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1. INTRODUCTION

In this paper we describe a FORTRAN 77 software interface for the spatial
discretization of systems of one-dimensional time-dependent partial differen-
tial equations (PDEs). The problem of solving PDEs using an interface on
fixed grids, by which the user only needs to define the PDE and accompany-
ing boundary conditions in two subroutines has already been treated by, for
example, Sincovec and Madsen [1975], Berzins and Furzeland [1986], and
Bakker [1977]. However, in many models from physics and chemistry, steep
spatial and temporal gradients may occur in the solution that cause problems
if a numerical solution method on a fixed grid is used. In such cases
moving-grid methods are likely to be more successful. In Furzeland et al.
[1990], an evaluation has been made of the behavior of three moving-grid
methods with respect to efficiency and robustness on three difficult test
problems having steep moving fronts. On account of the hopeful results of
this investigation, we decided to develop a moving-grid interface, that is, an
interface with the possibility to move the grid points continuously in time,
and to couple this interface with one of the methods from Eurzeland et al.
[1990], namely, the method due to Dorfi and Drury [1987]. For this purpose,
we implemented a finite-element discretization for the Lagrangian forms of
the PDE. This discretization method, borrowed from Skeel and Berzins
[1990], is akin to a nonlinear Galerkin method and is of second-order accu-
racy in space, even for polar problems. The resulting interface is available in
standard FORTRAN 77 both in single and double precision. It consists of two
subroutines, CWRESU and CWRESX. CWRESU computes the residuals of
the semidiscretized Lagrangian PDE and is a modification of the subroutine
SKEEL4 of the SPRINT package [Berzins and Furzeland 1985; 1986; Berzins
et al. 1989]. CWRESX computes the residuals of a differential algebraic
equation (DAE) system that governs the grid motion. These subroutines are
called from a subroutine SKMRES, which is the moving-grid equivalent of
the SPRINT routine SKLRES. The coupled DAE system is stiff and should be
integrated in time with a robust DAE solver. Originally, the PDE interface
module had been adapted to the SPRINT package so that a SPRINT user can
make use of the moving-grid spatial discretization routine in a completely
analogous way as the fixed-grid discretization module SPDIFF of SPRINT.
However, it is set up in a way that makes it possible to use the interface also
with other DAE solvers. In this paper we describe its use when coupled with
the public-domain code DASSL [Brenan et al. 1989; Petzold 1983]. For more
information on the use of the interface in the SPRINT environment, we refer
to an internal CWI report [Blom and Zegeling 1989].

Our paper is divided into six sections and an Appendix. Section 2 presents
an outline of the considered moving-grid method. In Section 3 we define the
class of PDE problems that is allowed in the software interface. Section 4
describes the semidiscrete approximation of the PDE system. In Section 5 we
discuss the interface itself. We also show by an example the ease of use of our
software interface in combination with the DAE solver DASSL. Section 6
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contains two numerical examples to underline the performance of the mov-
ing-grid method.

2. THE MOVING-GRID METHOD

In this section we give a brief description of the moving-grid techique that
controls the spatial grid movement in time. This technique is due to Dorfi and
Drury [1987]. For the theoretical background and some analytical aspects of
the method, we refer to Verwer et al. [1987; 1989].

A system of PDEs with NPDE component equations

u, = f(u,x,t), x; <x <xp, t>ty, (2.1)
is transformed to its Lagrangian form, using the total differential ¢ = du /d¢t
=u, +ucx,

u—u,%=flu,x,t). (2.2)
We then choose N time-dependent grid points
x; =X, < - <X () <X, () < <Xy,q = xp, (2.3)
using a second-order discretization in space we obtain from (2.2),

(l]L‘i'l -y 1)

U-———" "X =F, t>t,, 1<i<N. (2.4)
X, X °

Here, U, and F, represent the semidiscrete approximation to the exact PDE
solution u, respectively, the right-hand-side function f(u, x,t), at the point
(x,8) = (X,(#),1). To solve the ODE system (2.4), additional equations are
required for the time-dependent grid points X,, which are as yet unknown.
For this purpose the next quantities are defined:

=
[

(AX) ', AX =X, -X,

l

n,=n, — klc+(n_,,—2n,+n,_,), 0<i<N (2.5)
(n_y=ng,ny = ny.y),

where n, stands for the so-called point concentration of the grid and « > 0
denotes a spatial smoothing parameter. Now we define implicitly, in terms of
7i,, the movement of the grid points X,

fi,_q+ Tﬁl_l n,+ ’TﬁL L N (2.6)
= , <i <N, )
M, , M

I3

where 7> 0 is a time-smoothing parameter and M, is a monitor function,
here chosen as follows:

NPDE 9 ‘7
M, :=1/a+NPDE' Y (U, - U /(AX)?, 2.7

Jj=1
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which is a semidiscrete representation of the first derivative solution func-

tional
m(u) =y a+ Nl I

Shortly, « determines the level of clustering of the grid points, and the
arclength monitor M, determines the shape of the X -distribution. The pa-
rameter 7 prevents the grid movement from adjusting immediately to new
values of the monitor function M,, therefore trying to avoid temporal oscilla-
tions in the grid that may cause relatively large errors, when applied to
solutions with steep gradients. Eqgs. (2.4) and (2.6) are combined to yield the
system of DAEs

