
Journal of Computational and Applied Mathematics 424 (2023) 115014

h
0
l

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

A generalizedmidpoint-based boundary valuemethod for
unstable partial differential equations
P.A. Zegeling a,∗, M.W.F. van Spengler b

a Utrecht University, Budapestlaan 6, 3584 CD Utrecht, The Netherlands
b University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

a r t i c l e i n f o

Article history:
Received 6 January 2022
Received in revised form 28 September 2022

Keywords:
Boundary value method
Stability region
Numerical stability
Space-fractional heat equation
Backward heat equation

a b s t r a c t

We present a class of Boundary Value Methods (BVMs) that can be applied to semi-stable
and unstable Partial Differential Equation (PDE) models. Step-by-step (initial value)
methods, such as Runge–Kutta and linear multistep methods have numerical stability
regions which do not intersect with certain regions of the complex plane that are
significant to the time-integration of unstable PDEs. BVMs, which need extra numerical
conditions at the final time, are global methods and are, in some sense, free of such
barriers. We discuss BVMs based on generalized midpoint methods, combined with
appropriate numerical initial and final conditions. The stability regions of these methods
intersect with a significant part of the complex plane. In several numerical experiments
we will illustrate the usefulness of such methods when applied to PDE models, such as
a dispersive wave equation, a space-fractional PDE and the backward heat equation.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper we investigate Partial Differential Equations (PDEs) of the form:{ ∂u
∂t (x, t) = Lu(x, t), (x, t) ∈ R × (0, T ],

u(x, 0) = u0(x),
(1)

with spatial differential operator L, plus the corresponding boundary conditions and initial condition u0(x). Of special
interest in this paper are the cases where the operator L describes processes with unstable or both stable and unstable
regions in its domain during the time evolution t > 0. To be more precise, we assume in this paper that the spectrum
of L may contain regions within the entire complex plane. When L has both regions in the left half (stable region) and
the right half (unstable region) of the complex plane, then we call PDE (1) a semi-stable model. Examples of such models
in practical applications are given by combustion processes (flame propagation) [1,2], dispersive wave equations [3–5],
backward-heat equations [6–9] and may appear in fractional-order differential equations [10–13].

Customarily, only differential equations where the entire spectrum of L has negative real part are considered
[14–16]. This is due to the fact that the instability of unstable differential equations often implies instability of numerical
integration methods. For example, initial value methods (IVMs), also known as linear multistep methods, generally suffer
from instabilities when applied to an unstable system. This convention of ignoring unstable models has also made its
way into much of the literature on Boundary Value Methods (BVMs). However, as will be shown in this paper, such a
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severe restriction is unnecessary for these methods. Note that our goal is to describe and explain the numerical stability
properties of the proposed BVMs. We do not aim, however, at comparing the accuracy between BVMs and IVMs.

In Section 2, we will shortly describe BVMs and their relation to IVMs. Moreover, we will introduce a specific class
f BVMs which can be applied stably to unstable differential equations, namely the class of generalized midpoint-based
VMs. Then, some theory and analysis on the accuracy and stability properties of these methods is discussed in Section 3.
umerical results to support the theoretical considerations are described in Section 4. Finally, Section 5 summarizes our
indings.

. Generalized midpoint-based boundary value methods

For simplicity, we will first consider initial-value problems of the form{
u′(t) = f (u(t), t), t ∈ [0, T ],

u(0) = u0.
(2)

uch problems can be solved approximately on some finite grid using Boundary Value Methods (BVMs), which are
escribed extensively in [17–19] and which can be seen as a generalization of initial value methods (IVMs). In short,
BVM consists of two components. The first is a linear multistep formula (LMF) of the form

k∑
j=0

αjun+j − ∆t
k∑

j=0

βjfn+j = 0, (3)

applied over some uniform finite grid t0, . . . , tN ∈ [0, T ], where

un ≈ u(tn), fn ≈ f (u(tn), tn),

and where ∆t is the constant time-step. A well-known example of such an LMF is the explicit midpoint formula given
by

1
2
un+1 −

1
2
un−1 = ∆tfn. (4)

In order to solve the resulting system of equations, k boundary conditions are required of which only one is given,
namely the initial condition u(0) = u0. The second component of a BVM is the choice of the k − 1 additional conditions
hich can be chosen either at the start of the domain or at the end of the domain so at t = 0 or t = T , respectively. These
onditions are generally chosen to be in the form of LMF as well, so in the form of Eq. (3), and are called the additional
nitial and final conditions. The number of initial conditions is denoted by k1 ≥ 1 and the number of final conditions by
2 ≥ 0 with k = k1 + k2. The resulting BVM is called a (k1, k2)-BVM. To see that BVMs are indeed a generalization of
VMs, observe that the methods where k2 = 0, so the (k, 0)-BVMs, are IVMs.

