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Abstact

This thesis is concerned with the calculus of variations on bounded domains. The critical points of a functional
I corresponding to a Lagragian function L are the solutions of the Euler-Lagrange equation. This equation is
a partial differential equation. I will prove in the main theorem that there exists a minimizer to the functional
I under certain conditions on L. These conditions are partial convexity and coercivity. Partial convexity is
convexity in a part of the variable of L and coercivity is a bound from below of L with respect to another
function. In the last subsection I will provide a motivation for the hypothesis of this theorem.
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1 Introduction

1.1 History and Main Problem

Consider the following fundamental question.
Question 1.1. Let 1 <p < oo, n € N, U C R" open and bounded, g € L?(9U),

A={ue Wl’p(U) C LP(U) : u= g on U in the trace sense },

where W1P(U) will be defined in 2.9 and the trace sense in 2.22, L € C*°(R" x R x R™) and

I(u) ::/UL(Dmu,x)dx.

Does there exists u € A such that I(u) < inf,c I(v)?
Remark 1.2. A version of this question was posed by David Hilbert at his famous address to the International
Congress of Mathematics in Paris.

The goal of this thesis is to provide an answer in the following theorem.

Let 1<p<oo,p#n,a>0,3>0and U a C'—domain (see Appendix 6.1 Calculus).
Theorem 1.3. (Existence of Minimizer) Assume that L satisfies the coercivity inequality

L(Z,y,l‘) 2 a|z|p - B

and is convex in the z variable.
Suppose also the set A is nonempty.

Then there exists a function u € A solving

I(u) = {)rélﬂ I(v).

The above theorem is an important result in the field of calculus of variations. In this field one is interested
in minimizing a functional like I in the above question. Calculus of variations originates from the problem of
minimization, for example minimizing a volume. Moreover, these problems have been around since at least 300
A.C.. Through the centuries the methods have changed from a geometric nature to an analytic nature.

That said, it was not until the 17th century that a French lawyer by the name Pierre de Fermat studied the
subject using analysis. Therefore, he should be considered founder of the field'. Fermat studied the refraction of
light travelling from a rare medium to a dense medium. He stated that light travels in such a way as to minimize
the time it takes to go from one point to another. This principle was later named Fermat’s Principle. He used
this to calculate the respective speeds inside the media using the refraction angle, as shown below(air-water).
The middle picture in figure 1 minimizes the time for light to travel from the upper left to lower right corner of
the 2 by 2 metres square.

IThis is claimed by H. Goldstine [GG80]
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Figure 1: Three paths for light to travel from upper left to lower right corner.
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Figure 2: Four snapshots of three tracks, where the middle track is the fastest.

An important consequence of Fermat’s work was his minimization technique. This technique was applied by
John Bernouilli on the brachistochrone curve problem, which became a milestone for the development of calculus
of variations. This problem is concerned with two points p; and ps in the z — y—plane with y; > y3. Now
assuming a constant gravitational force in the —y direction. What would be the fastest frictionless track for a
point particle to slide from p; to ps from zero velocity using gravity as the only form of acceleration. The answer
to this question is the brachistochrone curve. Figure 2 displays the problem. It also shows four snapsshots at
different times of three point particles released at the same time in p; traveling towards ps using gravity only
to accelaterate.

Remark 1.4. Why is a straight line not fastest? This is because the particle first has priority to pick up speed,
which occurs fastest when going straight down.

Now, we can pose the brachistochrone curve problem in terms of an integral problem by calculating the time
it takes a particle to travel on a curve from point p; to point ps. Minimizing this integral would provide us the
brachistochrone curve.

An important application lies in partial differential equations.
Example 1.5. Minimization problems are closely related to partial differential equations. Namely, critical
points of the functional I are solutions of the Euler-Lagrange equations for L.



To explain this, let u,n,U, L and I be as in question 1.1.

Let u be a minimizing function of the functional I and v € C2(U). We compute

d oL oL
— =0l = —(D -D —(D .
dT|T70 (u+T1v) . 32( u,u, ) - Dv + ay( u, u, 2)vdx

The above derivative is zero, because u minimizes the functional I with respect tot the set A.

Using partial integration we move the derivative due to the compact support of v,

OL oL
~ [ v- %D %“p -
/U( \% 8p( u,u, ) + 82( u,u, x))vdr = 0

Since v was arbitrary and v a minimizer, we conclude

OL oL
-pZ “(p -
829( u,u,x) + 82( u,u, ) =0

a.e. in U, where the above equation is called the Euler-Lagrange equation.
Thus, we find the relation between a minimizer of the functional I and the Euler-Lagrange differential equation.

An application of the Euler-Lagrange equation lies in the field of classical mechanics shown in the following
example.

Example 1.6. Let L(&,x,t) =T —V, where m the mass, T = ﬁ (’%’)2 the kinetic energy and V' (z,t) < 0 the
potential energy of a point particle.

Then the Euler-Lagrange equation is given by

Pz OV &z 15)%

J A — - = -
dtz2 Oz dt? or
which is Newton’s equation of motion.

Since L satisfies the conditions of the Theorem 1.3, there exists a solution to Newton’s equations of motion in
this case.

Remark 1.7. This concept of minimization is a very general idea. In physics alone, minimization of functions is
widely applied in classical mechanics, quantum mechanics, electrodynamics, general relativity, hydrodynamics
and many more subfields of physics.

Example 1.8. Another application of the Euler-Lagrange equation finds its way through the Poisson equation
—Au = f(z), for f € CL,(U).

Let L(z,y,2) = 2% — yf(x), then the Euler-Lagrange equation is given by —D%(Du,u,x) + %(Du,u, x) =
—Au — f(x) =0, or —Au = f(x).

Again without extensive effort one could conclude existence due to the variational characteristic of the problem.

In the next remark I will provide some history on the calculus of variations.

Remark 1.9. From 1662 up until today a great number of contributors have added to the theory of variational
calculus. As mentioned before, Fermat is thought to be the founder of variational calculus due to his analytic
methods. In the late 17th century Bernouille used Fermat’s method to first solve a specific variational problem,
the brachistochrone curve problem. During the early 18th century Newton and Leibniz had also showed their
interest for the field, including for the brachistochrone curve problem. It was not until Euler had considered
general cases instead of special cases that the subject transformed into an entirely new branch of mathematics.
In the meantime the young Lagrange had developed an analytic method for solving minimization problems,
called variations. Also Euler had developed his own method for minimization problems, which was largely
geometric. Still Euler showed his preference of Legendre’s methods of ”variations” over his own. Therefore, in
Lagrange’s honor Euler named the field calculus of variations.



Many others added to the research of variational calculus including Legendre, Jacobi, Weierstrass, Clebsch,
Mayer and others. That is until Hilbert’s address to the International Congress of Mathematics in Paris in
1900, where he posed a version of question 1. After Hilbert’s address, a number of contributors were added to
the list. Some of these contributors go beyond the scope of this thesis. These include contributors to Morse
and Control Theory.

1.2 Organization and Preknowledge

Organization In Subsection 2.1 we will introduce the Sobolev spaces introduced in question 1.1. In Subsection
2.2 we will provide a number of dense subsets of the Sobolev spaces. Using these dense subsets we will construct
an extension operator in Subsection 2.3. Also Subsection 2.4 makes use of the dense subsets to provide well
defined boundary values of W1P(U) functions. In Subsection 3.1 we will use the extension operator from
subsection 2.3 to prove embeddings of Sobolev spaces into LP and Holder spaces. In Subsection 3.2 the extension
will be used to prove compact embeddings of Sobolev spaces into LP-spaces. In Subsection 4.1 we will introduce
the weak topology and in Subsection 4.2 we will prove theorems about Banach spaces with this topology. In
Subsection 5.1 we will give an idea of the proof of the main theorem. Subsection 5.2 will be used to prove the
theorem. Lastly in subsection 5.3 we will discuss the hypothesis of the theorem and thereby the strength of the
theorem. The appendix (Section 6) includes definitions and auxilary results. Some definitions only occur in the
appendix.

Preknowledge This thesis requires a basis level of measure theory, functional analysis, calculus and topology.
For a large part of the thesis the preknowledge is merely definitions from these fields. Most of the relevent
theorems are stated in the appendix. Measure theory is the most important field used in the thesis and
topology has the smallest role.



2 Sobolev Spaces

In the 1930s Sergei Sobolev introduced a new type of Banach spaces. These spaces were motivated by the
inability of finding classical solutions to partial differential equations. This is done by using a weaker notion of
differentiability. Up until this day Sobolev spaces are central to the theory of partial differential equations and
variational calculus.

The Sobolev spaces, W1P(U), were introduced in the introduction without an explanation. In this section we
will define these spaces.

2.1 Weak Derivative

Let n € N, o € N™ be a multiindex (see Appendix 6.1.1).
Definition 2.1. (Weak Derivative) We say that u € LP(U) has an o' weak partial derivative if and only if
there exists v, € LP(U) such that for all ¢ € C°(U)(see Appendix 6.1.17)

/UuDaQﬁdx:(—l)'a‘/vad)dx,

U
and we say that the o weak partial derivative of u is given by D%u = v,.

You could think of the weak derivative as way of extending the derivative by means of partial integration. That
is, if u € CL,(U) (see Appendix 6.1.13), ¢ € C°(U) and D100y = ¢ in the strong sense, then

/uD(l’O""O)¢d$=/ U(de(CE)—/ D(I,O.A.,O)u(bdx:—/v(bdx,
U U U U

where the boundary integral is zero, because ¢ is zero on the boundary (see Appendix 6.1.11 for definition of

ds(z)).

So D100y, = 4 also in the weak sense.

Remark 2.2. With abuse of notation I will use elements of LP(U) interchangably with a representation of this
element.

Remark 2.3. The multiindex notation makes sense. Consider u, the o™ weak partial derivative and ¢ a
permutation for an ordered set of length |o|. Let a be an ordered set of length |«| containing elements in
{1,...,n}, with a; the number of is, then

0 0 0 0
(=1)lel /Uua(x)d)(x)dx = /Uu(ac)o%a1 S ¢(z)dx = /Uu(x)ax%m o ¢(x)d,

implying the order of differentiation does not matter.

Now I will give two examples, one in which u is weakly differentiable, and an example where this is not the
case.
Example 2.4. Consider u : (—1,1) — R, where u(t) = |t|. Let ¢ € C°((—1,1)). Then we have

0 1 1

1 0 1
_/1 o/ ()t =~ [ t6'(0)dt + / to/ ()it = [ oty - / ot = [ ewotat

-1 -1 -1

where £(t) = { ! gi S0 amdge Dr(-11)).

I conclude u is weakly differentiable with derivative Du = &.
Example 2.5. Consider the function u : (=1,1) = R,
0 ift<0

where u(t) := { 1 iS00 then we find



1

/ ud (1)dt = / ¢/ (t)dt = 3(0) — d(—1) = $(0),
—1 0

where ¢(1) = 0 due to compact support of ¢.

I will prove that u is not weakly differentiable.

Proof. Suppose that u is weakly differentiable and Du = v.

Let a € (—1,1), m € N>y and ¢(q,m)(t) = m"n(m(t — a)), where 7 is the standard mollifier(see Appendix 6.4
definition 6.8). Then using theorem 6.10 from Appendix 6.4, we find

lim [ v(t)P(a,m)(t)dt = v(a)

n—00
—1

A a.e.. Now compute the other side of the equation, we find

1
lim [ ugy, ,(t)dt = ILm ®an(0)=0

n—o0
-1

for a # 0. So we find that v = 0 X\ a.e.. However, if ¢ € C°(—1,1), with ¢(0) = 1, then we find

1 1
| = $(0) = / ! (1)t = — / v(t)dt = 0,
-1 -1
Thus u is not weakly differentiable.

The weak derivative has the following properties.

Lemma 2.6. (Properties Weak Derivative) Assume u and v have an o't

weak partial derivative.
(i) For all A, u € R, Au + pv has a o® weak derivative and its weak derivative is AD“u + pD%v.
(ii) The a'* weak derivative of u is unique.

(iii) If v is a multiindex with |a| =k € N, ¢ € C*°(U) and u € WHP(U), then (u € WP (U) and

D%(Cu) = Z (a) DP¢D* Py (Leibniz Formula), (1)

B<a

a) |a]!
were (5) = Gt <

(iv)Let U’ C R™ be open, ¢ : U’ — U a C'—diffeomorphism whose Jacobian matrix has a uniformly bounded
inverse and u € WHP(U). Then uo ¢ € WHP(U').
Remark 2.7. The orginal lemma is proven by Evans [Eva98, Theorem 1, section 5.2.3].

Proof. (i)
Clearly Au + pv € LP(U) and we find

/ (Au+ pv)D%dx = )\/ uD*pdx + u/ vD%pdx = )\/ D%u¢dz + ,u/ D%vpdx = / (AD“u + pD%v)pdx.
U U U U U U



(i)

Suppose v, ¥ € LP(U) are o't

weak derivatives of u. Then

Jyvpda = [, v¢dx  for all ¢ € C(U).
So we also have,
Jy(w—=2)¢dx =0, forall p € C(U).