U-DX=F,

. (2.8)
7TBX =g,

where definitions (2.5) have been used, D and B are solution-dependent
matrices, and F and g are solution-dependent vectors, containing all infor-
mation about the monitor function and the right-hand side of the PDE itself,
respectively. System (2.8) can be rearranged in the linearly implicit form

AY)Y = L(Y), (2.9
where

Y= (... U, ...,UNPE x 7

This stiff DAE system may be solved, for example, by a BDF integrator. The
user of the interface who is interested in the details of the moving-grid
method is advised to read Verwer et al. 1989.

3. PDE DEFINITION

The class of allowable PDE problems is derived from the class defined in the
interface of the SPRINT package [Berzins and Furzeland 1985; 1986; Berzins
et al. 1989] and is equivalent to the PDE definition used in the NAG library
routine DO3PCF [N. A. G. 1991],

NPDE auk J
> Cj,k(x,l‘,U,ux)W =" a(meJ(x,t,u,ux)) -Q(x,t,u,u,)
k=1

(3.1

for j=1,...,NPDE and x €[x;, x3l, t >t,, m €{0,1,2}, where NPDE
denotes the number of PDEs, u = (u!, u?,..., uNPE)T is the solution vector,
and R, and @, can be thought of, in special cases, as flux and source terms,
respectively. The solution u and the functions C, ,, R;, and @, are expected
to be continuous functions. For problems in Cartesian coordinates, m = 0,
whereas m = 1 indicates a cylindrical polar coordinate system, and m = 2 a

spherical polar one. In the case m > 0, we require that x; > 0.

ACM Transactions on Mathematical Software, Vol. 20, No. 2, June 1994



198 . J. G. Blom and P. A Zegeling

The user-specified boundary conditions belonging to system (8.1) have the
master equation form

B (x, )R (x,t,u,u,)=vylx, t,u,u,)

at x=x, and x=x5, for j=1,...,NPDE, (3.2)

where B, and vy, are continuous functions of their variables. If m > 0 and
x; = 0, the boundedness of the solution near x = 0 must be ensured. This
requires either the specification of the solution at x = 0 or implies that
R |-, = 0. Simple boundary conditions, such as Dirichlet or Neumann
conditions, are very easy to define, using eq. (3.2), as shown in the example in
Section 5. As can be seen in Section 2, the appearance of the time derivatives
in (3.1) is an essential part of the moving-grid technique, which means that
the interface, in principle, is aimed at parabolic and first-order hyperbolic
systems of equations (in this case a dummy boundary equation has to be
supplied). But, if one or more equations in a system of PDEs are elliptic, this
still fits in the class (putting C, , equal to 0 for some index j; k=
1,...,NPDE).
The initial conditions must satisfy

u(x,t,) =u’(x) for xe<lx;,xzl, (3.3)
where ©° is a piecewise continuous function of x with NPDE components.

Note that the possibility of coupling (3.1) to a system of ordinary differen-
tial equations, as is allowed in the SPRINT interface and in the NAG routine
DO3PHF, is not recommended for the time being, because the effects, arising
from moving the spatial grid in time with respect to the fixed coupling points,
have not yet been investigated.

To summarize, the user must define the interval { x,, x|, the number of
grid points, the functions C, ,, R,, @, B,, and vy,, the initial time ¢, the
vector ©°, and the numbers m and NPDE. In our opinion, the class of PDE
problems defined by (3.1), (3.2), and (3.3) is sufficiently general to treat a
number of miscellaneous problems stemming from engineering, physics, and
chemistry. Of course, these problems should have solutions that are “suffi-
ciently” smooth in space and time; that is, no real shocks can be solved.

4. SPATIAL DISCRETIZATION

In order to reduce accuracy problems that arise for coefficients like x™ in
(3.1) when x is near zero and m > 0, a spatial discretization method is used
that is second order in space. The nonlinear Galerkin-based method is
extensively described in Skeel and Berzins [1990]. In the following we give a
summary of this discretization method when applied to the PDE class (3.1)
transformed to its Lagrangian form. We omit, however, the error analysis,
which can be found in Skeel and Berzins 1990.
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First, we apply the Lagrangian transformation. Let w be defined by
w=u,x and S, by

NPDE
S, =8, (x,t,u,u,,t,w) = Y Cj’k(lftk —wk) + Q,.
b=

Then system (3.1) becomes
S, =x "(«™R)_ for j=1,...,NPDE, 4.1)

with C, ,, @,, and R, defined as before. On the spatial grid (2.3), we
formulate the Galerkm method for (4.1). Introduce the approximation U* of
uk:
N+1
Uk(x) = Y, Ukp™(x).

i=0

Let ™ denote the test functions. The trial fuctions ¢™ and the test
functions (™ are given in an internal CWI report [Blom and Zegeland
1989]. Introduce the weight function x™, and integrate (4.1) on [xg, xz]
partially, so as to obtain