Note that for an IVM of order p, the order of the additional initial conditions should be at least p − 1 to ensure that
he errors are actually behaving as expected [17]. The same condition on the order of the boundary conditions holds for
VMs, as can be seen from the proof of convergence of these methods, given in [17]. To ensure that the error consists
ainly of the errors introduced by the choice of LMF, the boundary conditions will be chosen to be of the same order as

he LMF.
Some well-known classes of IVMs have been generalized to BVMs. Examples are the generalized backward differen-

iation formulae and the generalized Adams methods, which are discussed in, for example, [17]. In this paper, a class of
ymmetric BVMs will be discussed which has some desirable properties for dealing with unstable problems of the form
2). A symmetric method uses an LMF with the property that

αi = −αk−i, βi = βk−i, i = 0, . . . , k. (5)

Such methods are also described in [17], but there the discussion is restricted mostly to the case where k is odd, so for
example any BVM which uses the trapezoidal LMF. Here, however, we will consider methods where k is even, so where
e can write k = 2ν. Examples of these methods are BVMs which apply the midpoint LMF (4) or the Simpson LMF. The
lass of methods that we will discuss can be seen as a generalization of the midpoint BVM, as described in [20].
Note that the midpoint LMF (4) is the formula that one obtains by setting{

βi = 0, i ̸= ν =
k
2 ,

βν = 1,
(6)

nd by choosing the αi such that the LMF is of the highest order of accuracy. Thus, an obvious generalization of this LMF
s to perform this process for arbitrary k = 2ν. As shown in, for example, [17], the maximal order of accuracy that is
2
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Table 1
Coefficients of the first four generalized midpoint LMF.

k ν αν−4 αν−3 αν−2 αν−1 αν αν+1 αν+2 αν+3 αν+4

2 1 −
1
2 0 1

2

4 2 1
12 −

8
12 0 8

12 −
1
12

6 3 −
1
60

9
60 −

45
60 0 45

60 −
9
60

1
60

8 4 3
840 −

32
840

168
840 −

672
840 0 672

840 −
168
840

32
840 −

3
840

attainable in this fashion is k. This LMF is found by solving the linear system⎛⎜⎜⎜⎜⎝
1 1 · · · 1
0 1 · · · k
0 12

· · · k2
...

...
...

0 1k
· · · kk

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

α0
α1
...

αk

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0
1
2ν
...

kνk−1

⎞⎟⎟⎟⎟⎠ . (7)

One can show that the resulting coefficients in fact satisfy the symmetry relations (5). The proof of this statement is a
simplification of the proof for the generalized Simpson LMF in [17]. The α-coefficients of these LMF for ν = 1, 2, 3, 4 are
shown in Table 1. Coefficients of some higher order methods are shown in Appendix B.

We define the νth generalized midpoint-based BVM as the BVM which applies the νth LMF as described above with
ν − 1 additional initial conditions given by

k∑
j=0

α̃j,ruk−j = ∆tfν−r , r = 1, . . . , ν − 1, (8)

and ν additional final conditions given by
k∑

j=0

αj,ruN−k+j = ∆tfN+r−ν, r = 1, . . . , ν, (9)

where the αj,r satisfy the systems⎛⎜⎜⎜⎜⎝
1 1 · · · 1
0 1 · · · k
0 12

· · · k2
...

...
...

0 1k
· · · kk

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

α0,r
α1,r
...

αk,r

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0
1

2(ν + r)
...

k(ν + r)k−1

⎞⎟⎟⎟⎟⎠ , r = 1, . . . , ν, (10)

and where we let α̃j,r = −αj,r for all j and r . As shown in Appendix A, the resulting boundary conditions are of the order
k as well, which is a preferable choice as will become apparent in the next section. Note that Eq. (10) is easily derived
from the order conditions for a general pth order LMF

k∑
j=0

(jsαj − sjs−1βj) = 0, s = 0, 1, . . . , p. (11)

Furthermore, the resulting methods can be shown to be unconditionally stable when applied to problems of the form (2),
as will be shown in the next section. The coefficients of the additional boundary conditions up to ν = 4 are shown in
Appendix C.

3. Theory and analysis

In the theoretical discussion within this section, we shall restrict ourselves to the case of the linear test equation
defined by

u′
= λu, λ ∈ C, (12)

as these results can easily be extended to the general case. Note that we do not exclude unstable equations where λ has
positive real part. For simplicity, we introduce the variable q = λ∆t .
3
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In the discussion that follows, the characteristic polynomial of an LMF will be used extensively. This polynomial is
efined as

π (z, q) = ρ(z) − qσ (z), (13)

here

ρ(z) =

k∑
j=0

αjz j, σ (z) =

k∑
j=0

βjz j. (14)

urthermore, some specific types of polynomials will be of importance, namely Nk1k2-polynomials and Sk1k2-polynomials.
The prior are defined as polynomials of which k1 roots lie on the closed unit disk and k2 roots lie outside of the closed
nit disk in the complex plane, whereas the latter are defined as those polynomials for which k1 roots lie on the open
nit disk and k2 roots lie outside the closed unit disk.

.1. Stability regions and properties of BVMs

Brugnano and Trigiante provide a generalization of the Dahlquist equivalence theorem in [17,21], which states that a
k1, k2)-BVM is convergent if it is consistent and if the polynomial ρ(z) of the corresponding LMF, as defined in Eq. (14), is
f type Nk1k2 . Alongside this, we require stability of a method for some fixed ∆t in order for it to be applicable. For IVMs,
ne can show that a method is absolutely stable for some choice of ∆t if the resulting characteristic polynomial π (z, q)
s a Schur polynomial, so a polynomial of type Sk0. For a proof of this result, see for example [14,22]. Due to this result,
he region in the complex q-plane where π (z, q) is a Schur polynomial is often called the region of absolute stability of
n LMF.
The definition of the region of absolute stability has been generalized to the case of (k1, k2)-BVMs in [17,21,23,24]:

efinition 3.1 (Region of (k1, k2)-absolute Stability). The region

Dk1,k2 = {q ∈ C : π (z, q) is Sk1k2},

s called the region of (k1, k2)-absolute stability of an LMF.
One can show that the system of finite difference equations, that results from some choice of (k1, k2)-BVM and fixed

t , is indeed stable if π (z, q) is of type Sk1k2 . The proof of this result is a generalization of the proof, given in [17], for the
ase where k1 = k and it will be shown in the upcoming paper [25]. A sketch of this proof is given in Appendix D.
Note that the regions of absolute stability for different choices of k1 and k2 are separated by the set in the complex

