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a b s t r a c t

In this article, a higher dimensional nonlinear boundary-value problem, viz., Gelfand-
Bratu (GB) problem, is solved numerically. For the three-dimensional case, we present an
accurate and efficient nonlinear multigrid (MG) approach and investigate multiplicities
depending on the bifurcation parameter λ. We adopt a nonlinear MG approach Full
approximation scheme (FAS) extended with a Krylov method as a smoother to handle
the computational difficulties for obtaining the upper branches of the solutions. Further,
we examine the numerical bifurcation behaviour of the GB problem in 3D and identify
the existence of two new bifurcation points. Experiments illustrate the convergence of
the numerical solutions and demonstrate the effectiveness of the proposed numerical
strategy for all parameter values λ ∈ (0, λc ]. For higher dimensions, we transform
the GB problem, using n-dimensional spherical coordinates, to a nonlinear ordinary
differential equation (ODE). The numerical solutions of this nonlinear ODE are computed
by a shooting method for a range of values of the dimension parameter n. Numerical
experiments show the existence of several types of solutions for different values of n
and λ. These results confirm the bifurcation behaviour of the higher dimensional GB
problem as predicted from theoretical results in literature.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In the present article, we consider a higher dimensional nonlinear elliptic boundary-value problem: the Gelfand–Bratu
(GB) model [1–3] which depends heavily on the parameter λ. This model coupled with appropriate boundary conditions is
used to model the temperature distribution in fuel ignition problems [4]. The GB model simulates also a thermal reaction
process in a rigid material where the process depends on the balance between chemically generated heat and heat transfer
by conduction [5,6]. The three-dimensional model is considered in investigations on the sun core temperatures [6,7]. The
GB model appears in several contexts such as thermo-electro-hydrodynamics models [8] and elasticity theory [9].

In literature, only a few numerical methods have been proposed for the GB model in higher dimensions. For the
three-dimensional GB model, only two solutions (lower and upper) are presented by using nonstandard compact finite
difference scheme in [10]. A pseudospectral method, finite difference method and radial basis functions method for the
three-dimensional GB problem, are discussed in [11] which illustrates the bifurcation behaviour in detail. On the unit
ball, the GB model is investigated numerically in which the solution dependence on the parameter λ for all dimension
parameter n is described in [12] and radially symmetry is demonstrated in [13]. Three-dimensional bifurcation diagrams
on a ball and annular domains are discussed with the help of a pseudo-arclength continuum method in [14].
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In this work, we show numerical convergence to different types of solutions and present a bifurcation curve for the
GB model in higher dimensions. We focus our research to positive solutions for λ > 0. For the numerical computation of
the three-dimensional GB model, we have chosen to use a nonlinear multigrid approach. This multigrid approach can be
applied directly to the nonlinear elliptic equations without the use of a global linearization technique. This is known as full
approximation schemes (FAS). In FAS multigrid, linearization of the nonlinear problem is treated locally in the relaxation
step on different grid sizes. It is well known that the FAS multigrid idea is based on two principles: an error smoothing
on fine grids and then followed by coarse grid corrections. In this work, we concentrate on the computational difficulties
such as a possible unstable convergence behaviour and the loss of diagonal dominance of the Jacobian matrix for obtaining
the upper branches of solutions of the GB model by FAS multigrid approach. The Jacobian matrix depends on the solution
values, the parameter λ and the grid size h. To handle these difficulties, we use a MINRES method as a smoother in FAS
multigrid approach instead of a classical smoother (Gauss–Seidel method). This multigrid approach solves successfully the
problems of the Jacobian matrix for large values of the solutions, which correspond to the upper solution branches. The
main contribution of the present work in the three-dimensional GB model, is to compute accurately multiple solutions
and to confirm the numerical convergence of the upper branches of solutions for all values of λ ∈ (0, λc]. Furthermore, we
investigate the numerical bifurcation behaviour of the GB problem in three dimensions and identify the existence of two
new turning points. As known from the literature [11,14], finding multiple solutions and new turning points for higher
dimensions in the GB problem is a hard task. Our numerical results illustrate the accuracy and efficiency of the proposed
multigrid approach.

For even higher space dimensions (greater than three), we transform the GB problem using n-dimensional spherical
coordinates to a nonlinear ordinary differential equation (ODE). The numerical solutions of this nonlinear ODE are
computed by a shooting method for a range of values of the dimension parameter n. We compute several types of solutions
of the GB model on an n-dimensional ball B for different values of n and λ. All multiple solutions of the nonlinear ODE on
the ball B can be proved to be positive, because of the maximum principle and radial symmetry (for more details, see [4]).
In the present work, we numerically confirm the existence of multiple solutions depending on the parameters n and λ.
Numerical results clarify the bifurcation curves in the higher dimensional GB problem obtained from theoretical results
in literature [4].

