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Adaptive Grids for Non-monotone Waves  m)
and Instabilities in a Non-equilibrium Ty
PDE Model

Paul A. Zegeling

Abstract In this paper, the importance of both the analysis and computation is
emphasized, in relation to a bifurcation problem in a non-equilibrium Richard’s
equation from hydrology. The extension of this PDE model for the water
saturation S, to take into account additional dynamic memory effects gives rise
to an extra third-order mixed space-time derivative term in the PDE of the form
T V. [f(S)V(S)]. In one space dimension, travelling wave analysis is able to
predict the formation of steep non-monotone waves depending on the parameter
7. In two space dimensions, the parameters t and the frequency w of a small
perturbation term, predict that the waves may become unstable, thereby initiating
so-called gravity-driven fingering structures. For the numerical experiments of the
time-dependent PDE model, we have used a sophisticated adaptive grid r-refinement
technique based on a scaled monitor function.

1 Introduction

Space-time evolution described by nonlinear PDE models involves patterns and
qualitative changes induced by parameters. In this report I will emphasize the
importance of both the analysis and computation in relation to a bifurcation problem
in a non-equilibrium Richard’s equation from hydrology. The extension of this PDE
model for the water saturation S, to take into account additional dynamic memory
effects, was suggested by Hassanizadeh and Gray [7] in the nineties of the last
century. This gives rise to an extra third-order mixed space-time derivative term
in the PDE of the form = V - [ f(S)V(S;)]. In one space dimension, travelling wave
analysis is able to predict the formation of steep non-monotone waves depending on
the parameter t. It is shown that, in this framework, theory from applied analysis,
accurate numerical PDE solutions and also the experimental observations from the
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laboratory [5, 14] can be nicely matched. In two space dimensions, the parameters
7 and the frequency w (appearing in a small perturbation term), predict that the
waves may become unstable, thereby initiating so-called gravity-driven fingering
structures. This phenomenon can be analysed with a linear stability analysis and
its effects are supported by the numerical experiments of the 2D time-dependent
PDE model. For this purpose, we have used an efficient adaptive grid r-refinement
technique based on a scaled monitor function. The numerical experiments in
one and two space dimensions confirm the theoretical predictions and show the
effectiveness of the adaptive grid solver.

2 The Non-equilibrium PDE Model

The PDE model describing non-equilibrium effects in a two-phase porous medium
is given by [4, 7-9, 21, 22]:

St =V - (DESVS) + [f (D] + V- [F(SHV(S)],

with (x,z,¢) € [xL, xr] X [zL,zr] X (0, T], 1)

where 7 is a non-equilibrium parameter, D(S) is a nonlinear diffusion function and
f(S) is a fractional flow function, respectively.

2.1 The One-Dimensional Case

Assuming a constant diffusion and a linearized non-equilibrium term, respectively,
in one space dimension, PDE model (1) can be reduced to:

St =D Sz + [f(8)]z +T8z2e,  (2,8) €21, zr] X (0, T}, (2)

with initial condition S(z,0) = So(z). The water saturation is represented by
the variable S(z,t) € [0,1], D > O is a diffusion coefficient and 7 > 0
the non-equilibrium parameter (see also [7, 21, 22]). The function f satisfies:
f(O) =0, f(1) = 1, f/(S) > 0 and is related to a fractional flow function in
the porous media model [22]. In particular, two choices for the function f are
considered. The first one is a convex-shaped function, representing a one phase
situation (only water), i.e.,

S2
f(8)= ER
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and the second one is a convex-concave function, indicating two phases (both water
and air are present):

S2
S=5—-——.
S 2+ (1 - 5)?
Dirichlet conditions are imposed at the spatial boundaries: S(zz,?) = S— and

S(zr,t) = S4+. The initial water saturation So(z), the boundaries of the spatial
domain, the final time 7" and the values for 0 < S_ < S; < 1, D and © will be
specified in the description of the numerical experiments.