-plane for which π (z, q) has a root of unit modulus. This curve is called the boundary locus and is commonly denoted
y Γ . We can parameterize this curve as

Γ = {q(eiθ ) ∈ C : θ ∈ [0, 2π )}, (15)

here

q(z) =
ρ(z)
σ (z)

. (16)

ome easily verifiable properties of this curve are that it always contains the origin if the corresponding LMF is consistent
nd that it is symmetric with respect to the real axis. In what follows, it will be shown that the regions of absolute stability
f the generalized midpoint-based BVMs have a rather advantageous property.

.2. Stability properties of generalized midpoint-based BVMs

A first observation to make is that, for a symmetric LMF, the polynomials ρ(z) and σ (z) from Eq. (14) satisfy

ρ(z) = −zkρ(z−1), σ (z) = zkσ (z−1). (17)

sing this observation, we can show that the boundary locus of any symmetric method is contained in the imaginary
xis, since

ℜ(q(eiθ )) =
1
2

(ρ(eiθ )
σ (eiθ )

+
ρ(eiθ )

σ (eiθ )

)
=

1
2

(ρ(eiθ )
σ (eiθ )

+
ρ(e−iθ )
σ (e−iθ )

)
=

e−ikθ

2σ (eiθ )σ (e−iθ )

(
ρ(eiθ )σ (eiθ ) − ρ(eiθ )σ (eiθ )

)
= 0.

oreover, for the LMF involved in the generalized midpoint-based BVMs, we find σ (z) = zν . So, σ (z) has no roots of unit
modulus from which it follows that the boundary locus is bounded. Thus, the boundary locus of these LMF is a bounded
interval of the imaginary axis which is symmetrical around the origin. Therefore, we obtain

Dk1k2 = C \ Γ , (18)

or some k and k .
1 2

4
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Another interesting property of the midpoint LMF is that their characteristic polynomials satisfy

π (z, q) = ρ(z) − qσ (z) = −zk
(
ρ(z−1) + qσ (z−1)

)
= −zkπ (z−1, −q). (19)

It follows from this property that, if ξ is a root of π (z, q), then ξ−1 is a root of π (z, −q), and thus that, if π (z, q) is of type
k1k2 , then π (z, −q) is of type Sk2k1 . Combining this with Eq. (18) shows that, for the LMF of midpoint-based BVMs:

Dνν = C \ Γ . (20)

s a result, the stability of the generalized midpoint-based BVMs, as defined in the previous section, does not depend
n the eigenvalues of the problem. This property makes these methods especially useful when dealing with semi-stable
ifferential equations where the eigenvalues of the corresponding differential operator can lie in both the left half and
he right half of the complex plane, as will be shown in the next section.

In [17] it is shown that for k odd the left and right halves of the complex plane belong to different regions of absolute
tability. Therefore, these methods cannot be properly applied when the spectrum of the relevant differential operator
ontains values with positive real part and values with negative real part. This is why we have restricted ourselves to the
ase where k is even.

.3. Generalized midpoint-based BVM with ν = 2

As an example, consider the generalized midpoint LMF for ν = 2. The coefficients are given in Table 1. The
orresponding characteristic polynomial reads: π (z, q) = −

1
12 z

4
+

8
12 z

3
− qz2 −

8
12 z +

1
12 . Note that zero is the only root

f the polynomial σ (z), so the boundary locus is indeed bounded. Moreover, it follows from the previous subsection that
he boundary locus is contained in the imaginary axis. Therefore, Γ is a closed interval of the imaginary axis. Lastly, if we
heck, for example, the case q = 1, one easily verifies that π (z, 1) is of type S2,2, from which it follows that D2,2 = C \Γ .
Thus, this LMF is unconditionally stable for fixed ∆t , if it is applied with two initial and two final conditions.

4. Numerical results

By applying a BVM to a linear system of differential equations, a single large linear system is obtained. Contrary to
systems obtained from IVMs, this system generally cannot be solved in a step-by-step fashion. Thus, when applying a
BVM to solve a system of m ODEs, a linear system of Nm×Nm has to be solved. On the other hand, in case of an explicit
IVM, the numerical solution only requires N matrix vector multiplications involving a km × km matrix and an implicit
VM only requires solving N linear systems involving a km × km matrix. Clearly, for relatively small k, both types of
VMs are significantly less expensive than BVMs. In the results that follow, each linear system was solved using MATLAB’s
ldivide-routine as documented in [26].

.1. A semi-stable ODE

The first example is a semi-stable Ordinary Differential Equation (ODE) and reads:{
u′(t) = cos(t) u(t), t ∈ [0, T ],

u(0) = 1,
(21)

ith exact solution u(t) = esin(t). Fig. 1 shows numerical results obtained by applying Explicit Euler (EE), Implicit Euler
(IE) and the midpoint BVM (ν = 1) in the interval t ∈ [0, 20] for ∆t = 0.1. We observe in the left frame that the absolute
errors for EE and IE grow rapidly, while the BVM errors remain bounded and small. The right frame in Fig. 1 confirms the
second-order behaviour of the BVM method for ν = 1. Note that these EE and IE results would be characteristic for any
xplicit and implicit time-integration method. In Fig. 2 we show the large difference in accuracy between EE (left frame;
ndicated by FT = Forward in Time) and the midpoint BVM (right frame) for ∆t = 0.1 on the extended time interval
∈ [0, 100].

