ), β (x ))
dp (x )

(4)

which has the following closed-form solution:

L (x ,y) = [p̄ (x ) − y]2 + [1 − p̄ (x ) − (1 − y)]2+

+2
p̄ (x ) (1 − p̄ (x ))

α (x ) + β (x ) + 1
,

(5)

where p̄ (x ) is the expectation of p (x ) and calculated as α (x )/
(

α (x ) + β (x )
)

using Equation 2.

L (x ,y) =

∫ 1

0

[

y log
(

p (x )
)

+ (1 − y) log
(

1 − p (x )
)

]

p (x )α (x )−1 (1 − p (x ))β (x )−1

B (α (x ), β (x ))
dp (x )

(6)

which has the following closed-form solution:

L (x ,y) = y (ψ (α (x ) + β (x )) −ψ (α (x ))) +

(1 − y) (ψ (α (x ) + β (x )) −ψ (β (x ))) ,
(7)

whereψ (.) is the digamma function. We also add a regularizing term R (x ,y) to this loss. R (x ,y) is deined as
follows:

R (x ,y) = λtKL[Beta
(

p (x ); ᾱ , β̄
)

∥ Beta
(

p (x ); 1, 1
)

] (8)

where

• t ≥ 0 is the index of the current training epoch,
• λt =min (1.0, t/10) is the annealing coeicient,
• KL[·| |·] refers to the Kullback-Leibler (KL) divergence,
• ᾱ = α (x )1−y = (epr i (x ) + 1)1−y ,
• β̄ = β (x )y = (epub (x ) + 1)

y ,

• Beta
(

p (x ); 1, 1
)

is the uniform Beta distribution.

Let us note that ᾱ and β̄ do not contain any evidence supporting the true category of the sample image. That
is, α (x )1−y becomes 1 if the image is private (y = 1) and β (x )y becomes 1 when the image is public (y = 0).
As a result, the KL-divergence term is minimized when the network does not produce any evidence for the
wrong category. Hence, this regularization term minimizes the evidence generated by the network for the wrong
category and increases the predictive uncertainty for the misclassiied samples [31].

Example 1. Let’s assume that Alice is an OSN user. She has four diferent images. She needs to decide which
images should be shared as public and which should be shared as private. Figure 3 represents an example for
predicting privacy labels (such as private or public) of her images and quantifying uncertainty values for each
prediction. In Figure 3, the irst and the fourth images are public, and the other two are private. As shown in
Figure 3, PURE predicts a label for each image as well as an uncertainty value. When producing an answer, it
checks its uncertainty value and threshold to decide to answer with its current predicted label or delegate the
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true 
labels

images

predicted 
labels

1 2 3 4

uncertainty 
values 0.9 0.1 0.5 0.8

Fig. 3. An example for predicting privacy labels of four images and quantifying uncertainty values for each prediction.

decision to its user. If the threshold here is 0.7, it will put forward its predictions for images 2 and 3 (as these have
uncertainty values 0.1 and 0.5, respectively) and delegate image 1 and 4 to its user. With this setup, PURE would
have correctly classiied image 2 but image 3 would have been misclassiied. It would have delegated image 1
that it would have failed on, but it would have also been delegated image 4 to the user that this image is correctly
classiied.

3.2 Personalizing Privacy

Since privacy is inherently subjective, it is important to incorporate personal traits of the user into the decision-
making. We consider three aspects of a user that should be factored into the decision making: 1) perception of
risk, 2) personal categorization, and 3) preference to be involved.

Perception of risk:While the personal assistant is making decisions, it is possible that it makes a prediction error.
It is possible that for some users misclassifying a private image as public may lead to less desirable consequences
than misclassifying a public image as private. For some others, there might not be a diference. Furthermore, the
cost of diferent misclassiications may be signiicantly diferent for two diferent users. In order to avoid mistakes
that are deemed risky for the user, the system needs to incorporate the risk percention of the user into account.
Typically, vanilla neural networks do not diferentiate this signiicant diference and consider all mistakes as

equal. To overcome this, here we introduce a user-dependent risk matrix, which is an asymmetric non-negative
square matrix R ∈ [0,∞)2×2. Each value Ri j in R represents the user’s cost when the classiier assigns an image
from category i to the category j. There is no cost for the user for correct classiication, hence Ri j ≥ Rii = 0.