R
f xml'[jl(m)SJ dx = xlr?nlpl(m)(xR)Rﬂx:x}e - xinlpz(m)(xL)Rj“:xL

XL
/xR

for j=1,...,NPDE and i = 0,..., N + 1. Using the fact that ¢"(x) = 0 for
x<X, ,and x> X, ,wegetfori=1,...,Nand j=1,..., NPDE

d™
(P R, dx (4.2)

(m)
XL+1 my (m) d —_ t+1 o m "// R d 43
fX x™p ™S dx [X 2 — —R, dx. (4.3)

=1 =1
The integration over an interval [X, ;, X,] is performed by numerical
quadrature using one quadrature point §,_,,,. After applying the numer1cal
integration on [X, ,, X,] and [X,, X,,,] and lumping (i.e., evaluation of u*
takes place in X, rather than in §), (4.3) yields

X, X,
sz~1/2f xml,lfl(m) dx + S]z+1/2f mel/fl(m)dx
XL~1 XL
dl!j(m)
13
dx

(m)
— EF Rz+1/2/Xl+1xm—;u dy,
1+1/2+Yy
X dx

3

dx

X,
g; -1/2 ¢ -
lp. 1/2R_; / / xm ®

-1

dx + E, (4.4)
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where
SJL—I/Z = SJ(§L~1/2at> U(§z~1/2)’ Ux(gz—1/2)’ (.]l’“/l)’

SJZ+1/2 = Sj(§Z+1/2)t7 U(§L+1/2)7 U.t(§L+1/2)’ l);,v‘/'z), with

Uz+1 - Uz—1 5
W=cg—-1X,
Xl+1 _Xzfl

R;+1/2 = R( §L+1/2’t’ U(§L+1/2)7Ux(§l+l/2))’

J

and E stands for the total error due to interpolation, quadrature, and
lumping. For the definition of p, we make a distinction between two special
cases:

(1) the regular case (m = 0 or x;, > 0): u = m, and
(2) the singular case (m > 0 and x; = 0): u = —1.
The choice of ¢ depends on y. On an interval [x,, X, ], we choose &, ,, , =

Y-u.i+1,2> Where v, .4, denotes the GauBl-point for the weight function x?;
that is,

fXLH(x ~ Ypa12)xP dx =0, (4.5)
X

[

The numerical integration in (4.4) is then second-order accurate. If we neglect
the error E in (4.4), we arrive at a semidiscrete approximation of (4.1), for
t=1,...,N,

m+1 +1 m+1 +1
Sz*l,’Z XL - glrlll/Z 4 Sl+1/2 ~[L+l/2 o sz
J m+ 1 J m+ 1
_ rm- +1/2 - ~1/2
- 51111/{'2 gz;:l/’ZR; - ngl/PLZ gzlufl/ZRJl / ) (46)

with

(m)
em+1 _ ﬁ/X”‘xm%»l dlp’

v1y2 = T dx, and 431/,2:1,

i

For a list of the test functions '™, the trial functions ¢, the quadrature
points & ;,,, and the integrals {77 /,; see Blom and Zegeling [1989]. In
Skeel and Berzins [1990], a justification is given for all choices of the
parameters and functions. There it is shown that the spatial discretization
method is second-order accurate, both in the regular and the singular case.

The right boundary equation in (3.2), B,(xg, t)RJ lemrp = Y, lx=xg, 1S com-
bined with the semidiscrete approximation of (4.2) with { = N + 1,

m+1 m+1

x _
N+1y—1/s2 VR N+1/2 _ N+1,2
S; oY T w1l + éVA’rnuf;zé:ﬁH/zRJ / :ngjIFxR, (4.7)

to eliminate R, lemxp
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In the regular case, the same procedure is applied to the left boundary
equation in (3.2), B,(xy, )R |,—x, = v, lx=x, and

g m+1

go+1/2 21/2

/ m+1

_ xin-i—l

- 61”;2R11/2 = _XZLRJ Ix:xL, (4.8)

from which we can eliminate R, lx=x,- If x; and m are both zero, we take
x7" = 1. In the singular case, however, we distinguish two possibilities. If a
Dirichlet condition is specified at x = 0 ( 8 = 0), the left boundary equation
¥lz=x, = 0 is imposed. If g + 0, we use just the semidiscrete approximation
of (4.2) with ¢ = 0, which gives

0+1/2
SJ

1 51/1212]1/2 = 0. 4.9)
This means that for X; — x, the boundary equation tends to the zero flux
conditon R, |.-,, = 0, which is a natural constraint for polar problems.
It is easy to derive that, for m = 0, the semidiscrete approximation of (4.1)
as given by (4.6) is analogous to a semidiscretization by central differences.
Similar to Section 2, egs. (4.6) and (2.6) are combined to obtain the stiff
system of DAEs:

AY)Y = L(Y). (4.10)

In the next section, we discuss the interface that implements this spatial
discretization.

