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Abstract—In this paper, a higher order nonuniform grid strategy is developed for solving singularly
perturbed convection-diffusion-reaction problems with boundary layers. A new nonuniform grid
finite difference method (FDM) based on a coordinate transformation is adopted to establish higher
order accuracy. To achieve this, we study and make use of the truncation error of the discretized system
to obtain a fourth-order nonuniform grid transformation. Considering a three-point central finite-dif-
ference scheme, we create not only fourth-order but even sixth-order approximations (which is the
maximum order that can be obtained) by a suitable choice of the underlying nonuniform grids. Fur-
ther, an adaptive nonuniform grid method based on equidistribution principle is used to demonstrate
the sixth-order of convergence. Unlike several other adaptive numerical methods, our strategy uses no
pre-knowledge of the location and the width of the layers. Numerical experiments for various test
problems are presented to verify the theoretical aspects. We also show that other, slightly different,
choices of the grid distributions already lead to a substantial degradation of the accuracy. The numer-
ical results illustrate the effectiveness of the proposed higher order numerical strategy for nonlinear
convection dominated singularly perturbed boundary value problems.
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INTRODUCTION
It is well known that solutions of boundary value problems for differential equations with small pertur-

bation parameters having higher derivatives may exhibit a boundary-layer behavior [3, 15, 36]. Thistype
of BVPs has many applications in mathematical modelling of physical and engineering problems, such as
fluid dynamics at high Reynolds nos. [1], [12], [20], aerodynamics [31], massheat transfer [30], atmo-
spheric models [32] and in reaction-diffusion process [20].

Nowadays boundary layer problems are addressed mainly with numerical techniques. A large number
of numerical techniques have been proposed by various authors for singularly perturbed boundary value
problem (SPBVPs). Finite difference approximations on nonuniform grids have been investigated in [14],
[33] and [35]. Numerical approximations and solutions for SPBVPs have been discussed in [2] and [28].
Theory and applications of singular perturbations in boundary-layer problems and multiple timescale
dynamics have been reported in [36]. To deal with the steep solutions regions, two different forms of com-
putational nonuniform grids by dividing the region intotwo or more with different uniform spacing were
discussed in [29] for boundary-layer problems. Since the early 1960s several numerical approaches have
been developed by various authors to address SPBVPs. Due to the presence of boundary layers the numer-
ical treatment of SPBVPs has computational difficulties. Central finite difference schemes on uniformly
distributed grids are usually applied to solve SPBVPs numerically. However, in many cases, unphysical
oscillations are observed in the numerical solutions [2, 3]. Finite difference schemes on uniform grids are
relatively simple, but they are not accurate and efficient for problems with boundary layers, because of the
potential appearance of numerical oscillations. If the number of points is not large enough to resolve the
boundary layer, the numerical solution is likely to have huge errors. The use of a large number of grid
points to resolve this problem makes the total computation time unacceptably large. To eliminate the
oscillations in the solutions, one needs a very fine grid at the layer regions. This may be improved either
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by using nonuniform grids (prescribed) or by an adaptive grid (generated by an additional equation).
Finite difference approximations on nonuniform grids have been discussed in [2, 28, 33, 35, 36] for
SPBVPs. At the beginning of the 90’s, special piecewise uniform grids have been introduced by Shishkin
[25], in which simple structured grids can be used for the numerical approximation of SPBVPs. All these
numerical approaches on nonuniform grids are more accurate than for the uniform case but with the same
order of convergence. A truncation error analysis introduced by the use of nonuniform grids and stretched
coordinates for the numerical study of the boundary-layer problems has been reported in [14, 17, 22, 37]
in which numerical results are compared with that obtained on uniform grids. In [24, 26, 27] a stretched
grid method was introduced in which the given boundary-layer problems are transformed into new coor-
dinates by a smooth mapping which concentrates the grid points in the steep regions without an increase
of the total number of grid nodes. This concentration improved the spatial resolution in the region of large
variation which enhanced the accuracy in numerical solutions.

Adaptive grid methods, graded grid difference schemes and uniformly accurate finite difference
approximations for SPBVPs have been presented in [5, 10, 11]. The rate of convergence of finite difference
schemes on nonuniform grids and super convergent grids for two point BVPs have been described in
[8, 16, 38]. Further, finite difference approximations of multidimensional steady and unsteady convec-
tion-diffusion-reaction problems have been discussed in [9, 18, 19]. All these numerical approaches on
nonuniform grids are more accurate than for the uniform case but with the same order of convergence.
The supra-convergence phenomena of the central finite difference scheme is well-known and it was stud-
ied rigorously. In literature, the increase from second to higher order accuracy for linear boundary value
problems has been reported in [6] and recently in [21]. Second order central finite differences on nonuni-
form grids are discussed in [21], in which an adaptive numerical method is applied to obtain 4th-order of
convergence.

