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Abstract. Privacy is a right of individuals to keep personal information
to themselves. Often online systems enable their users to select what
information they would like to share with others and what information
to keep private. When an information pertains only to a single indi-
vidual, it is possible to preserve privacy by providing the right access
options to the user. However, when an information pertains to multi-
ple individuals, such as a picture of a group of friends or a collabora-
tively edited document, deciding how to share this information and with
whom is challenging as individuals might have conflicting privacy con-
straints. Resolving this problem requires an automated mechanism that
takes into account the relevant individuals’ concerns to decide on the pri-
vacy configuration of information. Accordingly, this paper proposes an
auction-based privacy mechanism to manage the privacy of users when
information related to multiple individuals are at stake. We propose to
have a software agent that acts on behalf of each user to enter privacy
auctions, learn the subjective privacy valuations of the individuals over
time, and to bid to respect their privacy. We show the workings of our
proposed approach over multiagent simulations.
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1 Introduction

Collaborative systems enable users to interact online while sharing content that
pertains to more than one user. Consider an online social network (OSN), where
a user can share pictures that include other users, who are many times able to
tag themselves or others, comment on it, and even reshare it with others. Or,
an IoT system, in which one security camera would like to share footage of a
setting to guarantee security for the people, while one individual would prefer
to keep the location of herself secret. In both of these cases, the content being
in question relates to multiple entities, who have different privacy concerns or
expectations from each other. Even though the content is meant to be shared
by a single entity, the content is related to more than the uploader and hence is
actually co-owned by others [11,21].

When co-owners have different privacy constraints, they should be given the
means to make a decision as to either share or not to share the content. However,
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current systems enable only the uploader to set privacy settings while publishing
contents, but does not allow co-owners to state their constraints. As a result,
individuals are left to resolve conflicts via offline methods [14].

Ideally, systems should provide privacy management mechanisms to regulate
how content will be shared. Recently, multiagent agreement techniques, such as
negotiation [12,21] and argumentation [13] have been used. These approaches
have been successful but require heavy computations; that is, they can only
be used when the entities can reason on its privacy policies and communicate
with others intensively. Moreover, the agents in these systems follow predefined
rules but do not learn better ways to preserve their users’ privacy over time.
An alternative to this is to use auctions [20] where each user bids based on how
much she wants to see a content public or private. The decisions are then made
based on the winning bids [4,6].

Accordingly, this paper first explains an agent-based approach PANO for col-
laborative privacy management. When a content is about to be shared, agents of
co-owners interact over a mechanism to reach a decision. Similar to Squicciarini
et al. [20], PANO uses Clarke-Tax mechanism, but adapts it to protect users
against abuses, and at the same time encourages users to share content online.
PANO incorporates a group-wise budget system that ensures that advantages
gained by interactions with certain individuals can only be used against the
same individuals. Thus, the agents support users in biding automatically for
their behalf. Next, we propose an agent architecture called Privacy Auction-
ing Learning Agent (PANOLA) that uses user’s privacy policy as an initial
point to bid but then learns to adjust its bidding strategy over time. Learning
has been used in context of privacy before, mostly to enable agents to clas-
sify whether a user would consider a content private or not [7,18]. However, the
learning problem addressed here is different. First, since the content to be shared
is co-owned, other agents’ actions influence the outcome of a privacy decision.
Second, what needs to be learned is not whether a content is private or not, but
what the agent would bid to share or not to share the content, given what it has
observed and shared before.

Our main contributions in this paper are as follows:

– We provide a fair privacy respecting auctioning method based on Clarke-Tax
mechanism, where software agents represent users’ privacy requirements and
appropriately bid on behalf of the users.

– We develop a privacy-aware bidding strategy for the agents based on rein-
forcement learning. This gives them the ability to fine-tune their auction bids
according to previous experiences and adjust their privacy respecting strate-
gies over time.

– We evaluate the proposed approach over multiagent simulations and show
that it achieves superior privacy protection than non-learning cases.

The rest of this paper is organized as follows: Sect. 2 explains PANO in detail,
with a focus on how automatic bidding is done for protecting privacy. Section 3
proposes an agent architecture that learns bidding strategies over time. Section 4



118 O. Ulusoy and P. Yolum

describes our multiagent simulation environment and evaluates the effectiveness
of learning. Finally, Sect. 5 discusses our work in relation to existing methods in
the literature.