5. THE INTERFACE

5.1 Choice of the Moving-Grid Parameters

The moving-grid method as described in Section 2 still has three parameters
that should be specified by the user: the time-smoothing parameter 7, the
spatial smoothing parameter «, and the monitor regularizing parameter «.
The choice of the parameters x and « is not very critical; experiments have
shown that a variation of these parameters does not result in a drastic
change of performance. A wrong choice of 7 can result in starting problems or
grid lagging behind. A problem-dependent guidance of how to choose 7 will be
given below. It is felt, however, that the choice of the monitor function (e.g.,
dependent on solution curvature instead of solution variation) is probably
more important than the value of 7 (see also Verwer et al. [1989]). The
monitor function (2.7), which is based on the first derivative of the solution,
has appeared to be the most robust in a method of lines approach (cf., Blom
and Verwer [ 1989]).
We now give an indication as how the parameters should be chosen.

Time-Smoothing Parameter 7, 7 = 0. It is obvious that the grid will not be
adapted if 7 tends to infinity. In fact, choosing 7 very large allows the user to
run the problem on a fixed grid. On the other hand, if 7 = 0 the equidistribu-
tion relation

R(t) = c(t)M,(¢) (5.1)
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will be solved. So, if the initial grid satisfies (5.1) at ¢, as is the case, for
example, for a uniform grid and a constant or linear initial solution, 7 can be
chosen equal to zero (cf. the first two numerical examples in Verwer et al.
[1989] and the examples in Section 6). If at ¢, (5.1) does not hold and if the
initial grid has to be adapted, or if time smoothing is desired, a typical value
for 7 is 10 2. Note, however, that 7 should be related to the critical time scale
of the problem.

Spatial Smoothing Parameter k, « = 0. An adjacent grid ratio of 1.5 (i.e,,
k = 2) was found to be satisfying for all problems tested. It is a bit conserva-
tive and therefore demands an unnecessarily large number of grid points if
the solution possesses extremely sharp spatial gradients. For less spatial
smoothing, x = 1 will suffice. The choice k = 0, implying that there will be no
spatial smoothing, is, in general, not recommended, since it can be shown, in
the case m = 0, that the spatial discretization is equivalent to a central-dif-
ference approximation and that the reliability of such a discretization is
dependent on a smooth grid distribution.

Monitor Regularizing Parameter «, a > 0. This parameter is added to the
monitor function to ensure that M, is strictly positive. The choice o =1
results in the arclength monitor. Experiments reveal, however, that if the
solution is very flat, a uniform grid will be used, because « dominates the
arclength monitor. This can result in a slightly worse performance than on a
nonuniform grid, especially in the case of evolving solutions. The choice
a = 0.01 results in a more sensitive adaptation of the grid and is still large
enough to be used in case of solutions with steep gradients. Note, however,
that it is assumed that both the variation in the solution and the interval
[x;, x5 ] are reasonably scaled; otherwise, the choice of o should be rescaled;
for example, for scalar equations,

max u

u - min 2
a=001]—
Xp — X

to ensure its regularizing role.

5.2 How to Use the Interface

First, we give a description of the use of the interface with an arbitrary DAE
solver. Then an elaborated example follows, showing how to use the interface

in combination with the public-domain code DASSL [Brenan et al. 1989;
Petzold 1983].

5.2.1 General Description. Figure 1 shows part of the documentation of
the module that describes the use of the moving-grid discretization routine.
For a description of the call of the initialization routine SETSKM, see Figure
2, which shows the header and the documentation of this routine. The header
documentation of the residual routine SKMRES is shown in Figure 3.

5.2.2 Example of Use with DASSL. In this subsection we describe how to
use the moving-grid interface with DASSL [Brenan et al. 1989; Petzold 1983],
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How to use this module

Set NPDE = # PDEs to be solved.
Set NPTS = # mesh points to be used.
(NC=NPTS-2 is # internal points)

Set M for space coordinate type

= 0 for Cartesian, = 1 for cylindrical, = 2 for spherical.
Specify a workspace of size at least (NPDE+1)*NPTS+(6+NPDE)*NPDE
for use by the routine SKMRES which defines the DAE system being
solved by the integrator.

Call the initialization routine SETSKM, see the documentation at
the head of this routine for the precise details of the call.

Set TS and TOUT for start and end integration times.
Initialize data as required for time integration,

- see documentation of DAE solver.
Call the DAE solver with as residual routine SKMRES or an
enveloping routine to satisfy the header requirements.

