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Abstract—This article discusses an adaptive mesh method applied to a bifurcation problem in a non-
equilibrium Richard’s equation from hydrology. The extension of this PDE model for the water satu-
ration S, to take into account additional dynamic memory effects gives rise to an extra third-order
mixed space-time derivative term in the PDE. The one-space dimensional case predicts the formation
of steep non-monotone waves depending on the non-equilibrium parameter. In two space dimen-
sions, this parameter and the frequency in a small perturbation term, predict that the waves may
become unstable, thereby initiating so-called gravity-driven fingers. To detect the steep solutions of the
time-dependent PDE model, we have used a sophisticated adaptive moving mesh method based on a
scaled monitor function.
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1. INTRODUCTION

This article discusses the importance of both the analysis and computation in relation to a bifurcation
problem in a non-equilibrium Richard’s equation from hydrology. The extension of this PDE model for
the water saturation, to take into account additional dynamic memory effects, was suggested by Hassani-
zadeh and Gray [1] at the end of the last century. This gives rise to an extra third-order mixed space-time
derivative term in the PDE. In one space dimension, travelling wave analysis predicts the formation of
steep non-monotone waves depending on the non-equilibrium parameter. It is shown that, in this frame-
work, theory from applied analysis, accurate numerical PDE solutions and also the experimental obser-
vations from the laboratory [2, 3] can be nicely matched. In two space dimensions, the non-equilibrium
parameter  and the frequency (appearing in a small perturbation term), predict that the waves may
become unstable, thereby initiating so-called gravity-driven fingers. This phenomenon can be analysed
with a linear stability analysis is confirmed by the numerical experiments of the 2D time-dependent PDE
model. For this purpose, we have used an efficient adaptive moving mesh technique based on a scaled
monitor function. The numerical experiments in one and two space dimensions confirm the theoretical
predictions and show the effectiveness of the adaptive mesh solver.

2. THE NON-EQUILIBRIUM PDE MODEL

The two-dimensional PDE model describing the non-equilibrium effects in a two-phase porous
medium is described by [1, 4–8]:

(1)

where  is the water saturation,  is the non-equilibrium parameter,  is a nonlinear diffusion function
and  is a so-called fractional f low function, respectively.
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1332 ZEGELING
2.1. The One-Dimensional Case
First, let us take a brief look at the one-dimensional case. For this, assuming a constant diffusion and

a linearized non-equilibrium term, PDE model (1) can be simplified to:

(2)

with initial condition .
The water saturation in one space dimension is represented by the variable ,  is a

diffusion coefficient and  the non-equilibrium parameter (see also [1, 5, 6]). The function  satis-
fies:

and is related to a fractional f low function in the porous media model [5]. In particular, two choices for
the function  are considered. The first one is a convex-shaped function, representing a one phase situa-
tion (only water), i.e.,

and the second one is a convex-concave function, indicating two phases (both water and air are present):

Dirichlet conditions are imposed at the spatial boundaries:

The initial water saturation , the boundaries of the spatial domain, the final time  and the values for
,  and  will be specified in the description of the numerical experiments.

2.2. A Bifurcation Diagram and Travelling Waves
This short section discusses solutions of PDE model (2) in the form of travelling waves (TWs). For sim-

plicity, assume now that . The convex-concave case is treated in [5, 6] which gives rise to an
even richer structure of the dynamics (see Fig. 1). The TW ansatz, assuming a positive constant speed ,
can be written as:

Substituting this ansatz in PDE (2), yields the third-order ODE:

(3)

where the ' stands for taking derivatives with respect to the TW-variable . Integrating (3) between  and
 and using the fact that , , gives the folllowing system of first-order

ODEs:

(4)

A TW for (2) in the original coordinate system  is represented by a trajectory in the -plane con-
necting an unstable stationary point (at ) of (4) with a stable one (at ). There are only two
stationary points in system (4):

It can be deduced that non-monotone TWs exist for
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DETECTING TWO-DIMENSIONAL FINGERING PATTERNS 1333

Fig. 1. In the left frame the solutions in one space dimension are shown for a convex fractional f low function, and in the
right frame for the convex-concave case for different values of the non-equilibrium parameter . 
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Fig. 2. A bifurcation diagram (left panel) indicating the existence of monotone waves and non-monotone waves depend-
ing on the parameters  and . The black curve is defined by: . The right panel shows, for three different
values of the parameter , trajectories in the phase plane . The red and blue curves correspond to non-monotone
waves ( ) and the black curve denotes a monotone wave ( ). 
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This situation is clarified in a bifurcation diagram (left panel in Fig. 2) and a phase plane plot (right panel
in Fig. 2). For , it is known that only monotone waves satisfy the PDE model [4]. Since we are look-
ing also for non-monotone waves, we need the extra -term in PDE (2) to describe such phenomena.