2 Agent-Based Auctioning for Privacy: PANO

To enable decisions on co-owned content, we propose co-owners to be represented
with software agents. Agents keep track of the privacy preferences of entities and
act on behalf of them to reach a decision. We propose PANO, an agent-based
privacy decision system, where agents employ auctioning mechanisms to reach
decisions on privacy conflicts [24]. PANO uses an extended version of Clarke-Tax
Mechanism as an underlying mechanism.

2.1 Background: Clarke-Tax Mechanism

Clarke-Tax mechanism [4] provides an auction mechanism, where participants
bid for different, possible actions in the environment. The action that receives
the highest total bids from the participants wins and is executed. Different from
an English auction, participants who aid in the winning action to be chosen,
i.e., that bid towards it, are taxed according to the value they put on it. This
is achieved by subtracting the bid values of every single user from the overall
values. If the subtraction of a single user’s bid changes the overall decision, it
shows that the user’s bid on this action had a decisive value. Thus, the user
is taxed with the difference of the actual action’s score and the score of action
to be taken if that user were not present in the auction [4]. In the context of
collaborative privacy, Clarke-Tax mechanism is used to decide on how a content
is going to be shared. Squicciarini et al. [20] consider three types of sharing
actions: no share, limited share, and public share. We follow the same scheme
here. When an image is about to be shared, all the relevant participants bid on
these three possible actions.

2.2 PANO Auctions

The Clarke-Tax auctions are beneficial for decision making for multiple partic-
ipants with different opinions, as they support truthfulness [20]. If Clarke-Tax
auctions are applied in commerce, then each participant would have their own
budget (e.g., money) to bid with. However, since we are emulating the auction
idea, the participants are given budgets at the beginning of each auction, which
they can use to bid in the current auction or save to bid later. As usual, a
participant cannot bid more than her current budget.

When Clarke-Tax auctions are applied in privacy as opposed to commerce,
there are two points that need attention: First, users can enter into arbitrary
auctions in arbitrary groups to increase their budgets. If budgets earned with
one group of users is used to set the privacy in a second group by overbidding,
then the system is abused. Second, it is not clear to assign a bid value for privacy.
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In commerce, the valuation for an item can be identified more easily, however,
for privacy, the difference between values is not easily interpreted. Without clear
boundaries to specify the range for bids, agents are left with an uncertainty to
express their preferences accurately. We address these two points by offering only
group-wise budgets and ensuring boundaries for bid ranges [24].

Group-wise Spending: To prevent abuse of using budgets for trivial auctions
with different users, earned budgets can only be used in new contents with the
same co-owners. With this, we improve robustness of the system, where malicious
users cannot collaborate for increasing their budget and forcing the other users
about their own choices. For example, without group-wise Spending, two agents
might share arbitrary content over a social network without spending budget for
privacy actions, thus increasing their total budget. When they co-own a content
with others, they will have extra budget from these previous efforts, and can
bid high amounts to force sharing a content over on OSN, while in fact it is a
sensitive content for another user that can’t outbid the malicious users. With
group-wise spending, each agent would have a separate budget for each co-owner
group, hence cannot use previously earned budget against a co-owner group if
the earned previously budget was with another co-owner group.

Boundaries: Boundaries enable all the agents to bid inside a predefined range.
This is beneficial for preventing users that are richer in the budget from domi-
nating the decisions. This also helps agents that participate in the auctions to
have better evaluation functions, because they can have a better opinion about
the other participants’ bids. When the agents know what would be the maxi-
mum bid from the others, they can set their bidding strategy accordingly. For
example, without the boundaries in place, when an agent considers a content
for a privacy action, she would try to bid as much as possible since she would
considers others doing the same for the opposite action. But with boundaries,
the agent would have a clearer idea about how much to bid, since she will know
the amount to outbid in the worse case scenario, where all the agents bid the
amount of the maximum boundary for the opposite action.