Let x € U and € > 0, then consider ¢,(y) := n-(x — y), where 7 is the standard mollifier(see Appendix 6.4
definition 6.8). Using Theorem 6.10 from Appendix 6.4, we find

0= [,(v=0)ne(y —x)de = (v—0)* = (v—10) Xae.
I conclude that v = ¢ as elements of LP(U).
(iii) We will prove the claim by induction on |a|. Let |a] =1 and ¢ € C°(U) be arbitrary.
Then we find

Léu@x@ﬂw¢@Mx:/VAmD%am¢u»fu@wuwwrqu

U

/D“ UM—L()WG /D%m (2)da

Therefore, we obtain the equality
D (u¢) = D*ul + uD“C.

2. Firstly, for |a| = 0, formula (1) is clearly true.

Next assume | < k and formula (1) is valid for |o| < I and all functions . Choose a multiindex a with |o| = [+1.
Then a = 8 + v for some |3| =1, |7]| = 1. Then for ¢ € C>(U)

/ uD®pdr = / CuDP (DY ¢)dx

IBI/Z

< >D<’Dﬁ“um¢dx
o<pB

using the induction hypothesis,

IBI+M/ Z( )Dv D DP )i

o<p

also using the induction hypothesis,
1)lel / Z ( ) DP¢D* Pu+ D’ D7) ¢d,

where p = o0 + . Then

_ (_1)\a|/U (Z (f) D”(Da_pu) bdz,



since

(iv)Firstly, we derive the inequality,
/ wo Cdy = / uldet(DC)~Ydz < || det(DC)_1||Loo(U)/ ud < 0o,
' U U

Now suppose |a| =1 and consider u, := 1. * u, then we find

/ w009 =~ [ Duco(DCoda

Using Theorems 6.10(Mollifier) and 6.3(Dominated Convergence Theorem) from the Appendix 6.4 and 6.3, we
let £ — 0 and find

Duo (D*pdx = Du o (D*Cpd.
g U

Hence D(u o ¢) = D%u o (D(, therefore, we find uo ¢ € WHP(U’). O

Let k € N.
Definition 2.8. We say that u is k-times weakly differentiable if and only if for every a with |a] < k, u has an
a'? weak partial derivative.

Now we are ready to introduce the Sobolev Spaces.
Definition 2.9. (Sobolev Spaces) For 1 < p < oo, we define W*?(U) as follows,

WHP(U) := {u € LP(U) : u is k-times weakly differentiable}.

The space WP (U) is a linear subspace of LP(U). We define the norm for u € W*P(U),

n P

lallwrowy = | D (IDullp)”

a<|k|

Remark 2.10. The Sobolev Spaces are vector spaces, which is a result from Lemma 2.6(i) (Weak Derivative).
Also the norm is well-defined, since by Lemma 2.6(ii) (Weak Derivative) the weak derivative of a function is
unique.

Theorem 2.11. The Sobolev spaces W*P(U), for 1 < p < oo, are Banach spaces.

Remark 2.12. The original theorem is proven by Evans[Eva98, Theorem 2, Section 5].

Proof. Claim 1. [ - [|yyx.» () is a norm.

Clearly, for A € R we have [[Aullwrr@)y = [Alllullwer@y. Also |lullwrr@) = 0 implies that [[ul/zsy = 0.
Therefore, we have u = 0. So [|uly+.»y = 0 if and only if u = 0, where the reverse statement is obvious.

Let u,v € W*P(U). Then we apply the Minkowski’s inequality (see Appendix 6.2.5).



1/p
R E—— <| 5 I D)
o|<k

1/p

P

< ( > (||Dau||Lp(U) + ||Dav||Lp(U)> ) Apply Minkowski on the space U
la| <k

1/p
< (S Ipalt) o+ (

lal|<k |
= lullwer @y + [Vllwer@)-

P
> ||Da'U||Lp(U)) Apply Minkowski on N
a|<k

So we find that W*P(U) are normed spaces.
Claim 2. W*P(U) are complete.

Let (u,,)2_; be a Cauchy sequence in W*P(U). Then (D%u,,)S_; is a Cauchy sequence in LP(U), because we
can estimate || - || »y by || - [[wee (-

Since LP(U) is complete (see Appendix 6.3 Theorem 6.4) there exists a function u, € LP(U) such that
D*u,, — us in LP(U) asn — oo
for all || < k. In particular
DOy s, in LP(U)  as n — oo.

Now we will prove that D*u = u,, in the weak sense, for each multiindex |o| < k.

Let ¢ € C°(U), then
fU uD*pdxr = limy, o0 fU Um D*¢dz Theorem 6.3(Dominated Convergence Theorem from Appendix 6.3)
= limy, 00 (—1)121 [, DUy gda Uy, is weakly differentiable
= lim,, 500 (—1)1¢] Ji vaddz again the DCT.

Thus we have shown D% = u,. I conclude u € W*P(U) and u,, — u in W*P(U).
So Wk»(U) is complete.
Therefore, I can state that W#?(U) is a Banach space.



2.2 Density of Smooth Functions in Sobolev Spaces

In this subsection, we will prove that smooth functions are dense in the Sobolev spaces. This will be used as a
tool to prove a number of theorems.

Let U CR"™ open, k € N>, 1 <p<oo,e>0and U, ={z €U :dist(z,0U) > e}.

The main theorem of this subsection is the first down below.
Theorem 2.13. (Global Approzimation Including Boundary)

Assume U is a bounded C-domain. If u € W*P(U), then there exists a sequence (Um)men With u, € C,(U)
such that

Uy, —u in WEP(U).

Theorem 2.14. (Global Approximation Fxcluding Boundary)
If u € WEP(U), then there exists a sequence of functions (U )men With uy, € C(U)NWHFP(U) such that

Um —u  in WEP(U).

Theorem 2.15. (Local Approximation)
Assume u € WFP(U) and set u = n. *u in U. (see Appendiz 6.4 definition 6.8).
Then for every V.CcC U
u® = uin WHP(V)  ase — 0.
Remark 2.16. Theorem 2.14 does not tell us that the elements of the sequence (um )men is in C,(U) as in
Theorem 2.13.

Remark 2.17. The original theorems of theorems 2.13, 2.14 and 2.15 are proven by Evans [Eva98], which are
Theorem 3, Theorem 2 and Theorem 1 in section 5.3 respectively.

Proof. (Theorem 2.15) First of all, u® € C*(U,) for each € > 0, i.e. see Theorem 6.10(Mollifier) in Appendix
6.4.

Claim 1. For |a| < k, we have

D*u® =n. * D% (2)
in Us.
To confirm this, we compute for x € U,
Douf(z) = D* [; ne(z — y)u(y)dy

= [y Den-(z — y)u(y)dy Theorem 6.7

= (=Dl [, D2n.(z — y)u(y)dy.

For a fixed z € U, the function ¢(y) := n.(x — y) belongs to C°(U). Consequently, the definition of the
atP-weak partial derivative implies:

/ Dyne(x — y)u(y)dy = (—1)1! / ne (2 — y)Du(y)dy.
U U
Thus

DuE(z) = (—1)lallal /U ne( — y) Dou(y)dy

10



= (e * D%u)(x)
I conclude (2).
Now choose an open set V. CC U. In view of (1) and Theorem 6.10(Mollifier) we find that D*u® — D%u in
LP(V) as € — 0, for each |a| < k. Consequently,
= ey = 32 D% = Dull, ) — 0
|| <k

as € — 0.

Proof. (Theorem 2.14) We have U = U2, U;, where

U, :={x €U :dist(z,0U) > 1/i} N B(0,i), i€N.

Write V; := U3 — Ujqq, for i > 1. Let Vy = Uy, then U = U2, V;. That is, let 2 € U and ¢ the smallest ¢ such
that x € U;. If i > 4, then « ¢ U, _o, s0o € V1. If i < 4, then z € Uy = V.

Now let {7;}ien be a smooth partition of unity subordinate to the open sets {V;};cn. That is, suppose
0<% <1 7 €02V
o0
Svi=1 on U
i=0

for this see Theorem 6.11 in the Appendix 6.4.
Let u € W*P(U), then according to Lemma 2.6, v;u € W*P(V;) and supp(vy;u) C V;.
Fix § > 0. Choose ; > 0 so small that u’ := 7., * ({;u) satisfies

Ju* — Giullwrr @y < s i€N
supp(u*) C W; ieN

for W; := i+4_[7i3‘/ii€N-
Define v := _ u’. This function belongs to C>°(U), since every point has a neighborhood on which only finitely
i=1

oo
many terms are non-zero. Since u = Y (;u, we have for each V' CC U that
i=0

o0
v = ullwrsy <Dl = Gullwrs o)
1=0

Take the supremum over sets V CC U to conclude [|v — ully»r.»@) < 6.

The following lemma is a stepping stone for the proof of Theorem 2.13.

11



Lemma 2.18. If U is a C'—domain.

Then there exists a countable locally finite open cover W and a family of C'! —diffeomorphisms {v; };cs for index
sets J C I satisfying,

(i) U;NnoU =0 if and only if U; cC U
(i) IfU;NOU # 0 then U; = B(x;,7;/2) for some z; € U, r; > 0 and ~;(OU N B(x;,r;)) € R*1 x {0}.
and
(iii) Ifi e J, then U; NOU # 0 and ~; : R"~! — R satisfies,
upon relabeling the coordinate axes, U N B(x;,r;) = {x € Bz, ;) : Tn > Yi(X1, ..., Tpn1)}-

Proof. Let x € OU, then there exists 7 > 0 and v : R*~! — R satisfying (iii), because U is a C' —domain. Now
consider the open cover U = {B(x,r;/2)}zcou, where r, is as the above r.

Consider R, ... a,) = [a1,a1 +1] X+ X [a,, a, +1] for (a1, ..., a,)T € Z™. Note that OUNRq,,....a,) is compact
for every (ai,...,a,)T € Z". Therefore, we can extract a finite subcover Viar,..an) C U Of Riq,, . 0,y NOU.
Consider the following V = Uq, ... .a.)ez7 Vias,....an)-

ceey

Let A =U — U,eyV and B = 9U. Since R™ is normal in the topological sense and A and B are closed, there
exist opens U and V such that AC U and BCV, withUNV = 0.

Now consider W, = R, NU for a € Z™. Now note that W, CC U. We now consider W = {W, }4ez» U V.
Then W satisfies the needed properties. O
Proof. (Theorem 2.13) The open U is a C'-domain. So we may apply Lemma 2.18. Therefore, we find an open

cover W satisfying the properties in the result. Let I be a corresponding index set of W, assume without loss
of generality that I C N.

Let V, =W, NU fori € I.

Suppose that ¢ € I corresponds to W; with W; NAU # (). Then there exists x; € OU such that W; = B(x;,r;/2)
for some r* > 0. Also we find v; : R®"~! — R a C!-diffeomorphism such that ~v;(W; N dU) C R"~! x {0} and
Yi(B(zs, ;) NU) CR" 1 x (0, 00).

Let {¢; }ier be a smooth partition of unity subordinate to the cover W.

We can define the shifted point
Y; =i + Acen (yi € Vi,e > 0),

and observe that for some fixed sufficiently large number A > 0 the ball B(z5,¢) lies in U N B(x5,r;) for all
x € V and small € > 0. Now we define u$(z) := u;(x5) (x; € V;). This is the function u translated a distance

Ae in the e, direction. Next write v = 7. * (;u$). The idea is that we have moved up enough so that ”there

is room to mollify within U”. Clearly v§ € C%,(V;).

Claim 1. I'll show that
vi = Gu in WEP(V;).

To confirm this, take a to be any multiindex with |a| < k. Then

D% (v; = (Gu))|lrvy < [[DY0; — D*(Gui)|| Lo vy + [ D (Giug) — D (Gu)| Lo (v,

the first term converges, because 7. * D¥((;u$) = D*(n. * u;) as shown in the proof of Theorem 2.14 together
with Theorem 6.10(Mollifier). The second term can be written in a Leibniz Rule using Lemma 2.6,

ID(Guf) = D*(Gu)llzorry < D (g) 1D Cill Lo @y 1D (w5 — )| Lo (v,

B<a

which converges to zero. That is, translation is continuous in the LP-norm.
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I conclude claim 1.

Fix § > 0. If i € I and W; N OU # (), then we can choose ¢; such that

€ 1)
lv5* = Gullwre (v, < 5 3)

If W; NoU = 0, then W; CC U. Therefore, using Theorem (2.15), we can find &; > 0 and v;* such that
€ o
Hvi - CiuHWkﬂp(Vi) < ? (4)

o0
Define v := ) vj'. Then v € C%,(U), because every point has a neighborhood on which only finitely many
i=0

terms in the sum are non-zero. This is a property of the partition of unity. In addition, we see that for each
lal <k

N N

oo
« (03 o, E; [e3 6
ID*f = D¥ul| oy < D D05 = D*(Gw)llovy < Y llvi — ullwrrqry <D 5 =9
i=0 i=0 i=0
according to (3) and (4).
I conclude there exists a sequence (U )men With u,, € C2, (V). O
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2.3 Extensions

This section is part of a toolbox we will be using to prove other theorems, especially in the section on Sobolev
inequalities. We will construct an operator that extends a function u € W1P(U) to the whole of R", i.e. to
@ € WHP(R™). However, the function u cannot be cut off as shown in Example 2.5, because it will lose its
weak differentiability. Therefore, we need to be careful ensuring the extended function still lies within a Sobolev
spaces, and preferably an operator that is bounded.

This theorem provides the operator.
Theorem 2.19. (Extension) Assume 1 < p < oo, U is a bounded C'-domain. Select a bounded open set
V C R™ such that U CC V. Then there exists a bounded linear operator

E WY (U) — WHP(R™),

such that for each u € WHP(U), we have
Eu=winU and supp(Eu)C V.
We call Eu an extension of u to R™, for E defined in the proof.