Provide a set of routines which describe the precise form of the
PDEs to be solved. Three routines must be provided and the names
of these routines are fixed. These routines are:
SPDEF forms the functions C, Q and R of the PDE in a
given x-point.
BNDR forms the functions BETA and GAMMA associated with the
boundary conditions for the PDE.
UINIT supplies the initial values of the PDE part.
An initial uniform grid is generated by SETSKM and
provided in Y(NPDE+1,I), I=1,NPTS. If required, a user
can redefine the mesh in a nonuniform way.
The headers of these routines are:

SUBROUTINE SPDEF (T, X, NPDE, U, DUDX, C, Q, R, IRES)
INTEGER NPDE, IRES

REAL T, X

REAL U(NPDE), DUDX(NPDE), C(NPDE,NPDE), Q(NPDE), R(NPDE)

SUBROUTINE BNDR (T, BETA, GAMMA, U, DUDX, UDOT, NPDE,
+ LEFT, IRES)

INTEGER NPDE, IRES

LOGICAL LEFT

REAL T
REAL BETA(NPDE), GAMMA(NPDE),
+ U(NPDE), DUDX(NPDE), UDOT(NPDE)

SUBROUTINE UINIT (NPDE, NPTS, Y)
INTEGER NPDE, NPTS
REAL Y(NPDE+1,NPTS)

Documentation of the module describing the use of the moving-grid discretization

the DAE solver from Petzold. DASSL and all other necessary source, for
example, LINPACK [Dongarra et al. 1979] routines and the routine MACHAR
[Cody 1988], were obtained from Netlib [Dongarra and Grosse 1987]
(netlib@ornl.gov).

As mentioned before, the user should specify the problem description
routines for the initial solution vector z° and the functions C ke By Qs B,
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SUBROUTINE SETSKM (NEQN, NPDE, NPTS, XL, XR, TAU, KAPPA, ALPHA,
+ Y, RWK, NRWK, M, TS, IBAND, IRES)
Purpose:
Initializing routine for moving-grid spatial discretization.
Parameters:

INTEGER NEQN, NPDE, NPTS, NRWK, M, IRES
REAL XL, XR, TAU, KAPPA, ALPHA, TS
REAL Y(*), RWK(NRWK)

NEQN Exit: the size of the DAE system generated when the PDE +
the grid equations are discretized. This value 1s (NPDE+1)*NPTS.
NPDE Entry: the number of PDEs.
NPTS Entry: the number of spatial mesh points, including the
boundary points.
XL Entry: left boundary point.
XR Entry: right boundary point.
TAU Entry: time-smoothing parameter.
If the initial grid satisfies the grid equation with TAU=0 at
TS=0, TAU can be chosen equal to zero. If this is not the case
and if the initial grid has to be adapted, or if time-smoothing
is desired a typical value of TAU = lE-3, but TAU should be
related to the time scale of the problem.
KAPPA Entry: spatial smoothing parameter (REAL).
KAPPA = 2.0 was found to be satisfying for all problems tested.
For less spatial smoothing KAPPA = 1.0 will suffice.
ALPHA Entry: monitor regularizing parameter.
ALPHA = 0.01 1s recommended (for a well-scaled system of PDEs).
Y Exit: array of length >= (NPDE+1)*NPTS that contains the initial
(uniformly spaced) grid and the corresponding initial PDE
solution values. This array must be passed across as a one-
dimensional array of length NEQN to the DAE solver. This
array is ordered as
PDE comp. : Y((NPDE+l)*L + J) L
J

0,...,NPTS-1,

i,...,NPDE
grid points: Y((NPDE+1)*(L+1)) L=0,...,NPTS-1.

RWK workspace of length NRWK for the residual routine SKMRES which
actually performs the semi-discretization of the PDEs and
defines the grid equations.

NRWK Entry: dimension of workspace RWK.

NRWK must be >= (NPDE+1)*NPTS + (6+NPDE)*NPDE.
M Entry: integer >= 0 which determines the coordinate system used.
0: Cartesian coordinates,
1: cylindrical polar coordinates,
2: spherical polar coordinates.

TS Entry: the time at which the integration starts.

IBAND Exit: an upper bound on the half bandwidth of the Jacobian
matrix when this module 1s used. (If the DAE solver is called
with banded matrix routines this parameter should be
supplied to MATSET (SPRINT) or to DASSL (IWORK(1l) and IWORK(2)).

IRES Exit: this parameter 1s set to -1 if an error is found by
thais routine.

Fig. 2. Documentation of the initialization routine SETSKM.

ACM Transactions on Mathematical Software. Vol 20, No 2, June 1994



(e e e e e e
C
SUBROUTINE SKMRES (NEQN, T, Y, YDOT, RES, IRES, RWK, NRWK)
(o
o e e e  — — ————— e
C Purpose:
C - o
C Enveloping routine to compute the residual of the PDE and of the grid
C equations. SKMRES checks on node-crossing, partitions the workspace
C and calls CWRESU for the spatlal discretization and the computation
C of the residual of the PDE in Lagrangian formulation and CWRESX for
C the spatial discretization and the residual computation of the grid
C equations.
Cc
C Parameters:
C ————e—m e

INTEGER NEQN, IRES, NRWK
REAL T
REAL Y(NEQN), YDOT(NEQN), RES(NEQN), RWK(NRWK)

NEQN Entry: the size of the DAE system generated when the PDE +
the grid equations are discretized.

T Entry: evaluation time.

Y Entry: array of length NEQN containing the DAE vector consisting
of the spatial mesh and the correspondlnq initial PDE solution
values at time T. This array is ordered as

PDE comp. : Y((NPDE+l)*L + J) L=0,...,NPTS-1,
J=1,...,NPDE
grid points: Y((NPDE+1)*(L+1)) L=0,...,NPTS-1.