In the present study, we first focus on special central finite difference approximations on an optimal
choice of the nonuniform grid which demonstrate not only higher order of convergence (from 2nd order
to 4th order) but also an increase in the accuracy for nonlinear SPBVPs. We present two theoretical prop-
erties of the solution of the SPBVPs, which exhibit boundary layer phenomena. The main contributions
in this paper, is first to construct the exact optimal higher order nonuniform grid transformations based
on truncation error analysis. Further, we use these (optimal) grid transformation to compute the numer-
ical solution of nonlinear SPBVPs. In second part, the goal is to propose an efficient adaptive numerical
method which can be solve approximately such SPBVPs with an accuracy independent of the value of the
perturbation parameter. We extend the results from 4th to 6th order approximations not only for linear
BVPs, but we are also able to obtain an (almost) 6th order accuracy for nonlinear models. For this, we pro-
pose a nonuniform equidistributed grid and show that the second order central finite difference scheme is
substantially upgraded to sixth order on this refined grid. This supra-convergence is obtained by using an
appropriate monitor function, which depends on the lowest derivative. For numerical illustration, we
choose nonlinear convection dominated singularly perturbed convection-diffusion-reaction problems
which exhibit boundary layer(s) phenomena. Numerical results demonstrate the effectiveness of the pro-
posed methods for obtaining higher order of convergence.

The present article is organized as follows: a convection dominated SPBVP is presented in Section 1.
Theoretical observations of the considered SPBVP are presented in Section 2. Finite difference approxi-
mations on uniform grids are described in Section 3. In Section 4, we develop the higher order nonuni-
form grid transformation in which general central finite difference scheme on nonuniform grids and the
coordinate transformation for the SPBVPs are provided in Sections 4.1 and 4.2 respectively. In Section 4.3,
a local truncation error analysis of the discretized system to construct the 4th order nonuniform grids is
explained. To establish the adaptive sixth order nonuniform grid, the equidistribution principle is pre-
sented in Section 5.1. Further, in Section 5.2, numerical results for different choices of nonuniform grids,
are discussed. Finally, we summarize our results in Section 6.

1. CONVECTION-DIFFUSION-REACTION MODEL
Consider the following convection dominated singularly perturbed boundary value problem (SPBVP):

(1)

with a small positive perturbation parameter ε and parameters . We assume that there exists a
unique solution for model (1). Note, however, that multiple solutions may exist for specific choices of the
functions  and  (see [39] or [4]). Furthermore, we may expect boundary layers in the solution as well.
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For  and , problem (1) has a unique solution and exhibits a boundary layer of  near
, whereas, for  and , this occurs at .

2. THEORETICAL OBSERVATIONS
In this section, we would like to advertise two new theoretical results connected with a generalized ver-

sion of model (1):

(2)

where, additionally, we assume that  and . The results are generalizations of

the ones obtained in [4]. Therein, the authors consider the special case ,  and .
Theorem 1. For the choice , the solution  of model (2), assuming it exists, has a unique max-

imum (no minimum).
Proof. Suppose first that  is constant, i.e.,  . This solution satisfies the bound-

ary conditions, but not differential Eq. (2), since . Therefore,  must have interior
extreme values. At such an extremum, say at , we have  and, using the chain rule, we find

From this follows that

As a consequence, the curvature of the solution is negative and, at , we find a maximum value. There
can not be further maxima, since that would imply the existence of at least one minimum, which is not
possible with . Conclusion: there is only one maximum. 

Theorem 2. Assume that . For , we find the following asymptotic expression for the solution
derivative at the right boundary point of model (2):

Proof. Since we are only interested in the solution near , i.e., away from the boundary layer near
, we may use the regular expansion: . Applying the expansion

, and similar ones for , , ,  and , respectively,
and collecting terms of equal power in , we arrive at

From the first equation immediately follows

Using this result and the fact that  and , we can derive

Substituting this expression in the second equation, gives
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Table 1. Asymptotic results for special choices of the functions and parameters in Theorem 2

0.5 –0.5414203 0.0414 0.0211
0.05 –0.5065322 0.0065 2.7211 e–04
0.005 –0.5003230 3.2300e–04 1.4102e–05

e '(1)u ( )− − 1'(1)
2

u ( )− − − e1'(1)
2 8

u

Next, we note that the equation has a stable slow manifold  with an  approximation by the mani-
fold  described by . This observation can be found by applying Fenichel’s geometric per-
turbation theory (for more details, see [4, 36]).This implies that, away from the boundary layer at ,
we find near :

When choosing , the results follows.

In Table 1 we illustrate this for the special case with , , , , 
and  (as in [4]). Then the result in Theorem 2 predicts that  and  and

. Table 1 confirms this asymptotic behavior.