Definition 1 PANO: PANO auction is defined as a 6-tuple:
AUC = {c,AC,A,m,M,BD}, which consists of the auction’s related content c, a
set of privacy actions (AC), the set of agents (A) that participate in the auction,
minimum possible bid (m), maximum possible bid (M) and the set of placed bids
(BD), where each bid bt,a (bt,a ∈ BD) is related to one single action t (t ∈ AC)
and one single agent a (a ∈ A).

Given a PANO auction defined as in Definition 1, a system can compute the
outcome for the agents, and update their budgets accordingly. At the end of
each auction, each participant is given an amount that is equal to the half of
the maximum possible bid. This prohibits the agent to bid for the maximum
possible bid for each auction. That is, the agent would need to save its acquired
budget for the next auction to be able to bid higher than average possible bid.
Our reason to employ this half of the maximum boundary is that if an agent
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acquires more budget than she should use, she would be able to bid the maximum
allowed amount for every auction. In this case, it would not make sense for an
agent to deliberate the bid amount, since a higher bid would increase her chances
to force the action she wants, regardless of the significance of the action. On the
extreme opposite case, if the agents would earn very little amount for every
auction, they would not be able to bid for many decisions when they consider
the content sensitive. In this situation, many privacy violations might occur, and
agents would be forced to save their budget for many cases to be able to have a
decision in one. Our decision to give half the amount of the maximum possible
bid aims to find a balance between these two extreme cases, where agents should
deliberate about placing their bids to be able to enforce their decisions only when
necessary, but they would still be able to enforce their decisions in the sensitive
cases, if they bid reasonably.

2.3 Privacy Policy

Each agent should have an evaluation mechanism on the importance of a content,
and how much it is willing to bid for its preferred actions. Since the action
set can differ significantly in terms of size, the evaluation mechanism of the
agents should rely on some generic, but still comprehensive representation of the
represented individuals’ privacy preferences. Thus, we propose a 5-tuple privacy
policy structure to represent the privacy related choices of the individuals.

Definition 2 PANO Policy: A PANO policy P is a 5-tuple P = {a,n,p,q,i},
where a is the agent that the policy belongs to, n is the audience of the policy
who are the users affected by the outcome, p is the contextual properties for the
content that the policy will be applied, q is the privacy related action and i is the
importance of the policy, which is a rational value between 0 and 1.

An example policy of an agent that represents Alice, who wants to share
its blood pressure information received from an IoT device with her doctor and
nurse can be defined as:

P = {Alice,{doctor[Alice],nurse[Alice]},info[BloodPressure],share,0.9}.

3 Learning to Bid

Existing work in PANO assumes that the agents are homogeneous and bid in a
predefined manner. However, this is rarely the case in real life. First, different
users have different privacy understandings that can affect their bidding strate-
gies. Second, users do not know their valuations accurately. Third, some users’
privacy expectations can change over time, requiring them to bid differently for
the same content at two different time points.

In general, users (and thus agents) are not experts of privacy domains. Even
though users claim that they care about privacy and can express their privacy
concerns, they tend to act differently and their actions can possibly contradict
with their privacy requirements [1]. Hence, presenting privacy related actions in
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a way that users can understand and fit their privacy requirements with ease
becomes essential. For a privacy auctioning mechanism, agents would find it
difficult to place an exact bid on a privacy action, but presenting a range from
which they can provide their bids, rather than a single value could be easier.
Depending on the context, the extent of the range can vary and providing bids
on one end of the range versus the other can significantly change the outcome of
the bid. For this reason, it is best if an agent can learn over time a range from
which it can generate its bids.

In order to facilitate this, we use reinforcement learning [22]. With reinforce-
ment learning, agents can learn how to improve their privacy actions over time
by making use of the only few possible visible outcomes in the system and with
simple computations. In our adoption of reinforcement learning to PANO; over
time, agents’ desired actions are rewarded or their bad choices are penalized.
According to these, agents explore their set of actions, in order to adapt and act
in the best possible way for the current state of the environment. The conver-
gence to learn the best possible action depends on the exploration/exploitation
balance of the agents. An adventurous agent can explore from a wider range
of actions while risking being penalized, while a conservative agent can avoid
taking risk and adapt slowly, but might get stuck in local minima since the best
possible action has a bigger probability of never being explored.