The article is organized as follows. In Section 2, we describe the GB problem in n space dimensions. Section 3 is devoted
to the discretization of the n-dimensional Laplacian. In Section 4, the three-dimensional GB model is discussed, where in
the nonlinear multigrid approach FAS is used to compute the numerical results and illustrate the multiplicity of solutions
in detail. The GB model for higher dimensions is discussed in Section 5, which incorporate a coordinate transformation
from Cartesian to n-dimensional spherical coordinates to obtain a nonlinear ODE on a unit ball B ⊂ Rn. Numerical
experiments show several types of solutions and create bifurcation diagrams. The concluding remarks are presented in
Section 6.

2. A boundary-value problem in n space dimensions

Consider the following nonlinear elliptic boundary-value problem, also known as the n-dimensional GB model:

∆u(x⃗) + λ eu(x⃗) = 0, x ∈ Ω = [0, 1]n ⊂ Rn,

u(x⃗) = 0, x⃗ ∈ ∂Ω,
(1)

where λ > 0, x⃗ = (x1, x2, x3, . . . , xn)T and the Laplacian operator ∆ in n-dimensions is given by:

∆ =

n∑
k=1

∂2

∂x2k
.

3. Discretization of the Laplacian in n space dimensions

For the numerical solution of model (1), we work out a central finite difference scheme for the n-dimensional Laplacian.
On a uniform grid on the domain Ω , we generate the grid points by

(xi)j = jh, with h =
1
J , i = 1, 2, . . . , n, j = 0, 1, 2, . . . , J.

We write ui1,i2,i3,...,in to represent the discrete approximation of the exact (unknowns) values u(x1, x2, x3, . . . , xn). A
second-order central finite difference approximation for dimensions 1, 2, . . . , n reads, respectively:

1d : ∆u|i1 = uxx|i1≈
1
h2 (ui1+1 + ui1−1 − 2ui1 )

2d : ∆u|i1,i2= ux1x1 |i1,i2+ux2x2 |i1,i2≈
1
h2 (ui1+1,i2 + ui1−1,i2 + ui1,i2+1 + ui1,i2−1 − 4ui1,i2 ),

3d : ∆u|i1,i2,i3= ux1x1 |i1,i2,i3+ux2x2 |i1,i2,i3+ux3x3 |i1,i2,i3

≈
1
h2 (ui1+1,i2,i3 + ui1−1,i2,i3 + ui1,i2+1,i3 + ui1,i2−1,i3 + ui1,i2,i3+1 + ui1,i2,i3−1 − 6ui1,i2,i3 ),
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...

nd : ∆u|i1,i2,i3...in ≈
1
h2 (ui1+1,i2,i3,...,in + ui1−1,i2,i3,...,in + . . . + ui1,i2,i3,...,in+1 + ui1,i2,i3,...,in−1  

2n terms

− 2n ui1,i2,i3,...,in ).

4. The three-dimensional case

In this section, we treat the three-dimensional (3D) case (n = 3). The main goal is to numerically determine the
multiple existence of solutions for a given bifurcation parameter λ > 0 on the domain [0, 1]3. Another objective is to
show the convergence of these numerical solutions with the aid of an efficient numerical method.

4.1. Numerical method

The nonlinear boundary-value problem (1) is discretized by a seven-point finite difference formula on a uniform grid
with step size h. The resulting nonlinear system of equations becomes:

1
h2 (ui1+1,i2,i3 + ui1−1,i2,i3 + ui1,i2+1,i3 + ui1,i2−1,i3 + ui1,i2,i3+1 + ui1,i2,i3−1 − 6ui1,i2,i3 ) + λ eui1,i2,i3 = 0, (2)

where ui1,i2,i3 is the approximation at (xi1 , xi2 , xi3 ), 1 ≤ i1, i2, i3 ≤ J − 1. The Dirichlet boundary conditions read:

u0,i2,i3 = uJ,i2,i3 = ui1,0,i3 = ui1,J,i3 = ui1,i2,0 = ui1,i2,J = 0.

We present a multigrid approach for solving the discretized system of nonlinear equations (2). This approach is known as
the Full Approximation Storage (FAS), where the system of equations (2) is solved on each level of the grid throughout the
multigrid cycle. For large values of the solution u, which could be the case when we look for multiple solutions, diagonal
dominance of the tridiagonal matrix is lost. As a result, the tridiagonal matrix may become indefinite on coarser grids.
Thus in such cases, standard smoothers such as Gauss–Seidel become unstable. To handle such a difficulty, the MINRES-
method (a Krylov subspace method) is introduced as a smoother instead of a Gauss–Seidel method. Next, we describe
the numerical strategy to compute multiple solutions for λ ∈ (0, λc ]. Recall that the nonlinear discretized system of
equations (2) on the original fine grid with step size h =