3. DISCRETIZATIONS ON UNIFORM GRIDS
To compute numerical solutions of (1) we first work out a standard finite difference scheme by discret-

izing the differential equation and boundary conditions. Subdivide the continuous spatial interval
 into a uniformly distributed discrete set of grid points , i.e.,   with grid

size . With , a three point central finite difference discretization of (1) is then given by  

(3)

with boundary conditions  . This scheme has second order accuracy:

(4)

This may cause the standard uniform-grid technique to be computationally inefficient, in situations where
the solution possesses steep parts. In those cases, to obtain an accurate numerical approximation, a very
large number of grid points should be used (or, similarly, a very small ). To clarify this phenomenon, we
consider  and  in model (1). Then the finite difference approximation (3) becomes

(5)

An exact numerical solution of (5) can be found [28] and reads

where  denotes the mesh-Peclet number. It can easily be checked that, for , i.e., , the

numerical solution exhibits an unwanted oscillatory behavior (see also Fig. 3), whereas, for , i.e.,

, monotone numerical solutions are obtained. In the case that , this means that we
would need  (or ) to satisfy the monotonicity conditions. It is obvious that this leads to an inef-
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Fig. 1. Behavior of the exact numerical solutions (5) and (6), depending on the parameter , for the case  and
. We show the oscillatory behavior when  (left panel) and smooth solutions when  (right panel).
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ficient numerical process. Another straightforward discretization is given by an upwind approximation of
the first derivative in (1) with  and :

(6)

Again, we can find an exact numerical solution [28] of this system:

For this method, we always have  and, therefore, obtain a monotone solution, independent of
the value of  (see Fig. 3). However, the error now is reduced to first order, i.e., .

4. FOURTH-ORDER NONUNIFORM GRID GENERATION
To generate the nonuniform grid for model (1), we follow the following steps:
Step 1. Discretize problem (1) on a nonuniform grid.
Step 2. Transform the discretized system from the physical coordinate  to a computational coordinate .
Step 3. Construct the optimal nonuniform grid transformation  based on a local truncation error

analysis of the discretized system.
Step 4. Compute the solution of the discretized system of problem (1) on the optimal nonuniform grid.

4.1. Discretizations on Nonuniform Grids

In order to deal with the appearance of steep boundary layers in the given model (1), nonuniformly dis-
tributed grids could be used to obtain more efficient and more accurate numerical solutions. An example
of a nonuniform discretization of the first derivative in (1) is given by

Similarly, the second derivative can be approximated by
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where the ’s are computed as:

Approximating the derivatives in model (1) by using these expressions, yields the following numerical
approximation:

(7)

with boundary conditions . The idea is to choose a nonuniform central finite difference

method such that the steep parts in the solution can be resolved. We will do this by performing the follow-

ing steps. First, we transform the original model from the physical domain  to a computational

domain . 

4.2. Coordinate Transformation

Let  and  denote the physical and computational coordinates, respectively. Without loss of general-

ity, we define a composed function  and a coordinate transformation between 

and  as:

where  and . The computational domain  can be discretized into  equal segments

 with . The first derivative is then transformed as

(8)

The SPBVP (1) on the computational domain  can be written as

(9)

The general idea behind this is to transform the, potentially, steep solution  in the -coordinate to the,

intended, milder solution  in the -coordinate (see Fig. 2). We also assume that the Jacobian  of

mapping  is bounded from below and above by some positive constant: . We get the

following from Eq. (9):

(10)

with the same boundary conditions . Equation (10) can be discretized on the uniform

grid  as follows:
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Fig. 2. A transformation  from a uniform to a nonuniform grid in which the steep solution  in -coordinate transform

to milder solution  in -coordinate. In this figure  is the number of grid points (called  in the text).
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4.3. Local Truncation Error Analysis

In the following, we study some approximation properties of scheme (7) on nonuniform grids. We set
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and compute the consistency error of the approximation . For this, we need to work out Taylor expan-

sions and compose the finite differences which appear in (37):
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which can be written as

(17)

where  is the truncation error for the second derivative approximation. In a similar way, we can write the
first derivative term in model (1) as:

from which follows that:

(18)

where  is the truncation error for the first derivative approximation. By substituting (17) and (18)
into (37), we get

where

To obtain a higher order approximation, we set , which is the local truncation error for the

SPBVP under consideration (1). Finally, after using the expressions for  and , we find the following
equation for the first term in the local truncation error of model (1):

(19)

Depending on the functions  and , we are able to find a smooth mapping  from this last
expression.

In a next step we compute then the numerical solution of problem (1) on the smooth mapping .