In light of the aspects mentioned above that can affect the privacy deci-
sions, we introduce our learning agent, called Privacy Auctioning Learning Agent
(PANOLA). PANOLA employs reinforcement learning to learn the bidding
ranges, build strategies using defined coefficients and adapt its bidding according
to the outcome of previous decisions. In addition, we ensure that PANOLA can
act coherently with agents’ privacy policies even when previous decisions are not
available.

3.1 Bidding Ranges

With the given minimum and maximum boundaries for PANO, we introduce
bidding ranges, where the agents can pick from the possible ranges within the
boundaries and bid integers between the picked ranges. All the possible bidding
ranges within boundaries are stored by the agents themselves; each of them
accompanied by a rational utility value, in the range of [0–1] that denotes how
suitable a range is for bidding for a privacy action; 0 meaning the least suitable
and 1 the most suitable. Since the agents cannot have any previous experience
when first introduced to a domain, the initial utilities are computed according
to the distance of the ranges’ mean values to the agents’ initial bid evaluations
extracted from their privacy policies.

Example 1 Figure 1 depicts two bidding range examples (r1 = [4, 12] and r2 =
[14, 18]) for action t between minimum and maximum boundaries (m and M
respectively), assigned as 0 and 20. The set of ranges contains more than these
two, since we include all possible integer ranges between m and M . bt,a shows
the initial bidding evaluation for action t, which is given as 6 and means that
the agent would initially bid 6 for t for the incoming content.
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Fig. 1. A depiction of two ranges between minimum (m) and maximum (M) bidding
boundaries and the initial bidding evaluation of agent a for action t

In time, utility values of bidding ranges change according to success or failure
of the picked bids. Agents do not share the utility values with the environment
or other agents. Each agent updates its utilities independently according to the
outcome of the auctions. Reinforcement learning is used to make agents learn
to pick the most suitable range for a given content type, using information that
results from PANO auctions, such as the amount they paid from their budget
according to their bids, the deducted tax amount if any tax was paid and the
action chosen by the auction, which can be considered as the most important
factor for the learning process. We employ all these factors in our computations
for learning the suitability of the ranges. The agents pick the range with the
highest utility for a given content and bid an integer value inside this range
according to their bidding strategy for their preferred action.

3.2 Effective Auctions

An important aspect in facilitating reinforcement learning is to balance explo-
ration of new bid ranges with exploitation of already found ones. The explo-
ration/exploitation balance is not binary in most of the real life domains, since
the uncertainty and non-determinism is usually present. Therefore, we make use
of continuous utility ranges with several coefficients that represent properties of
the auction outcomes to compute the balance.

Like most of the approaches in reinforcement learning [3,5,23], the unsuc-
cessful range pickings are penalized with a decrease in the utility value, while
the successful ones have an increase in the utility. In our approach, the utilities
are based on the effectiveness of the previous auctions. Intuitively, an auction
has been effective for an agent if a preferred action has been decided, while
the agent did not bid too high and was not taxed too much. We formalize this
intuition below using three coefficient values. Table 1 summarizes the important
parameters for the proposed approach.

– Bid Coefficient (BC ) captures the preference of winning an auction with lower
bids. Having a higher BC means that spending less is more important while
winning. This is essential when an agent has a limited budget, since winning
with a lower bid would enable the agent to have spare budget for the future
auctions. In contrast, a rich agent would prefer a lower BC value since bidding
more than it should would still leave budget for the future auctions, without
the need to search of another winning bid with a lower value.
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Table 1. Coefficients and values for utility calculations

Name
Abbreviation

Short description Equation/Function Range

Bid Coef. BC Used for distinguishing
between winning with
lower and higher bids

BC −→ 0 : decrease
effect of BC
BC −→ 0.5 : increase
effect of BC

[0–0.5

Tax Coef. TC Changes the
importance of taxes in
utility calculation

TC −→ 0 : decrease
effect of TC
TC −→ 0.5 : increase
effect of TC

[0–0.5]

Action Coef.
AC

Assigned by the agents
according to their
action choice
preferences

AC −→ BC + TC :
decrease effect of AC
AC −→ 1 : increase
effect of AC

[(BC + TC)−1]

Distance D Used in the initial
utility value
calculations

D = (M −
|Mean(rng) − bt,a|)/M

[0–1]

Effectiveness
E

Calculates agent’s
effectiveness in an
auction

E =
AC − (BC ∗ bt,a/M+
TC ∗ Tax/M)

[0–1]

– Tax Coefficient TC has a similar purpose to BC, but it focuses on the amount
of taxed budget on winning bids instead of the bids themselves. Similar to
BC, a higher TC increases the importance of taxes in utility computation.