1
J on the domain [0, 1]3 can be written as:

Nh(uh) = 0, (3)

where Nh(.) is the discretized nonlinear operator N(u) = Au + λeu. Let ũh be the approximate solution on the fine grid
h of the nonlinear system (2). Restrict the fine grid residual rh to the coarse grid residual r2h by the restriction operator
R2h
h . We iterate system (2) for ũ2h on the coarse grid 2h to approximate the coarse grid error e2h. Interpolate e2h back to

the fine grid error eh by using the interpolating operator Ih2h. Make the correction of the fine grid solution as ũh + eh (see
Algorithm 1). This fine-coarse-fine loop is a two-grid V-cycle (we denote it by V-cycle) is continued until the tolerance
is obtained. Assume that ν1 and ν2 are the pre-smoothing and post-smoothing steps respectively. The complete FAS two
grid V-Cycle algorithm is explained as:

Algorithm 1: FAS V-cycles

1. Relax ν1 times, to compute ũh by using smoother with initial guess ũ0
h .

2. Compute the residual on fine grid: rh = 0 − Nh(ũh).
3. Restrict the residual: r2h = −R2h

h rh.
4. Inject the solution ũinit

2h = I2hh ũh.
5. If coarsest grid then solve N2h(ũ2h) = N2h(ũinit

2h ) − r2h exactly,
else, call γ times the FAS scheme recursively.
6. Calculate the coarse grid error e2h = ũ2h − ũinit

2h .
7. Interpolate the error back on fine grid: eh = Ih2he2h.
8. Correct the fine grid solution: ũh + eh.
9. Relax ν2 times, starting from the improved ũh as nonlinear smoother.

Here, the unknown solution u is relaxed by the MINRES method as a smoother for the discretized linearized
equation [15,16]. The linearized equation for the nonlinear boundary-value problem (1) becomes:

∆u + λ f (ũ) u = λ (ũ − 1) f (ũ),

where ũ is the current approximate solution of u (mentioned also in step 1 of the Algorithm).



1622 S. Iqbal and P.A. Zegeling / Computers and Mathematics with Applications 79 (2020) 1619–1633

Fig. 1. Numerical convergence for a single solution of the three-dimensional GB model (1) for λ = 0.1 on decreasing grid sizes h.

4.2. Numerical results

In this section, we discuss the numerical implementation of the proposed numerical method for model (1) in 3D. We
examine the performance of the FAS-MG by using MINRES method as a smoothing relaxation with an appropriate initial
guess. We observed that the proposed multigrid method is very sensitive to the initial guess, particularly for different
values of λ, near to λc and for both turning points: λa, λb for small h. The FAS multigrid approach cannot perform
efficiently, since the coarse grids can not provide an accurate approximation to the solution. In order to make the scaling
independent of the grid size h, the following residual norm is defined in the numerical procedure:

∥r∥2 =

√∑
i1,i2,i3

r2i1,i2,i3

J
. (4)

We choose the initial approximation on the fine grid h as follows:

uinitial = u0
= α sin(kπxi1 ) sin(kπxi2 ) sin(kπxi3 ) (5)

with an amplitude α and frequency k. These numerical parameters must be specified for each experiment separately. The
stopping criteria that we use is: ∥r∥2 ≤ 10−8. We choose the multigrid cycle V (2, 2) and the coarse grid of size h =

1
2 with

one interior node. We examine the bifurcation behaviour by illustrating the existence of multiple solutions for different
values of λ. Numerical results also provide the convergence for all λ ∈ (0, λc] on different grids with size h. This shows
that the proposed numerical strategy is more accurate and efficient than the other numerical techniques in [11,14] to find
the lower and upper solutions of model (1) in 3D.

4.2.1. Multiplicity of solutions
One of the goals of the present numerical study is to compute multiple solutions for the three-dimensional case. Note

that the numerical solutions depend heavily on the parameter λ and grid size h. The proposed numerical method worked
very well for all λ ∈ (0, λc] which is one of the main contributions of the present work. Table 1 shows the maximum
value of the first: u1, second: u2, third: u3 and fourth: u4 solutions for different values of λ > 0 with h = 1/161. In Table 1,
the numerical solution with ∗ indicates that the solution does not converge for the given tolerance on a grid with a high
number of grid points J .

4.2.2. Numerical convergence in the case of multiple solutions
The convergence of the numerical solutions, especially for the solutions u2, u3, u4, is of great importance as it confirms

the existence of more than two solutions. It is the first time, as far as we know, that the numerical convergence of these
multiple solutions on small grids size is described. With the help of FAS-MG, we successfully obtain numerical convergence
for both small values of λ and the new bifurcation points λa, λb as well as for the critical value λc . All these aspects of
the numerical convergence for different values of λ for a large number of grid points J are discussed in detail. For the
small parameter value: λ = 0.1, Fig. 1 shows the numerical convergence of the solution on different grid sizes. It shows
the effectiveness of the FAS-MG method for the GB model in 3D. For λ ∈ (0, λb), we are able to compute two solutions,
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Table 1
The maximum value of the solutions of the three-dimensional GB model (1) for λ > 0 and h = 1/161.
λ u1 u2 u3 u4