.2. A dispersive wave equation

The second model is a mixed higher-order (‘‘dispersive-wave’’) PDE of the form:⎧⎪⎪⎨⎪⎪⎩
utt (x, t) = uxxx(x, t), (x, t) ∈ [0, 1] × [0, T ],

u(x, 0) = sin(2πx), ut (x, 0) = 0, (22)
u(0, t) = u(1, t), ux(0, t) = ux(1, t), uxx(0, t) = uxx(1, t),

5
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Fig. 1. In the left frame, the numerical errors for model (21) with ∆t = 0.1 are displayed for Explicit Euler (black; indicated by FT = Forward in
Time), Implicit Euler (blue; indicated by BT = Backward in Time) and a midpoint-BV method (red), respectively. The BVM outperforms the explicit
and implicit method completely. In the right frame we recognize the second-order convergence of the midpoint-BV method (ν = 1): the error goes
own with a factor of four when decreasing the time step size with a factor of two.

Fig. 2. In the left frame, we show the explicit Euler solution with ∆t = 0.1 (blue) for model (21) in comparison with the exact solution (orange)
on the time interval t ∈ [0, 100]. In the right frame the BVM (ν = 1) solution with ∆t = 0.1 (blue) for ODE model (21) shows an almost perfect
atch with the exact solution (orange).

ith exact solution u(x, t) =
1
2 [e

2π
3
2 t sin(2πx−2π

3
2 t)+e−2π

3
2 t sin(2πx+2π

3
2 t)]. This PDE model has applications, among

others, in hydrodynamics [3,5], and potential theory [4]. It can be written as a system of first-order (in time) PDEs:{
ut (x, t) := v(x, t),

vt (x, t) = uxxx(x, t) := D3
[u(x, t)].

(23)

Semi-discretization of system (23), following the Method-Of-Lines, gives:{
˙⃗u(t) = v⃗(t),
˙⃗v(t) = D3 u⃗(t).

⇔ ˙⃗y(t) =

(
O I

D3 O

)
y⃗(t) := C y⃗(t). (24)

Here, D3 represents the finite-difference matrix of a second-order central approximation for the third derivative uxxx:

uxxx|x=xi ≈
1 (

ui+2 − 2ui+1 + 2ui−1 − ui−2

)
, (25)
2(∆x)3

6
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Table 2
Maximum absolute errors at t = 0.3 and cpu-time in seconds for BVM (ν = 1), applied to model (22), Explicit Euler
(EE) and Implicit Euler (IE) and decreasing values of ∆t with a fixed ∆x = 0.0125.

∆x = 0.0125 BVMer BVMti FTer FTti BTer BTti

∆t = 0.01600 11.5146 0.02 O(105) 0.0105 0.5532 0.0199

∆t = 0.00400 0.7859 0.11 O(1019) 0.0092 0.1528 0.0310

∆t = 0.00100 0.0508 1.84 O(1071) 0.0096 O(1035) 0.1061

∆t = 0.00025 0.0056 43.71 O(1086) 0.0177 O(10104) 0.4053

Table 3
Maximum absolute errors at t = 0.3 for BVM (ν = 1), applied to model (22), for different stepsizes ∆t and ∆x.

BV-method (ν = 1) ∆x = 0.2 ∆x = 0.1 ∆x = 0.05 ∆x = 0.025

∆t = 0.0020 0.9104 0.3628 0.2170 0.2012

∆t = 0.0010 0.8462 0.2859 0.0891 0.0561

∆t = 0.0005 0.8305 0.2648 0.0650 0.0223

∆t = 0.00025 0.8265 0.2598 0.0611 0.0160

together with periodic boundary conditions. Note that the eigenvalues of the matrix D3 are purely imaginary, and that,
therefore, the eigenvalues of C lie in the complex plane under an angle of 45 and 135 degrees, as shown in the upper left
frame of Fig. 3. Also in Fig. 3, numerical results at t = 0.4 are shown for FTCS (Explicit Euler, upper right frame) and BTCS
(Implicit Euler, middle left frame), both with the spatial discretization (25). These methods diverge for decreasing ∆t ,
due to the fact that the eigenvalues of C lie outside of their respective stability regions for ∆t small enough. The middle
right frame displays the generalized midpoint-based method (ν = 1) solution as a function of ∆t at t = 0.4. Lastly, as
comparison with another higher order symmetric BVM but with k odd, the two lower frames show the solutions when
using an extended trapezoidal Rule (ETR) with k = 3 as described in [17]. We expect this method to be unstable due to
the eigenvalues in the right half of the complex plane, which is also observed in Fig. 3. In contrast with the other methods,
the generalized midpoint-based method with ν = 1 clearly converges to the exact solution. Tables 2 and 3 at t = 0.3
confirm this behaviour in more detail. This can also be seen in Fig. 4, which is even more indicative of the divergence of
the FTCS and BTCS solutions, in contrast with the converging BVM solution for an increasing number of time steps Nt .
Note, that the computation time for BVM grows faster than for the FTCS and BTCS methods, as expected due to the global
nature of the method. However, the FTCS and BTCS solutions make no sense at all for this model. Further, it can be seen
from the first two columns in Table 2, that, for ∆x = 0.0125 and decreasing values of the time step ∆t (with a factor
of 4), the error for this BVM method indeed decreases with a factor of (approximately) 16, confirming its second order
accuracy.