– AC enables each agent to decide the importance order of the privacy actions.
Agents assign coefficient values between BC + TC and 1 to each action
according to their action ordering preferences, the highest coefficient value
being the AC of the most important action.

These three aforementioned coefficients are used in computing the final effec-
tiveness. For the Effectiveness (E ) value, a higher amount means that the agent’s
preferred action has been chosen with lower bidding and lower taxing. The ratio
of bt,a to the maximum possible bid M gives the magnitude of the bid. The higher
this value, the less effective the auction will be. This magnitude is adjusted with
BC to account for the fact that different agents would care about this differently.
The ratio of Tax to maximum possible bid M gives the magnitude of the budget
loss for the agent. Again, the higher this amount, the less effective the auction
would be. Adjusting it with TC enables the agent to account for different con-
texts, e.g., when the agent has high budget and would not be affected by being
taxed. The effectiveness of the auction is then the difference between the value
gained by the decided action AC and the cost of bidding and taxing as shown
in Table 1. The sum of Tax Coefficient TC and the Bid Coefficient BC should
be lower than the Action Coefficient AC, so that when an auction is successful,
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E will have a positive value and can increase the utility of the picked range for
the auction.

The effectiveness of an auction will determine the likelihood of a bidding
range to be picked again. However, at the beginning, the agent does not have
any effectiveness values, as it has not participated in any previous auctions. Yet,
they still need a mechanism to assign bids. Distance (D) formula is used for this
purpose of initial utility value calculations. This formula favors bidding ranges
that are closer to the agent’s initial privacy policy. That is, the distance for-
mula assigns higher utility values to the ranges that have a close mean value
to the agents’ initial bid evaluations, and lower values to the distant ranges.
According to D (in Table 1), if the mean of all the integer values within a range
is equal to the initial bid evaluation of the agent, D will be equal to 1, which
will be a top pick for the first auction for a related content. The normalization
according to the maximum auction boundary ensures that the furthest differ-
ence between the range mean and initial bid evaluation would be the difference
between the maximum boundary and the minimum boundary (zero for our sim-
ulation), since the furthest distance could be the initial bid evaluation to be at
one end of the boundary and the mean of the range on the other end. In such
case, |Mean(range) − bt,a| part of the D calculation will always be equal to the
maximum boundary M , thus the D value will be computed as 0. In addition
to enabling first time utilities with D, we also ensure that initial bids are as
close as possible to the agents’ intended privacy requirements. A utility value
closer to 1 would mean that the agent is indeed willing to bid around the mean
of the picked range, and the privacy action outcome of the first auction would
be similar with when the agent does not employ a learning strategy and bids a
value according to its own privacy policies.

Example 2 Referring back to the examples of two ranges in Fig. 1, the mean
of r1 and r2 are 8 and 16 respectively. If we assume that there are no previous
auctions for agent a, the initial bid bt,a is given as 6, which is the amount a is
willing to bid for action t, if the learning process with ranges are not available.
According to the equation of D, r1 has the initial utility of 0.9 and r2 has 0.5.
As the mean of r1 is closer to bt,a, it has a higher D value than r2 and can be
considered a better candidate for a bidding range of t for an incoming auction.

3.3 Utility Update

After the initialization with the Distance value, utility computation depends on
the Effectiveness value and the total number of auctions entered. Utility for a
range called rx is simply computed with the formula below:

Utility{rx} =

n∑

i=1

Ei + Drx

n + 1
(1)

According to Formula 1, utility value of rx after n auctions is the sum of
all previous E values and the initial D value divided by the number of entered
auctions plus one, considering D.
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Example 3 According to the example in Fig. 1, the initial utilities of the ranges
according to D value would be [0−1] : 0.725, [0−2] : 0.75, ..., [4−12] : 0.9, ..., [14−
18] : 0.5, ..., [18 − 20] : 0.35, [19 − 20] : 0.325.