λc ≈ 9.90257408 1.576134 – – –
9.5 1.164208 2.355216 – –
8.0 0.765826 3.357463 – –
6.5 0.515261 4.026373 – –
λa ≈ 6.31432062 0.491024 4.188615 6.246388 –
6.2 0.488463 4.065204 5.903662 6.601146
6.1 0.462888 4.142452 5.802547 6.663853
6.0 0.467853 4.184735 5.885483 6.724115
5.9 0.455032 4.213302 5.813532 6.767654*
5.5 0.405615 4.496710 5.631087 6.973204*
λb ≈ 4.8261277 0.326448 5.163705 7.1683172* –
4.8 0.321485 – 7.198551* –
4.5 0.311926 7.244282* – –
2.0 0.124607 7.600145* – –
1.5 0.089335 7.812563* – –
f1.0 0.056903 8.162511* – –
0.5 0.028631 – – –
0.3 0.008993 – – –
0.1 0.007436 – – –

*Indicates that no numerical convergence was reached.

Table 2
The number of V-cycles and the CPU time for the first solution of the three-dimensional GB model (1)
with λ = 1 on decreasing values of grid sizes h.
Grid size First solution Second solution

h V-cycles Time (s) V-cycles Time (s)

1/11 8 66.2208 48 796.1986
1/21 12 186.2955 100* 1044.4375
1/41 12 432.4789 100* 1331.5509
1/81 18 805.0368 100* 1905.0087
1/161 16 1416.9937 100* 2643.6743

*Indicates that no numerical convergence was reached.

Table 3
The number of V-cycles and the CPU time for the first and second solutions of the three-dimensional
GB model (1) for λ = 5.5 on decreasing values of h.
Grid size First-solution Second-solution

h V-cycles Time (s) V-cycles Time (s)

1/11 8 41.8657 28 158.9705
1/21 12 118.0548 22 293.3296
1/41 8 288.6603 48 576.2328
1/81 12 443.5499 36 825.5191
1/161 18 757.4487 42 1196.1645

in which the first solution has converged for small values of h, whereas the second solution is a spurious solution (See
Table 1). To explain this convergence behaviour we take λ = 1 as a characteristic example. The numerical convergence
of both solutions for λ = 1 is given in Table 2. Fig. 2 demonstrates that the proposed method successfully converges to
the unique solution for the critical value of λc on fine grids. For both new bifurcation turning points λa ≈ 6.31432062
and λb ≈ 4.82612776, three solutions are obtained (for λb there is one spurious solution). For λa all solutions u1, u2, u3
have numerically converged on a large number of grid points J as shown in Fig. 3. However, for λb, one of the solutions,
viz., u3 did not converge on a fine grid (see in Fig. 4).

For λ ∈ (λb, λa), we are able to compute four numerical solutions. In particular, the computation of the fourth solution,
is a difficult task, as MG-methods are very sensitive to the choice of the initial guess. However, the FAS-MG method
efficiently resolved the computational difficulties with the MINRES method as a smoother and with an appropriate initial
guess. It is important to mention that the proposed MG-method successfully achieved convergence for all λ ∈ (0, λc]. To
demonstrate the existence of the three solutions, we present the numerical convergence of such solutions u1, u2 and u3
for λ = 5.5. This is shown in Tables 3, 4. Fig. 5 shows the isosurface plots of the three solutions for λ = 5.5 on a grid
with 413 grid points.

To illustrate the existence of a fourth solution, we take λ = 6 as a characteristic example. Fig. 6 presents the isosurface
plots of the four solutions: u1, u2, u3, u4 for λ = 6 on a grid with 413 grid points. Numerical convergence is confirmed in
Fig. 7.
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Table 4
The number of V-cycles and the CPU time for the third and fourth spurious solution of the
three-dimensional GB model (1) for λ = 5.5 and decreasing values of h.
Grid size Third-solution Fourth-solution

h V-cycles Time (s) V-cycles Time (s)

1/11 36 242.3997 72 707.5586
1/21 46 426.2311 100* 1494.4805
1/41 42 974.5904 100* 1857.3858
1/81 52 1506.6630 100* 2643.1886
1/161 86 2133.0085 100* 3326.8374

*Indicates that no numerical convergence was reached.

Fig. 2. Numerical convergence for the unique solution of the three-dimensional GB model (1) for the critical value λc on decreasing values of h.

Fig. 3. Numerical convergence of the three solutions: first solution: u1 (left), second solution: u2 (middle) and third solution: u3 (right), respectively,
for λa ≈ 6.31432062 on decreasing values of grid sizes h of the three-dimensional GB model.