The original theorem is proven by Evans [Eva98, Theorem 1, Section 5.4].

Proof. Fix xo € OU and suppose first OU is flat near z°, lying in the plane {z, = 0}.

Then we may assume there exists an open ball B, with center 2° and radius =, such that

B=:=DBN{z, <0} CR"-U
Bt :=Bn{z, >0} cU,

because U is a C'—domain.

Temporarily suppose also u € CS2,(U). We define

ext

a(x) = u(x) if . € BT
T 3wy, a1, — ) H4u(zy, .21, — %) ifz € BT
This is called a higher-order reflection of u from BT to B~.
Claim 1.
u € CY(B) (5)
To check this, let us write u™ := @|g—,u™ := @] g+. We demonstrate first
uy =uf on{x, =0}
Therefore, we compute
_ Ln
Uy, (%) = 3ug, (T1, ..., Tpo1, —Tn) — 2Ug, (T1,- -, Tn_1, —7)
and so
U, lan=0) = U3, [z =0} (6)

Since u™ = u~ on {z, = 0}, we see as well that

{zn=0} (7)

_ T
{mn:o} - ufbi

Uy,
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fori=1,...,n— 1. But then (6) and (7) together imply

D%u™ |{zn:0} = Dau+|{xn:O}

for each |a| < 1, and so (5) follows

Claim 2. There exists C' > 0, such that for all u € C2,(U)

Il wir By < Cllullwiepry-

Let |a] =1 and « # (0, ..., 1), using Minkovski inequality,

o= o P o o Tn P l/p
1%l o) = (1Dl e + || = 3D u(ar, ., —a) + 4D (@, ., =) 25
a, ||P a T p\ 1/p
< (1Dl o + (Blllut@s, o, ~a)llogs-) + 4D (e, o =2 oo ) )
1/p

< <||DQUH]ZP(B+) + (IBIID"u(@1, - .., @)l Los+) + 4l D (w1, . -axn)”LP(BJr))p)

@ « « 1/ 1/]7

< (D%l ey + (BID (@, 2n)ogss) + 4D uzr, . )l nse)) ")

=(1+ 7p)1/pHDau”LP(B+)
and if @ = (0,...,1)

o= « P « « L P l/p

1D o) = (1Dl vy + 18D (e, =) = 2D (@, o, =) )
a p o T p\ 1/p

< (1Dl oy + (Blllu@r, oo =)lln o) + 12D (@1, ., =) s ) )

1/p
< (10wl oy + (BIID w1, @) o) + 211D u(@r . 2a)o(51)" )

«@ P « « p 1/p
< <||D ullpo gy + (BIID u(@, - .. @)l Los+) + RIID w1, ... 20)ll e (5+)) )
= (14 5))"P||u]l Lo(+)
So
lllwr By < Cpllullwrr sy,
where C,, = (1 + 77)%/P.

Let us next consider the situation that OU is not necessarily flat near 2°. Then using that U is a C'—domain
together with the Appendix 6.4, we can find a C'' mapping ®, with inverse ¥, such that ® ’straightens out U
near 2%, Meaning there exists an open zg € V C R” such that ® : V. — ®(V) and ¥ : ®(V) — V are C*
diffeomorphisms, with ®(9U N V) C {z,, = 0}. Moreover, we have ®(U NV) C {z,, > 0}.

We write y = ®(x), x = U(y), v/(y) := u(¥(y)). Choose a ball B inside the image of ® with center zy. Then
we find %', which is the extension of ' on B to the entire ball B. As shown before, this extension lies inside
WLP(B). Using the calculations in 1-4, we find

1@ lwrr sy < Cpllllwre(s+) (8)

for some constant C,, depending only on p.
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We continue by changing coordinates, i.e. composing with . And we define

Then we have @ = u on ¥(B)NU.
Now we would like to use (8) to find a similar inequality for @.

For |a|=1and a # (0,...,1), let ¢ € {1,...,n — 1}, then

1/p 1/p
D"l oy = ( / |D“u|de> - ( [1 oo >|pdx>
v (B) u
n n 1/p
< (/ (ZDiﬂ’o¢|p)(Z|D“®i|p)d:c>
U(B) =1 i=1
1/p 1/p
|Dzu/oq)|p ) S (/ |Dzu/|:0 > ,
< (X >
where C7 = || Z |Daq)¢‘p||Leo(q;(B)) and Cy = ClOp|| det(D\I’)HLoo(B).
=1
1/p
/ Z|Zpﬂupnpocp)|p\det(pq>)|dx
(B*) =1 gj=1
1/p
n ] n
/ > [DIuf?) Z|D1\I/ [P o ®)| det(D®)|dx
v(Bt) 1= 1 Jj=1 Jj=1
< Csllullwir(my, 9)
1
where Cs = n?/?C5 ||| DW 0 ®|| o w5y || det (D)2 5
Similarly, we find for @ = (0,...,1), that there exists C > 0, such that for all u € C2,(U)
lall e w(m)) < CllullLews+)- (10)
Combining (9) and (10), we find C' > 0, such that
lallwrr sy < Cllullwiew@)- (11)

for all u € C(U).

ext

I conclude claim 2.

Let W = ¥(B).

Since AU is compact, there exist finitely many points, 29 € U, open sets W,

and extensions @; of u to W; for i € (1,...,N) for some N € N, such that OU C UY, W,.
Take Wy CC U so that U C UN  W;, and let {¢;}}¥Y, be an

16



associated partition of unity. Write @ := Ziio Ciu;, where ug = u.

Now can start estimating on the whole of R", we find

N N N
[allze@n) < Z 1Gitill Lo ow) < Z @3l Lewy < CZ lull 2o )
=1 i=1 =1

and for |a| = 1, we have C > 0, such that for all u € CZ,(U)

ext

N
ID% ey < D IDGillze

i=1

Uillo sy + (1D Wl Lo wr

N
<0 lulwirwy.

i=1

Combining the above inequalities, we obtain C' > 0, such that for all C32 (U)

ext

1l wir@ny < Cllullwre @) (12)

Furthermore we can arrange for the support of @ to lie within V 2> U
We henceforth write Eu := @ and observe that the mapping u — FEu is linear.

Recall that the construction so far assume u € CS(U). Suppose now 1 < p < oo, u € WHP(U) and choose

ext
Um, € C,(U) converging to u in WHP(U). Estimate (12) and the linearity of E imply

| By, — Eulel,p(Rn) < C||um — UlHWl,p(U)

Thus (Eum,)men is a Cauchy sequence and so converges to 4 := Fu. This extension, which does not depend on
the particular choice of the approximating sequence (t, )men due to the continuity of F, satisfies the conclusion
of the theorem.

O
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2.4 Traces

In our original problem in question (1.1) we were interested in an admissible set .A. This is a subset of a Sobolev
space, where the subset is defined using certain boundary conditions on the functions in this subset. This would
be a desirable admissible set, because partial differential equations are often also restricted to certain boundary
conditions. However, the Sobolev Spaces consist of classes of function, where the classes of functions are defined
up to a measure zero set. The boundary of an open in R™ is a measure zero set. Therefore, there is not a proper
way of defining the boundary value of a class in LP(U). In order for us to resolve this difficulty we introduce
the trace operator. This operator will provide us a unique way of defining the boundary value of a class within
a Sobolev space, i.e. by using dense subsets of the Sobolev Spaces.

We will introduce the trace operator in the first theorem.
Theorem 2.20. (Trace) Assume U C R"™ a bounded C'-domain (open). Then there exists a bounded linear

operator
T:Wh?(U) — LP(OU)

such that

Tu = ulpy if u € WHP(U) N Cepy(U).
Remark 2.21. The original theorem is proven by Evans [Evad8, Theorem 1, Section 5.5].
Definition 2.22. If g € LP(U), we say u = g on U in the trace sense if Tu = g.

The next theorem provides us information about the kernel of the trace operator T'.
Theorem 2.23. (Zero Trace) Assume U a bounded C'—domain.

Suppose furthermore that u € WHP(U).
Then uw € Wy'P(U) if and only if Tu =0 on OU.
Remark 2.24. The original theorem is proven by Evans [Eva98, Theorem 2, Section 5.5].

Proof. (Theorem 2.20 (Trace)) Assume first u € CL(U), 2° € U and 9U is flat near z°, lying in the plane

{z,, = 0}. Choose an open ball B as in the proof of Theorem 2.19 let B denote the concentric ball with radius
r/2.

Select ¢ € C°(B), with ¢ > 0in B, ( = 1 on B. Denote by T' that portion of U within B. Set z’ =
(x1, 1) € R ={x, =0}

Then

JrlufPda" < [, _ ClulPda’ = — [, (CJufP)s,dz  fundamental theorem of calculus

— = [ PG, + plul sign(w)us, Cdo (13)
B+

< [+ [ulPCe, | + (0 — D)ul? + de < C [g+ |uf? +|DulPdz  Young’s inequality (see Appendix 6.2.2)
where €' = p+ |G, || L= (v)-

If 2° € OU, but AU is not flat near z°, then we can use that U is a C'—domain. Therefore, we find a C'-
diffeomorphism ® that brings us to the situation above (see Appendix 6.1 Calculus). Applying estimate (13)
and changing variables, we obtain the bound

Jo 1P dS () = [y p, lul? o @] det(DD)[da
< || det(D®)||oc [, gy ul? o Pda

< C|| det(D®)|lso fy-1(s, [ul? © @ + [Du o @DD|Pda

1(B+

< O[] det(D®)|oo|| det(D®) "H[|oo [ DDTHE, [ [uf? + [DulPdy,
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where T is some open subset of QU containing z° and C,C’ constants for arbitrary u € CL_ (U).
Since AU is compact, there exist finitely many points 2 and open subsets I'; C OU for i € (1,---, N) such that
OU = UNT; and N € N.
and
lullLer,) < Cllullwivw) (@=1,---,N).
Consequently, if we write
Tu = uloy, (14)

then
1 Tul| L ovy < Cllullwrre @)

where C' is a constant for arbitrary u € CL, (U).

Inequality (14) holds for u € C}

ext

converging to u in WHP(U). According to (14) we have

(U). Assume now u € W1P(U). Then there exist functions u,, € C (U)

ext

[Tum = Twi]| Lo ovy < Clltan — wllwrew) (15)
such that (Tum, )men is Cauchy in LP(QU). Since LP(0U) is a Banach space. We define

Tu = lim Tu,,
n— 00

the limit taken in LP(9U). Using (15), we find that this definition does not depend on the particular choice of
the sequence. That is, let @, @ both be Tu for sequences u,, and u!, respectively then,

1o = llLeouy = lim lim ([T (um — )| Lo (ov)
= lim [T (un) = T(up)llrovy < Him_ Cllun = up[lwrew) =0,
where the second equality follows from the linearity of the limit.

Finally if u € WHP(U) N Cext (U), then the functions u,, € C(U) constructed in the proof of Theorem 2.13

ext

_ N
converge uniformly to u on U. The sequence is the following vy, := 7 (i(ne,, * ue, ).
i=1

Then we can find the estimate
N
lon = ullzoior) < D2 16l sy (I0es, * ter, = ten gy + Mer, = ull o) )
=1

both terms converges to zero. That is, the left term converges, because of a Lemma 6.10(Mollifier) in the
Appendix 6.4. The second term converges, because translation is continuous with respect to the L> norm for
a continuous function. Since we can estimate any p—norm with p < co by the co-norm.

Hence Tu = u|ay. O

Proof. (Theorem 2.23)
Suppose first u € W, *(U). Then, by definition, there exist functions u,, € C°(U) such that

Uy, — u in WHP(U).

As Tuy, =0 on U for m € N and T : WHP(U) — LP(OU) is a bounded linear operator, we deduce Tu = 0 on
ou.
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Now we will prove the reverse statement. Let 2 € OU and assume that AU is flat near 2°. Let B be a square
with center 2 intersecting the boundary of U halfway through in the z,, direction, and U N B C B*. And
OU N B C R"! x {0}. Define B, := oU N B.

We have the following properties

{ u e Whp(B¥)
Tu =0 on B,.

Then since Tu = 0 on B, there exist functions u,, € C%(B™) such that

ext

U — u in WHP(BT) (16)
and
Ty = Upm|p, — 0in LP(Be). (17)
Now if (2/,0) € Be, z,, > 0, we have
Tn 8 m
o (2, 20)| < [t (", 0)] +/ “(xxt)’ dt.
0 afEn

Now we’ll use the following estimate.
Let a,b > 0, then (a + b)? < 2P max(a,b)? < 2P(max(a,b)? + min(a,b)?) = 2P(a? + bP).
We find that,

Tn P
O,
' 2)” < 27 {Jun(a O + | [ 152" 1)t
0 n
Now we examine the RHS using Holder, we find
Ly p P p
ou, Oy, » ou,
/\5% (@', t)]dt | = Hl[(],zn] (1[0,%]%1(33/,75)) H1 < owally 1y ll[o,zn]axn(:v’,t) )
0
So
Ty p Tn
Oy,
/|(;:7 (2, t)|dt Sxﬁ71/|Dum(x’,t)\pdt.
0 " 0
Thus

/ um(x’,xn)|pdx’§2p( / (', 0) [Pz’ + 221 / / |Dum(m’,t)|”dx’dt>.
Be Be 0 Be

Let m — oo and recalling (16), (17), we deduce

/ lu(z’, x,)|Pda’ gC’xffl/ / | Du|Pdx’dt (18)
B. 0 Be

for a.e. z, > 0.
Next let ¢ € C°(R,) satisfy
¢(=1on[0,1], (=0onR; —1[0,2], 0<(<1

and write
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{ Cm(2) == ((mzy,) (z €RY)
Wy = w(x)(1 = Gn)-

Then

%l;: = uIn(l — Gm) — mug’
Dyrwy, = Dypru(l — G-

Consequently, we have

2/m
/ | Dw,, — DulPdz: < C/ |G [P| DulPdx + Cmp/ / |u|Pda’ dt
B+ B+ 0 B.