RES Exit: residual vector.

If IRES = -1 RES should contain only the part of the residual

dependent on the time-derivative, if IRES /= -1 RES should
contain the full residual A*ydot - g.
IRES Entry: see above.
Exit: 2, if setup routine SETSKM has not been called.
3, if one of the DAE solutions in the vector Y is not
acceptable.
RWK working storage of length NRWK.
NRWK Entry: dimension of RWK. Should be >= NEQN + (6+NPDE)*NPDE.

Ao NOoOONO0OO0

Fig. 3. Documentation of the residual routine SKMRES.

and 7,, and, through the initializing routine SETSKM, the interval [ x;, xz1,
the number of grid points, the initial time #,, the number m, the number of
PDEs, and the method parameters 7, k, and «. Next, the DAE solver should
be called according to its specifications with (an enveloping routine of)
SKMRES for the residual evaluation.

The easiest way to describe how the problem description routines should be
written is by a simple example. Consider the following problem from electro-
dynamics, which can be found, for example, in Bakker [1977]:

U = EPU L, _g(u - )
t=pvxx+g(u—‘v)

R, = epu,, =g(u —v),
so m=0, NPDE=2, and ' P @ =s (5.2)
R2=pvx’ QZI 7g(U*l)),
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with

g(z) _ enz/3 _ e~2nz/3,

O<x<landO0 <t <4; ¢=0143, p = 0.1743, and nn = 17.19.
The left boundary condition (LEFT = .TRUE)) is given by

u,=0 and v=0 at x=0 (B =1,y,=0;8,=0vy,=0v),
the right boundary condition (LEFT = FALSE)) is
u=1 and v,=0 at x=1 (B =0,y;=u—1;B8,=1,y, =0),
and the initial conditions are
u=1 and v=0 at ¢=0.

Note that Neumann boundary conditions can be put in the master equation
(3.2) in two different ways. The first is to put 8 = 0 and y = «_, which results
in equal solution values for the boundary point and its neighbor. The second,
and in our opinion more natural, is setting 8 = 1 and y = 0, as is done above.
Now, the flux term R will be used, and the solution values will only be the
same in the limit case.

The routines UINIT, SPDEF, and BNDR are listed in Figure 4. The
component u of the PDE at the ith grid point is held as Y(1,1) in the package,
and the component v as Y(2,1); the i-th grid point itself is stored in Y(3,1).
The main program, which calls the initializing routine SKMRES and the
DAE solver, is shown in Figure 5.

6. NUMERICAL EXAMPLES

The moving-grid interface has been applied to a wide class of problems. We
used the moving-grid interface to solve the three numerical examples from
Verwer et al. [1989], namely, a flame propagation model, a “hot spot” problem
from combustion theory, and a semilinear hyperbolic system with, as solu-
tion, two waves traveling in opposite directions. The results were comparable
with those in that paper, as could be expected since the spatial discretization
method used in the interface results for problems in a Cartesian coordinate
system (m = 0) in the central-difference method used in Verwer et al. [1989].
In Zegeling and Blom [1992], which is devoted to an evaluation of another
moving-grid method, the gradient-weighted moving-finite-element method,
we compared the interface with GWMFE among others, on Burgers’ equation
(convection-diffusion) with a smooth initial solution and a linear heat conduc-
tion problem with a shifting and oscillating pulse as solution. The application
of the moving-grid interface to a class of 1-D brine transport problems is
reported in van Eijkeren et al. [1991] and Zegeling et al. [1992]. In all of these
problems, the method implemented in the moving-grid interface appeared to
be robust and efficient. However, as shown also in Zegeling and Blom [1992],
it has problems with solutions having discontinuous derivatives (resulting in
smearing and/or oscillations), largely different monitor values in different
parts of the domain (oscillations), or near shocks (small time steps caused by
(temporary) node crossing). The addition of more grid points improves the
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SUBROUTINE UINIT (NPDE, NPTS, Y)

Routine for PDE initial values.
Entry:
Y(NPDE+1,i) = X_i; uniform mesh, generated by package
Exit:
Y(NPDE+1,1i) = X_i; mesh, optionally changed by user
Y( k,i) = u k(X _i,t0); initial value of k-th component
i=1,.., NPTS

INTEGER NPDE, NPTS
REAL Y (NPDE+1,NPTS)

INTEGER I

DO 10 I =
Y(1,1)
Y(2,1)

10 CONTINUE

, NP
1.0
0.0

TS

o

RETURN
END

SUBROUTINE SPDEF (T, X, NPDE, U, DUDX, C, Q, R, IRES)

Routine to describe the body of the PDE system.

The PDE is written as
NPDE k -m m
sum C (X,t,u,u ) u + Q (x,t,u,u ) = x (x R (x,t,u,u ) ) .
k=1 Jk X t i X 3 X X

The functions C, Q and R must be defined in this routine.