4.2.3. A bifurcation curve in three space dimensions
Our numerical investigations for λ ∈ (0, λc] give rise to a qualitative picture of the bifurcation curve in three space

dimensions for model (1), which is quite different from the one and two-dimensional case. For the three-dimensional
case, we present the bifurcation curve in Fig. 8, where two new turning points λa ≈ 6.31432062 and λb ≈ 4.8261277
are identified. Different numerical experiments for the values of λ lead to the numerical value λc ≈ 9.90257408. Fig. 8
incorporates the four solutions, two new turning points and one critical point for λ ∈ (0, λc]. In three dimensions, it can
be seen clearly that for λ ≥ 6 we found four solutions (denoted by ‘‘4th−solution solid line’’) and for λ ≤ 5.9, one solution
out of the four solutions is a spurious one (denoted by ‘‘4th − solution∗ dashed-line’’) within (λb, λa).
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Fig. 4. Numerical convergence of two solutions: first solution: u1 (left), second solution: u2 (middle) and divergence of the third spurious solution:
u∗

3 (right), respectively, for λb ≈ 4.82612776 and decreasing values of grid sizes h of the three-dimensional GB model.

Fig. 5. Iso-surface plots of three solutions: u1, u2 and u3 , respectively, of model (1) in three space dimensions for λ = 5.5 at the iso-value = 0.35.

5. The n-dimensional radial case

Motivated by the three-dimensional numerical results in Cartesian coordinates, we will now investigate the multiplicity
of solutions and the bifurcation behaviour in n space dimensions. In this section, we look for multiple solutions of nonlinear
BVP (1) on a special domain Ω , viz., the n-dimensional ball B := {x⃗ ∈ Rn

:
x⃗2 < 1}. For this, we first transform model (1)

using n-dimensional spherical coordinates. All solutions of (1) on B can be proved to be positive, because of the maximum
principle and the radial symmetry (for more details, see [4]). We transform the equation from Cartesian coordinates to
n-dimensional spherical coordinates. After that we compute numerical solutions of the n-dimensional nonlinear problem
in spherical coordinates.

5.1. Spherical coordinates in n space dimensions

In this section, we transform the equation in n space dimensions from Cartesian coordinates (x1, x2, x3, . . . , xn) to
(hyper-)spherical coordinates (ρ, φ1, φ2, φ3, . . . , φn−1) and investigate radially symmetric solutions of nonlinear BVP (1).
In Cartesian coordinates, which are mainly useful for rectangular domains, the Laplace operator has the form:

∆ =

n∑
k=1

∂2

∂x2k
. (6)

For more complicated domains, it is convenient to work with other coordinate systems. A general, so-called curvilinear,
coordinate system can be written as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = x1(q1, q2, q3, . . . , qn),
x2 = x2(q1, q2, q3, . . . , qn),
x3 = x3(q1, q2, q3, . . . , qn),
...

xn = xn(q1, q2, q3, . . . , qn),

(7)

where (q1, q2, q3, . . . , qn) are orthogonal curvilinear coordinates and (x1, x2, x3, . . . , xn) Cartesian coordinates, respectively.
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Fig. 6. Iso-surface plots of four solutions of the three-dimensional GB model (1) for λ = 6.0 at the iso-value = 0.42.

By considering Eq. (7), we can write the tangent vectors to the curvilinear coordinates in terms of scale coefficients and
unit vectors as:

n∑
k=1

∂xk
∂qj

= ζj ej, j = 1, 2, . . . , n,

where ej are the unit vectors in the direction of the curvilinear coordinates qj, respectively. The scaling coefficient ζ is
defined as:

ζ =

n∏
j=1

ζj,

where

ζj =

[
n∑

k=1

(
∂xk
∂qj

)2
]1/2

, j = 1, 2, 3, . . . , n.

Then, a general expression for the Laplacian ∆ in orthogonal curvilinear coordinates is of the form (see also [17]):

∆ =
1
ζ

n∑
k=1

∂

∂qk
(
ζ

ζ 2
k

∂

∂qk
). (8)
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Fig. 7. Numerical convergence of the four solutions: u1, u2, u3 and u4 , respectively, as a function of the number of V-cycles and grid size h for
λ = 6.0 of the three-dimensional GB model (1).

Fig. 8. Bifurcation curve for GB model (1) in three space dimensions. Solid lines indicate the four numerically converged solutions (see Fig. 7) and
the dashed line shows spurious numerical solutions. The two new turning points λa ≈ 6.31432062 and λb ≈ 4.8261277. The third critical value
λc ≈ 9.90257408.
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For the special choice of spherical coordinates, we find:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = ρ cosφ1,

x2 = ρ sinφ1 cosφ2,

x3 = ρ sinφ1 sinφ2 cosφ3,

x4 = ρ sinφ1 sinφ2 sinφ3 cosφ4,

...

xn−1 = ρ

n−2∏
b=1

sinφb cosφn−1,

xn = ρ

n−1∏
b=1

sinφb.