=: A+ B.

Now A — 0 as m — oo, since (, # 0 only if 0 < z,, < 2/m. To estimate the term B, we utilize inequality (32)

2/m 2/m
B < cmp( / tp—ldt> ( / / Du|pdx’dxn>
0 0 Be

2/m
SC/ / |DulPdz’dz,, — 0 as m — oc.
0 B.

Applying the above inequalities, we deduce Dw,, — Du in LP(B™). Since clearly w,, — u in LP(B*), we
conclude
Wy, — w in WHP(BT).

But w,, = 01if 0 < z,, < 1/m. We can therefore mollify the w,, to produce functions u,, € C, (B™) such that
U, — w in WHP(BT). And w,, =0 for 0 < z,, < 1/(2m).

Now suppose that OU is not flat near z°. Since U is a C''-domain we find a C! diffeomorphism flattening out

OU near V.

We may assume that the domain of ® is a square positioning z° as before.

In this case we find that

Uy, — wo ® in WHP(BT)

by Lemma 2.6 and
Tum = tm|pg+ — 0 in LP(B,).

Therefore we find that u o ® can be approximated by a function w,, for which v, = 0 for 0 < 1/(2m).
Now go back using ®~! and find that

u € WhHP(®(BT)).

Since QU is compact we find finitely many points z! € U with corresponding opens covering the boundary.
Choose some open V' CC U such that the total collection of opens cover U.

We find a corresponding partition {n;}, of unity subordinate to this cover for some N € N.
N .

Now considering the functions u,, = Y nul, € C°(U), where t,, = v, o ®~1.
i=1

We find, for m — oo, that
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N N
D D (= )l oy < Y IDmill 1w vyt =l Lo viy + 103l e vy 1D, = D%l Lo vy = 0

=1 i=1

and
N
um — ullLe )y < Z 1mill o (0 llugn — ull ey — 0.

i=1

I conclude u € Wy (U).
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3 Sobolev Embeddings

3.1 Sobolev Inequalities

Suppose u € W*P(U). Then u € F for some function space F? The answer is yes. There are three classes of

inequalities that arise from the numbers k,n € N and 1 < p < co. Namely,

k <n/p,
k=n/p
k> n/p.

In the first case where k < n/p, we will find W*P(U) can be embedded into a range of LP spaces. The last
case for k > n/p, we will find that u belongs to a subspace of the continuous functions, denoted C*7(U), where

s € Nand 0 <~ <1. We will not provide a space for the case k = n/p.

The main theorem of this section is the general Sobolev inequalities theorem below.
Theorem 3.1. (General Sobolev Inequalities) Let U C R™ be a bounded C*—domain (open).

(i) If
k<l
p

then there exists constant C such that for all w € W*P(U). We have u € L"(U), where

1
r

SRR
3=

We have in addition the estimate

lull -y < Cllullwer -
(ii) If

k>
p

then there exists constant C such that for all w € WP (U). We have u € C’kiL%J*l’W(U),

where

{QJ +1-2 if 2 is not an integer
= P P ‘b .
any positive number < 1  if % is an integer.

We have in addition the estimate

ol o)1y < Clilwesco,

The original theorem is proven by Evans [Eva98, Theorem 6, Section 5.6.3].
For the last time we will introduce a new type of Banach space, namely the Holder Space.

Let U CR" beopen ke Nand 0 <y < 1.
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Definition 3.2. (Hélder Semi-Norm) If uw : U — R is bounded and continuous, we write

HUH(J(U) := sup |u(z)|.
xeU

The ** Hélder semi-norm of u : U — R is

[u]covy == sup {|u(x)—u(y)|}

z,yeUAz#y |Q]‘ - y"y
and the ~*"—Hblder norm is
lullcos @y = [ulcor @) + lullew)-
Definition 3.3. (Holder spaces)

Let C*7(U) consists of all functions u € C¥ ,(U) for which the norm

lullcrq @y =Y [1Dullcon @
|| <k

is finite.

We call C*7(U) a Holder space.

Theorem 3.4. The Hélder space C*Y(U) is a Banach space.
Proof. Claim 1. The mapping || - [|¢x.~ () is a norm.

We will prove this by showing [-]co.~ (1) is a semi-norm.

Let u,v € C%7(U) and 0 < v < 1.

Clearly [Au]coq @y = Au]con 1)

And we have a triangular inequality, since

[u+v]cory = sup

z,yeUANz#y |l’ - y|’y

{ Ju(z) — uly) + v(z) — v(y)| }

- e { Ju(x) — u(y)| + [v(x) ~ v(y)| }

- z,yeUAz#y ‘QZ‘ - y"y
u(r) —uly vx) — vy
T e e O R Tt
z,ye€UNz#Y |z — y z,yeUNz#y |z -yl

So we find []co.» (1) is a semi-norm. Generalizing to the Hélder spaces C*7(U) is trivial.
Lastly, if [u]co~ @ = 0, then clearly u = 0.

I conclude that || - [|¢x.~(ry is in fact a norm.

Now we’ll continue by proving the completeness of C*7(U).

Let (tm)men be a Cauchy sequence in C*7(U). This implies that (t,,)men is a Cauchy sequence with respect
to the norm || - [|cw ).

Therefore, we find an element v € C*(U) such that u,, — u in C*(U)

Show that [[ul|cr.~ @y < 0o. Suppose [ul|cr. () = 0o, then there exist a multi-index «, two sequences (2 )nen,
[D*u(zn)—D*u(yn

T ) diverges as n — oo.
n n

(Yn)nen such that z,, # y, and the sequence
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[D¥um (Tn) =D um (yn)| _ [D¥u(zn)—D"u(yn)|
[Zn—yn|Y [Zn—yn|Y

The limit lim,, , because uniform convergence implies pointwise

convergence.

Since (D*Um)men is a Cauchy sequence ([D%up,]co.())men is a Cauchy sequence in R. Since R is complete
this implies limy, o0 [D* U] co. vy exists and lies in R.

Now we consider the following inequality

|DaUM(xn) - Daum(yn)|

‘xn - yn|’y

< [D%um]con vy-

Now taking the limit m — oco. We find the following,

D~ - D*
| Du(zn) u(yn)| < lim [D%up]coq ) < o0,

|mn - ynh m=—00

i.e. the sequence is bounded.
However, this sequence was said to diverge. I conclude that [[ul|cr.~ @y < oo.
Now we show wu,, — u in C*7(U).

We have the following inequality, for z,y € U and = # y.

[ D*u(x) — D%un(x) — (Duly) — Dun(y))| _ | D%t () — D%up () = (Dum(y) — Dun(y))|

lz —y|7 m—00 lx —y|7

< Hm (U — Unlerq @) < Hmsup(te, — tn]orq @)
m—00 m—00

Now we consider the supremum over all z,y € U with x # y.

[DYu — D%uyp] oy < limsup(ty, — un]con @y — 0 as n — oo
m—0o0

To understand why the above sequence converges to zero we will consider a double sequence in R

Let (@n,m)n,men be a double sequence in R such that

Am+1,n S Ay ny Vn,m eN

{ Ve > 0, Ing € N such that Vn,m > ng we have a,, », < €
mp >0, Vn,meN

The double sequence supys, [ux — u,] suffices these properties.
Now we’ll prove that lim,, o limy, 00 Gm,n = 0.

First of all let € > 0. The sequence a,,_,, of the variable m is decreasing and bounded from below. Therefore, it
has a limit. Denote ao p as the limit. Then we find that aeon < am,n for all m € N. Hence also too,n < Gp -

Now choose ng € N such that a,,, < € for all n,m € N. Therefore also a,,, < €. Since ¢ was arbitrary and

ap.m > 0. I conclude lim lim a,,, =0.
’ n—o0om—oo

I conclude that the sequence u,, converges to u in C*7(U).

We have thus proven that (C¥7(U), || - [|cr.~ (1)) is a Banach space.
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For now assume 1 < p < n.
Let w € C*(U).
Suppose that there exist 1 < r,p < oo and C' > 0 such that

lul

Lr@n) < C[|Dul|Lr(gn).-

We will first show that the relation between r and p must be very specific.
Consider the scaled function, uy(z) := u(Az), with uy € C(R™) for A € R.

And we compute,

[[ux]

T T T 1 T
v = [ e = [ oo =55 [t

and
AP
[ DAl ey = X /R [Dux[Pdz = A7 / | Du(Az) Pz = = /R |Du(y)[dy.
So we have
1 A
WHUHLP(R" < Oy IPull o),
and so

lull r@ny < C)\P%JF%HDUHLP(RW)-

Subsequently, if we have 1 — % + % # 0, we would reach a contradiction by sending A to 0 or co. Hence, we
have as a necessary condition 1 — % + % = 0. For that reason, we have the following definition.

Definition 3.5. (Sobolev Conjugate)

If 1 < p < n, the Sobolev conjugate of p is

We will go on proving that this inequality holds.
Theorem 3.6. (Garliardo-Nirenberg-Sobolev Inequality) Assume 1 < p < n. Then there exists a constant C
such that

[ull Lo~ gy < CllDul| Lo ) (22)

for allu € CHR™).
The original theorem is proven by Evans [Eva98, Theorem 1, Section 5.6.1].

Proof. First assume p = 1.

Since u has compact support, for each i = 1,...,n and z € R™ we have

x5
U($):/ ul?qt(a:la'"axi1;yi7xi+la"'axn)dy

— 00
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and so

(o]
|u(z)| S/ |Du(xy, ..., Yiy- -y xn)|dyi,
— 00

fori e {1,...,n}.

Consequently

n o et
sH(/ |Duxh...,yi,...,xnndyi)

Integrate this inequality with respect to x

1
—1

/ |u| 7T day S/ H (/ |Du|dyi> dxy

. e m /o -
( / Du|dy1> / H( / |Du|dyi> d,
_1 1
00 n—1 n oo oo
< ( / |Du|dy1> (H |/ |Du|d:v1dyi>
—o0 j—9J —00 J—o0

T
the last inequality resulting from the general Holder inequality.

o0 o0 n
/ / || =T dz1das
— o0 — 00

1
n—1 o n )
/ 1 17 dws

OO G=1Ni#2

Now integrate (25) with respect to z

< (/ / |Du|da:1dy2>

for

I ::/ | Du|dy1

Applying once more the extended Hélder inequality, we find

withi=3,...,n

/ / |u|" Tdxidzo
< (/ / |Du|d$1dy2) (/ / |DUdy1diE2>

1
n—1

H (/ / / |Du|dm1dx2dyi>
'L=3 — 00 — 00 — 00
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We continue by integrating with respect to zs,...,z, and find

1
n—1

n i=1 —00 —0o0

This is estimate (22) for p = 1.
Consider now the case that 1 < p < n. We apply estimate (26) to v = u”, where 0 < +y is to be selected. Then

n—1

( / u|da:> < [ \pluplde = [ = Dulds (21)
n RTL RTL
§7</ u|(71)z)p1dx> </ Du|pdx> (28)

We choose 7 so that ;I = (v — 1) ;2. That is, we set

p(n*p)>
n—p

1

in which case X% = (y — l)ﬁ = % = p*. Thus using the Sobolev conjugate of p, we find that

1 1

</ |u|p*d:c) ’ <C (/ |Dupdx) ’
n Rn,
O

Theorem 3.7. (WP Estimate, 1 <p <n) Let U be a bounded C*-domain (open). Assume 1 < p <n. Then
there exists C' > 0 such that for all u € WHP(U) we have u € LP" (U) with the estimate

[ull Lo~ @y < Cllullwr@)- (29)

The original theorem is proven by Evans [Eva98, Theorem 2, Section 5.6.1].

Proof. Since U is a C''-domain, there exists, according to Theorem 2.19(Eztension), an extension Fu = 4 €
W1LP(R") such that

{ % = wu in U, u has compact support
[allwre®ny < Cllullwrew)-
Because @ has compact support, we know from Theorem 2.15(Local Approzimation) that there exists functions
U € C°(R™)(m = 2,...) such that

Up, — @ in WHP(R™). (30)

Now according to Theorem 3.6(GNS-Inequality), ||um — wil| Lo @ny < C|Dum — Dugl|pegny for all I,m > 1.
Thus, using the completeness of LP" (R™) we find

Upy, — T in LP" (R™) (31)
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as well. Since Theorer :36((;NS—1neqU(lthy) also iHl[)heS ||um || Lp* (R") < CH I )um”LP(R";]R")- Assertion (30) and
(:;1) yleld the bound 11
Ha”LP* (R™) < CHD'EI/H Lr(R™)-

Using the above inequality and the boundedness of the extension operator we find constants Cy and Cs, such
that

[l Lo 0y = 18l o= 0y < |8l Lo ®ny < C1l| Dl Lo@ny < Crltllwrr@ny < Callullwio@)-

The following theorem concerns estimates for W, with 1 < p < n.
Theorem 3.8. (Poincare) Assume U is a bounded, open subset of R"™. Suppose 1 < p < mn. Then there exists
C > 0 such that for allu € WyP(U) the estimate

lull La@wy < Cl[Dull e v
for each q € [1,p*].