There may be diferent ways of incorporating the user’s risk of misclassiication into the training of evidential
classiiers. In this paper, we propose scaling misleading evidence in the KL-divergence term by modifying ᾱ and
β̄ as follows:

ᾱ =
(

R01epr i (x ) + 1
)1−y

β̄ =
(

R10epub (x ) + 1
)y

This allows us to increase the KL-divergence further when evidence for high-risk categories are produced. The
PURE gets R from its user and can learn how to generate evidence for each category based on the personalized
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cost of making misclassiication. If the user is sensitive about classifying private images as public, the personal
assistant also becomes sensitive and avoids generating evidence for the private category for equivocal and
ambiguous images.

(1) Scaling misleading evidence in the KL-divergence term by modifying ᾱ and β̄ as follows:

ᾱ =
(

R01epr i (x ) + 1
)1−y

β̄ =
(

R10epub (x ) + 1
)y

This allows us to increase the KL-divergence further when evidence for high-risk categories are produced.
(2) Regularizing the amount of misleading evidence directly using the risk of misclassiication.

(1 − y)p̄ (x )R01epr i + y
(

1 − p̄ (x )
)

R10epub ,

where p̄ (x ) is the predictive categorical distribution calculated as p̄ (x ) = α (x )/(α (x ) + β (x )). This term
will be added to the aforementioned loss: L (x ,y) + R (x ,y).

true 
labels

images

predicted 
labels

1 2 3 4

uncertainty 
values 0.8 0.1 0.2 0.8

Fig. 4. An example for predicting privacy labels of four images for a sensitive user and uncertainty values for each prediction.

Example 2. If for a user, there is no diference between the misclassiication of private and public images,
then PURE makes predictions as shown in Figure 3. On the other hand, assume that Alice is more sensitive
about classifying a private image as public. By relecting this in the Ri j score, PURE predicts privacy labels of
images and quantiies uncertainties for each prediction as shown in Figure 4. Notice that the uncertainty values,
as well as the predicted labels, have changed compared to Figure 3. With the uncertainty threshold still set to
0.7, PURE will delegate the same set of images (1 and 4) and answer images 2 and 3. Image 3 has been correctly
classiied this time. This is a by-product of the fact that PURE chooses to classify more images as private to avoid
the potential risk associated with classifying private images as public.

Personal Categorization: Another aspect of personalization is to understand what images a particular user
inds private or public. One way of understanding this is to ask the user about privacy preferences. However,
there is long standing evidence that users are not good at articulating what they ind private. Moreover, their
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actions are not always in line with what they claim to be private. Thus, a better way of understanding what is
private for a user is to utilize personal data: images that are labeled by the user herself.

PURE makes use of this to ine tune the model it generates. After PURE is trained on publicly annotated data,
the user’s own labeled data is to adjust the uncertainties in the model. An important contribution of this would
be that the uncertainty in certain images drop such that model is more certain of its prediction.

true 
labels

images

predicted 
labels

1 2 3 4

uncertainty 
values 0.8 0.1 0.2 0.3

Fig. 5. An example for predicting privacy labels of four images by fine-tuning using personal data and uncertainty values for
each prediction.

Example 3. If PURE uses publicly available data and if Alice is a sensitive user about classifying a private
image as public, PURE makes predictions in Figure 3 and 4, respectively. Moreover, if Alice shares her personal
data that has been annotated by her, PURE will predict privacy labels and uncertainty values for each prediction
as shown in Figure 5. If uncertainty threshold is still 0.7, PURE will delegate image 1 to Alice and correctly
classify image 2, 3, and 4 (as these have uncertainty values 0.1, 0.2, and 0.3, respectively). Since image 4 would
have been correctly predicted with a lower uncertainty value, it would have not delegated to the user. So, all the
classiications would be correct this time, and PURE would ask its user less.