(9)

where ρ > 0, 0 ≤ φb ≤ π (b = 1, 2, 3, . . . , n − 2) and 0 ≤ φn−1 ≤ 2π . The scaling coefficients in Eq. (8) are explicitly
written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ1 = 1,
ζ2 = ρ,

ζ3 = ρ sinφ1,

...

ζn = ρ

n−2∏
b=1

sinφb.

(10)

The Laplace operator (6) in n-dimensional spherical coordinates, making use of (8) and (9), becomes

∆ =
1

ρn−1

∂

∂ρ
(ρn−1 ∂

∂ρ
)

+
1
ρ2

n−2∑
b=1

[
n−1∏

a=b+1

1
sin2 φa

(
1

sinb−1 φb

(
∂

∂φb
sinb−1 φb

∂

∂φb

))]

+
1
ρ2

(
1

sinn−2 φn−1

∂

∂φn−1

(
sinn−2 φn−1

∂

∂φn−1

))
.

(11)

For two dimensions (11) becomes

∆ =
1
ρ

∂

∂ρ
(ρ

∂

∂ρ
) +

1
ρ2

∂2

∂φ2
1
,

and for three dimensions

∆ =
1
ρ2

∂

∂ρ

(
ρ2 ∂

∂ρ

)
+

1
ρ2

1
sin2 φ2

∂2

∂φ2
1

+
1

ρ2 sinφ2

∂

∂φ2

(
sinφ2

∂

∂φ2

)
.

In the following section, we transform the nonlinear PDE (1) defined on the ball B, making use of the n-dimensional
spherical coordinates.

5.2. A boundary-value problem in n-dimensional spherical coordinates

We rewrite the nonlinear problem (1) in n-dimensional spherical coordinates (9) as:

1
ρn−1

∂

∂ρ
(ρn−1 ∂u

∂ρ
) +

1
ρ2

n−2∑
b=1

[
n−1∏

a=b+1

1
sin2 φa

(
1

sinb−1 φb

(
∂

∂φb
sinb−1 φb

∂u
∂φb

))]

+
1
ρ2

(
1

sinn−2 φn−1

∂

∂φn−1

(
sinn−2 φn−1

∂u
∂φn−1

))
+ λ eu = 0.

(12)

Next, we simplify partial differential equation (12) using symmetry properties. If Ω is a ball B in Rn centered at 0, then
we could seek for radially symmetric solutions. More precisely, for Ω = B = {x⃗ ∈ Rn

:
x⃗2 < 1}, let u ∈ C2(Ω,R) be a

positive solution of (12), then u is radially symmetric (details can be found in [4]). This implies that the derivatives w.r.t.
φ1, φ2, . . . , φn are identically zero and Eq. (12) reduces to the ODE:

1
ρn−1

∂

∂ρ
(ρn−1 ∂u

∂ρ
) + λ eu = 0. (13)
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For ρ :=
x⃗2, we have u = u(ρ) ∈ C2

[0, 1] and ∂u
∂ρ

(ρ) = u′(ρ) < 0 for ρ ∈ (0, 1) (details are given in [4]). This implies
that any positive solution of BVP (1) is a solution of the following ODE:

u′′
+

n − 1
ρ

u′
+ λ eu = 0, 0 < ρ < 1 (14)

with boundary conditions u′(0) = 0 and u(1) = 0. In the next section, we discuss the multiplicity results and the
bifurcation behaviour of nonlinear ODE (14) for different values of the dimension parameter n.

5.3. Theoretical results for n space dimensions in spherical coordinates

For ODE (14), theoretical results are given in [4] based on the dimension parameter n in the following way:

1. For n = 1, there exists a λc > 0 such that

(a) for each λ ∈ (0, λc), there are two solutions.
(b) for λ = λc , there is a unique solution.
(c) for λ > λc , there are no solutions.

2. For n = 2, define λc = 2. Then

(a) for each λ ∈ (0, λc), there are two solutions.
(b) for λ = λc , there is a unique solution.
(c) for λ > λc , there are no solutions.

3. For 3 ≤ n ≤ 9, define λ̃ = 2(n − 2). Then there exists a λc > λ̃ such that

(a) for λ = λc , there is a unique solution.

(b) for λ > λc , there are no solutions.

(c) for λ = λ̃, there is a countable infinite of solutions.

(d) for each λ ∈ (0, λc)\{λ̃}, there is a finite number of solutions.

4. For n ≥ 10, define λc = 2(n − 2). Then

(a) for λ ≥ λc , there are no solutions.
(b) for λ ∈ (0, λc), there is a unique solution.

We are going to numerically detect these solutions in the next section.

5.4. Numerical experiments

We compute the numerical solutions of the nonlinear ODE (14) by using a simple shooting method. For the numerical
time-integration as a part of the shooting method, we use the MATLAB function ode45 with a tolerance 10−10. Several
experiments are performed for different values of n. We present the bifurcation behaviour as a function of the parameter
λ and the spatial dimension n. The bifurcation curves show the relation between u(0) (maximum value of a solution) and
u(1). The numerical experiments confirm all theoretical results as mentioned in Section 5.3.