4.3. A space-fractional heat equation

Our third numerical example is the (left) space-fractional heat equation of order 3
2 and can be modelled by the PDE:

ut (x, t) = D3/2u(x, t), (x, t) ∈ [−L,M] × [0, T ], (26)

where the (left) Caputo fractional derivative is defined by:

D3/2u(x, t) =
1

Γ ( 12 )

∫ x

−L

uξξ (ξ, t)
√
x − ξ

dξ .

For more details on fractional derivatives, we refer to [10,13,27]. We take the values L = 6, M = 16 and T = 2. Applying
doubling(in space)-splitting(in time) procedure:

utt = (ut )t = [D3/2u]t = D3/2
[ut ] = D3/2

[D3/2u] = D3u = uxxx,

e can re-formulate PDE (26) to the form of system (23), but now with the initial conditions:{
u(x, 0) = u0(x) = e−3(x−2)2 ,

v(x, 0) = ut (x, 0) = D3/2
[u(x, 0)] = D3/2

[u0(x)],

nd, homogeneous Dirichlet boundary conditions, instead of the periodic ones. Note that this doubling-splitting principle
ould be extended to more general p/q-derivatives. Here, it changes the matrix D3 in (24) only in the first two and
ast two rows. One good reason to apply the doubling-splitting to the fractional PDE, is that the fractional derivative (a
7
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Fig. 3. In the upper left frame, the eigenvalue distributions are shown for the D3-matrix and the C-matrix in the semi-discrete model (24). The
pper right and middle left frames, respectively, show the FTCS and BTCS solutions for decreasing values of the time step ∆t . A clear divergence
instability) can be observed. On the other hand, in the middle right frame, the BVM (ν = 1) solution displays a convergent behaviour for decreasing
alues of the time step ∆t . As a comparison, in the two lower frames, numerical solutions are displayed for the ETR(3) BVM-method. Note the
rregular behaviour of the solutions for decreasing values of ∆t , especially, the sensibility with respect to small changes in ∆t in the lower right
rame.
8
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a

o

n
F
B
s

Fig. 4. Left frame: divergence of FTCS and BTCS and convergence of the BVM solutions as a function of the number of time steps Nt for model (22)
t t = 0.4 with spatial stepsize ∆x = 0.01. Right frame: CPU time for the three methods as a function of Nt .

Fig. 5. Unstable solutions with explicit Euler for PDE model (26) after applying the doubling-splitting approach. Left frame: numerical solutions for
t = 0.0, 0.1, . . . , 0.4 with ∆x = 0.05 and ∆t = 0.01 (at t = 0.4 the numerical solution becomes unstable). Right frame: at t = 0.1 decreasing values
f ∆t yield unstable solutions.

onlocal operator) only needs to be evaluated at initial time t = 0, resulting in a sparse matrix C. In Fig. 5 unstable
TCS solutions (increasing t-values in the left frame, decreasing ∆t values in the right frame) and in Fig. 6 similarly for
TCS, the impossibility is illustrated for IVMs to deal with the instabilities caused by the eigenvalue distributions of the
emi-discrete system. On the other hand, Fig. 7 nicely shows that the generalized midpoint-based BVM with ν = 1 is
indeed able to numerically solve this PDE model. For comparison, the lower frame in Fig. 7 displays accurate numerical
solutions of the original space-fractional heat Eq. (26). These reference solutions were obtained by applying the numerical
discretization as discussed in Ref. [28].

4.4. The backward heat equation in 1D

Our final example is the backward (or inverse) heat equation:{
ut (x, t) = −uxx(x, t), (x, t) ∈ [0, 1] × [0, T ],

(27)

u(x, 0) = sin(πx), u(0, t) = u(1, t) = 0,

9
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a
v

∆

B

Fig. 6. Unstable numerical solutions with implicit Euler for PDE model (26). Left frame: numerical solutions for t = 0.0, 0.1, . . . , 1.0 with ∆x = 0.05
nd ∆t = 0.01 (at around t = 0.4 the numerical solution becomes unstable). Right frame shows a similar behaviour: at t = 0.1 for decreasing
alues of ∆t .

Fig. 7. Stable numerical solutions with BVM (ν = 1) for PDE model (26). Upper left frame: numerical solutions for t = 0.0, 0.2, . . . , 2.0 with
x = 0.05 and ∆t = 0.01. Upper right frame: at t = 0.1 decreasing values of ∆t now yield stable solutions. Lower frame: for comparison with the
VM solution, we show accurate numerical solutions of the original space-fractional heat Eq. (26).
10
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Table 4
FTCS solutions for the backward heat model (27): maximum absolute errors and cpu time at t = 0.25 for decreasing
values of ∆x and ∆t (the error explodes).