INTEGER NPDE, IRES
REAL T, X
REAL U(NPDE), DUDX(NPDE), C(NPDE,NPDE), Q(NPDE), R(NPDE)

INTEGER J, K
REAL EPS, ETA, GZ, P, Z
DATA EPS /0.143/, ETA /17.19/, P /0.1743/
DO 10 K = 1, NPDE
DO 20 J = 1, NPDE

C(J,K) = 0.0
20 CONTINUE
C(K,K) = 1.0
10 CONTINUE
Z = U(l) - U(2)
GZ = EXP(ETA*Z/3) - EXP(-2*ETA*Z/3)
Q(l) = G2
Q(2) = -Gz
R(1) = EPS*P * DUDX(1)
R(2) = P * DUDX(2)
RETURN
END

SUBROUTINE BNDR (T, BETA, GAMMA, U, DUDX, UDOT, NPDE,
+ LEFT, IRES)

Fig. 4. The routines UINIT, SPDEF, and BNDR for the example problem.
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Boundary conditions routine
The boundary conditions are written as
BETA (x,t) R (x,t,u,u ) = GAMMA (xX,t,u,u )
3 J X J X
The functions BETA and GAMMA should be defined in this
routine.

OO0

INTEGER NPDE, IRES
LOGICAL LEFT
REAL T
REAL BETA(NPDE), GAMMA(NPDE),
+ U(NPDE), DUDX(NPDE), UDOT(NPDE)

IF (LEFT) THE
BETA (1) =
GAMMA (1)
BETA (2)
GAMMA (2)

ELSE
BETA (1)
GAMMA (1)
BETA (2)
GAMMA (2)

ENDIF

| I [
OO
No oo

I mnn
oHC o
coro

RETURN
END

Fig 4—(Continued).

performance (including the time-stepping behavior), but makes the method
less efficient, of course.

Here we discuss the results obtained for two other problems, namely, the
problem stemming from electrodynamics, which was also used as an example
in the description of the usage of the interface, and a reaction-diffusion
equation in cylindrical polar coordinates. We present our numerical results in
plots, wherein an accurate reference solution is denoted by a solid line, while
the marks show the grid distribution and the PDE approximation. The
integrtion history is given by

—STEPS: total number of successful time steps,
—dJACS: total number of Jacobian evaluations, and
—BS: total number of backsolves.

6.1 Problem I: A Problem from Electrodynamics

This problem is described in Section 5 (formula (5.2)). The steady-state
problem has been discussed in Bus 1976, pp. 113-116. It is a singular
perturbation problem, the solution of which first develops steep boundary
layers very rapidly, whereas for later times a smooth stationary solution
results (at approximately ¢ = 3.0).

A reference solution has been computed using a fixed grid with 500
equidistant points and a time-tolerance value for the ODE solver of 1077,
Bakker [1977] solved this problem on a fixed nonuniform grid using a grid
spacig of 0.01 near the boundaries. We have solved it starting with a uniform
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INTEGER MXNPDE, MXNPTS, MXNEQ, MXLIW, MXLRW, MXNRWK
PARAMETER (MXNPDE = 2, MXNPTS = 101)

PARAMETER (MXNEQ = (MXNPDE+1) * MXNPTS)

PARAMETER (MXLIW = 20+MXNEQ, MXLRW = (6*MXNPDE+20)*MXNEQ)
PARAMETER (MXNRWK = MXNEQ+ ( 6+MXNPDE ) *MXNPDE )

INTEGER INFO(15), IWORK(MXLIW), IPAR(1)

REAL Y(MXNEQ), YPRIME(MXNEQ), RTOL(1), ATOL(1), RWORK(MXLRW),

+ RWK (MXNRWK )

Y : Grid and solution values
YPRIME: Derivative of Y

INFO : Task_communication with DASSL
RTOL : Relative tolerance for DASSL

ATOL : Absolute tolerance for DASSL

RWORK : (Optional) REAL input values for DASSL
IWORK : (Optional) INTEGER input values for DASSL
RWK : Workspace SKMRES

INTEGER NPTS, NPDE
COMMON /MOLIF/ NPTS, NPDE

NPTS : # grid points -I (needed in
NPDE : # partial differential equations -~I residual routine)
REAL XL, XR, TO, TE
XL Left boundary
XR Right boundary
TO Starting time
TE Final time

EXTERNAL RESID, SETSKM, SDASSL

INTEGER I, IBAND, IDID, IRES, M, NEQ
REAL ALPHA, KAPPA, TAU

ccc Initialize problem parameters

NPDE = 2

XL = 0.0
XR = 1.0
TO = 0.0
TE = 4.0

ccc Initialize method parameters, grid, solution and derivative at TO
DASSL input

Method parameters

NPTS = 21
M =0
TAU = 0.0
KAPPA = 2.0
ALPHA = 0.01

Call initialization routine SETSKM; determine initial grid;
store initial values of U in Y
CALL SETSKM (NEQ, NPDE, NPTS, XL,XR, TAU, KAPPA, ALPHA,
+ Y, RWK, MXNRWK, M, TO, IBAND, IRES)
IF (IRES .EQ. -1) THEN
STOP 'Error in SETSKM'
ENDIF

Fig. 5. Main program, which calls the initializing routine SKMRES and the DAE solver.