4.4. Numerical Experiments
In this section we present the numerical results for linear and nonlinear convection-diffusion SPBVPs

(1) with boundary layers to validate the proposed numerical strategy, presented in Section 4. Without loss

of generality, we represent  as . To compute the solution numerically, we solve the system (37) effi-
ciently using a tridiagonal matrix algorithm on nonuniform grids. For the nonlinear case, we develop an
exact optimal nonuniform grid transformation by approximating the nonlinear source term upto linear
terms and apply this optimal grid transformation to compute the solution of the nonlinear SPBVP. Fur-
thermore, we compare the results between the uniform (3) and nonuniform (37) finite difference schemes.
In order to measure the quality of the numerical solution, we compute the maximum error (20). For non-
linear SPBVPs, we take the maximum value as a reference value which can be obtained from the numerical

solution of uniform central discretization system (3) at high values of  for decreasing values of .
We measure the accuracy of the numerical solution by computing its distance to the reference solution as
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and the order of convergence can be calculated numerically as:
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Our proposed numerical strategy shows the main effect of an optimal nonuniform grid transformation
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Fig. 3. Exact solutions of the convection-diffusion problem (22) for decreasing values of .
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4.4.1. Test problem 1: linear convection-diffusion model. Consider the singularly perturbed linear con-
vection-diffusion BVP:

(22)

with  and  in (37). This model has the exact solution

(23)

For , the solution is monotonically increasing with a boundary-layer near  Suppose that

we map the steep solution  of the given boundary value problem (22) to the milder solution  in the

new coordinate  as is illustrated in Fig. 2. Model (22) is transformed from the physical coordinate  to

the computational coordinate , via the mapping , to:

(24)

Assuming that  and that the steep solution  is mapped to the linear function  (see Fig. 5), we

obtain from (24) the following nonlinear differential equation for :

which has the exact solution

(25)

This nonuniform mapping with the grid points  is shown in Fig. 4 (middle panel). This choice is

not optimal, as we will see later. For an optimal choice of , we need to do further analysis. To achieve

this, we extract the following expression from the local truncation error Eq. (19) with  and

 for the given model (22):

which has the exact solution

(26)
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Fig. 4. The functions  for a uniform grid (left), a nonuniform grid (25) (middle) and the optimal nonuniform grid

using (26) (right).
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Fig. 5. In the right panel we see the corresponding functions  from nonuniform (25) and optimal nonuniform grid (26)

for  and the left panel depicts the original function  on uniform grid.

1.0

1.0

u(x)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.80.6
x

0.40.2

0.1

0

1.0

1.0

v(ξ)

0.9
nonuniform
optimal nonuniform

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.80.6
ξ→

0.40.2

0.1

0

ξv( )

= .e 0 1 ( )u x
This smooth nonuniform mapping is represented in Fig. 4 (right panel). The corresponding  can be
obtained from solving (24) by using (26), see also in Fig. 5 (right).

To compute the numerical solution, we solve the discretized system (37) for the given boundary value
problem (4.4.1) by using (25) and (26) respectively. In Tables 2 and 3, we compare the results by using uni-
form and nonuniform grids (25) and (26), respectively. From these results, we observe that the numerical
solution with the nonuniform grid (25) is more accurate than the uniform case (3), but they have the same
order of convergence. On the other hand, the nonuniform grid (26) behaves exceptionally: the results are
fourth order accurate. This transformation (26) seems to be optimal, in the sense that we improve the con-
vergence order from 2nd to 4th by choosing a ‘better’ mapping. It is noticed that when  decreases, the
solution becomes steeper (see Fig. 3). The maximum error also slightly decreases but we need more grid

points to see 2nd or 4th order of convergence (see Table 3 for , 10–3, 10–4, 10–5 with grid points

).

4.4.2. Test problem 2: nonlinear convection-diffusion-reaction model. Consider the following singularly
perturbed nonlinear convection-diffusion-reaction SPBVP [4] with homogeneous Dirichlet boundary
conditions:

(27)

Here, we have  and  in SPBVP (1). The solution of this nonlinear problem exhibits a

boundary-layer behavior at the left boundary at  (see also Fig. 6). It is difficult to compute the opti-

mal choice of the nonuniform mapping  for this nonlinear convection diffusion reaction model.

ξ( )v
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Table 2. Maximum error and convergence order for the linear model (22) with 

J
Uniform Nonuniform (25) Optimal nonuniform grid (26)

error order error order error order

10 0.0435 — 3.3025e–05 — 5.6611e–06 —

20 0.0087 2.3219 7.7605e–06 2.0893 3.6031e–07 3.9738

40 0.0020 2.1210 1.8437e–06 2.1540 2.2321e–08 4.0128

80 4.9166e–04 2.0243 4.1671e–07 2.0650 1.3345e–10 4.0640

160 1.2122e–04 2.0200 9.6488e–08 2.1106 8.1537e–11 4.0327

320 3.0107e–05 2.0095 2.3226e–08 2.0546 4.9879e–12 4.0310

640 7.5026e–06 2.0046 5.4692e–09 2.0863 3.1021e–13 4.0071

−=e
1

10

Table 3. Maximum error and convergence order for the linear model (22) with grid points 