5.4.1. Experiment 1
We present numerical solutions of ODE (14) for n = 1 and different values of λ. Fig. 9 (left), illustrates the two

numerical solutions u1 and u2 for λ = 0.8 and the unique solution uc for λc . The critical value λc ≈ 0.86752074 is
calculated numerically. A bifurcation diagram for n = 1 of nonlinear ODE (14) for different values of λ is provided, see
Fig. 9 (right), wherein the solutions can be identified as a zero of the curve (u(0), u(1)). These bifurcation curves show
that for 0 < λ < λc there exist exactly two solutions, precisely one solution for λ = λc and no solution exists for λ > 0.

5.4.2. Experiment 2
The numerical results of ODE (14) for n = 2 are now discussed. Two numerical solutions exist for λ ∈ (0, λc) and

one solution uc for λc . These aspects are presented in Fig. 10. For this case, the critical value is λc ≈ 2. We show the
bifurcation behaviour in n space dimensions for ODE (14) with n = 2 and different values of λ. The curves in Figs. 11(a)
and 11(b) show the maximum value of the two solutions: u1, u2 for λ ∈ (0, λc), a unique solution for λc and no solution
for λ > λc . This behaviour can be explained theoretically (see Section 5.3).
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Fig. 9. For the dimension parameter n = 1 in nonlinear ODE (14): two numerical solutions u1(r), u2(r) for λ = 0.8 and one solution uc (r) for the
critical value λc (left) and bifurcation curves for different values of λ (right).

Fig. 10. Numerical solutions of nonlinear model (14) for n = 2: two solutions u1(r), u2(r) for λ = 1 and one solution uc (r) for the critical value
λc = 2.

5.4.3. Experiment 3
We provide numerical results of BVP (14) for 3 ≤ n ≤ 9. The theoretical results for this case are quite different from

the cases n = 1 and n = 2. We will show the existence of multiple solutions for different values of λ. As a characteristic
example we take n = 3. For different values of λ, one, two, three or more solutions are depicted in Fig. 12. For n = 3,
we have λ̃ = 2. We compute several solutions for λ ∈ (0, λc)\{λ̃}. For this, we take λ = 1.999 and computed the seven
solutions, see in Fig. 12 (right). For this characteristic example, a unique solution uc exists for critical value λc . The critical
value for n = 3 is numerically found to be λc ≈ 3.352731. The theoretical results for 3 ≤ n ≤ as described in Section 5.3,
are confirmed numerically in Figs. 13 and 14 wherein a solution of ODE (14) for n = 3 can be identified as a zero of the
curve (u(0), u(1)). The bifurcation behaviour for n = 3, is shown in Fig. 13 at λ̃ = 2. Fig. 14 provides the bifurcation curves
for n = 4, 9 respectively, for different values of λ.

5.4.4. Experiment 4
For numerical illustration of the case n ≥ 10; we take the value n = 10 as a characteristic example. The numerical

results can be found in Fig. 15. They again confirm the theoretical results as described in Section 5.3. For this example,
we found the critical value λc = 16. A single solution exists for all values of λ ∈ (0, λc) and bifurcation diagrams for the
dimension parameter n = 10 are given in Fig. 15.
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Fig. 11. Bifurcation curves for n = 2 of model (14): two numerical solutions u1, u2 are identified as a zero of the curve (u(0), u(1)) for λ = 1 (left)
and for the other values of λ (right).

Fig. 12. Numerical solutions of nonlinear ODE (14) for n = 3. Two solutions: u1, u2 for λ = 3 (left). Multiple solutions for λ = 1.999 and one
solution uc for λc ≈ 3.352731 (right).

Fig. 13. Bifurcation curves of model (14) for n = 3: multiple solutions u1, u2, u3, u4, u5 are identified as a zero of the curve (u(0), u(1)) for λ = 2
(left) with different values of λ (right).
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Fig. 14. Bifurcation curves for 3 ≤ n ≤ 9 of nonlinear ODE (14): the cases for dimension parameter n = 4 (left) and n = 9 (right ) respectively, with
different values of λ.

Fig. 15. Numerical results for dimension parameter n = 10 of nonlinear model (14) with different values of λ: one solution (left) and bifurcation
curves (right).