ACM Transactions on Mathematical Software, Vol. 20, No. 2, June 1994,



210 . J. G. Blom and P. A. Zegeling

C Initial Yprime = 0
DO 1 I = 1, NEQ
YPRIME(I) = 0.0
1 CONTINUE

[oNe]

Initialize DASSL input
DO 51 =1, 15
INFO(I) = 0
5 CONTINUE
C Both tolerances are scalars (default)
ATOL(1) = 1E-3
RTOL(1) = 1E-3
o Banded Jacobian
INFO( 6) 1
IWORK (1) IBAND
IWORK(2) = IBAND
Y, YPRIME probably inconsistent at TO
INFO(11l) = 1

o

(@]

ccc DASSL loop
Call DASSL with as residual routine RESID, the enveloping routine
of SKMRES
CALL SDASSL (RESID, NEQ, TO, Y, YPRIME, TE, INFO, RTOL, ATOL,
+ IDID, RWORK, MXLRW, IWORK, MXLIW, RWK, IPAR, JAC)

anNnaoOoon

SUBROUTINE RESID (T, Y, YPRIME, DELTA, IRES, RWK, IPAR)
INTEGER IRES

INTEGER IPAR(*)

REAL T

REAL Y(*), YPRIME(*), DELTA(*), RWK(*)

Determine DAE system for DASSL
residual DELTA = A*YPRIME - G

Entry:
T : Current time
Y : Current grid + solution
YPRIME: Time derivative of Y
Exit:
DELTA : A*YPRIME - G
IRES : -1, if user thinks solution is illegal or ico node crossing

oo 0n

INTEGER NPTS, NPDE
COMMON /MOLIF/ NPTS, NPDE
SAVE /MOLIF/

c
c
EXTERNAL SKMRES
C
e e e e e e e e e e e e e et e e e
C
INTEGER NEQ, NRWK
c
NEQ = NPTS*(NPDE+1)
NRWK = NEQ + (6+NPDE)*NPDE
c

Fig. 5—(Continued).

ACM Transactions on Mathematical Software, Vol 20, No. 2, June 1994



Algorithm 731: A Moving-Grid Interface . 211

C cce Call SKMRES with IRES=0 to compute total residual
CALL SKMRES (NEQ, T, Y, YPRIME, DELTA, IRES, RWK, NRWK)
IF (IRES .EQ. 2) THEN
IRES = -2
RETURN
ELSE IF (IRES .EQ. 3) THEN
IRES = -1
RETURN
ENDIF

RETURN
END

Fig. 5—(Continued).

grid with 21 points and using a time-tolerance value of 10~3 for DASSL. The
moving-grid parameters were 7 = 0, k = 2, and « = 0.01.

Figure 6 shows a plot of the grid movement over the total time interval
with a close-up at the start of the time integration, and two plots of the PDE
solution components at times ¢ = 0.001, 0.01, 0.1, and 4.0. At ¢t = 4.0, the
steady-state solution has been reached. The integration costs were STEPS =
87, JACS = 23, and BS = 185. For the integration from ¢ = 2.0 to ¢ = 4.0,
only four steps were needed, which shows that the steady-state performance
of the method is quite good.

6.2 Problem II: A Reaction-Diffusion Problem in Cylindrical Coordinates

Our second problem is the scalar reaction-diffusion equation in cylindrical
coordinates (m = 1), which also served as an example in Part 2 of the
SPRINT User’s Manual [Berzins and Furzeland 1986],

19
T =—— T) +
 oor o"r('Br 2 'yexp(1+8T

), 0<r<1 0<zx<l,

where T(r, z) is the temperature in the cylinder and B, y, and & are given
thermal properties. The axial direction, z, is treated as a timelike coordinate.
The boundary conditions for the PDE are

T.(0,z) =0, T(1,z) =0, z >0,
and the initial solution is

T(r,0) =0, O0<r<l1.

With the SPDIFF discretization interface from SPRINT, the problem has
been solved using a uniform grid of 41 grid points, for B = 0.1, y = 1.0, and
e = 0.1. We used the same problem parameters except for the diffusion
parameter, which we took much smaller, § = 10~ *. The method parameters
were the same as for the previous problem, that is, 21 grid points, a uniform
initial mesh, a time tolerance of 102, and the moving-grid parameters 7= 0,
k=2, and a = 0.01. To compute the reference solution, we used 101 grid
points and a time tolerance of 10 7.
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Fig. 6. Problem I (NPTS = 21). Grid with close-up near initial time and solution components at
times ¢ = 0.001,0.01,01, and 40 (+, =, O, and X, resp.).

The integration costs amounts to STEPS = 47 (25 to reach z = 0.1), JACS
= 23, and BS = 130. In Figure 7 plots of the grid movement and of the PDE
solution at z = 0.4, 0.6, 0.8, and 1.0 are shown, from which it is clear that,
again, the grid is adapted rapidly enough to prevent inaccuracies in the
approximation of spatial derivatives caused by a too course grid.
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