If we ignore the ranges that are not shown in the examples above, r1 ([4–12])
is the one to be picked for the next bid, since it has the highest utility. Assume
that the agent picked r1, won the auction with a bid within the range, and got
an E value of 0.8 out of it. The utility of r1 will become (0.9 + 0.8)/2, equaling
to 0.85. Since this value is still higher than other ranges above, it will have the
highest probability to be picked for the next auction.

4 Evaluation of Learning for Preserving Privacy

The above setup shows us how reinforcement learning can be used by the agents
to generate bids. Some important questions that follow are: does this approach
enable agents to learn accurately, do the agents that learn bidding ranges perform
better in PANO auctions, do other personal values affect preserving privacy and
if so, how.

In order to answer these questions, we design and implement a multiagent
simulation environment, where PANO and PANOLA agents with different pri-
vacy policies enter PANO auctions. The environment consists of a set of agents,
and different types of contents, where the agents have predetermined evaluations
to rely on. According to these content evaluations, agents have an initial opinion
about which privacy actions to support in an auction, and how much they are
willing to bid for it. The environment also keeps track of the budget balances
of the agents, and their success rate (i.e., the percentage of won auctions in all
entered auctions) for further performance evaluations. The content types and
the number of actions may vary in the environment, and the required informa-
tion is fully observable to the agents so they can evaluate on how to bid for a
given content type and the set of privacy actions. As in the original Clarke-Tax
algorithm, the agents cannot see the bids of the other agents before or after an
auction, but they are informed of the winning action as well as the amount of
tax to pay, in case they are taxed.

4.1 Simulation System

We have developed a simulation system to evaluate the performance of
PANOLA agents in different setups. The environment supports both
PANO agents, which do not employ any learning for bidding and
PANOLA agents, which learn how to bid over time. The simulation includes
multiple action choices and all the agents have predetermined evaluations about
how important they consider different action types and how much their initial
bid should be accordingly. After the agents are loaded into environment, the
simulation cycles for all the contents, and agents enter PANO auctions to col-
laboratively decide which action to take for the given auctions.
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To understand whether an agent is successful, we use a success metric, which
calculates the percentage of auctions for which an agent’s preferred privacy
action is chosen. Recall that the auctions are set up in a such a way that the pri-
vacy expectations of the agents conflict. As a result, if an agent’s most preferred
action is the result of the auction, then this agent has won and the remaining
agents have lost. That said, it is possible to have two privacy actions that end
with the same highest bid. In those cases, we disregard the auction from calcu-
lations of success. Thus, the total wins of all the agents equals the total count
of the auctions. This simple metric enables us to see which agents have been
the most successful in selecting privacy actions as measured by the percentage
of total auctions.

4.2 PANOLA vs. PANO Agents

In our multiagent simulations, there are PANOLA agents that learn how to
bid over time and the remaining agents are opposing PANO agents that have
different action choices than PANOLA agents. These opposing PANO agents
have a static strategy, meaning that they always bid the same pre-evaluated
amount for the same type of content.

We perform ten simulation runs of 100 contents for each to evaluate preser-
vation of total budget, amount spent for each content and success for entered
auctions (e.g. successful if the first action choice of the agent is the outcome
of an auction and unsuccessful if not). The experiments where we include both
PANO agents and PANOLA are executed with a single PANOLA against a
PANO agent setup, since we aim to measure PANOLA’s success with differ-
ent characteristics against PANO agent opponents that do not learn how to
bid over time. The experiments for comparing PANOLA agents with different
values against each other are conducted with one-against-one auctions, since
our purpose for this comparison is to measure a learning characteristic against
another one.

In our first experiment, we evaluate the success of PANOLA against PANO
agents in terms of privacy decisions. For all 100 content, our scenario sets the
privacy actions of PANOLA and PANO agents always in conflict, thus in each
auction the agents oppose each other to ensure their own privacy action becom-
ing the final privacy decision. One of the goals of PANO auctions is to enable
every agent to participate for making privacy decisions in the long run, by taxing
the winners of the auctions to give a higher chance for the losing agents for the
future auctions. Referring back to Sect. 2.2, since we allow agents to earn limited
budget (i.e., half of the maximum possible bid) after each auction, even when the
agent learns the right bidding range, they might not be able to bid due to lack
of budget. Hence, we evaluate whether PANOLA agents learn the right bid-
ding range, we perform auctions with and without budget restrictions. Figure 2
shows the privacy success percentages of PANOLA against PANO agent in
both conditions.