The original theorem is proven by Evans [Eva98, Theorem 3, Section 5.6.1].
Remark 3.9. The above inequality is often called the Poincare inequality. It also implies the equivalence of
the norms || - [[y1.p@y and [|D - || Lp ) on W,y (U) in the case that U is a bounded.

Proof. Since u € Wy (U), there exists a sequence u,, € C°(U) (m = 1,...) converging to u in W'»(U). We
extend each functions u,, to be 0 on R® — U and apply Theorem 3.6 (GNS-Inequality) to discover

ullpes @y < CllDullLe ). (32)

Since |U| < oo, we can apply a general inequality of L? spaces for 1 < ¢ < p*

lullLe@) < Cllull Lo vy (33)

Therefore, combining the inequalities (32) and (33),

lullLa@y < CllDull Lo+ 0y

The following theorem is conjugate to Theorem 3.7(WP Estimate, 1 <p < n).
Theorem 3.10. (Morrey Inequality) Assume n < p < co. Then there exists a constant C' such that

ullcom@ny < Cllullwip@ny
for all w € CH(R™) N WLP(R™) where
v:=1-—n/p.

The original theorem is proven by Evans [Eva98, Theorem 4, Section 5.6.2].
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Proof. We claim there exists a constant C' such that

£ -l <c [ 1Dl (34)
B(z,r)

B(xz,r) |y - x|n !

for each ball B(z,r) C R™, where the dashed integral is defined in Appendix 6.1.6.
To prove this, fix any point w € 9B(0,1). If 0 < s < r, then

|u(z + sw) — u(x)] <

/0 %u(x + tw)dt’

S
= / Du(w—i—tw)m}dt’
0

< / Du(z + tw)|dt.
0

Therefore, we have

/ lu(z + sw) — u(x)|dS(w // |Du(x + tw)|dS(w)dt
dB(0,1) 9B(0,1)

Now

D
// | Du(z + tw)|dS (w // e 45yt
8B(0,1) oB(x,t) U

- Duw)l )

(z,s) |x7y|n !

D
S/ ADu)l u(y)lldy,
B(xz,r) |{L‘ - y|n

where we put y = z 4+ tw and ¢t = |z — y|. Furthermore

/ lu(z + sw) — u(z)|dS(w) = %/ lu(z) — u(x)|dS(z) (36)
8B(0,1) § OB(z,s)

for z = x + sw. Using the preceding two calculations in (35) and (36), we obtain the estimate

D
[ e sy s [ DL,
OB(z,s) B(z,r) |.’E - y|n

Now integrate with respect to s from 0 to r

r Du(y)|
u(y) — u(x dyg—/ ——dy. 37
/B(:c,r) ( ) ( )| " JB(z,r) ‘Z 7y|n71 ( )

This implies (34).
Now fix z € R"™. We apply the inequality (34) as followed
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ua)] < ]{? )~y + Ji iy

[Du(y)|
< C][ N TENel M .
B Iz —y[* ! Il e

1/p 1 (r=1)/p
< P 1 )
- C(/ 1D dy) (/B(z,l) |z —y|" V55T dy) + Cllullze@n

< B||Dul| Loy + Bllull v ®n)-

for some B,C > 0.

The last estimate holds since p > n implies (n — 1)]% < n, so that

1
B(a1) |z —y] P

Since = was arbitray we find that
sup [u(2)] < Bllullwoge)-
Z‘GRH

Next, we choose two points z,y € R™ and write r := |z — y|. Let W := B(x,r) N B(y,r). Then

)~ )| < £ fute) ~ @z + £ juty) —u()a:

But inequality (34) allows us to estimate

][W () — u(y)|dz < c]g ) (e

v dz p=1
<C DulPd
~ (/B(Qf,r) | U| Z) </B(ac,r) ‘x — Z|(n71)(p/(p71)))
C(Tn—(n—l)ﬁ)%HDUHLP(RH)
= Crl_%HD“”LP(Rn)

Likewise
F tutw) — @)tz < 0 F | Dul e
w

Our substituting this estimate and (39) into (40) yields

[u(@) = u(y)| < Cr'™% | Dul| o@ny = Clz — y|'~ || Dul| Lo rn)

Thus

[u(z) — u(y)|
Ul 0, 1-n/p(RRY = su —— 2L L < C||Dul| e gny-
[ulco—nioqen) z,yGU/I\)zyéy{ |z — y|t—n/p 1Dl )

(41)

Combining estimates (38) and (41) I conclude there exists C' > 0 such that for all u € C1(R™) N W1P(R")

Hu||co,w(]Rn) S CH’U,HWl,p(Rn).
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Definition We say u* is a version of a given function u provided

u=u" a.e.

Theorem 3.11. (Estimates for WP, n < p < 00). Let U C R" be a bounded C*-domain (open). Assume
n < p < oo. Then there erists a constant C such that for all uw € WHP(U), u has a version u* € C%7(U), for

n

y=1-— ) with the estimate

[u* o @y < Clluflwrr@)-
The original theorem is proven by Evans [Eva98, Theorem 5, Section 5.6.2].
Proof. Since U is a C'-domain, there exists according to Theorem (2.19) an extension Fu = 4 € W1P(R™) such
that
u=uonU.
{ u has compact support, and
lallwrr@ny < Cllullwrew)-

Assume first n < p < co. Since @ has compact support, we obtain from Theorem 2.15(Local Approzimation)
the existence of functions u,, € C°(R™) such that

Uy, — @ in WHP(R™). (42)
Now according to Theorem 3.10. |[um — wl[co.1-n/p@ny < Clltm — willwiogn) for all {,m > 1,
whence there exists a function u* € C%'~"/P(R™) such that
Uy — u* in CO17/P(R™) (43)

Owing to (42) and (43), we see that u* = u a.e. on U, so that u* is a version of u. Since Theorem 3.10 also
implies |[wm |lco.1-n/p@n) < Clltum|lwipgny, assertions (42) and (43) yield

Hu* ||CO~1*"/P(]R") < CH’&”WLP(Rn).

The above inequality and the estimate for the extension combined complete the proof for n < p < 0o

O

Proof. (Theorem 3.1) Assume k < n/p. Since D®u € LP(U) for all |a| < k, then applying inequality (29) from
Theorem 3.7(W1P Estimate, 1 < p < n) we find

IDPull o 1y < Cllullwrr@) i |8 < k-1,

and so u € WF=LP"(U). Similarly, we find u € W*=22""(U), where pl* = p% — 1 =p— 2. Continuing, we
eventually discover after k steps that u € W4(U) = LY(U), for % = % - % The estimate (20) follows from a

trivial inductive argument using the above estimate.

Assume now that k& > n/p holds and % is not an integer. Then as above we see

u € WHhr(U), (44)
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for

S|

D=
S|~

provided Ip < n. We choose the integer [ so that
<2 <it1 (46)
p

that is, we set [ = {%J Consequently, (45) and (46) imply r = n”fzﬂ > n. Hence (44) and Morrey’s inequality

from Theorem 3.10 imply that D% € C%'=7+(U) for all |a| < k —1 — 1.

Observealsothat1—%:1—%—&%: L%J—l—l—%.

Thus u € CF~LF)-bL3]H-3 (U), and the stated estimate follows easily.

Finally, suppose k > n/p with % an integer.

Setl:{ﬂ—l:ﬁ_l,

P
Consequently, we have as above u € Wk=Lr(U) for r = 720 = n. Hence inequality (29) shows D*u € L(U)
foralln <g<ooandall |o|<k—-1—-1=k— L%J

Therefore, Morrey’s inequality further implies D*u € C*'~%(U) for all n < ¢ < oo and all |a| < k — {%J -1
Consequently u € or-L3] ~1Y(U) for each 0 < v < 1. As before, the stated estimate follows as well.
O

33



3.2 Rellich-Kondrachov Compactness

In the last section we examined the embeddings of Sobolev spaces into other spaces. In this section, we will be
interested in a certain type of embeddings.

Definition 3.12. Let X and Y be Banach spaces, X C Y. We say that X is compactly embedded in Y, we
write

X ccc,
provided.
(i) lully < Cllullx (u € X) for some constant C
and
(ii) each bounded sequence in X has a subsequence that converges in Y.

The next example is an application of the above definition.
Example 3.13. Let X = WH1(U) and Y = LY(U), where U = (0,7) x (0,1).

sin(nz)
n

Let up, : U — R and uy,(z,y) = for n € N. Then we have

2
||u||W1,1(U) = o +2 < o0.

In the next theorem we will prove that

X cccy.
Therefore, we find that there exists a subsequence (un, )ren converging to u € Y, namely u = 0.
However, u,,, does not converge to u in X, because of the rapid oscillations as shown in the plot below.

u

1.0

0.5

We assume for this section that U is a bounded C'!'-domain (open).
Theorem 3.14. (Rellich-Kondrachov Compactness)Suppose 1 < p < n. Then

WhP(U) ccc LYU),

for each 1 < q < p*.
The original theorem is proven by Evans [Evad8, Theorem 1, Section 5.7].

We also have a conjugate theorem.
Theorem 3.15. (Conjugate Compactness) Suppose n < p < co. Then

WlP(U) ccc LP(U).
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Proof. (Theorem 3.14)
Fix 1 < g < p*. Since U is bounded Theorem 29(W!? Estimate, 1 < p < n) implies

{ Whp(U) c LY(U)
lullLew) < Cllullwrr@)-
It remains therefore to show that if (u,,)men is a bounded sequence in W14(U), there exists a subsequence
(tm,)jen which converges in L(U).
In view of the Theorem 2.19(Eztension) we may, with no loss of generality, assume that U = R™ and the

functions (., )men all have compact support in some open set V' C R™. We also may assume

Sup||umHW1,q(‘7) < 0. (47)

That is, if we prove the claim for the extended sequence (i, )men, then we find a subsequence (i, ) en such
that 2,,, — @ in LI(R™). And we can use the estimate, ||um, — lv|La@w) < [|Um; — ©l/La(v) to prove wy,,
converges in L1(U).

Secondly, since the extension comes with the estimate ||@||Lorn) < Cllul|Lay. We find that sup (i, )wi.e@) <

meN
0. I conclude that no generality is lost.

Let us first study the smooth functions, for e > 0 and m € N

US, 1= Te * Uy,
where 7. denotes the usual mollifier (see Appendix 6.4 Definition 6.8). We may assume the functions (ug,)>_;
all have support in V as well.

Claim 1
us, = Uy, in LY(V) ase— 0" uniformly in m

To prove this, we assume u,, is smooth, then consider

)~ o) = % [ o (x - y) (tm(9) — tm (2))dy (48)

en €

- /B o) 10— <)~ )y (49)

- /B o n(y) /0 I%Wm(x—ety))dtdy (50)

1
——c [ ) [ Do cty) -y (51)
B(0,1) 0

Thus

/ () — ()| dx (52)
\%

1
<e / n(y) / / |Du (z — ety)|dzdtdy (53)
B(0,1) 0o Jv

< E/V | Du, (2)]dz, (54)
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where in the last inequality integrate x over R™ and substitute = + ety for x.
By approximation this estimate holds if u,, € W'?(V). Hence
s, = wmllzr(vy < ellDumllr vy < eCl[Dumll Lo vy
the latter inequality holding since V' is bounded. Applying (47), we find
us, = Uy in LY(V)  uniformly in m.

But then since 1 < ¢ < p*, we see using the interpolation inequality for LP—norms from the Appendix 6.2.6
that

—0
ety — L zaqvy < iy =l s = w577,

where % =0+ 11;9 and 0 < § < 1. Consequently (47) and the inequality from Theorem 3.7 (W1P Estimate,
1<p<mn)
5 = wmllzaqvy < Cllus, = wml| T vy,

since u$, — U, in L' (V) uniformly in m, we apply the above inequality and conclude the Claim 1.
Claim 2: For each fixed € > 0 the sequence (uZ,)men is uniformly bounded and equicontinuous.

Indeed, if £ € R”, then

@ < [ e plm)ldy (55)
C

< Imell oo @ny umll L1 vy < o < oo (56)

for m =1,2,... similarly
D@ < [ 1Dt =)l o)y (57)

C

< ||D776||L°°(R")Hum”Ll(V) < ntl < o0. (58)
for m = 1,.... The claim follows from the above estimates. That is, the first estimate provides uniform

boundedness. The second estimate provides uniform equicontinuity, because we can estimate as follows, for
z,yeV

€

- C
[ () = um W)l < 7 le =yl

Thus concluding Claim 2.

Now fix § > 0. We will show there exists a subsequence () jen C (Um)men such that

lim sup ”um] = Umy, ”L‘?(V) <. (59)
7,k—o00
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We first apply the Claim 1, that is choose € > 0 so small that

|z — umllraqvy <6/2, (60)

for all m € N.