Preference to be involved The inal part of personalization is to understand how much a user wants to be
involved in the decision making. Recent work in HCI show that [2] while some users are happy to have privacy
decisions taken by their privacy assistants on their behalf, some users would rather be in the loop. Moreover, this
is not always a binary decision in the sense that with some decisions the user might want to be involved while
with other she might not. We capture this preference to be involved in the decision making process explicitly
using a threshold value θ . Whenever PURE is asked to label an image, in addition to a prediction, PURE also
provides a level of uncertainty. When PURE has an uncertainty above θ , it delegates the decision making back
to the user. Since θ can be conigured by the user herself, it enable the user to select a level of involvement,
where θ = 1 would mean letting PURE do all the decisions, where θ = 0 would mean overseeing all the decisions.
During our experiments, we discuss having θ = 0.7 as a working setting to capture user involvement only when
PURE has high uncertainty.
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4 EVALUATION

We evaluate the performance of PURE in terms of its contribution to preserving privacy. Speciically, we aim to
answer the following research questions:

RQ1 Does PURE capture the privacy ambiguity through its modeling of uncertainty and by delegating
ambiguous cases to the user, can PURE increase its privacy prediction accuracy?

RQ2 Does PURE capture uncertainty adequately and outperform existing models that capture uncertainty?
RQ3 Can PURE enable personalization of privacy by incorporating privacy risks and personal data of the

user so that the accuracy is improved for the user while the number of delegated decision decrease?

It is important to be able to answer RQ1 airmatively because capturing the ambiguity is the key for PURE to
choose when to consult its user. Ideally, uncertain images should be delegated to the user for a decision, and
certain images should be answered by PURE. As a result, if we consider only the certain images that PURE makes
a prediction on, we would expect to obtain a higher accuracy than the overall accuracy. RQ2 investigates the
dynamics between uncertainty and making prediction errors and questions whether alternative formulations of
uncertainty such as an SNN or well-known uncertainty quantiication methods such as MC dropout and Deep
Ensemble would suice. Finally, RQ3 explores if and to what extent personalization of PURE helps users, either
in terms of the accuracy they obtain or the number of images they have to decide.

4.1 Dataset

To evaluate our work, we selected a balanced subset of the PicAlert dataset [45]. The PicAlert is a well-known
benchmark dataset for the privacy prediction problem for images that contains Flickr images that are labeled
as public or private by external viewers. These images are the most recently uploaded images for four months
in 2010 and labeled by 81 users between 10 and 59 years of age with varied backgrounds. 17% of the images in
this dataset have conlicting labels from annotators. We consider an image as public if all the annotators have
annotated it as public and private if at least one annotator has annotated it as private. The subset we work with
contains 32K samples that are labeled as public and private. It is split into Train and Test sets of 27K and 5K
samples, respectively.
While the previous research aims at increasing the accuracy of the privacy prediction, additionally we focus

on how to quantify the uncertainty in these predictions and exploit it to improve the user’s privacy in the face of
automated decisions.

4.2 Metrics

We evaluate the performance of our approach using two main metrics: (i) success of the model in terms of the
standard metrics such as Accuracy, F1-score, Precision, and Recall; and (ii) ability of the model to quantify its
predictive uncertainty, which allows the improvement of the success metrics in (i) if quantiied correctly and
accurately.
We irst evaluate our approach without considering personalization; hence the generated evidence is not

weighted based on the perceived privacy risk of the user. Then, we extend our evaluations with the personalized
risk matrices to see how our model adapts itself for users with diferent misclassiication costs. We also extend
evaluations with personal data which is annotated by a user to observe how PURE adapts and then asks less to
its user. To evaluate the quality of the uncertainty estimates, we calculate the accuracy of the model only on the
test samples for which the model’s uncertainty is less than a given uncertainty threshold between 0 and 1. When
the uncertainty threshold is 1, all test samples are considered in computing the accuracy (and other metrics like
precision and recall); however, when the threshold is reduced to 0.5, predictions with uncertainty less than 0.5
are considered for the calculation.
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4.3 Evaluation Seting