2.2 Travelling Waves: A Bifurcation Diagram

This section discusses special types of solutions in PDE model (2): we are interested
in travelling wave (TW) solutions. For simplicity of the analysis, we assume that
f(S) = S2. The convex-concave case is treated in [21, 22] which gives rise to an
even richer structure of the dynamics. The TW Ansatz, assuming a positive constant
speed v, can be written as:

S(z,t)=¢@z+vet)=¢{&), ¢€(—00,+0), v>0.
Substituting this Ansatz in PDE (2), yields the third-order ODE:

v =Do" +[p* +v1e”, (3)

where the ' stands for taking derivatives with respect to the TW-variable ¢.
Integrating (3) between —oo and ¢ and wusing the fact that

p(—00) = S_, ¢'(—00) = ¢"(—00) = 0, gives the second-order ODE:
Vip—S)=D¢ +¢* -8 +vr1¢, (4)

which can be re-written as a system of first-order ODEs:

¢ =1,
V(p—S_)+S2—p>—D v (5)

[
‘ﬁ— VT

A TW for (2) in the coordinate system (x, ) is represented by a trajectory in the
(¢, ¥)-plane connecting an unstable stationary point (at { = —o0) of (5) with
a stable one (at ¢ = +00). There are only two stationary points in system (5):
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(¢, ¥) =(5-,0), and (¢, ¥) = (S4+, 0). The eigenvalues of the linearized system
of (5) can easily be calculated:

o [p s.—s
Alp = =l . 6
Y27 20 \/41'2\)2 - o= (©)

From (6) it follows that the point (S_, 0) is an unstable (saddle) point in all cases,
since AjA2 < 0. Depending on the PDE parameters £ and t, we distinguish
between two cases for the second stationary point (S;,0). Non-monotone TWs
exist for t > 1. = D?/(Sy — S_) since the saddle point is then connected to
a spiral point (a focus). This situation is clarified in terms of the PDE solutions
(Fig. 1), a bifurcation diagram (left panel in Fig.2) and a phase plane plot (right
panel in Fig. 2). For t = 0, it is known that only monotone waves satisfy the PDE
model [4]. Since we are looking also for non-monotone waves, we need the extra
7-term in PDE (2) to describe such phenomena. Note again that the convex-concave
case is treated in [22], for which there may exist plateau-type waves as well. In
that case three stationary points appear in the dynamical system with a much more
complicated behaviour in the phase plane. These plateau-waves will be detected in

08 | { os} 51 {1 os}
06 | { os} { o6} «
1
0.1 { 04 { o4
0.2 { o2} { 02 1
%0 20 40 6 "0 2 4 w0 "0 20 40 60
(a) (b) (c)

Fig. 1 The one-dimensional saturation profile for various values of the non-equilibrium parameter
7. (a) T = 0 (monotone TW); (b) T = 1 (mildly non-monotone TW); (¢) = 5 (oscillating non-
monotone TW)
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Fig. 2 A bifurcation diagram (left) indicating the existence of monotone waves and non-monotone
waves depending on the parameters D and 7. The black curve is defined by: D = /t(S; — S_).
The right panel shows, for three different values of the parameter 7, trajectories in the phase plane
(¢, ¥). The red and blue curves correspond to non-monotone waves (t > t. > 0) and the black
curve denotes a monotone wave (1 = 0)

the numerical experiments, where we will use an adaptive moving grid method to
solve the PDE model (2).

2.3 The Adaptive Moving Grid in 1D

For the numerical simulations of PDE model (2) we will apply an adaptive moving
grid technique that is based on a coordinate transformation (for more details: [2, 8,
10, 11, 19, 24, 25)):

{z = 2(€, 9), -

t=1(&,0) =1
Then, PDE model (2) is transformed to the following form:

(v +z9) D(Us
vy —————up=— | =

v,
T %T7F J);Jrjf(“)

3 l7(73),) --(3(3),) |
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with v(§, #) = S(z(§, ©), ?) and the Jacobian of transformation (7): J = z¢.
The adaptive grid transformation that defines the time-dependent non-uniform grid
has to satisfy the adaptive grid PDE;

[0+t Ts) Ml =0, 7>0.