2.3. The One-Dimensional Adaptive Moving Mesh

For the numerical simulations of PDE model (2) in one space dimension, we use an adaptive moving
mesh technique based on a general coordinate transformation from  to  (for more details: [7, 9–13])
The transformed PDE model in the new variables  and  is coupled with the adaptive mesh PDE:

τ = 0
τ

( , )z t ξ θ( , )
ξ θ

ϑ ξσ + τ τ ≥) ) }[ ( )  ) ] = 0, 0,s s
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Fig. 3. The time history of the adaptive mesh (the three panels on the right), the solutions at a few points of time (the three

left panels) for three characteristic cases in the porous media model: the case  (top), a convex  (middle) and a con-

vex-concave  (bottom). The red straight lines indicate the exact (asymptotic) wave speeds for the three cases, as pre-

dicted by formula (6). 
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where  is the Jacobian of the transformation and

is the monitor function, reflecting the dependence of the non-uniform mesh on the spatial derivative of
the PDE solution.

The operator

ξ) = z

+ 2
:= 1 [ ]zS}

∂σ + κ κ +
∂ξ

(

2

2
:= ( 1)s s
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Fig. 4. The two-dimensional mesh transformation. In the left panel we can see how a transformation maps a steep solution

into a milder solution; in the right panel the adaptive mesh can be seen as a system of springs with spring forces  located

at  in terms of monitor function values . 
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is applied to obtain a smoother mesh transformation in space. The first adaptivity constant, 

( ) is a spatial smoothing (or filtering) parameter. The second adaptivity constant  ( )

takes care of the smoothness in the time-direction. For  and , after semi-discretization, it can
be shown [11] that the spatial non-uniform mesh satisfies the condition:

for all meshpoints  and all time . Note that, for  (no smoothing), we return to the basic
equidistribution principle:

For more details on the adaptive mesh and the smoothing operators we refer to [11–13]. The transformed
PDE and the adaptive mesh PDE are simultaneously semi-discretized in the spatial direction following a
method-of-lines approach. A central, second-order, uniform approximation for the transformed deriva-

tive terms in the -direction is used. The time-integration of the resulting coupled ODE-system is done
by a BDF method with variable time-steps in DASSL [14].

2.4. Numerical Results in 1D
In this section, we perform some numerical experiments to illustrate the accuracy and effectiveness of

the adaptive moving mesh in one space dimension. This will also confirm the TW analysis in Section 2.2.

The adaptive mesh parameters are chosen as follows:  and  and the time-integration tol-

erance in DASSL is set to the value . The initial condition is a steep wave starting at the right boundary
of the domain and reads:

(5)

where , , , ,  and PDE parameters:  and . In Fig. 3

(upper two plots) we show, for , in which case we know that only monotone solutions exist, numer-

ical solutions with  adaptive moving mesh points. It is clearly observed that the adaptive mesh
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Fig. 5. Left panel: the growth factor , numerically determined, as a function of the wave number  of the perturbation

for various values of ; right panel: the theoretical prediction, taken from [15]. Note that the scales on both axes in the two
figures are different. The  (left) is a numerical frequency added to the initial condition, whereas the  on the right comes
from a theoretical analysis. The global behavior is the same, but the exact values are different. A similar remark holds for

the growth factor . 
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nicely keeps track of the monotone wave. Also, the plot with the time history of the adaptive mesh illus-
trates the smooth distribution and time-behavior of the mesh with a constant wave velocity. Figure 3 (mid-
dle two and lower two plots) displays the difference between the convex and the convex-concave case:
non-monotone TWs and plateau-waves.These waves are predicted by the analysis in Section 2.2 and [5].

From ODE system (4) it can easily be derived that the asymptotic travelling-wave speed  satisfies:

(6)

This yields, respectively, for the convex case  and for the convex-concave case . In Fig. 3 the
red lines indicate these constant TW speeds. We observe that the adaptive moving mesh follows all waves
very accurately.

3. THE TWO-DIMENSIONAL SITUATION

For the two-dimensional case of model (1) we make the following simplified choices for the fractional

flow function  and diffusion function :

(7)

3.1. Non-Monotone Waves and Instabilities

In contrast with the 1D case, for which both the monotone and non-monotone waves are stable under
small perturbations, the 2D model may give rise to instabilities (“finger” structures). It can be shown that

for specific values of , the non-monotone waves may become unstable. The analysis is based on the
following observations, also mentioned in [15, 16].
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Fig. 6. An -diagram that sketches the dependence of the stability and monotonicity properties of the PDE solution

in two space dimensions. The seven black circles correspond with the seven numerical experiments in Figs. 7–10. 
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First, the non-equilibrium PDE (1) is rewritten as a system of two equations, one for the saturation 

and one for the pressure :

(8)

where  is an equilibrium pressure. Next, the PDEs are written in a travelling wave coordinate, similar

as is done in Section 2.2.The saturation and pressure waves are then perturbed in the following form:

(9)