We use models which are pre-trained on the ImageNet to extract features from images. We compare three
popular deep architectures of convolutional neural networks: ResNet50 [13], InceptionV3 [39], and VGG16 [33]
in terms of their performance. Table 1 shows the results of the comparison (Accuracy, F1-score, Precision, and
Recall) of PURE using ResNet50, InceptionV3, and VGG16. ResNet50 and InceptionV3 pre-trained models yield
better-performing models as compared to VGG16. ResNet50 avoids the network from the vanishing gradient
problem. It has Batch Normalization layers that mitigate Internal Covariate Shift. Because it enables more eicient
training and performs well, while having fewer layers and parameters for other models with similar performance,
we choose ResNet50 as our underlying architecture.

Accuracy F1 Precision Recall

ResNet50 0.89 0.89 0.89 0.89
InceptionV3 0.89 0.89 0.89 0.89

VGG16 0.73 0.72 0.8 0.73

Table 1. Performance of PURE using diferent pre-trained models ResNet50, InceptionV3, and VGG16.

We use the ResNet50 architecture as our base neural network and replace its last layer (logits layer) with a
densely connected layer with two outputs Ð one for each class (private and public). This architecture has 50 layers
with residual connections. We implement our model using Tensorlow and initialize the network layers from the
ResNet50 model and train 15 epochs on the PicAlert dataset using Adam optimizer with a decaying learning rate
initialized as 1e − 5. The ResNet50 accepts images with dimensions (224 × 224 × 3), so we resize the images to
these dimensions. The implementation used in this work is available at https://git.science.uu.nl/ayci0001/PURE.

5 EXPERIMENTAL RESULTS

We perform the following experiments with the mentioned dataset to answer our research questions.

Performance of PURE: We start with examining the accuracy of PURE, where we conigure PURE to provide
a label no matter what the uncertainty is. We experiment with using the entire available training data as well as
compare it to cases where the training data is smaller.

Overall

Usage

%
Accuracy F1 Precision Recall

100 0.89 0.89 0.89 0.89
75 0.88 0.89 0.88 0.88
50 0.88 0.88 0.88 0.88
25 0.87 0.87 0.87 0.87
10 0.79 0.78 0.82 0.79
5 0.66 0.62 0.76 0.66
1 0.55 0.44 0.69 0.55

Table 2. Overall results for PURE as training samples are reduced.
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Table 2 shows the overall performance of PURE. For instance, when we use all data while training, PURE obtains
an accuracy of 0.89. PURE obtains an accuracy of 0.87 for 25% of training data. On the other hand, if PURE is
trained on only 1% of data, the accuracy decreases to 0.55. Table 3 shows the performances of PURE for the
private and public classes while using with diferent amount of data. For instance, PURE achieves F1-score of
0.89 for each class when PURE uses all images in the training dataset. While training with 1%, PURE exhibits
poor performance in terms of F1-score, especially for the private class. If a user has only 10% of training data,
PURE obtains F1-score of 0.75 and 0.81 for the private and public class, respectively. This is promising because it
shows that even when there is limited training data, PURE can be useful.

Private Public

Usage

%
F1 Precision Recall F1 Precision Recall

100 0.89 0.91 0.87 0.89 0.87 0.92
75 0.88 0.91 0.87 0.89 0.86 0.92
50 0.88 0.92 0.84 0.89 0.85 0.92
25 0.86 0.91 0.81 0.87 0.82 0.92
10 0.75 0.92 0.63 0.81 0.72 0.95
5 0.49 0.94 0.34 0.74 0.6 0.98
1 0.19 0.85 0.11 0.68 0.52 0.98

Table 3. Results for the private and public classes of PURE at diferent training sample rates.