As expected, PANOLA learns to outbid the PANO agent after a few auc-
tions, and wins every auction afterwards for the unlimited budget condition.
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Fig. 2. Privacy success of PANOLA against PANO agents in unlimited and regulated
budget scenarios.

This shows that PANOLA indeed learns the correct range to bid from and if
PANOLA owns enough budget, it will always choose the correct amount to bid
for its privacy actions. When the budget regulation is in place, it is expected
for both agents to decide on some privacy actions in the long run, as this is a
desired outcome in our mechanism. For the evaluation with the regulated bud-
get, PANOLA still performs better in the long run than PANO agent (˜60%
privacy success after 100 auctions); but this time PANO agent is able to give
the decisive privacy action for some auctions. The main reason for this is that
even though PANOLA learns how to outbid the opponent, it will run out of
budget after winning some auctions, and in that case the opponent can win the
auction. However, we can also conclude that learning how to bid is beneficial for
agents, since adapting the bids for their desired privacy actions enables them to
obtain significantly more desired collaborative privacy decisions in their favor
than the agents that do not adapt over time.

4.3 Exploration Within Bid Ranges

While learning which range a bid will be given from is the first step, deciding
on the actual bid is an important second step. Intuitively, the agent can pick
a bid from the range based on a given distribution. Currently, we implement
two types of agents, namely adventurous and conservative. Adventurous agents
bid randomly within the picked bidding range, while conservative agents bid
according to normal distribution in Gaussian.

We compare the performance of the adventurous and conservative PANOLA
agents against each other. We investigate the success rate and total owned budget
of the agents over 100 auctions. Figure 3 shows the success rates and total owned
budget over 100 auctions for both agents.

According to Figure 3, it can be seen that conservative bidding achieves
slightly more successful results after the agent learns the environment through
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Fig. 3. Success (a) and Owned Budget (b) of adventurous and conservative
PANOLA against each other

some auctions. It is also more successful at the first few auctions, while spend-
ing more reasonably than the adventurous bidding with random distribution.
Around the tenth auction, adventurous agent’s success passes conservative, since
the adventurous agent tries to increase its bids to beat conservative, while con-
servative does not increase its bids since it already wins auctions. But after the
next few auctions, conservative agent also adjusts its bids accordingly, and stays
steadily around 4% more successful than the adventurous agent. The main reason
for this difference relies on the Clarke-Tax mechanism; when a conservative agent
outbids the adventurous, the tax amount payed tends to be a small amount, since
the conservative agent sticks closer to its winning range and not reaching the
maximum boundaries. In the opposite position, an adventurous agent can win
by trying bids closer to the maximum boundary, but get taxed with a bigger
amount which decreases its budget significantly for the next auction. According
to this evaluation, it can be said that when two learning agents have the same
importance evaluation for an incoming content, using a conservative approach
leads to more successful bids in the long run.

With these results, we can conclude that employing conservative strategy in
biddings is more beneficial than the adventurous strategy in most cases. How-
ever, the learning curve of an adventurous agent while losing is steeper than
the conservative one. Thus, when the agent loses most of the bids, trying an
adventurous strategy while trying to pick from higher ranges could be useful to
find out the winning privacy bids over opponents.

5 Discussion

Privacy in ubiquitous systems started to receive attention around early2000 s,
with the Internet becoming accessible to most of the people in the world and
enabling easy sharing and access of private information over the web. Langhein-
rich [15] is one of the first works that investigate the open issues for privacy-
respecting approaches for ubiquitous computing. Spiekermann and Cranor [17]
and Gürses et al. [10] study the grounds of engineering privacy, explaining how



Agents for Preserving Privacy 129

information related domains can be designed to employ privacy-preserving meth-
ods. Paci et al. [16] provide an extensive survey for literature about access control
over community centric collaborative systems; laying down the key issues and
giving a roadmap for future challenges. Bahri et al. [2] show the challenges of
preserving privacy over decentralized OSNs, and provides a review of previous
work done for overcoming these challenges. These studies all show that privacy is
an important aspect of collaborative information systems and address the need
for effective mechanisms.