We now observe that since the functions (ug,)men have support in some fixed bounded set V' C R™, we may
utilize Claim 2 and Theorem 6.13 (Arzela-Ascoli) to obtain a subsequence (U, )jen C (Um)men Which converges
uniformly on V. In particular therefore

lim sup [|uz,, — uz,, [ zaqvy = 0. (61)
J,k—o00

But then (60) and (61) imply
lim sup [[tm; — Um, ||Laqvy <0 (62)
7, k—o00

and so (59) is proved

We next employ assertion (62) with § = 1,1/2,1/3,... and use a standard diagonal argument to extract a

subsequence (tm;)jen C (Uj)men satisfying

lim sup || tm, — U, || ey = 0.
l,k—o00

This is the argument. First we follow the proof using é = 1, and we obtain a subsequence (tn,, )ren-

The subsequence is obviously bounded and the elemetns of (u,, )ren have compact support in V. Therefore,
we may repeat the entire argument on this subsequence and take 6 = 1/2. And we obtain a subsubsequence
of (um)men and a subsequence of (U, )ren, denoted (umk )ien. We repeat this argument such that we get w,

cardinality of N, number of sequences, where the sublsequence is denoted (ul);en, suffices the property

hmsup||u — U, HLq(v) <1/l.

‘]*)OO
Now consider the sequence (u!);en, we'll prove that lim; o, u exists in LI(V).
If 4, 7,p € N are fixed and | < i, 7, then

sup [|uf — u)l| Laqvy < sup g, = |l v
k>1 k>

That is, (uf)r>; is a subsequence of (ul)x>;.

Now take ¢ — oo, which is possible because | < i. We find

lim sup ||u} — ||Lq(v) <hmsup|\u *U]“Lq V)
1— 00

Now take a supremum over the j variable, we find

sup lim sup ||} — wl || La(v) <Suphm3up||u —UnHLq(V
n>j 41—00 i—>00

again this inequality holds since (u!),>; is a subsequence of (ul,),>;.
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Now we take the limit j — oo and find

lim sup ||u} — U;”LQ(V) < limsup [|uj — ué‘HLq(V) <1/l
i,j—00 1,j—>00

Finally take the limit, [ — oo and conclude that

lim sup ||ul — U?HLQ(V) =0
2,] —»00

Thus we have proven that lim u! exists due to the completeness of L(U). O
11— 00

Proof. (Theorem 3.15) Let 4y, = Fug. Then we use Morrey’s inequality from Theorem 3.10 and find that there
exists v, C' > 0 such that for all wug,

|tk ]| con @ny < Cllarl|wiaw)-

So we obtain constants C1,Cy, Cs,Cy, M > 0 and the sequence of inequalities below,

urllconrwy < Crlltkllcom@mny < Colltrllwramny < Csllugllwraw) < Ca sup urllwa@y = M,
S

where the second last inequality follows from the boundedness of E (see Theorem 2.19(Extension)).
So we find that for € > 0, we may choose § = (E/M)l/v and find for all z,y € U with |z — y| < §, that

|ug () — up(y)|

< M.
lz —yl»

Hence
luk(z) —ugp(y)| < Mz —y|? < M =e.

Now we apply Theorem 6.13(Arzeld-Ascoli) from Appendix 6.4 and find that uy — u uniformly on compact
sets for some u € Coxt(U) C LY(U), i.e. U is bounded and 1 < ¢ < oo. Therefore,

up — w in LY(U).

I conclude
Wh(U) ccc LYU).
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4 Functional Analysis

In the previous section we introduced Sobolev Spaces and gave some structural information about them. Before
we arrive at the main objective of the thesis, namely calculus of variations, we will prove theorems in functional
analysis such that we can exploit the properties of Sobolev spaces.

4.1 Weak Topology

Let F be a Banach space.

We will first introduce the weak topology on the space F. We will prove certain theorems, which can be
generalized. However, for the sake of simplicity I will omit unnecessary difficulties and prove the needed
properties only.

Let E’ be the dual space of E.

Definition 4.1. (Weak Topology) We define the weak topology o(E, E') the smallest topology such that all
functions f € E’ become continuous. That is, the minimal topology T such that for all U € Tg and f € E’, we
have f~1(U) € 7.

For all normed vector spaces E, there exists a bounded linear operator ® : E — E”, namely, ®(z)(f) = f(z).
Definition 4.2. (Weak* Topology) We define the weak* topology o(E”, E’) on E’ as the smallest topology
such that all maps f € ®(F) are continuous.

Definition 4.3. We call FE reflexive if and only if ® is surjective.

From now on, we will denote the element ®(x)(f) = f(z) by (f,x)
Definition 4.4. A topological space (X, T ), is called metrizable if there exists a metric d on X, that generates

T.

4.2 Weak Topology on Banach Spaces

Theorem 4.5. (Ezistence Subsequence)

Assume that E is a reflezive Banach space and let (x,)nen be a bounded sequence in E. Then there exists a
subsequence (X, )keN, that converges weakly in E.

The original theorem is proven by Brezis [Brel0, Theorem 3.18, Section 3.5].
Proof. Let M be the vector space generated by the x,,’s and M = M. Clearly, M is separable. Moreover M is
reflexive as will be shown in Proposition 4.7. It follows that Bj; is compact and metrizable in the weak topology,

since M* is separable using Corollary 6.20 (see Appendix 6.5) and Theorem 4.11. Since metrizable and compact
implies sequentially compact, we find a subsequence that converges weakly in M, hence also weakly in E. [J

Theorem 4.6. (Mazur)
Let C' be a convex subset of E. If C' is strongly closed then it is weakly closed.
The original theorem is proven by Brezis [Brel0, Theorem 3.7, Section 3.3].

Proof. Assume C is closed in the strong topology. We’ll show that the complement is open in the weak
topology. Let g ¢ C, then we apply Lemma 6.18 (see Appendix 6.5) and find a hyperplane separating zy and
C. Therefore, we find f € E/ and a € R, such that

(fixo) <a < (f,y) VyeC.
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Set
V={zeE:(fuz)<al,

so that 7o € V, VN C =0 and V is open in the weak topology. O

Proposition 4.7. Assume that E is a reflexive Banach space and let M C FE be a closed linear subspace of E.
Then M is reflexive.

The original theorem is proven by Brezis [Brel0, Theorem 3.7, Section 3.3].

Proof. The space M-equipped with the norm of FE has a priori two topologies:

(i)  the topology induced by o(FE, E’)
(ii)  its own weak topology o (M, M*)

In fact these topologies are the same. That is, because every continuous linear function is the restriction of one
on E, using Hahn-Banach Theorem 6.17 (see Appendix 6.5). Using Theorem 4.10, we have to check that By is
compact in the topology (M, M*). However, since Bg is compact in o(F, E') and M is closed. We find that
By is compact in o(E, E").

O
Lemma 4.8. (Helly)
Let E be a Banach space. Let f1,---, fi be given in E' and let 1,42, -+ ,yx be given in R.
Consider the following to statements

(i) Ve > 0,3z, € E such that ||z || <1 and |{f;,ze) —yi| <€, Vi=1,2,--- k
(i) VA1, -+ -, Br € R we have |28, Biyi| < ||, Bifill-

Then (ii) implies (i).

Proof. Set y = (y1,--- ,yx) € R¥ and consider the map ¢ : E — R¥, defined by

(;5(1’) = (<f171'>7 T v<fkax>)

Statement (i) says precisely that y € #(Bg). Suppose, by contradiction, that (i) fails, so that y ¢ ¢(Bg). Hence
{y} and ¢(Bg), may be strictly separated in R* by some hyperplane.

It follows that
(XF_Bifi,x) <a<XF By, Vr€ Bg
and therefore
IZiBifill < a < B Biyi,

which contradicts (ii). O

Lemma 4.9. (Goldstine) Let E be a Banach space. Then J(Bg) is dense in Bg» in the weak* topology.

Proof. Let £ € Bg» and let V be a neighborhood of £ for the weak* topology. We must prove that VNJ(Bg) # 0.
We may assume that V is of the form

V={neE"  :|n-&f)<eVi=1,--- k}

for some given elements fi,--- , fx in E’ and some € > 0 (see Appendix 6.5 Proposition 6.19). We have to find
some x € Bg such that J(z) € V| that is
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k k
Set v; = (£, fi). In view of Lemma 4.8 it suffices to check that ] > ﬂfyi| < | > B fi| which is clear since
i=1 i=1

k k
;ﬁi%‘ = (¢, ;6ifi> and [[£| < 1.

Theorem 4.10. (Kakutani) Let E be a Banach space.
If Bg is compact in the weak topology, then E is reflexive.
The original theorem is proven by Brezis [Brel0, Theorem 3.17, Section 3.5].

Proof. The canonical injection J : E — E” is always continuous with respect to the weak to weak* topology.
An open in the weak* topology of E” is given by gbj?l(O), where f € E' and O C R™ be open. Therefore,
requiring J*1(¢;1(O)) C FE to be open. However, J*I(QSJ?l(O)) = (¢y 0 J)"1(O). And for z € E, we have

proJ(x) = dr(ps) = v (f) = f(2),
which is continuous with respect to the weak topology of E.

Assuming that Bg is compact in the weak topology on E we deduce that J(Bg) is compact and thus closed in
E” with respect to the weak™ topology. On the other hand J(Bg) is dense in Bg~ for the same topology by
Lemma 4.9. Hence J(Bg) = Bg».

O
Theorem 4.11. Let E be a Banach space such that E' is separable.
Then Bg is metrizable in the weak topology.
The original theorem is proven by Brezis [Brel0, Theorem 3.29, Section 3.6].

Proof. Let (fn)nen be a dense countable subset of Bg:. For every z € E set [z] = Y. 2=[(fn, 2)|.
n=1

Clearly, [-] is a norm on E and [z] < ||z||, granted you know there exists f € E’ for every x € E such that
f(z) # 0. This is a result from the Hahn-Banach Theorem 6.17 (See Appendix 6.5).

Let d(z,y) = [x — y] be the corresponding metric. We shall prove that the topology induced by d on Bg is the
same topology as the weak topology restricted to Bpg.

Let z € Bg and let V be a neighborhood of x in the weak topology. We have to find some r > 0 such that
B(y,r) C V. According to Proposition 6.19 (See Appendix 6.5), we may assume that V is of the following form

V={z¢€ Bg;[{gi,x —2)| <e,Vi=1,--- k}

with € > 0 and ¢g; € E’. Without loss of generality we may assume that || f;|]] < 1 for every ¢ = 1,--- , k. For
every ¢ there exists some integer n; such that ||g; — fn,|| < €/2, since (fn)nen is dense. Choose r > 0 such
that 2™ir < /2, Vi = 1,--- , k. We claim that for such r and By(z,r) C V. Indeed, if d(z,y) < r, we have
s (fnisx —y)| <7, Vi=1,--- k, and therefore, Vi = 1,--- ,k we have |(g;,x — )| = [(g; — fni,® — y)| +
[{fn;,z —y)| <e/2+¢/2. So we have y € V.

Secondly, we show that, if x € Bg. Given r > 0, we have to find some neighborhood V' of x in the weak
topology with € and k to be determined in such a way that V' C By(z,r). For y € V we have d(z,y) =
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k =]

21 = {fr,z —y)| + Zk: 5| (fns @ — y)| < € + g Thus, it suffices to take ¢ = r/2 and k large enough such
n= n=k+1

that 52— < r/2. Then we find

V={z¢€Bg;|{fi,x—2)|<e,Vi=1,--- ,k} C By(z,7).

O

Remark 4.12. All the theorems, lemmas and propositions in this section originate from Brezis book [Brel0).
Also for addition information on general functional analysis, for example results of the Hahn-Banach Theorem,
I recommend reading this book.
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5 Main Theorem 1.3

5.1 Idea of Proof

Recall from the introduction Question 1.1.

Let 1 <p<oo,n €N, U CR" open and bounded, g € LP(0U),
A:={ueW"P(U):u=gon dU in the trace sense},
LeC®[R" xR x U) and
I(u) := /UL(Du,u,x)dx.
Does there exists u € A such that I(u) < inf,ea I(v)?

In this section we will prove the aforementioned Theorem 1.3 (Existence of Minimizer) as a responds to this
question.

Let l<p<oo,p#n,a>0,3>0and U a C'—domain.

Theorem 1.3 (Existence of Minimizer) Assume that L satisfies the coercivity inequality
L(z,y,2) > alz|" = B
and s convex in the z-variable.

Suppose also the set A is nonempty.

Then there exists at least one function u € A solving

I(u) = ul)relfﬁll(w) (63)

The original theorem is proven by Evans [Evad8, Theorem [Theorem 2, Section 8.2.2].
Idea of Proof.

We take a sequence such that under composition with I it converges to the infimum of I on A. Then we show
this sequence converges to a minimizer.

Let m = ini[(u) and choose a sequence of functions (uy)reny with ug € A such that
ue

lim I(ug) =¢.

k—o0

Assume / is finite.
Coercivity implies that the sequence (uy)xen is bounded.

Since the sequence is bounded in W1 (U) for 1 < p < 0o, we know using Theorem 4.5 (Ezistence Subsequence),
that there exists a subsequence convergent in the weak topology.

Hence we find
ug, = u weakly in WHP(U).
We also find out that Tu = g, therefore u € A.

The convexity condition will provide us the estimate.

I(u) < liminf I (uy,) = m.

J—0o0

Therefore, we conclude that u minimizes I.
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Remark 5.1. We need to take the limit infimum, because I may not be continuous with respect to the weak
convergence. That is, we may have that
I(u) # lim I(uy,).