Recall that an important aspect of PURE is that it can calculate uncertainty. Next, we look at the relation
between uncertainty and accuracy to capture if PURE can represent uncertainty correctly. We have set up
PURE so that it would delegate to its user when it is uncertain and thus is likely to make a mistake. Hence, ideally,
when PURE delegates to its user, we would expect an improvement in the accuracy of the remaining items.

Table 4 shows the overall performance of PURE with respect to diferent percentages of delegated predictions.
When we do not delegate any predictions, PURE obtains an accuracy of 89% (as was shown in Table 2). When
we delegate only 25% of the most uncertain predictions, the results based on all performance metrics improve
remarkably, e.g., the accuracy, recall, and precision increase to 0.95. Similarly, when we delegate 75% of the most
uncertain predictions, PURE achieves the highest performance of 0.99 in terms of all metrics. Thus, we observe
that the delegated images are actually the ones that PURE would have made a mistake in.

Overall

Delegation

%
Accuracy F1 Precision Recall

0 0.89 0.89 0.89 0.90
10 0.92 0.92 0.92 0.92
25 0.95 0.95 0.95 0.95
50 0.97 0.97 0.97 0.97
75 0.99 0.99 0.99 0.99

Table 4. Overall results for PURE at prediction delegation rates 0%, 10%, 25%, 50%, and 75% based on uncertainty.
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An important question is whether the same upward trend holds for both private and public class. Table 5
shows the performance of PURE for each class. For instance, when PURE does not delegate any predictions, it
obtains F1-score of 89% for both private and public classes. When PURE delegates only 25% of the most uncertain
predictions, PURE improves F1-scores to 94% and 95% for the private and public classes, respectively. When it
delegates 75% of the most uncertain predictions to its user, PURE yields the best performance with 0.99 F1-scores
for both private and public classes, respectively. By increasing the number of the delegated predictions, the
performance of the model can be improved for each class signiicantly.

Private Public

Delegation

%
F1 Precision Recall F1 Precision Recall

0 0.89 0.91 0.87 0.89 0.87 0.92
10 0.91 0.94 0.89 0.92 0.90 0.94
25 0.94 0.96 0.92 0.95 0.94 0.97
50 0.97 0.99 0.95 0.98 0.96 0.99
75 0.99 0.99 0.98 0.99 0.98 0.99

Table 5. Results for the private and public classes of PURE at various prediction delegation rates (0%, 10%, 25%, 50%, and 75%)
based on uncertainty.

Another dimension to understand the link between uncertainty and making errors is to analyze what fraction
of wrong predictions fall under diferent uncertainty rates. Figures 6 and 7 present the uncertainty histogram
for the failed and successful privacy prediction of PURE, separately for the private and public classes. The
failed and successful predictions in the uncertainty ranges of each class are shown as a percentage among
themselves. We observe that failed predictions have higher uncertainty in general while successful predictions
are more conident. This indicates that PURE is aware of its own ignorance and possible failures through its
predictive uncertainty. When the most uncertain predictions are eliminated, its accuracy improve drastically.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

10

20

30

40

50

60

70

80

[private] success
[private] fail

Uncertainty

P
er
ce
n
ta
g
e
o
f
S
am

p
le
s

Fig. 6. Uncertainty distribution for the private cat-
egory.
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Fig. 7. Uncertainty distribution for the public cat-
egory.