FTCS ∆x = 0.1 sec ∆x = 0.05 sec ∆x = 0.025 sec

∆t = 0.025 2.04 O(10−3) 1.96 O(10−3) O(103) O(10−4)

∆t = 0.0125 1.46 O(10−3) O(108) O(10−4) O(1019) O(10−4)

∆t = 0.00625 O(104) O(10−3) O(1024) O(10−4) O(1046) O(10−4)

∆t = 0.003125 O(1010) O(10−3) O(1044) O(10−4) O(1087) O(10−4)

Table 5
BTCS solutions for the backward heat model (27): maximum absolute errors and cpu time at t = 0.25 for decreasing
values of ∆x and ∆t (again, the error explodes).

BTCS ∆x = 0.1 sec ∆x = 0.05 sec ∆x = 0.025 sec

∆t = 0.025 3.29 O(10−4) 3.52 O(10−3) 11.74 O(10−3)

∆t = 0.0125 O(1012) O(10−3) O(103) O(10−3) 628.4 O(10−3)

∆t = 0.00625 O(1017) O(10−3) O(1036) O(10−3) O(1049) O(10−3)

∆t = 0.003125 O(10150) O(10−3) O(10103) O(10−3) O(1065) O(10−3)

Table 6
BVM solutions (ν = 1) for the backward heat model (27): maximum absolute errors and cpu time at t = 0.25 for
decreasing values of ∆x and ∆t . We observe numerical convergence (and the solutions remain stable). It is obvious
that the cpu time for BVM grows rapidly for smaller values of ∆t and ∆x.

BVM (ν = 1) ∆x = 0.1 sec ∆x = 0.05 sec ∆x = 0.025 sec

∆t = 0.025 73.3 0.023 58.4 0.009 55.7 0.017

∆t = 0.0125 6.14 0.016 6.83 0.021 7.01 0.038

∆t = 0.00625 1.12 0.030 1.37 0.054 1.43 0.095

∆t = 0.003125 0.11 0.087 0.30 0.157 0.35 0.322

with exact solution u(x, t) = eπ2t sin(πx). We approximate the spatial derivative with the second-order central difference:

uxx|x=xi ≈
1

(∆x)2

(
ui+1 − 2ui + ui−1

)
.

The matrix corresponding to the resulting system of ODEs has strictly positive real eigenvalues. Thus, this problem cannot
be solved safely using an IVM as can be seen from Tables 4 and 5, where T = 0.25. In Table 4 we see that the errors
when applying FTCS increase as ∆t and ∆x decrease. In Table 5 we see a similar behaviour of the error for BTCS, but
only once ∆x and ∆t become sufficiently small. On the other hand, in Table 6 we see that the errors when using the first
generalized midpoint-based BVM decrease as ∆t tends to zero, but slightly increase as ∆x tends to zero. Again, it can be
observed in this Table, that, for a fixed value of ∆x and halving the time step ∆t , the error (approximately) goes down
with a factor of 4, which reflects the second-order accuracy, even for this unstable PDE model.

The behaviour of these errors as ∆t tends to zero is easily explained by considering the stability regions of the applied
methods. To understand the behaviour of the errors as ∆x tends to zero we have to consider the eigenvalues of the linear
ystem of ODEs that results from the spatial discretization. As ∆x decreases, the maximum of these eigenvalues increases,
o the system of ODEs becomes progressively more unstable as ∆x decreases.
In Fig. 8, the behaviour of the relative error is shown for the first seven generalized midpoint-based BVMs with fixed

x, varying values of ∆t and T = 1. As expected, for increasing ν, the error decreases due to the increased order of
ccuracy of the method. On the other hand, for ν = 7 we see that the errors start to increase again. This is likely due to
he ill-conditioning of the linear system that results from applying the BVM. We hypothesize that this ill-conditioning is
ue to either the choice of boundary conditions or due to the increasing ratio between the α-coefficients of the generalized
idpoint LMF as ν increases.
Lastly, Fig. 9 shows the computation times of the computations that were performed to obtain Fig. 8. As expected,

he computation time increases as ∆t decreases. Moreover, the computation time increases as ν increases. This is also
xpected as an increase in ν leads to a reduced sparsity of the resulting system of linear equations that has to be solved.
11
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Fig. 8. For the inverse heat Eq. (27) with ∆x = 0.05, we display here the effect of varying the parameter ν in the generalized midpoint-based BVM
method (6), (8), (9). On the horizontal axis the ν-value is increased from 1 to 7, whereas the vertical axis in the table displays the variation in ∆t
from 0.02, 0.01, . . . , 0.004. The relative error at t = 1 is indicated by the blue colour: the darker the colour, the greater the error. We observe for
higher values of ν an expected decrease of the relative error, but for ν ≥ 5 the error starts increasing again. This is likely due to ill-conditioning
f the BVM-matrix for these values. We hypothesize that this ill-conditioning is either due to the choice of boundary conditions or due to the
ncreasing ratio between the α-coefficients of the generalized midpoint LMF as ν increases.

Fig. 9. Computation times of the computations performed to obtain Fig. 8. Note the increase in computation time as ν increases, which results from
decrease of sparsity of the linear system that is obtained by applying the BVM.