Here, M := /1 + [S;)? is the monitor function, reflecting the dependence of the
non-uniform grid on the spatial derivative of the PDE solution.
The operator

32

o =1 +ks(ks + 1)352
is applied to obtain a smoother grid transformation in space. The first adaptivity
constant k; > 0 is a spatial smoothing (or filtering) parameter. Further, the second
adaptivity constant 75 takes care of the smoothness in the time-direction. Forx; > 0
and 7, > O, after semi-discretization, it can be shown [10] that the spatial grid
satisfies the condition

Ks < Azit < ks +1

for all gridpoints z; and all time ¢+ > 0. Note that, for x; = t; = 0 (no smoothing),
we return to the basic equidistribution principle [z: M]s = 0. For more details
on the adaptive grid and the smoothing operators we refer to [10, 24, 25). The
transformed PDE and the adaptive grid PDE are simultaneously semi-discretized in
the spatial direction following a method-of-lines approach. A central, second-order,
uniform approximation for the transformed derivative terms in the &-direction is
used. The time-integration of the resulting coupled ODE-system is done by a BDF
method with variable time-steps in DASSL [16].

2.4 Numerical Results

In this section, we perform some numerical experiments to show the accuracy and
effectiveness of the adaptive moving grid. This will also illustrate and confirm
the TW analysis in Sect.2.2. The adaptive grid parameters are chosen as follows:
ks = 2 and 7; = 0.001 and the time-integration a tolerance in DASSL is set to the
value 10~*. The initial condition is a steep wave starting at the right boundary of
the domain and reads:

S(z,0) = So(@) = S_ + -;-(S+ — $.)(1 + tanh(R( — 20))),
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fixed uniform grid; 101 grid points adaptive moving grid; 51 grid points
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Fig. 3 Upper two panels for the case T = 0: oscillating uniform (¥ = 101) grid solutions (left)
and non-oscillating adaptive grid solutions with N = 51 (right). The lower two plots (with a close-
up in the right panel) display the time-history of the adaptive grid. In these experiments, we have
chosen: 7 =3 x 107#, D = 2 x 1073, The red lines indicate the exact (asymptotic) wave speed

where z; = 0, zg = 14, S_ = 0, S = 0.6, R = 50 and PDE parameters:
t=10"%and D =1073. In Fig. 3 we show, for T = 0, in which case we know that
only monotone solutions exist, numerical solutions with N = 101 fixed uniform
grid points and with N = 51 adaptive moving grid points. It is clearly observed that
the uniform grid produces an unwanted non-monotone wave, whereas the adaptive
grid nicely keeps the wave monotone. Also, the plot with the time history of the
adaptive grid illustrates the smooth distribution and time-behaviour of the grid with
a constant wave velocity. Figure 4 displays the difference between the convex and
the convex-concave case: non-monotone TWs and plateau-waves. These waves are
predicted by the analysis in Sect. 2.2 and [22].

From ODE (4) it can easily be derived that the asymptotic travelling-wave speed
v satisfies:

L fS9 - £(50)

T ©)
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This yields, respectively, for the convex case v = 0.3 and for the convex-concave
case v &~ 1.1538. In Figs. 3 and 4 the red lines indicate these constant TW speeds.
We observe that the adaptive moving grid follows the waves very accurately.

3 The Two-Dimensional Case

Next, we consider the two-dimensional version of model (1) for the special choices:

fS=8% DGO) =P o>p+1. (10)

3.1 Non-monotone Waves and Instabilities

In contrast with the 1D case, for which both the monotone and non-monotone waves
are stable under small perturbations, the 2D model may give rise to instabilities
(“finger’ structures). It can be shown that for specific values of T > 0, the non-
monotone waves may become unstable. The analysis is based on the following
observations, also mentioned in [6] and [15].

First, the non-equilibrium PDE (1) is re-written as a system of two equations,
one for the saturation S and one for the pressure p:

11
TS[ =Pp _P(S)’ ( )

{St = V- (DEVp) + £,
where $(S) is an equilibrium pressure. Next, the PDEs are written in a travelling
wave coordinate, similar as in done in Sect. 2.2. The saturation and pressure waves
are then perturbed in the following form:

[S = S0(¢) + eef@rtiecthig (1) + O(?), (12)

p = po({) + eeex otk b (£) + O(e?).