Similarly, Figure 8 plots uncertainty against accuracy for PURE. The numbers on the particular points denote
the ratio of test samples that are decided by PURE; the remaining samples are delegated back to the user because
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of the high uncertainty. The case when uncertainty is set to 1 is analogous forcing PURE to make all the privacy
decisions, without delegating any case to the user. The accuracy of PURE at this stage is 89%. This is on par with
the existing models in the literature that use the same dataset to predict privacy labels [40]. The more interesting
cases are the ones where the uncertainty is high so that the PURE decides that there is too much uncertainty to
answer and delegates them to the user. For example, for uncertainty threshold 0.4, 57% of the test samples can be
decided by PURE, leading to an accuracy around 0.97. For uncertainty threshold 0.8, 69% of the test samples can
be decided with PURE, leading to an accuracy around 0.95. This shows, as RQ1 asks, that PURE can capture the
privacy ambiguity and it can delegate such cases to its user.
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Fig. 8. The change of accuracy with respect to the uncertainty threshold.

Comparison with Alternative Networks: The PURE calculates the uncertainty of its predictions and exploits
it to refrain from making wrong privacy decisions for its users. In order to understand the efect of PURE in
its calculations of uncertainty, we compare it to alternative predictive uncertainty models; Monte Carlo (MC)
dropout [9] and Deep Ensemble [24], which depend on the class probabilities predicted by the neural network as
well as a regular Standard Neural Network (SNN). We implement a SNN, MC dropout, and Deep Ensemble with
two softmax outputs using the same ResNet50 architecture with PURE. In order to measure the uncertainty of
standard deep classiiers, entropy of their predictions has been used after normalising it to have an uncertainty
value between 0 and 1 [14, 31].

To have a meaningful comparison for uncertainty quantiication, we use the normalized entropy as a proxy for
the uncertainty for the PURE and SNN, MC dropout, Deep Ensemble models.

For PURE, we use the expected probabilities deined in Equation 2 to calculate the entropy. The entropy for the
class probabilities p and (1−p) is calculated as −[p logp + (1−p) log(1−p)]; then normalized by dividing to log 2,
which is the maximum entropy for the binary classiication. Gal and Ghahramani propose MC dropout method
that represents model uncertainty using dropout in neural networks at test time. We add dropout layers after
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each non-linearities and set the dropout rate as 0.05 1. We train a model, obtain the desired number of diferent
predictions and take the average of 5 predictions for each class. Lakshminarayanan et al. propose ensemble
based method, called Deep Ensemble that quantiies predictive uncertainty. We use Brier score (Equation 3) as a
proper scoring rule as the training criterion, train 5 models with the same architecture, and take the average of
predictions.
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Fig. 9. The change of accuracy for diferent models with respect to diferent entropy thresholds.

Figure 9 demonstrates the variation of the test accuracy for the PURE, SNN, MC dropout, and Deep Ensemble
models as we change the thresholds for the normalized entropy for delegating predictions. The PURE outperforms
the SNN, MC dropout, and Deep Ensemble models at almost all points. Its accuracy is higher than that of
alternative models even when there are no delegated predictions and the disparity signiicantly increases as the
predictions are iltered based on their entropy. When we select entropy threshold as 0.4, SNN achieves 95.6%
accuracy using 51% of the data. For the same threshold, 53% of the data used by MC dropout, and the accuracy
value is 95.2%. Deep Ensemble obtains an accuracy of 93% using 88% of the data, whereas PURE achieves 97.8% of
accuracy for 48% of the predictions at the same threshold. Our observation is consistent with the literature, where
the deep neural networks are criticized as being overconident, hence misleading, when they make mistakes [14].
One important aspect to note here is the distribution of the data over various entropy thresholds. In principle, we
want to use the entropy threshold to decide if a decision will be delegated to the user. Consider PURE in Figure 9.
When entropy is 0.1, PURE will only classify 32% of the data and delegate the remaining to the user. While this is
a large percentage to delegate, it comes with the advantage of 98% accuracy. If PURE sets its entropy to 0.8, then
it will classify 60% of the data and still yielding an accuracy of 98%. When it chooses to classify all the data, then
the accuracy will drop to 89%. Contrast this ability to conigure based on entropy to Deep Ensemble. With Deep
Ensemble, even when the entropy is set to 0.1, the personal assistant will classify 82% of the data itself, with low

10.05 yields the best performance among {0.01, 0.1, 0.25, 0.5}.
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lexibility in delegating the choices to the user. Next, we study the accuracy changes of these models based on
their data usage.
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Fig. 10. F1-scores for the private and public classes relative to the percentage of delegated decisions.