These perturbed quantities are substituted in the system of two travelling wave equations, higher-order

terms are being neglected, and equations for the linear stability analysis are set up. For these, it can be

derived, that, for , the growth factor  will always be negative, whereas, for  and for certain fre-

quencies , the growth factor can be positive, thereby initiating unstable waves. These can be related to

so-called fingering structures, as we will see in Section 3.3.
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Fig. 7. The upper four plots for  show numerical results for the case  (a monotone stable

wave) and the lower four plots for .
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Fig. 8. The upper four plots for  show numerical results for the case  (a non-monotone stable

wave) and the lower four plots for  (a non-monotone and unstable wave).
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Fig. 9. The upper four plots for  show numerical results for the case  and the lower four plots

for  (both non-monotone and unstable waves).
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3.2. The Adaptive Moving Mesh in 2D
The adaptive mesh method in two dimensions follows similar principles, with some extra features and

differences, compared to the 1D situation. More details can be found in, for example, [10, 11, 17–19].
Summarizing the procedure, the 2D mesh transformation reads:

(10)

Figure 4 (left panel) shows a typical 2D situation of transforming a steep PDE solution in the original
coordinates to a milder one in the transformed coordinates. As an example, the first term of the nonlinear
diffusion on the righthand side in PDE model (1) transforms to:

(11)

where  denotes the determinant of the Jacobian of the two-dimensional transformation (10).

The one-dimensional basic equidistribution principle, , is extended to a system of two coupled

nonlinear elliptic PDEs:

where the monitor function  is now defined by

Figure 4 (right panel) describes the 2D adaptive mesh in terms of minimizing a “mesh-energy” functional
and springs (connected mesh points) and forces (monitor values). It is obvious that more sophisticated
monitor functions could be used, but, for the PDE model in this paper, this relatively simple monitor
function has shown to be sufficiently effective. Note that we have added a time-dependent adaptivity func-

tion  which is automatically calculated during the time-integration process. It provides additional
smoothing to the mesh distribution and takes care of the scaling in the space and solution directions (see
[17] for more information about this choice). It can be shown that the adaptive mesh transformation, fol-

lowing this 2D equidistribution principle with the mentioned monitor function , remains non-singular:

Theorem 1 (for details of the proof: [20]). Let ,  and  for .

Then there exists a unique solution , which is a bijection from  into itself. Moreover, the
determinant of the Jacobian  satisfies:

Some important ingredients of their proof include the Jordan curve theorem, the Carleman–Hart-
man–Wintner theorem and the maximum principle for elliptic PDEs. In [21] a deep analysis of the invert-
ibility of more general, so-called -harmonic, mappings is given. The transformed PDE model is spatially

discretized uniformly in the  and  coordinates. For the numerical time-integration of the transformed
2D non-equilibrium PDE and the adaptive mesh equations, we have used an IMplicitEXplicit-approach
[22, 23]. As an example, the diffusion term (11) is numerically approximated as follows:
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Fig. 10. The upper four plots for  show numerical results for the case  (again a non-mono-

tone stable wave!!) and the lower four plots for  instead of  (yielding an unstable structure in the form of “fin-

gers”).
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where

and

respectively. Instead of the ‘smart’ smoothing operators in space and time, as being used in 1D, here, a
filter, as in [18, 19], on the monitor function is applied several times in each time step in the following way:

This modification yields even smoother mesh distributions and enhances the time-integration process
as well.

3.3. Numerical Results
To confirm and support the theoretical predictions in the analysis in Section 3.1, we perform some

numerical experiments for the 2D model. The spatial domain is defined by the rectangle 
and the initial solution is a “tanh”-type function as in 1D, defined in Eq. (5), but now situated around the
value 55. We add a small periodic perturbation with frequency  to test the stability of the two-dimen-
sional waves. The numerical experiments, unless specified differently, make use of a spatial mesh with

 mesh points.

Figure 5 indeed confirms and illustrates the stability analysis by [15, 16], also briefly described in Sec-

tion 3.1. The left panel shows the numerically calculated growth factor  of the perturbation as a function
of the initial frequency  for several values of the non-equilibrium parameter , using the adaptive mesh

method from Section 3.2. The right panel is taken from [15] and depicts a very similar dependence of .

Figure 6 can be extracted from Fig. 5, if we create a diagram of the -dependence on the frequency .

The seven black circles indicate the seven -values for  in the numerical experiments. For 

and  a monotone and stable wave can be found as predicted: see Fig. 7. For  (upper four plots

in Fig. 8) a non-monotone stable wave is produced. In the four lower plots of Fig. 8 we see, for , a

non-monotone and unstable wave appearing. In Fig. 9, for  (upper four plots) and for  (lower

four plots) we show more non-monotone and unstable waves. It can also be predicted, that for  and

 (in this case ), the non-monotone waves “become” stable again, because of an extra diffu-
sion effect for higher values of the non-equilibrium parameter. This can be seen in Fig. 10 (upper four

plots). Finally, in the lower four plots we have decreased the diffusion coefficient  from 1 to 0.1, thereby

creating even more unstable structures in the form of “fingers”. All runs have been performed with ,

, a spatial mesh of  mesh points, 4000 time steps and a frequency  in the perturbed
initial condition.
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