These perturbed quantities are substituted in the system of two travelling wave
equations, higher-order terms are being neglected, and equations for the linear
stability analysis are set up. For these, it can be derived, that, for t = 0, the growth
factor k will always be negative, whereas, for r > 0 and for certain frequencies w,
the growth factor can be positive, thereby initiating unstable waves. These can be
related to so-called fingering structures, as we will see in Sect. 3.3.
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3.2 The Adaptive Moving Grid in 2D

The adaptive grid method in two dimensions follows similar principles, with some
extra features and differences, compared to the 1D situation. More details can
be found in, for example, the references [10, 18-20], and [23]. Summarizing the
procedure, the 2D grid transformation reads:

x =2z(&,n,0),
z=2z(&,n, ), (13)
t=1t&,n, %) =10

As an example, the first term of the nonlinear diffusion on the righthand side in PDE
model (1) transforms to:

S 2
(D(S)Sx)x —L (D( i Ss) - (Mg})
£ §

J J T

D(S)zz 2, ) (D(S)z§ )
- =) | —s, ) |
( g . g ),

where J = x¢z, — x,z¢ denotes the determinant of the Jacobian of transformation
(13). The one-dimensional basic equidistribution principle, [Mzg]e = 0, is
extended to a system of two coupled nonlinear elliptic PDEs:

(14)

T
V. (MVx)=0, V:= [535- %] ,
V. (MVz) =0,

where the monitor function M is now defined by
M=y()++VS-VS, with y@)= /f A/VS-VSdédn.
Qc

It is obvious that more sophisticated monitor functions could be used, but, for
the PDE model in this paper, this relatively simple monitor function has shown
to be sufficiently effective. Note that we have added a time-dependent adaptivity
function y (¢) which is automatically calculated during the time-integration process.
It provides additional smoothing to the grid distribution and takes care of the scaling
in the space and solution directions (see [20] for more information about this
choice). It can be shown that the adaptive grid transformation, following this 2D
equidistribution principle with the mentioned monitor function M, remains non-
singular:
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Theorem 1 (For Details of the Proof: [3]) Letr M > 0, M € C L) and
Me, My € CY(Q) for y € (0,1). Then there exists a unique solution

(x,2)eC e (8_20), which is a bijection from Q. into itself. Moreover, the determinant
of the Jacobian J satisfies

J = xezy — xpze > 0.

Some important ingredients of their proof include the Jordan curve theorem, the
Carleman-Hartman-Wintner theorem and the maximum principle for elliptic PDEs.

In reference [1] a deep analysis of the invertibility of more general, so-called o -
harmonic, mappings is given. The transformed PDE model is spatially discretized
uniformly in the £ and n coordinates. For the numerical time-integration of the
transformed 2D non-equilibrium PDE and the adaptive grid equations, we have used
an IMplicitEXplicit-approach [12, 17]. As an example, the diffusion term (14) is
numerically approximated as follows:

(D(S)S:), 2

n n n+1  _ on+l n n n+1 _ on+l

" 1 C1|i+1,j +C1|i,j Si+l,j Si,j . Clli,j + Clli—l,j Si,j Si—l,j
n
Ji

g 2 (AE)2 2 (AE)?

n+1 _ Sn+l Sn+l _ Sn+1
Co1n L DLl o i—1,j+1 — Qi-1,j-1
RN Ry vy LG vy
n+1 _ Sn+1 n+1 _ Sn+1
_ G i1+ T il " i+l,j—1 ~ Pi=1,j—1
2t T AN Ay 2i-1TT A Ay
+1 n+1 n+1 +1
LOlen + Ol S —Siy Ol + Ol Sif — S
2 (An)? 2 (An)? ’

(15)

where C; = %D(S)z%, Cp, = %.’D(S)z;z,,, and C3 = %D(S)zg, respectively.
Instead of the ‘smart’ smoothing operators in space and time, as being used in 1D,
here, a filter, as in [18, 23], on the monitor function is applied several times in each
time step in the following way:

~ 1 1
Mij = Mij+ g[Mi—l,j + Mit1j + Mij—1 + M j41]
16
: (16)
+ E[Mi—l,j—l + Mig1j—1 + Mi—jr1 + Migijg1]-

This modification yields even smoother grid distributions and enhances the time-
integration process as well.
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3.3 Numerical Results

To support the main results of the analysis in Sect. 3.1, we perform some numerical
experiments for the 2D model. The spatial domain is defined by the rectangle
[0, 10] x [0, 60] and the initial solution is a ‘tanh’-type function as in 1D, but
now situated around the value z = 55. We add a small periodic perturbation
with frequency w to test the stability of the two-dimensional waves. The numerical
experiments, unless specified differently, make use of a spatial grid with 41 x 121
grid points.