Figure 10 plots how the F1-score changes for the public and private classes when PURE, SNN, MC dropout, and
Deep Ensemble models delegate certain percentages of their most uncertain predictions based on the entropy.
The F1-scores of PURE and Deep Ensemble models are better than SNN and MC dropout for each class and the
gap is bigger for the private class. PURE outperforms Deep Ensemble for both classes when the rate is higher
than 0.7. The F1-score of PURE improves further and reaches 0.99 for both private and public classes. However,
the F1-score of the private class for SNN and MC dropout decreases when the most uncertain 80% of the data is
neglected and the remaining most certain 20% is used for the calculation of the F1-score. The decrease in the
F1-score for the private class in Figure 10 indicates that SNN and MC dropout is overconident while PURE can
exploit its well-measured uncertainty to avoid wrong privacy decisions. With randomization tests [30], we can
show that the improvements of PURE over existing models is statistically signiicant (p-value < 0.05). We answer
RQ2 positively such that PURE outperforms SNN, MC dropout, and Deep Ensemble by expressing uncertainty
better.

Personalized Misclassiication Risk: Each user may have a signiicantly diferent cost for the misclassiication
of the private content. In this section, we demonstrate the lexibility of PURE for adapting users’ perceived risk
of such mistakes and its ability to avoid them by refraining from making privacy decisions when uncertain.

For this purpose, we consider ive broad categories of personas: non-sensitive, semi-sensitive and sensitive, which
have a diferent risk matrix R. The non-sensitive user has the same perception of risk for the misclassiication of
private and public image, i.e., R01 = R10 = 1. This means that, for the non-sensitive user, the KL-term in the loss
of the PURE does not weigh the evidence for private and public categories diferently. On the other hand, for the
semi-sensitive users, misclassifying private image as the public is a few times more unacceptable, i.e., R01 = 1 and
R10 = {3, 5, 7}. We also have the sensitive user that misclassifying private image as the public is ten times more
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Persona Non-Sensitive Semi-Sensitive Sensitive

Risk Values
R01 = 1

R10 = 1

R01 = 1

R10 = 3

R01 = 1

R10 = 5

R01 = 1

R10 = 7

R01 = 1

R10 = 10

[Overall] Accuracy 0.89 0.89 0.90 0.90 0.90

[Overall] Recall 0.89 0.89 0.90 0.90 0.90

[Private] Recall 0.86 0.87 0.89 0.90 0.91

[Public] Recall 0.92 0.91 0.90 0.89 0.89

Table 6. Results for five diferent risk personas.

Round I Round II - Personal Round II - Random

User 1 0.32 0.19 0.34

User 2 0.30 0.21 0.27

User 3 0.34 0.22 0.29

Table 7. Ratios of prediction whose uncertainty values are greater than 0.7 (θ ).

unacceptable for such user, i.e., R01 = 1 and R10 = 10. This means that PURE is signiicantly more penalized for
making a wrong prediction in the private class.
Table 6 shows our results. For the non-sensitive persona, the results are as before. For the sensitive persona,

the recall for the private category improves signiicantly at a cost of having lower recall for the public category.
In other words, PURE prefers to classify a content as private over public, when in doubt. This behaviour increases
the number of predictions for the private category for the sensitive user (i.e., private recall increase from 0.86
to 0.91). While doing so, it does not sacriice its overall recall and the accuracy. Our results indicate that by
increasing R10, we increase private recall, thus classify more images as private and as a result, we obtain a lower
recall for public images. Notice that the R value belongs to a user and can be adjusted as needed.