J—00

Remark 5.2. Even if W1P(U) were finite dimensional. And therefore we would find a strongly convergent
subsequence. Then still I need not be continuous with respect to strong convergence. Take for example the
sequence

o 1/n-nx x €[0,1/n?) _
Up () = { 0 v € 1n1) Un(—2) = up(x).

convergent to u(z) = 0 in WhP((—1,1)).
Now take L(z,y,z) = 2. We find

Duy,(z)?dr = 1.
(0,1

/ Du(z)?*dr = / 0%dx = 0.
(—1,1) (—1,1)

However

5.2 Proof

This subsection is allocated the proof of the main theorem.

As shown in the previous subsection, we need the following definition.
Definition 5.3. We say that a function I is weakly lower semi-continuous on W1P(U), if for every uy — u
weakly in W1P(U), we have
I(u) < liminf I'(ug).
k—o0

Remark 5.4. The condition p # n in Theorem 1.3(Ezistence of Minimizer) is not necessary in some sense.
That is, if we consider 1 < r < p. We would find g € LP(U) and L still satisfies the coercivity and convexity
condition. Therefore, we find a minimizer v € {u € WH"(U) : u = g}.

Theorem 5.5. (Weak Lower Semi-Continuity) Assume that L is smooth, bounded from below and in addition,

the mapping z v L(z,y,x) is convex
foreachy € R, z € U. Then
I is weakly lower semi-continuous on WP(U).

The original theorem is proven by Evans [Eva98, Theorem [Theorem 1, Section 8.2.2].

Proof. (Theorem 5.5)

Let (ux)ken be a sequence such that
u, — u weakly in WP (U) (64)

and define ¢ := liminfy_,o I(ug). We must show
I(u) < ¢.
The limit (64) and Theorem 6.16 (see Appendix 6.5) together imply that

sup [|ukllwe ) < oo
keN

Without loss of generality we assume
= lim I(uy),

k—o0
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because any subsequence is also weakly convergent to u in W1P(U).

Furthermore we see from Theorem 3.14(Rellich-Condracov) or Theorem 3.15 (depending on p < n or n < p)
that ur — w strongly in LP(U) and thus, passing if necessary to yet another subsequence, we have

up — u a.e in U. (65)

Let € > 0, then (65) and Theorem 6.6 (Egorov) assert

ug — u uniformly on E., (66)

where FE. is measurable set with
U—-E.| <e. (67)

We may assume E. C E.s for 0 < ¢’ < € as shown in the Theorem 6.6 (Egorov). Define the following set

F. = {o € Ulju(e)| + |Du()| < 1/¢} (68)
Then
[U—-F.]—>0ase—0. (69)
We finally set
G.:= F.NE.. (70)

Using (67) and (69) we find that |U — G| — 0 as € — 0.
Since L is bounded from bellow, we may assume without loss of generality that
L >0, (71)

for otherwise we consider L = L + 3.

Consequently,

I(uk):/ L(Duk,uk,m)dxz/ L(Duk,uk,x)de/
U GE

L(Du,uk,x)daH—/ D,L(Du,ug,x)- (Dux, — Du)dz,
Ge Ge

the last equality following from the convexity of L in its first argument (see Appendix 6.2.1). Now in view of
(66), (68), (70) and Theorem 6.3 (Dominated Convergence) form Appendix 6.3,

lim L(Du,uk,m)dx:/ L(Du,u,x)dx.
k— o0 GE Gs

In addition, since D,L(Du,uk,x) — D,L(Du,u,z) uniformly on G, and Duy — Du weakly in LP(U;R"), we
have

lim / D,L(Du,ug,x) - (Dug — Du)dx
k—o0 G.
< lim / L.,(Du, uy, z)(Dul, — Du®)dx
=1 k—o0 Gs
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n

< lim
2 k— o0
=1

where R} (z) := L., (Du,u,z) — L,,(Du,uy,x) for i € {1,...,n}.
Define F': LP(U) — R with

/G (L., (Du,u,2) — Ri(x))(Duy — D) (72)

Fi(v):/G L., (Du,u, z)vdx.

€

The RHS of (72) is bounded from above by

n

< lim

k—oc0
1

/ L.,(Du,u,z)(Dul, — Du')dx
Ge

+ 1R (@) 2 o) / |Du, — Du|da.

i= €

The integrals [, [Duj, — Du’|dz are uniformly bounded in k, because Duy — Du weakly in LP(U). Since
| Rl oo () — 0 as k — oo, F' is a bounded linear functional and Duj, — Du weakly, we find that

n

lim
. k—o0
=1

/ L.,(Du,u,z)(Du}, — Du')dx
Ge

+ ||Rk(x)||Loo(U)/ Du. — Duildz — 0 as k — oo,

€

So we have deduced that
0= lim I(ug) > / L(Du,u,z)dz.
k—oo el

€

This inequality holds for each £ > 0. We now let ¢ tend to zero and recall (71) and Theorem 6.2(Monotone
Convergence) from Appendix 6.3 to conclude

= inf I(w) > / L(Du,u,z)dx = I(u)
weA U

as required .

Proof. (Theorem 1.3)
Let ¢ = inf I(w).
weA

If £ = oo, then we are done, because any w € A # (0, satisfies (63).

Now assume ¢ < oo, then there exists a sequence (ug)gen, such that klim I(ug) =4¢.
—00

Assume without loss of generality that 3 = 0. Reason being, that we could consider L =L+ 3 and find that a
minimizer for I corresponds to a minimizer for I.

Applying the coercivity condition we obtain for all w € A

o / |\ Duw|%dz < Iuw]. (73)
U

Let w € A. We find that uy —w = 0 on QU in the trace sense. Therefore, we use Theorem 2.23(Zero Trace) to
conclude uy, —w € Wy P(U).

We have for C1,Cy > 0 and C' > 0, such that

lurllzr @y < llux —wllpr@y + lwll Loy < Cil|Dug — Dwl| Loy + Callwl| Loy < C < o0,

46



where in the second inequality we used the Poincare inequality from Theorem 3.8 (Poincare).
Together with inequality (73) I conclude the sequence is bounded in W1 (U).
By Theorem 4.5(Ezistence Subsequence), there exists a subsequence that converges weakly in WP (U).

The space W, P(U) is closed in WP(U). By Theorem 4.6(Mazur) we find that W(i’p(U) is weakly closed,
because W, P (U) is convex in WhP(U). Hence u —w € W, P(U), because uy —w € Wy P(U).

So the trace of u is g on QU and therefore u € A.

Now apply Theorem 5.5(Weak Lower Semi-Continuity) to conclude that

I(u) = liminf I (ug) = £.

k—o0

5.3 Discussion of the Hypothesis

Convexity Firstly, we will motivate convexity of L in the z-variable.
A real valued C? function with minimum must be locally convex near this minimum.

The following theorem provides a similar statement about minimizing I.
Theorem 5.6. If u € A is a minimizer of I then

n
S L., (Du,u,2)66, >0 (E€R™, z€U).
,J
This theorem is based on a discussion written by Evans [Eva90, Beginning Section 2].

Remark 5.7. Even though, this does not imply that L is convex in p. The above does hint that convexity is
important.

Proof. Consider the following real valued function

i(r) = I(u+ 7v),
where v € C2°(U) and u € WP(U) a minimizer of the functional I.
We have seen that <-|.—gi(7) = 0.
Though, now we consider the second derivative, namely
d? )
PH:OZ(T) Z Oa
using that v is a minimizer.

So we find that

i"(1) = / Z L...,(Du+ DvuT,u+ 70, 2)Us, Vs,
U .

i,j=1
+2 Z L.,y(Du+ 1Dv,u+ T0,2)v,v
i=1
+ Ly, (Du + 7Dv,u + 70, x)v*dw
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Now we take 7 = 0, we find

i(0) :/ Z L., (Du,u, 2)vy, vy,
U

ij=1
—Q—QZLZiy(DU,u,(E)’UIiU (74)
i=1

+Lyy(Du,u, z)v?dz >0

Now consider the following function zig-zag function p,

o ={ T_, mrElh) sern=s) wem,

Let £ € R™, we define

for x € U and ¢ € C°(U).

Since v is integrable with compact support there exists a sequence v, € C°(U), such that v, — v in LP(U).
Also, v is a.e. differentiable, so we may apply Theorem 6.3(Dominated Convergence) from Appendix 6.3.
Therefore, the expression (74) also applies in the case of v.

Compute the derivatives of v a.e.

vr, = 0 (Z5) (9)266,CPdw + O(e)  as e 0.

Hence, we find
0< [y Y Lz, (Du,u, )€6;¢Pde as e — 0.
i,

This estimate holds for all ¢ € C°(U).

Therefore taking a sequence (,, such that ¢? is convergent to a delta function, we deduce that

ZLZij (Duvuax)gzé.] > 0 (f S Rn, S U)

,J

The next example shows that convexity is in fact essential in certain cases.
Example 5.8. (Bolza) Let U = (0,1), L(z,y,z) = (1 — y?)? + 22, choose g : 9(0,1) — R with g(0) = 0 = g(1)
and define

A={v e W"P(U):Tv =g on dU in the trace sense}.

We find that L is not convex. However, L is coercive, because L(z,y,z) > 2% — 10.
I will show the infimum of I is zero.

Let p be the function defined in the proof of Theorem 5.6.

Choose u,, € A, such that
p(nx)
-

U () =
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Now apply I, we find

I(um) :/1](1—12)2-1- (p(zx))de%Oasn%oo.

Hence the infimum of I on A is 0.
Suppose that u is a minimizer, then u = 0. However, this implies Du = 0 also.
Therefore, we have that
I(u)=1#0.
I conclude I cannot be minimized.

The following theorem is the reverse implication of Theorem 5.5(Weak Lower Semi-Continuity) in a special
case.
Theorem 5.9. Let L(z,y,x) = F(2) for some F € C°(R™) and U an open unit cube with center 0.

If I is weakly lower semi-continuous in W1P(U), then L is convex.

The original theorem is proven by Evans [Eva90, Theorem 1, Section 2].

Proof. Let z € R™ and let v € C2(U). For each k € N subdivide U into cubes {Q;}2"; of side length 1/k.
Define )
up(x) = Q?U(Qk(ff —m))+z-x (zeQ),
x; denoting the center of @;, and
u(z) =z-z (z€Q).
Then uy, is smooth, because v has compact support in U.
Claim 1. The sequence (ug)ren converges weakly to u in WHP(U).

I will do this by proving that
1
wy, = 2711(2k(1: —x)) (x € Q)
converges weakly to 0 in WP (U).

Firstly, we find that
Wy — 0,

strongly in L*°(U). Hence, wy — 0 weakly in L?(U).
Now we consider fi(z) = Dwy(x) where
fr(@) = Dv(2"(z — 21)) (z € Q).
Let ¢ € (LP(U : R™)), then we apply the isometric isomorphism (LP(U : R™)) ~ L' (U : R™) and find
w € LP (U : R™) such that
o(fr) :/ fi - wdz.
U

Assume without loss of generality that w € C°(U : R™). We may assume WLOG, because of the density of
C(U) in LP (U). Then we define

e

e(z) =w(x) —w(z) (z € Q).

Now we find

fr - w(z)dx
Qi

gnk
<2
=1

+/Ql fi - e(a) de
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2nk

I kllze @ llell o )

||U HLPU
Z e el - (75)

Since w is smooth with compact support, we find that w is Lipschitz-continuous. Therefore, we find C' > 0,
such that
el o () < C.

The right hand side of (75) is bounded from above by

2nk

< C|vllr U)ZTL;C C||UHLp(U — 0 as k — oo.

I conclude Claim 1.

Therefore, using the weak lower semi-continuity, we find
I(u) <liminf I (ug).
k— o0

Computing the RHS, we find

2nk 2k,n

hm mf I(uy) = liminf F(Dv(2"(x — x7)) + 2)dx = hm 1nfz / F(Du(y) + z)dy

k—o0 Q
= / F(Dv + z)dx
U

=1
So we find that v is a minimizer of the functional I for its own boundary values. Now apply Theorem 5.6 and
we find
O*F
8Zi82j

So we find that I’ needs to be convex.

Coercivity
Coercivity provides us two bounds.

The first of which is the boundedness from below of I. That is,
I(w) > =B|U|.
Secondly, if L(w) < oo, then ||Dwl| sy is bounded from above

5 > I(w) > of| Dw|?, 4, — BIUI.

The following example illustrates the importance of this assumption.
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Example 5.10. Let U = (0,1), L(z,y,z) = lez and g = 0.
We find that L is not coercive. However, L is convex in the z-variable.

If I had a minimizer u € A, then we would find
/ L(Du,u,z)dz > 0.
(071)

To see this we apply the Theorem 3.1(General Sobolev Inequalities), we find that u € C%7(U) for v € (0,1).
Since u < oo a.e., we find € (0,1) such that u(z) < oco.

So Hﬁ > 0 in a neighborhood. Hence, I(u) > 0.

Now define the following sequence of functions u,, € A

2nx for z € (0,1/(2n))
un(x) = { n for z € (1/(2n),1—1/(2n))
n—2nz for z € (1—-1/(2n),1),
then
lim ¥dﬂc =0,

n—=o0 J(0,1) 1+ up(z)?
as a result of using 6.3 (Dominated Convergence).

I conclude I cannot be minimized.
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6.1

10.

11.

12.