. Conclusion

In this paper we have introduced the class of generalized midpoint-based BVMs. This class of integration methods
or solving systems of ODEs has the favourable property of being unconditionally stable. As was shown in the numerical
xamples, this property makes these methods an attractive option when dealing with (semi-)stable differential equations.
owever, this unconditional stability comes at the cost of a significant increase in both time and space complexity. Apart
rom the theoretical discussion that will be given in the future paper [25], many other points of interest remain, such as:

• Optimization of the methods used for solving the linear systems that result from applying a BVM;
• Application of the generalized midpoint-based BVMs to nonlinear partial differential equations;
12
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• Theoretical and numerical investigation into the effects of the choice of boundary conditions on the conditioning of
the resulting system of equations;

• Investigation into the correct application of BVMs in combination with the method of lines when applied to PDEs.
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ppendix A. Validity of boundary conditions

First, note that the final conditions are trivially of the order k as the coefficients satisfy Eq. (10) and, therefore, the
rder Eq. (11) up to s = k. To prove that the additional initial conditions are also of the order k, it follows from the order
q. (11) and α̃j,r = −αj,r , that we have to show that⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1

0 1 · · · k

0 12
· · · k2

...
...

...

0 1k
· · · kk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
αk,r

αk−1,r

...

α0,r

⎞⎟⎟⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

2(ν − r)
...

k(ν − r)k−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, r = 1, . . . , ν. (A.1)

his is equivalent to showing that

k∑
i=0

isαk−i,r = −s(ν − r)s−1, (A.2)

or all s = 0, . . . , k. Now, using Eq. (10) and the binomial theorem, we can write

k∑
i=0

isαk−i,r =

k∑
i=0

(k − i)sαi,r

=

k∑
i=0

s∑
j=0

(
s
j

)
(−1)s−jkjis−jαi,r

=

∑
j=0

(
s
j

)
(−1)s−jkj

k∑
i=0

is−jαi,r

=

s−1∑
j=0

(
s
j

)
(−1)s−j(2ν)j(s − j)(ν + r)s−j−1

= −s
s−1∑
j=0

(
s − 1

j

)
(−1)s−j−1(2ν)j(ν + r)s−j−1

= −s(ν − r)s−1,
13
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where we have used that(
s
j

)
(s − j) =

s!
j!(s − j)!

(s − j)

= s
(s − 1)!

j!(s − j − 1)!

= s
(
s − 1

j

)
.

Thus, Eq. (A.2) holds, which shows that the coefficients indeed lead to order k approximations.

Appendix B. Midpoint LMF extended coefficient table

k ν αν−7 αν−6 αν−5 αν−4 αν−3 αν−2 αν−1 αν αν+1 αν+2 αν+3 αν+4 αν+5 αν+6 αν+7

10 5 −
1

1260
5

504 −
5
84

5
21 −

5
6 0 5

6 −
5
21

5
84 −

5
504

1
1260

12 6 1
5544 −

1
385

1
56 −

5
63

15
56 −

6
7 0 6

7 −
15
56

5
63 −

1
56

1
385 −

1
5544

14 7 −
1

24024
7

10296 −
7

1320
7

264 −
7
72

7
24 −

7
8 0 7

8 −
7
24

7
72 −

7
264

7
1320 −

7
10296

1
24024

Appendix C. Boundary condition coefficient table

k ν r α0,r α1,r α2,r α3,r α4,r α5,r α6,r α7,r α8,r

2 1 1 1
2 −2 3

2

4 2 1 −
1
12

1
2 −

3
2

5
6

1
4

4 2 2 1
4 −

4
3 3 −4 25

12

6 3 1 1
60 −

2
15

1
2 −

4
3

7
12

2
5 −

1
30

6 3 2 −
1
30

1
4 −

5
6

5
3 −

5
2

77
60

1
6

6 3 3 1
6 −

6
5

15
4 −

20
3

15
2 −6 49

20

8 4 1 −
1

280
1
28 −

1
6

1
2 −

5
4

9
20

1
2 −

1
14

1
168

8 4 2 1
168 −

2
35

1
4 −

2
3

5
4 −2 19

20
2
7 −

1
56

8 4 3 −
1
56

1
6 −

7
10

7
4 −

35
12

7
2 −

7
2

223
140

1
8

8 4 4 1
8 −

8
7

14
3 −

56
5

35
2 −

56
3 14 −8 761

280

Appendix D. Absolute stability of BVMs

We restrict ourselves to the case of the linear test equation, we consider ∆t to be fixed and we assume the absence
f rounding errors. Suppose we have some IVM with a non-empty region of absolute stability and suppose q = λ∆t is
ontained within this region. Then, as the name suggests, the IVM is considered to be absolutely stable. This property is
ctually based on the system of finite difference equations (FDEs) that results from applying this IVM together with the
ixed ∆t . This system is of the form

un+k = f (n, un, un+1, . . . , un+k−1), 0 ≤ n ≤ N − k, u0 = c0, . . . , uk−1 = ck−1, (D.1)

where the ci’s are the boundary conditions. There are two properties that this system of FDEs should have. Namely,
(asymptotic) stability with respect to perturbations of their boundary conditions and uniform stability with respect to
global perturbations. These are given in [17] as:

Definition D.1. The solution {un}
N
n=0 to a system of FDEs of the form (D.1) is, with respect to perturbations of the boundary

conditions,

• stable if, for any ϵ > 0, there exists δ > 0 such that, if the perturbations of the boundary conditions are bounded by
δ, then the distance between the perturbed and unperturbed solutions is bounded by ϵ;
14
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• asymptotically stable if, for any ϵ > 0, there exists γ > 0 such that, if the perturbations of the boundary conditions
are bounded by γ , the distance between the perturbed and unperturbed solutions tends to zero as n and N tend to
infinity.

Definition D.2. The solution {un}
N
n=0 to a system of FDEs of the form (D.1) is, with respect to global perturbations,

• stable if, for any ϵ > 0, there exists δ > 0 such that, if the global perturbations are bounded by δ, the distance
between the perturbed and the unperturbed solutions is bounded by ϵ.