Data Personalization: PURE delegates a decision to its user when uncertain about a prediction. Ideally, we
would like to minimize the number of times this happens while keeping the accuracy high. The personalization is
meant to serve this purpose. In order to see if this is indeed achieved, we need to perform a comparative analysis
where in the irst round no personal data are used and in the second round the personal data are added. To realize
this, we select three users who have annotated the most images as each annotator has annotated diferent number
of images.

• Round I: Train a model without using personal data.
• Round II-Personal: Tune a trained model in Round I using personal data annotated by a user.
• Round II-Random: Tune a trained model in Round I using data annotated by others.

Figure 11 shows the change of samples (%) that PURE prefers to delegate decision of labels to the user. We
observe that PURE delegates less to its user when it makes use of the personalization module.
A closer look in Table 7 shows the ratio of samples at each round when uncertainty threshold is 0.7. These

samples belong to the top three users who annotate the most images. For instance, for the irst user, PURE delegates
32% and 34% of test samples after Round I and Round II - Random, respectively. However, only 19% uncertain cases
can be delegated to the user when we tune the trained model with personal data at Round II. In light of these
results, we answer RQ3 positively: PURE can adjust its behavior based on the personal risk and expectations of
its user as well as help the user deal with fewer decisions.
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(b) User 2

0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Round I
Round II - Personal
Round II - Random

Uncertainty Threshold

D
el
eg
at
e
[%

]

(c) User 3

Fig. 11. The change of delegated samples for each round with respect to diferent uncertainty thresholds.

An interesting aspect to note is that the number of images use to personalize can afect the behavior of the data
personalization approach. Given the limited number of annotators with predeined set of images, we currently
cannot study such questions but it would be useful to provide bounds to guide users to personalize the assistant
even further.

6 CONCLUSION

This paper proposes a personal privacy assistant, PURE, that helps its user make privacy decisions by recom-
mending privacy labels (private or public) for given contents. PURE is uncertainty-aware in that it captures the
privacy ambiguity using uncertainty modeling and delegates decisions for ambiguous cases to its user. PURE is
personalized that it is capable of making a privacy decision by incorporating the user’s risk of misclassiication
and using personally labeled data. Through its personalization, PURE is also unobtrusive as it does not consult
its user only when it is uncertain. Our experimental results show that PURE obtains a high accuracy without
even consulting its user at all. Our comparison with other models in the literature show that PURE captures
uncertainty well and that most of the content that it identiies as uncertain are the ones that it would have made
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an error if it were to classify them itself. Thus, the overall accuracy of PURE steadily increases as it delegates
uncertain cases to its user. Moreover, our results show that PURE can indeed adjust its behavior based on the
personal risk and expectations of its user and is able to decrease the delegations to its user by ine-tuning using
personal data.

This paper opens up interesting directions for future research. Currently, we start with an uncertainty-aware
model for privacy classiication and enhanced it further with users’ personalized risk for misclassiication. An
interesting direction for further research is to enable PURE to have deeper interactions with the user. For example,
it could interact with the user to obtain labels for the images that it is uncertain about and further enhance its
ability for classiication with this new personal data. Similarly, it could attempt to explain the uncertainty to its
user so that the user can help in guiding PURE in the right direction. Semantic information about the content,
such as tags, could aid in the explanation. Another important direction is to enable interaction between diferent
personal assistants to help create a collaborative environment for preserving privacy. Currently, we assume
that the content that a personal assistant decides on belongs to its user alone. However, many times content,
such as group images or co-edited documents, might belong to more than one user [42]. Extending PURE to act
collaboratively in such settings would be useful. Finally, a user’s privacy preferences are many time relational.
That is, a user might be ine with sharing a content with a friend but not with a colleague. Our current approach
does not capture with whom the content is shared. It would be interesting to learn relation-based sharing behavior
of users. Another interesting direction would be to investigate how PURE can learn when to delegate its decisions
to the user. Currently, PURE has a preset threshold value θ by capturing user involvement such that it makes
a decision when a prediction’s uncertainty value is below θ and delegates the decision otherwise. It would be
useful if PURE can automatically adjust θ based on user feedback.
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