Appendix

Notation

. By convention the natural numbers includes 0, i.e. N={0,1,2,3,...}.

n
Let n € N, we call @ € N a multiindex and write |a| := Y «;.
i=1

Let o be a multiindex and u sufficiently smooth, we write D%u = 9g} --- 93" u, in the case the order of
differentiation does not matter.

Let n € N. Define the following partial order (N™, <). If 5, € N, then 8 < « if and only if for all 5; and
a;, we have 8; < «; as natural numbers.

Let U C V C R”, we say U is compactly contain in V', denoted
UccV.
If there exists an open W C R"™ such that
UcWwcV.
and U is compact.

Let U C R™ be measurable and bounded, define fU udr = ﬁ fU udx, where u € L*(U).

Let U,V C R", we say the distance between two sets denoted dist(U, V'), is defined

dist(U, V) := inf |z —y].

z€UAYEV

Sometimes, we just write a point instead of U.

Let U C R"™ be open and £ > 0. We define,
U: :={z € U : dist(z,0U) > €}.

In the phrase A a.e., A is referred to as the Lebesgue measure.

When v € LP(U), then the integral of v is written

/ vdx.
U

However, this is with abuse of notation, meaning the v in the integral is a representative of the class
v e LP(U).

For v € WHP(U) we write the boundary intergral of v over U as

/8U vdS(x).

Let w: R™ D U — R, then we define the support of u

supp(u) := {z € U : u(z) = 0}.

Function Spaces Let U,V C R" and U open.

13.

C«k

ext

(U) = {u € C*(U) : for all @ € N" with |a| < k, there exists a continuous extension for D%u to U }.
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14. C, =N ,Ck

ext T ext

).

15. Wka(U), H*(U) for k € N and 1 < p < oo, denote the Sobolev Spaces (see section Sobolev Spaces).

16. C*7(U) for k € N and 0 < < 1, denote the Holder spaces (see section Sobolev Inequalities).

17. Ck(U) = {u € C*(U) : u has compact support}.

18. L'(A\) ={u:U — R :u \ — integrable}.

19. LY(U) = L'(X\)/N, where N = {u € L'(\) : [;; ud\(x) = 0}.
Calculus Let k € No, U C R™ be open, then U is a C*-domain if for cach x € dU, there exists r > 0 and a
C* function v : R"~! — R such that upon relabeling and reorienting the coordinate axes if necessary, we have

UNB(z,r) ={y € B(x,r) :yn > (1, yn-1)}:

Y

Now we can construct a C*¥—diffeomorphism @ that ”straightens out the boundary” near x. Define

{yizxi::@(m) (i=1,...,n—1)
Yn = Tn _’Y(xlv'uvxn) = (I)n(x)7

and write

Similarly, we set

T =Yn +7W1, - Yn) == ¥ (y).

Then ® = U1 and the mapping x — ®(z) = y has the following properties,

®(0U N B(z,r)) CR*1 x {0}
{ ®(U N B(x,7)) CR" ! x (0,00)
det(D®) = det(DW) = 1.

6.2 Inequalities

Let U C R™ be open unless stated differently.
Definition 6.1. Let U be convex and f: U — R, we say f is convex if

fre+ (1 —1)y) <7f(z)+ (1 —7)f(y)
forall z,y e U and 0 < 7 < 1.

If f € C?(U), then f being convex is equivalent to
S oy (@68 > 0,
i,j=1
for all &;,&; € R. We call f strictly convex if there exists a # > 0, such that for all §,{; € R, we have
Z foia, (@)6E5 > 0.
ij=1

1. If f € CL(U) is convex, then
fl@) < fly) +Df(z) - (z —y).
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2. For Young’s inequality, let a,b € [0,00) and p, ¢ € [1,00) such that % + % =1, then

aP  bP
ab < — + —.
p q

Let (X, A, 1) be a measure space.

3. For Holder’s inequality, let 1 < p,q < oo, % + % =1. Ifue LP(X),v € LYX), then uv € L*(X) and we
have

luvllrxy < lullzexyllvllacx)-
4. For Minkowski inequality, let 1 < p < co and u,v € LP(X). Then
lu+vlrex) < llullzexy + l0llLrx)-
5. Taking two cases of Holder and Minkowski inequality, X = U C R™ and X = N, we find

luvll vy < llullze @y llvll Loy

n n 1/p n 1/q
e (z) (z w)
k=1 k=1 k=1

lu+vllre@wy < llull ey + lvlle@)
n 1/p n 1/p n 1/q
(Z |ak +bk|p> < (Zak|p> + (Z Ibk|q>
k=1 k=1 k=1

6. The following inequality is the interpolating inequality for LP-norms,

assume 1 < s <r <t <oo and

r s t
Suppose also u € L*(U) N L*(U). Then v € L"(U) and

1 6 1-96
+

lallzr ) < Tl lull 2.

6.3 Measure Theory

Theorem 6.2. (Monotone Convergence)Let (X, A, ) be a measure space.

Let (uj)jen C LY(11) be an increasing sequence of integrable functions u1 < ug < ... with limit u = Sup u;.
JEN

Then u € LY (u) if and only if

sup/ujdu <0
JEN

/ujdu:/supujdu.
JjEN

JjeN

, in which case

(see [Sch05, Theorem 11.1] for a proof of Theorem 6.2)

54



Theorem 6.3. (Dominated Convergence) Let (X, A, 1) be a measure space and (u;)jen C L*(p) be a sequence
of functions such that |uj| < w for all j € N and some w € L1 (n). If u(z) = lim w;(z) ewists for almost every
j—o0

x € X, then u € L1 (i) and we have
(i) lim [|u; —uldp=0;
j—o0
(ii) lim [ujdp= [ lim w;dp = [udp
j—o0 j—o00
(see [Sch05, Theorem 11.2] for a proof of Theorem 6.3)
Theorem 6.4. Let 1 < g < oo, then LP(U) is a Banach space.
(see [Brel0O, Theorem 4.8, Section 4.2] for a proof of Theorem 6.4)

Let X,Y be Banach spaces.
Theorem 6.5. Let (ur)ren C X and
U — U.

Then
sup [|ukllx
keN

Proof. Let ¢ : X — X** be the bidual map, where ¢(u)(u’) = v/(u) for all ' € X*.

Since

sup {|e(ug) (W)} = supgen {2/ (ur)|} < oo for all ' € X*,
keN

i.e. upy — u. And X* is a Banach space. We may apply the uniform boundedness theorem.

Thus
sup{[|¢(uk )| x+ } < o0.
keN

Since ¢ is an isometry. We find that,

sup{||uxl|x} < oo.
keN

Let (X, X, 1) be a measure space with p(X) < oco.
Theorem 6.6. (Egorov) Let u : X — R, be a sequence of ¥—measurable functions.

If upy, — u a.e. in U, then for every e > 0 there exists E. C U such that
ug — u uniformly on E.

and
U - E.|<e.

Proof. Let € > 0.
Since uy converges a.e., there exists a set £ C U such that u(E) = 0 and uy, converges on D = X — E.

Define the following sets, for n,k € N

B :={z €D :|u,(z) —u(x)| > 1/k}
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and
An,k = Uzanm,l«

Since uy, converges to v on D, we find that for all k € N, z € D, there exists an n € N, such that
|un () — u(z)| < 1/k
Therefore, we find that for all £ € N, we have

lim sup An,k; = mnEN UmZn An,k: = @

n—oo

Now using this, we find

0 = p(limsup Ay, 1)

n—0oo

= (MNnenAn i)
Since A, j is a decreasing sequence of sets, we find that, for n € N
Um>nAm.k = Ap k-
Therefore, we continue with the equality.

:u’(mnENAn,k) == ,u(hm sup An,k)

n—oo
=p( lim A, )
n—oo
= lim U(An,k)v
n—oo
where the last equality follows from the continuity of measure for decreasing sequences of sets.
Let (An, k)ken be such that
€
1(Ap k) < DUESE
which is possible because lim p(A, ) =0 for all £ € N.
n—oo

Define
A = UrenAn, ks

then
n(A) <e.

If x € D — B, then z ¢ B,,, i for all k € N. Hence
1
jua(a) — w(@)] < 1

for all i > ny.
This holds for all x € D — B. Therefore, u,, converges uniformly to w on D — B.

Now we define
E.=D-B

and we have proven that u,, — u uniformly on E. with

wX —E;) <e.

Finally, if we choose ny as small as possible, then £ imposes an order in E..

That is, if € < &/, then E. C E..

56



Theorem 6.7. Let a <b€R and u: (a,b) x X — R be a function satisfying
1.z — u(t,x) is in L1 (p) for every fized t € (a,b);
2. t — u(t,x) is differentiable for every x € X;
3. |Opu(t, z)| < w(x) for all (t,z) € (a,b) x X and some w € L1 ()

Then the function v : (a,b) — R given by

t— v(t) :z/ u(t, z)dx

1s differentiable and its derivative is

Do (t) = / yult, 2)u(dz).
b's
(see [Sch05, Theorem 11.5] for a proof of Theorem 6.7)

6.4 Calculus

The following function is called the standard mollifier.
Definition 6.8. (Mollifier)

1 .
n(z) = { Cexp (7&‘271) ?f lz| < 1
0 if || > 1
where C' is such that [p, n(z)de = 1.

We write,

Note that n,n. € C°(R™).

The notion of mollification is extremely important throughout the thesis and will be defined below.
Definition 6.9. Let f: U — R be locally integrable, then we define the mollification of f,

f&i=mn.% fin U..

That is,

fo(@) = /U ne( — ) Fy)dy = /B o TG )y
for x € U-..
Theorem 6.10. (Mollifier)

(i) 1< € C>(Ue).

(ii) f¢ — f a.e. ase — 0T.

(iii) If f € C(U), then f& — f uniformly on compact subsets of U.
(w) If1 <g<ooand f € LT (U), then f¢ — f in LT (U).

loc loc

(see [Eva98, Theorem 7, Section C.5] for a proof of Theorem 6.10)
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Theorem 6.11. Let U C R™ and U an open cover of U, together with index set I,
then there exists a collection of family of functions {(;}icr satisfying

(i) G > 0.
(iii) All z € U has a neighborhood V' such that only finitely many (;’s are nonzero on V.
and
(i) ¥ Gla)=1
iel
We call the family {(;}icr a partition of unity subordinate to U.

(see [Leel2, Theorem 2.23] for a proof of Theorem 6.11)
Theorem 6.12. Let u,v € CL ,(U). Then

ext
/umivdx: —/ uvmid:r—i—/ uvr'dS(z).
U U U

(see [Eva98, Theorem 2, Section C.2.] for a proof of Theorem 6.12)
Theorem 6.13. (Arzela-Ascoli Compactness Criterion) Suppose (fr)ken s a sequence of real-valued functions
defined on an open subset of U C R"™, such that

lfe()| <M (k=1,...,z€U)

for some constant M and that the functions are uniformly equicontinuous.

Then there exists a subsequence (fi, )nen and a continuous function f, such that

fne = uniformly on compact subsets of U.

(see [Eva98, Section C.8] for a proof of Theorem 6.13)

6.5 Functional Analysis

Let F be a Banach space.
Definition 6.14. We denote E’ the dual and E” the bidual of E.
Definition 6.15. The conjugate of p > 1, written p’ is

g P
p—1
Theorem 6.16. Let (ug)ren C E and
U — U.
Then
sup ||ukl &
keN

Proof. Let ¢ : E — E" be the bidual map, where t(u)(u') = v/(u) for all v’ € E’.

Since

sup {|e(ur) (W)} = supgen {|t/ (ur)|} < oo for all v’ € E’,
keN
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i.e. up — u. And E’ is a Banach space. We may apply the uniform boundedness theorem.

Thus
sup{|[¢e(ur)|| £} < oc.
keN

Since ¢ is an isometry. We find that,

sup{|lug|l g} < oo.
keN

Theorem 6.17. (Helly, Hahn-Banach analytic form). Let p: E — R be a function satisfying

{ p(Az) = Ap(x) Vi € E and YA > 0
p(z+y) <plx)+ply) Vo,yekE.

Let G C E be a linear subspace and let g : G — R be a linear functional such that
g(z) <p(z) Vzed.

Under these assumptions, there exists a linear functional f defined on all of E that extends g, i.e. g(x) = f(x)
Va € G, and such that

f(z) <p(x) Vrek.

(see [Brel0O, Theorem 1.1, Section 1.1] for a proof of Theorem 6.17)
Lemma 6.18. Let C' C E be a nonempty open convex set and let g € E with 2y € C. Then there exists
f € E’ such that f(x) < f(x¢) Vz € C. In particular, the hyperplane {f = f(zo)} separates {z¢} and C.

(see [Brel0O, Lemma 1.3, Section 1.2] for a proof of Lemma 6.18)
Proposition 6.19. Let zg € F; given € > 0 and a finite set {f1,..., fn} C E’ consider

V=V(f1,...,fr;e) ={z € E;|(fi,x —x0)| <e,Vi=1,...,k}.

Then V is a neighborhood of z( for the topology o(FE, E'). Moreover, we obtain a basis of neighborhood of xg
for o(E, E') by varying €,k and f;’s in F’.

(see [Brel0, Proposition 3.4, Section 3.2] for a proof of Proposition 6.19)
Corollary 6.20. FE is reflexive and separable if and only if E’ is reflexive and separable.

(see [Brel0, Corollary 3.27, Section 3.6] for a proof of Corollary 6.20)
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