Figure 5 indeed confirms and illustrates the stability analysis by Egorov et al. [6]
and Nieber et al. [15], also briefly described in Sect.3.1. The left panel shows
the numerically calculated growth factor k of the perturbation as a function of the
initial frequency w for several values of the non-equilibrium parameter t, using the
adaptive grid method from Sect. 3.2. The right panel is taken from [6] and depicts a
very similar dependence of k(w).

0.1,

—e—T=9
. T=17
0.08 T=>5
. 7=3
T=1
0.06 | a=0
0.04 | .
e -
.! -.“
Fidn = N
002 P i . R .
£ 2 \
I 0 (_‘__.,: + — A =
\‘.
—-0.02 | % £
;:
\ S
\ g
L =1
-0.04 | g
5
et LS
0.06 | g
5
E
= 3
0.08 L s
=01 L 1 1 I B I W S— ~0.1! \ \ \ WA
0 1 2 3 4 5 6 8 9 10 0 1 2 3 4 5
—w Wave number, w

Fig. S Left: the growth factor k, numerically determined, as a function of the wave number w of
the perturbation for various values of 7. Right: the theoretical prediction, taken from [6]. Note that
the scales on both axes in the two figures are different. The w on the left is a numerical frequency
added to the initial condition, whereas the w on the right comes from a theoretical analysis. The
global behaviour is the same, but the exact values are different. A similar remark holds for the
growth factor k



Adaptive Grids for Non-monotone Waves and Instabilities 191

RELL 7S TV 22 ST R AN

0 10 0 10

Fig. 6 The water saturation profile and corresponding grid at different times for7 = 0 and 8 =
0.50n a4l x 121-grid

In Fig. 6 we show a stable travelling wave in two dimensions fort = 0, ¢ = 3
and B = 0.5: the initial perturbation disappears quickly and the adaptive moving
grid follows the steep parts of the wave efficiently and accurately. Figure 7 displays
close-ups of the adaptive grid for the solutions in Fig. 6.

Next, in Fig.8 a similar situation is displayed, but now forz = 10, « = 3
and 8 = 0.5: the initial perturbation grows in time and the wave becomes unstable
creating the shape of a ‘finger’. Again, the 2D adaptive grid is situated nicely around
the steep parts of the irregularly shaped travelling wave. Figure 9 shows close-ups
of the adaptive grids for the solutions in Fig. 8.
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0 10 0 10

Fig. 7 Close-ups of the adaptive grid near the steep parts of the travelling wave in Fig. 6 at four
different points of time for t =0 and 8 = 0.5

Figure 10 demonstrates the convergence of the adaptive grid solution to an
unstable finger with steep transitions. Here, the number of grid points is increased
from 21 x 41 up to 81 x 241. Note the extra smoothing of the grid distribution. This
is due to the time-dependent function y (¢) in the monitor function, which becomes
more visible for denser grids. Also, it must be mentioned that the non-uniform grid
has an important effect of the accuracy of the fingering structure. This phenomenon
has also been observed and described in reference [13].

In Fig. 11, the values T = 10, « = 3 and 8 = 0.2 are chosen. The smaller value
of the parameter S8 has clearly the effect of producing a more profound fingering
structure. Figure 12 shows close-ups of the adaptive grids for these numerical
solutions in Fig. 11.
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Fig. 8 The water saturation profile and corresponding grid at different times for t = 10 and
B=050na4l x 121-grid
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Fig. 9 Close-ups of the adaptive grid near the steep parts of the fingering solution in Fig. 8 for
T=10and 8 =0.5
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Fig. 10 Adaptive grids and solutions for the case T = 10 and 8 = 0.5 for an increasing number
of spatial grid points: 21 x 61 (top left), 41 x 121 (top right), 61 x 181 (bottom left) and 81 x 241
(bottom right). Note the additional smoothing effect for denser grids of the function y(¢) in the
monitor function. See also [13] for similar conclusions on the effects of the grid distribution on the
fingering structure
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Fig. 11 The water saturation profile and corresponding grid at different times for T = 10 and
B = 0.2. The instability of the solution, creating a fingering structure, is now more profound than
in the previous case. This is due to the smaller value of the parameter 8
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Fig. 12 Close-ups of the adaptive grid near the steep parts of the fingering solution in Fig. 11 for
T=10and 8§ =0.2
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