6. Conclusion

In this article, we presented a numerical study of the Gelfand–Bratu model for higher dimensions. For three dimensions,
we adopted an accurate and efficient nonlinear multigrid approach: the full approximation scheme (FAS) extended with
a Krylov method as a smoother. In particular, we found new solutions for specific values of the bifurcation parameter.
As known from the literature, finding new solutions and new turning points is a hard task. We indeed observed that the
three-dimensional case is numerically much more complicated than the one-and two-dimensional cases. Furthermore, we
extended the numerical bifurcation curve of the Gelfand–Bratu problem in three dimensions and showed the existence
of two new turning points: λa and λb. Numerical results confirmed the convergence of all types of solutions (unique
and multiple) and demonstrated the effectiveness of the proposed numerical strategy for all values of the parameter
λ ∈ (0, λc]. For even higher dimensions, we transformed the Gelfand–Bratu problem using n-dimensional spherical
coordinates to a single nonlinear ODE. We summarized a few theoretical results depending on the dimension parameter n
and bifurcation parameter λ. Numerical solutions of this ODE were computed by a shooting method for a range of values
of n. The experiments showed the existence of several types of solutions. Bifurcation curves for different values of n and
λ confirmed the theoretical results of the higher dimensional Gelfand–Bratu problem as presented in literature.

Acknowledgement

Sehar Iqbal acknowledges the financial support by the Schlumberger Foundation (Faculty for the Future award).



S. Iqbal and P.A. Zegeling / Computers and Mathematics with Applications 79 (2020) 1619–1633 1633

References

[1] I.M. Gelfand, Some problems in the theory of quasi-linear equations, Uspekhi Mat. Nauk 14 (2) (1959) 87–158.
[2] G. Bratu, Sur l’équations intégrales exponentielle, C. R. Seances Acad. Sci. (1911) 1048–1050.
[3] G. Bratu, Sur les équations intégrales non linéaires, Bull. Soc. Math. France 42 (1914) 113–142.
[4] J. Bebernes, D. Eberly, Mathematical Problems from Combustion Theory, Applied Mathematical Sciences, vol. 83, Springer Science and Business

Media, 2013.
[5] A.M. Wazwaz, Adomian’s decomposition method for a reliable treatment of the bratu-type equations, Appl. Math. Comput. 166 (3) (2005)

652–663.
[6] S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Vol. 2 , Dover Publications, INC, 1967.
[7] T.F.C. Chan, H.B. Keller, Arc-length continuation and multigrid techniques for nonlinear elliptic eigenvalues problems, SIAM J. Sci. Stat. Comput.

3 (2) (1982) 173–194.
[8] Y.Q. Wan, Q. Guo, N. Pan, Thermo-electro-hydrodynamic model for electrospinning process, Int. J. Nonlinear Sci. Numer. Simul. 5 (1) (2004)

5–8.
[9] I. Shufrin, O. Rabinovitch, M. Eisenberger, Elastic nonlinear stability analysis of thin rectangular plates through a semi-analytical approach, Int.

J. Solids Struct. 46 (10) (2009) 2075–2092.
[10] M. Hajipour, A. Jajarmi, D. Baleanu, On the accurate discretization of a highly nonlinear boundary value problem, Numer. Algorithms 79 (3)

(2018) 679–695.
[11] J. Karkowski, Numerical experiments with the Bratu equation in one, two and three dimensions, Comput. Appl. Math. 32 (2) (2013) 231–244.
[12] D.D. Joseph, T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Ration. Mech. Anal. 49 (4) (1973) 241–269.
[13] B. Gidas, W.M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (3) (1979) 209–243.
[14] J.S. McGough, Numerical continuation and the Gelfand problem, Appl. Math. Comput. 89 (1–3) (1998) 225–239.
[15] T. Washio, C.W. Oosterlee, Krylov subspace accerlation for nonlinear multigrid schemes, Electron. Trans. Numer. Anal 6 (1997) 271–290.
[16] A. Mohsen, L.F. Sedeek, S.A. Mohamed, New smoother to enhance multigrid-based methods for the Bratu problem, Appl. Math. Comput. 204

(1) (2008) 325–339.
[17] F. Jing-Jing, H. Ling, Y. Shi-Jie, Solutions of Laplace equation in n-dimensional spaces, Commun. Theor. Phys. 56 (4) (2011) 623–625.

http://refhub.elsevier.com/S0898-1221(19)30468-7/sb1
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb2
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb3
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb4
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb4
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb4
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb5
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb5
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb5
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb6
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb7
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb7
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb7
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb8
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb8
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb8
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb9
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb9
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb9
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb10
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb10
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb10
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb11
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb12
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb13
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb14
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb15
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb16
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb16
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb16
http://refhub.elsevier.com/S0898-1221(19)30468-7/sb17

	A numerical study of the higher-dimensional Gelfand-Bratu model
	Introduction
	A boundary-value problem in n space dimensions
	Discretization of the Laplacian in n space dimensions
	The three-dimensional case
	Numerical method
	Numerical results
	Multiplicity of solutions
	Numerical convergence in the case of multiple solutions
	A bifurcation curve in three space dimensions


	The n-dimensional radial case
	Spherical coordinates in n space dimensions
	A boundary-value problem in n-dimensional spherical coordinates
	Theoretical results for n space dimensions in spherical coordinates
	Numerical experiments
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4


	Conclusion
	Acknowledgement
	References