• uniformly stable if, for the solution is stable and δ can be chosen independent of N .

It can be shown, as is done in [17], that the solution to a system of FDEs is stable both with respect to perturbations
of the boundary conditions and with respect to global perturbations if the corresponding characteristic polynomial is Von
Neumann. When the characteristic polynomial is Schur, one obtains the stronger properties of asymptotic stability with
respect to boundary conditions and uniform stability with respect to global perturbations. These stronger types of stability
are preferable, which is why the definition of the region of absolute stability uses Schur polynomials.

These definitions can be extended to the case of BVMs. The major difference lies in the type of system of FDEs that
results from applying a BVM, as this is now a system with initial and final conditions instead of merely initial conditions.
So the system is of the form

un+k = f (n, un, un+1, . . . , un+k−1), 0 ≤ n ≤ N − k,
u0 = c0, . . . , uk1−1 = ck1−1, uN−k2+1 = cN−k2+1, . . . , uN = cN .

(D.2)

Note that we do not need to change the definitions of stability with respect to global perturbations. However, for stability
with respect to perturbations of the boundary conditions, a small change is necessary. For such a system we propose the
following generalized definition

Definition D.3. The solution {un}
N
n=0 to a system of FDEs of the form (D.2) is, with respect to perturbations of the boundary

conditions,

• stable if, for any ϵ > 0, there exists δ > 0 such that, if the perturbations of the boundary conditions are bounded by
δ, then the distance between the perturbed and unperturbed solutions is bounded by ϵ;

• asymptotically stable if, for any ϵ > 0, there exists γ > 0 such that, if the perturbations of the boundary conditions are
bounded by γ , the distance between the perturbed and unperturbed solutions tends to zero as N and min(n,N − n)
tend to infinity.

Now, for a system of FDEs of the form (D.2), we can show that its solution is uniformly stable with respect
to perturbations of its boundary conditions and asymptotically stable with respect to global perturbations when its
characteristic polynomial is Sk1k2 . The proof of this result is fairly long and will therefore be given in detail in another
paper. Here we will provide a sketch of this proof, which is a generalization of the aforementioned proof in [17] and
which uses similar techniques.

We will first consider the asymptotic stability with respect to perturbations of the boundary conditions. First, let
z1, . . . , zk denote that roots of the characteristic polynomial of the system of FDEs, ordered such that |zi| ≤ |zj|. Then,
define the mosaic Vandermonde matrix

W (k1,k2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1 1 · · · 1

z1 · · · zk1 zk1+1 · · · zk
...

...
...

...

zk1−1
1 · · · zk1−1

k1
zk1−1
k1+1 · · · zk1−1

k

zN1 · · · zNk1 zNk1+1 · · · zNk
...

...
...

...

zN+k2−1
1 · · · zN+k2−1

k1
zN+k2−1
k1+1 · · · zN+k2−1

k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

the diagonal matrix

D = diag(z1, . . . , zk)

and the vector

E = (1, . . . , 1)T ∈ Rk.
15
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Then, Brugnano and Trigiante have shown in [17] that we can write the distance between the perturbed and unperturbed
solutions as

en = ETDn(W (k1,k2))−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e0
...

ek1−1

eN−k2+1

...

eN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where e0, . . . , ek1−1, eN−k2+1, . . . , eN are the perturbations of the boundary conditions. By using a block LU decomposition
of the matrix W (k1,k2) and the fact that the corresponding characteristic polynomial is Sk1k2 , the term Dn(W (k1,k2))−1 can
be rewritten to a form from which it is obvious that the term tends to the zero matrix as N and min(n,N − n) tend
to infinity. Therefore, the solution of the system of FDEs is asymptotically stable with respect to perturbations of the
boundary conditions.

For showing uniform stability with respect to global perturbations, we first write the differences between the perturbed
and unperturbed equations e⃗ = (ek1 , . . . , eN−k2 ) as

TN e⃗ = τ⃗ ,

where we use the Toeplitz matrix

TN =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pk1 · · · pk
...

. . .
. . .

p0
. . .

. . .

. . .
. . . pk

. . .
. . .

...

p0 · · · pk1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the pi are the coefficients of the BVM and where we use the vector of perturbations τ⃗ = (τk1 , . . . , τN−k2 )
T . Brugnano

and Trigiante have used the fact that the characteristic polynomial defined by the pi being Sk1k2 leads to

|T−1
N | ≤ α (IN + ∆N + ∆T

N ),

for some α > 0 and 0 < γ < 1, which are independent of N and where

∆N =

⎛⎜⎜⎜⎜⎜⎜⎝
0 γ · · · γ N−1

0 0
. . .

...

...
. . . γ

0 · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

For fixed ϵ > 0, this bound and the fact that
∑

∞

i=0 γ i is finite can be used to find a proper choice of δ, independent of N ,
such that the elements of e⃗ are bounded by ϵ, which shows uniform stability with respect to global perturbations.

Asymptotic stability with respect to perturbations of the boundary conditions and uniform stability with respect to
global perturbations together show that the truncation errors, introduced by the additional boundary conditions and by
the LMF itself, do not lead to large errors overall if they are sufficiently small. Thus, if ∆t is chosen sufficiently small for
some convergent (k1, k2)-BVM and if the resulting characteristic polynomial is indeed of type Sk1k2 , then the solution will
be stable.
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