Uniform Nonuniform (25) Optimal nonuniform grid (26)

error order error order error order

10–2 7.3138e–04 2.0363 3.3664e–08 2.0317 4.7661e–13 4.0407

10–3 0.0871 1.6025 1.1521e–07 2.0414 9.7757e–12 4.0067

10–4 0.2734 0.1865 6.2397e–06 2.0082 1.6979e–10 3.9559

10–5 0.5548 0.0764 6.6461e–05 1.9321 2.2011e–09 3.8456

10–6 0.6239 0.0411 8.3132e–03 1.7644 8.8924e–07 3.5668

= 640J

e

To obtain a nearly optimal , we approximate the nonlinear term  in (27) by a Taylor series upto the

linear term . In the following, we will construct the exact optimal grids  for the linearized model
with a linear source term and compute with this grid the solution of BVP (27). We solve the nonlinear dis-
cretized system (3) on a uniform grid and scheme (37) iteratively and make use of the Matlab direct
solver fsolve. To start the iterations, we used a sinusoidal function that satisfies the boundary conditions:

 as an initial guess with an amplitude , to be specified for each value of . By approximating
the nonlinear term, the BVP (27) can be written as:

ξ( )x e
u

+1 u ξ( )x

= π0 sin( )u a x a e

+ + + = , = , = .e '' 2 ' (1 ) 0 (0) 0 (1) 0u u u u u
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Fig. 6. Accurate numerical solutions of the nonlinear boundary value problem (27) for decreasing values of .
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Fig. 7. Optimal nonuniform grid for model (27) with .
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The following function solves the linearized BVP exactly:

(28)

where

Note that, since , we have . To find an exact optimal nonuniform grid , we
describe the truncation error as mentioned in (19) with the use of the exact solution (28):

Assuming that , we get the expression:

(29)

where

It can be checked that the following expression solves the problem (29) exactly (see Fig. 7):

(30)

The corresponding  can be obtained from (8) using (30) and (28). The steep solution  in -coor-

dinate is transformed to milder solution  in -coordinate (see Fig. 8).

We compute the numerical solution of model (27), by solving the discretized system (38) on the opti-

mal nonuniform mapping (30). For , we compare the results (in Tables 4 and 5) for the uniform
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Fig. 8. Transformation from the steep solution  to the milder solution  for model (27) with .
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 and the near-optimal nonuniform grid (30), respectively. We observe that the near-optimal non-
uniform grid behaves more accurately and is of higher order than for the uniform case.

The numerical results in Table 5 illustrate that for decreasing values of , the second order of accuracy
for the uniform is obtained. On the other hand, for the near-optimal case of the nonuniform grid (30), we
get approximately fourth order of accuracy. For smaller values of , we need more grid points to get a sec-
ond or fourth order of convergence.

4.4.3. Test problem 3: nonlinear convection-diffusion-reaction problem with two boundary layers. Con-
sider the nonlinear singularly perturbed convection-diffusion-reaction problem as:

(31)

with  and . The solution of this nonlinear problem has two boundary-lay-

ers, one at  and the other at . It is clear that when  decreases, the solution becomes steeper (see
also Fig. 9).

ξ = ξ( )x

e

e

ε + − + = , = , ='' [2(2 1) ]' 4 sin 0 (0) 1 (1) 1u x u u u u
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= 0x = 1x e
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Table 4. Maximum error and convergence order for the model (27) with 

J
Uniform: Optimal nonuniform: (30)

error order error order

10 0.0615 — 4.2318e–04 —

20 0.0097 2.6645 3.4352e–05 3.6228

40 0.0024 2.0150 2.7312e–06 3.6528

80 5.6961e–04 2.0750 2.0112e–07 3.7634

160 1.3861e–04 2.0389 1.4231e–08 3.8209

320 3.3745e–05 2.0383 9.8878e–10 3.8472

640 8.3567e–06 2.0137 6.6543e–11 3.9078

−=e
1

10

ξ = ξ( )x

Table 5. Maximum error and convergence order for model (27) with grid points 

Uniform Optimal nonuniform grid (30)

error order error order

10–2 9.4583e–04 1.9679 5.6252e–09 3.6501

10–3 0.0525 1.7324 7.3423e–07 3.5615

10–4 0.1164 0.4252 2.3286e–6 3.4923

10–5 0.3248 0.0826 4.7442e–05 3.3022

10–6 0.7416 0.0114 1.4261e–04 3.1044

= 640J

e
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Fig. 9. Solutions of model (31) for decreasing value of .
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In the following, we will construct the exact optimal nonuniform grid from the linearized form of
SPBVP (31). For the computation of the numerical solution of nonlinear discretized system of (31) itera-
tively, we adopt the Matlab routine fsolve. The iterations are started with a sinusoidal function that satisfies

the boundary conditions: . This initial guess has an amplitude , to be specified for each
value of .