Even though the systems the main goal is intended to satisfy the general
good for the collaborative privacy decisions, the agents that represent entities
naturally have the goal to force their privacy requirements to the others.

Collaborative privacy management is investigated in the literature for differ-
ent domains. Fong [9] introduce Relationship Based Access Control (ReBAC)
mechanism, and provides a model to make it applicable to OSNs, where users
can define their privacy constraints related to the relations that are available in
OSNs, such as friends or colleagues. Multi-party Access Control Model by Hu
et al. [11] is another work which focuses on determining a single final policy
according to privacy requirements of the users. PANO offers [24] a fair mech-
anism to decide on which action to take, which uses Clarke-Tax auctions at its
core with some economic modifications such as group-wise spending, bidding
boundaries and income-expenditure balance levels. For the competitiveness of
the agents, we introduce a learning mechanism that is based on reinforcement
learning, where agents can adapt according to the visible information result-
ing from the outcome of previous auctions. We also use an evaluation distance
coefficient to overcome the cold start problem for the agents that have no prior
information about auctions or their opponents.

The use of machine learning for privacy is gaining momentum and the
research area is still open for further improvement. Fogues et al. [8] provide an
agent-based approach which requires user input when required to learn incremen-
tally about user policies, and recommends privacy policies for sharing content
for multiuser scenarios. Vanetti et al. [25] propose a machine learning approach
for filtering unwanted textual contents in OSNs. Squicciarini et al. [19] infer pri-
vacy policies of OSN users for photographic contents. Zhong et al. [26] employ
contextual image properties in a different way: they extract and learn from the
image features in a way to detect possible privacy conflicts to take further action.

Our work on this paper opens up interesting research directions. The first
direction is to use the findings of this paper to build an agent that can change
its behavior as needed as well as build models of other agents’ in the auctions to
make better decisions. The second direction is to capture the dynamics between
agents, especially that of trust. When agents trust each other more, they could
reflect that differently when bidding, leading to better overall decisions. The
third direction is understanding and derivation of social norms into PANO,
which could be beneficial to create learning agents according to their normative
behavior.



130 O. Ulusoy and P. Yolum

References

1. Acquisti, A., Brandimarte, L., Loewenstein, G.: Privacy and human behavior in
the age of information. Science 347(6221), 509–514 (2015)

2. Bahri, L., Carminati, B., Ferrari, E.: Decentralized privacy preserving services for
online social networks. Online Soc. Netw. Media 6, 18–25 (2018)

3. Barto, A.G., Mahadevan, S.: Recent advances in hierarchical reinforcement learn-
ing. Discr. Event Dyn. Syst. 13(4), 341–379 (2003)

4. Clarke, E.: Multipart pricing of public goods. Pub. Choice 11(1), 17–33 (1971)
5. Diuk, C., Cohen, A., Littman, M.L.: An object-oriented representation for efficient

reinforcement learning. In: Proceedings of the 25th International Conference on
Machine Learning, pp. 240–247. ICML 2008, ACM, New York, NY, USA (2008)

6. Ephrati, E., Rosenschein, J.S.: The clarke tax as a consensus mechanism among
automated agents. In: Proceedings of the Ninth National Conference on Artificial
Intelligence, Vol. 1, pp. 173–178. AAAI 1991, AAAI Press (1991)

7. Fang, L., LeFevre, K.: Privacy wizards for social networking sites. In: Proceedings
of the 19th International Conference on World Wide Web, pp. 351–360. WWW
2010, ACM, New York, NY, USA (2010)

8. Fogues, R.L., Murukannaiah, P.K., Such, J.M., Singh, M.P.: SoSharP: recommend-
ing sharing policies in multiuser privacy scenarios. IEEE Internet Comput. 21(6),
28–36 (2017)

9. Fong, P.W.: Relationship-based access control: protection model and policy lan-
guage. In: Proceedings of the First ACM Conference on Data and Application
Security and Privacy, pp. 191–202. CODASPY 2011, ACM (2011)
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