By taking  and , the linearized form of BVP (31) reads:

The exact solution of this linearized BVP, given in [23], is:

(32)

For an exact optimal nonuniform grid , we investigate the truncation error as mentioned in (19) with
the use of the expression (32), we get the following:

(33)

where

The following expression, calculated with Maple, solves the above linear SPBVP exactly:

(34)

where

Figure 10 shows the optimal mapping (34) for linear SPBVP of (31). The milder solution  can be

obtained from (8) using (34) and (32). Transformation from -coordinate to new -coordinate is pre-
sented in Fig. 11.
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Fig. 10. Optimal nonuniform grid for model (31) with .
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Fig. 11. Transformation from the steep solution  to the milder solution  for model (27) with .
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We compute the numerical solution for SPBVP (31) by solving the discretized system (38) on the opti-

mal nonuniform grid (34) for . The numerical results illustrate that, the (near-) optimal nonuni-

form grid (34) transformation performs exceptionally. This transformation is near-optimal, in the sense

that we are able to improve the accuracy and convergence order by choosing the appropriate mapping (34). For

SPBVP (31), we get approximately 4th order accuracy and Table 6 confirms this behavior.

< �e0 1
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 59  No. 12  2019

Table 6. Maximum error and convergence order for model (31) with 

J
Uniform: Optimal nonuniform: (34)

error order error order

10 0.4264 — 0.0024 —

20 0.0745 2.5169 2.1124e–04 3.5061

40 0.0154 2.2743 1.6884e–05 3.6452

80 0.0036 2.0969 1.2751e–06 3.7270

160 8.6664e–04 2.0545 8.9466e–08 3.8331

320 2.1342e–04 2.0217 6.2456e–09 3.8404

640 5.3289e–05 2.0008 4.4368e–10 3.8152

−=e
1

10

ξ = ξ( )x
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Table 7. Maximum error and convergence order for nonlinear model (31) with  grid points

Uniform Optimal nonuniform grid (34)

error order error order

10–2 0.0064 1.8432 2.7723e–09 3.6245

10–3 0.0716 1.3866 2.6544e–07 3.5421

10–4 0.1022 0.1003 1.4338e–6 3.3106

10–5 0.4303 0.0474 6.6554e–04 3.2012

10–6 0.7226 0.0086 0.0083 3.0035

640

e

We observe that for decreasing values of , the solution becomes more steeper, therefore, we need more
grid points, to improve the accuracy and see the convergence order. From Table 7 it is noticed that to

achieve the same accuracy, the uniform scheme (3) needs approximately a factor of  to  more grid
points than the near-optimal nonuniform grid case. The numerical results clearly demonstrate the effec-
tiveness of the proposed near-optimal nonuniform grid.

5. SIXTH-ORDER ADAPTIVE NONUNIFORM GRIDS

In this section, we first consider the following singularly-perturbed linear boundary-value problem
with inhomogeneous Dirichlet boundary conditions:

(35)

which has the exact solution

(36)

For small values of the perturbation parameter , the steep solution (36) shows a boundary-layer

behavior at . This is illustrated in Fig. 12. However, we will proceed further as if the exact solution is
unknown. We will use (36) only to access the quality of a solution.

Approximating the derivatives in model (35) by using the expressions from Section 4.1, yields the fol-
lowing numerical approximation:

(37)
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Fig. 12. Exact solutions of model (35) for decreasing values of .
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The SPBVP (35) on the computational domain  can be discretized on the uniform grid  as (see also

in Section 4.2):

(38)

Scheme (38) is equivalently with (37). We generate an optimal adaptive nonuniform grid based on the
equidistribution principle. Further, numerical solution is computed of the discretized system of given
problem (35) on the optimal adaptive nonuniform grid to establish a higher order of convergence.

5.1. Adaptive Nonuniform Grid Generation
The aim of the equidistribution principle is to concentrate the nonuniformly distributed grid points in

the steep regions of the solution (see [7, 13, 34, 40] and references therein). In this principle, the desired

mapping  is obtained as a solution of the nonlinear problem:

(39)

where  is the so-called monitor function. The name equidistribution has to do with the fact that we

would like to ‘equally distribute’ the positive valued and sufficiently smooth function  on each non-
uniform interval. For this, we first define the grid points

Next, we determine the grid point distribution such that the contribution of  on each subinterval 

is equal. A discrete version of (39), after integrating once, reads:

In practice, one has to choose the monitor function  and solve the nonlinear Eq. (39) to obtain the

required mapping . Equation (39) can be discretized using central finite differences as:

(40)

with boundary conditions , . Equation (40) is called a discrete equidistribution principle. The
discrete system can be solved efficiently using a tridiagonal matrix algorithm. The iterations are continued
until convergence for a prescribed tolerance has been achieved.

5.2. Numerical Results
The aim of this section is to point out that it is possible to develop a central three-point finite-differ-

ence scheme on nonuniform grids which exhibits a higher order accuracy than expected and known until
now. We solve the discretized system of SPBVP (35) on adaptive nonuniform grids based on the equidis-
tribution principle. We establish these higher-order optimal grids (4th order and 6th order) with the help
of a local truncation error analysis of the discretized system of 35. Numerical experiments show that the
other choices of grid distribution lead to a substantial degradation of the accuracy. Numerical results illus-
trate the effectiveness of the proposed numerical strategy for linear and nonlinear SPBVPs. The accuracy
numerical solution is measured by computing its distance to the reference solution as described in
Eqs. (20) and (21).

5.2.1. Case 1: fourth-order accuracy. The discretization of model (35) by approximating the second
derivative on nonuniform grids, is given by

(41)
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Scheme (41) can be equivalently rewritten as:

(42)

We rewrite expression (42):

(43)

where

For 4th order of convergence, the discretized system is defined as:

(44)

This is equivalent to scheme (41).

We study the approximation properties of scheme (41) on general nonuniform grids. For this, we need
to work out Taylor expansions and compose the finite differences which appear in (41):

(45)

Assume further that the mapping , is sufficiently smooth. Note that the grid difference functions 
and  can be written as:

(46)

We obtain the asymptotic expression:

(47)

We transform the system  so, from (47), one gets

(48)

In general, scheme (41) is second order accurate. However, we notice that scheme will be fourth order

accurate, if the mapping  satisfies the following equation:

(49)

where  is a solution of (35). Equation (49) can be rewritten as:

Since , we obtain . For our numerical simulations, we make the following choice of

the monitor function to illustrate the use of the equidistribution principle (see Section 5.1):

(50)

In the equidistribution method, we obtain the mapping  from (39). For SPBVP (35), we can write the
monitor function in a generalized form:

(51)
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Table 8. Maximum error and convergence order for Case I for different choices of  and 

J
error order error order error order error order

10 0.0170 — 9.2012e–05 — 0.0099 — 0.4733 —

20 0.0041 2.0518 5.3023e–06 4.1171 0.0027 1.8745 0.3353 0.4973

40 0.0010 2.0356 3.1052e–07 4.0939 6.7831e–04 1.9929 0.2332 0.5239

80 2.4523e–04 2.0278 1.8629e–08 4.0591 1.6817e–04 2.0120 0.1575 0.5662

160 6.0609e–05 2.0165 1.1383e–09 4.0326 4.1676e–05 2.0126 0.0989 0.6713

320 1.5062e–05 2.0086 9.6514e–11 4.0328 1.0365e–05 2.0075 0.0664 0.5748

ω = .e 0 01

ω = 1 ω = 1/4
( ')u ω = 1/5

( ')u ω = 2
( ')u
We take the optimal choice of the monitor function (50) to establish the 4th order of convergence for

model (35). The numerical experiments are performed for different choices of  in (51) and 

We slightly change the monitor function by changing the values of  and observe that the convergence

order also changes. Table 8 shows clearly that the optimal result is obtained for . This is the optimal
choice to get the higher order of convergence  for scheme (41). On the other hand, for other choices of

the monitor functions  with different  in (51), we obtain 2nd order of convergence. However, for the

choice , the convergence of order falls down to , which is, of course, to be avoided for prac-

tical numerical simulation. As mentioned above, by taking different choices for the monitor functions ,

we observe a difference in accuracy and convergence order of the numerical solutions. An even higher

order of convergence can be found by an appropriate choice of the monitor function in the next section.

5.2.2. Case II: sixth-order accuracy. Instead of only using the grid values  for the approximation

of the linear reaction term in (35), we consider now the case  and  in (43), which means that

the reaction term will be approximated on a three-point stencil ,  and .

We expand the various terms of expression (43) in a Taylor expansion as mentioned in (45) and (46).

We obtain the following:

(52)

We now determine the values for  for Case II, where the coefficients  and  are similar to

the ones in Case I. We can rewrite expression (52) in the following way:

where the coefficients of  are set as:

(53)

Making use of the coefficients , …  and  from Case I, we obtain the following three expressions

for the unknowns coefficients for Case II:
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Table 9. Maximum error and convergence order for Case II for different choices of  and 

J
error order error order error order error order

10 0.0092 — 0.0025 — 2.1171e–05 — 0.0083 —

20 0.0025 1.8797 5.8710e–04 2.0902 3.8724e–07 5.7727 0.0020 2.0531

40 6.2523e–04 1.9995 1.4199e–04 2.0478 6.7322e–09 5.8460 4.7668e–04 2.0689

80 1.5463e–04 2.0156 3.4757e–05 2.0304 1.1312e–10 5.8952 1.1680e–04 2.0290

160 3.8305e–05 2.0132 8.5887e–06 2.0168 1.8454e–12 5.9378 2.8851e–05 2.0173

320 9.5462e–06 2.0045 2.1343e–06 2.0087 2.8758e–14 6.0038 7.1685e–06 2.0189

ω = .e 0 01

ω = 1/2
( ')u ω = 1/11

( ')u ω = 1/12
( ')u ω = 1/13

( ')u
The terms  from  and Eqs. (54) define . For a higher order accuracy, we expand several
more terms of the Taylor expansion of Eq. (43) and then estimate the terms asymptotically as mentioned
in Eqs. (45), (46), respectively. Finally, Eq. (43) yields:

For Case II, we obtain a higher order of accuracy (supra-convergence), if the transformation  satisfies
the following relation:

From this follows the equidistribution principle:

(55)

It is easily checked from (36), that , and we find for Case II the equivalent equation:

(56)

Next, we numerically solve the system (43) with the monitor function  from (56). As indeed

follows from the theory, we get more accurate results and a 6th order accuracy (see Table 9). By consider-

ing other choices for the monitor function, we observe that by taking  in (51), scheme (43) sud-
denly drops to 2nd order of accuracy, the same as or the uniform grid case (see Fig. 13). Also, for this
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Fig. 13. Convergence order for several choices of the monitor function  for Case I (left) and for Case II (right).
We observe numerical evidence of the theoretically predicted convergence order, depending on the power in the monitor
function. The convergence order can be two for standard choices (left and right panel), but also four (left panel) and even
six (right panel) for special monitor functions, yielding supra-convergence. 
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Table 10. Maximum error and convergence orders for different choices of the grids for model (57): a uniform grid
(second order), nonuniform grids with  ( fourth order) and  ( sixth order)

J
uniform: 

error order error order error order

20 0.0153 — 3.4663e–04 — 2.6304e–05 —

40 0.0038 2.0194 4.1124e–05 3.1663 8.4274e–07 4.9641

80 9.4621e–04 2.0057 4.3215e–06 3.2740 2.2635e–08 5.2185

160 2.3584e–04 2.0013 3.8656e–07 3.4591 5.6042e–10 5.3359

320 5.8774e–5 2.0049 3.4502e–08 3.4967 1.3462e–11 5.3998

η = 1/4 ≈ η = 1/12 ≈

ω = 1 ω = 1/4
( ')u ω = 1/12

( ')u
choice of the monitor function in Case I (see Table 8) it gives 4th order accurate solutions. We also demon-

strate this by taking slightly changed values of  or : we obtain second order of accuracy for

nonoptimal grids. The power  in (56) gives the optimal sixth order accuracy, which is the maxi-
mum order that can be obtained on a three-point nonuniform stencil. No further improvement of the order
can be reached. This follows directly from the analysis of systems (53) and (54).

5.3. Numerical Implementation for a Nonlinear Problem

To show the effects on a nonlinear model, we finally consider the SPBVP:

(57)

Equidistribution Eqs. (40) with monitor functions , , and , respectively, are

being solved iteratively in combination with (43). We cannot find an exact optimal grid transformation as

for the linear case. Therefore, we approximate model (57) by approximating . Optimal nonuni-
form grids, for obtaining fourth and sixth order accuracy for the linear case are given by grid transforma-

tion (51) with  and , respectively. A reference solution of model (57) has been obtained by

applying a uniform grid with  and the routine  from Matlab. The exact solution (36) of the
linearized model (35) has been chosen as the initial guess for the iterative procedure. The numerical results
can be found in Table 10.  

We clearly observe an almost fourth order  and almost sixth order  accuracy of the pro-

posed nonuniform grid methods. The full orders of four and six cannot be reached, since we approximate
the nonlinear function in SPBVP (57) by a linear one. Dispite of the linearization, a significant gain in
accuracy can be realized for the nonlinear case as well.

6. CONCLUSIONS

In the present article, we proposed a higher order nonuniform finite difference grid, to solve singularly
perturbed boundary value problems with steep boundary-layers. We have presented some theoretical
properties concerning the extremum values and the asymptotic value at the right boundary point. Tradi-
tionally, a three point central finite differences on a uniform grid produces a second order of accuracy.
In this paper, we have developed more accurate and higher order of accuracy nonuniform grid approxi-
mations. We have provided several examples of singularly perturbed, both linear and nonlinear, convec-
tion-diffusion-reaction problems, which demonstrate the effectiveness of the proposed numerical strat-
egy. We presented a detailed discussion how to obtain a higher order of accuracy by considering a special
way of discretizing the given system. The proposed method on optimal nonuniform grids performed
exceptionally. We established numerically, not only 4th-order but also a 6th-order of accuracy by consid-
ering only three point central nonuniform finite differences. We also showed that other choices of the grid
distributions lead to a substantial degradation of the accuracy. Numerical experiments have confirmed
this behaviour. Comparisons between numerical results illustrate that, to achieve the same accuracy, the
proposed method needs approximately a factor of 5–10 fewer grid points than the uniform case. This fac-
tor depends, of course, on the value of the small perturbation parameter  as well.

η = 1/11 η = 1/13
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