
Utrecht Summer School on Geometry, August 16, 2017 F. Ziltener

Highlights of symplectic geometry

Solutions to the Assignment

These solutions are for your personal use only. Please do not pass them on to others.

Solution to Exercise 1 (sphere as a manifold) (i) We denote by x± :=
(
0, . . . , 0,±1

)
the north

and south poles, and by ϕ± : U± := Sn−1 \ {x±} → R the stereographic projection from x±. We

have

ϕ+(U+ ∩ U−) = R
n−1 \ {0} = ϕ−(U+ ∩ U−), ϕ±(U±) = R

n−1,

which are all open subsets of Rn−1. Furthermore,

U+ ∪ U− = Sn−1.

To show that the transition maps are smooth, consider first the case n = 1. Let x ∈ S1 be such

that x1 6= 0. We denote y± := ϕ±(x) ∈ R. It follows from Thales’ theorem that the triangles

x+0y+ and y−0x− are similar. Hence we have

1

y+
=

y−
1

= ϕ− ◦ ϕ−1
+ (y+).

Hence the transition map

χϕ−,ϕ+
:= ϕ− ◦ ϕ−1

+ : ϕ+(U+ ∩ U−) = R \ {0} → R

is smooth. Similarly, the transition map χϕ+,ϕ−
is smooth.

It follows from the above calculation that in the general situation the transition map is given by

χϕ−,ϕ+
: Rn−1 \ {0} → R

n−1 \ {0}, χϕ−,ϕ+
(y) =

y

‖y‖2
. (1)

This map is smooth.

It follows that the stereographic projections define a smooth atlas.

Solution to Exercise 2 (submanifold, tangent space) (i) By a Ck-submanifold chart we mean

a pair (Ũ , ϕ̃), where Ũ ⊆ Rm is open and ϕ̃ : Ũ → R

m is a map with open image that is a Ck-

diffeomorphism onto its image, such that ϕ̃(Ũ∩M) ⊆ Rn×{0}. We denote by pr : Rn×Rm−n →

R

n the projection onto the first factor and define

A :=
{(

Ũ ∩M, pr ◦ϕ̃|Ũ ∩M
) ∣∣ (Ũ , ϕ̃)Ck-submanifold chart}.

This is a Ck-atlas for M of dimension n, as desired. (Check this!)
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(ii) (a) It follows from the definition of A that for every (U,ϕ) ∈ A, the map ϕ−1 : ϕ(U) :→ U ⊆ Rm

is Ck (and hence differentiable). (Check this!) Let now x ∈ M , v ∈ TxM , (U,ϕ), (U ′, ϕ′) ∈ A,

and w,w′ ∈ Rn be such that x ∈ U ∩ U ′, and (ϕ,w), (ϕ′, w′) ∈ v. Then

d(ϕ′−1
)(ϕ′(x))w′ = d(ϕ′−1

)(ϕ′(x))d
(
ϕ′ ◦ ϕ−1)(ϕ(x))w

= d(ϕ−1)(ϕ(x))w,

where in the last step we used the Chain Rule. Hence the map Φ is well-defined.

(b) Φ is linear. It is injective, since d(ϕ−1)(ϕ(x)) is injective. It follows from the definition of

T̃xM (as the space of derivatives of paths in M) that d(ϕ−1)(ϕ(x)) is surjective. Hence the

same holds for Φ.

Solution to Exercise 3 (standard form is symplectic) ω0 indeed defines a differential 2-form,

since (ω0)x is bilinear and skewsymmetric, for every x ∈ R2n.

To show closedness of ω0, we claim that

ω0 =

n∑

i=1

dqi ∧ dpi, (2)

where q1, p1, . . . , q
n, pn : R2n → R denote the standard coordinate maps. To prove this equality, note

that qi : R2n → R is a linear map. Hence for every x ∈ R2n the map dqi(x) : TxR
2n = R agrees

with qi, if we identify TxR
2n with R2n in a canonical way. This means that dqi(x) is the canonical

projection onto the (2i− 1)-th factor of R2n. A similar argument shows that dpi(x) : R
2n = R2n → R

is the canonical projection onto the 2i-th factor. Equality (2) therefore follows from the definition of

the wedge product ∧.

It follows from (2) and the definition of the exterior derivative that dω0 = 0, i.e., that ω0 is closed.

We show that ω0 is nondegenerate: Let x ∈ R2n be a point and v ∈ TxR
2n = R2n, such that

ω0(v, w) =

n∑

i=1

(
v2i−1w2i − v2iw2i−1

)
= 0,

for every vector w ∈ TxR
2n. Inserting the 2i-th standard vector for w into this formula, we obtain

v2i−1 = 0, for every i = 1, . . . , n. On the other hand we obtain v2i = 0 for every i = 1, . . . , n, by

inserting the (2i− 1)-th standard vector for w. It follows that v = 0. Hence ω0 is nondegenerate.

Solution to Exercise 4 (surface in Euclidian space) An orientation on Σ corresponds to a smooth

unit normal vector field ν : Σ → R

3. We define the two-form ω on Σ by

ωx(v, w) := ν(x) · (v × w), ∀x ∈ Σ, v, w ∈ TxΣ, (3)

where · denotes the Euclidian inner product and × the cross product (vector product). The form ω does

not vanish anywhere and is therefore nondegenerate. (Here we use that Σ is two-dimensional.) The
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exterior derivative of ω is of degree 3. It vanishes, since Σ is two-dimensional. Hence ω is a symplectic

form.

For the two-sphere S2 a unit normal vector field is given by

ν : S2 → R

3, ν(x) := x.

The form (3) is therefore given by

ωx(v, w) = x · (v × w) = det
(
x v w

)
, ∀x ∈ S2, v, w ∈ TxS

2 =
{
v ∈ R3

∣∣x · v = 0
}
.

Solution to Exercise 5 (symplectic form on torus) An atlas for R/Z is given by the following

two charts:

R/Z ⊆
{
x+ Z

∣∣x ∈ (0, 1)
}
∋ x+ Z 7→ x ∈ (0, 1),

R/Z ⊆

{
x+ Z

∣∣x ∈

(
−
1

2
,
1

2

)}
∋ x+ Z 7→ x ∈

(
−
1

2
,
1

2

)
.

The map

R/Z ∋ x+ Z 7→ e2πix ∈ S1 ⊆ C

is a diffeomorphism. (Check this!) The additive group Z2n acts on R2n via addition. The canonical

projection onto the orbit space of this action,

π : R2n → R

2n/Z2n = T2n := (R/Z)2n

is smooth. There exists a unique 2-form on R2n whose pullback under π equals ω0. (Check this!) This

form is symplectic. It is called the standard form on the torus T2n.

Solution to Exercise 6 (canonical forms) (i) The form ωcan is closed, since it is exact, i.e.,

equal to the exterior derivative of some one-form, namely of −λcan. (Here we use that d2 =

d ◦ d = 0.)

(ii) Let x = (q, p) ∈= T ∗
R

n = R2n. (For convenenience, we order the coordinates in R2n differently

from the lecture.) The canonical projection onto the first factor,

pr : T ∗
R

n → R

n, pr(q, p) := q,

is linear. Therefore it coincides with its differential at x. Hence the canonical 1-form on T ∗
R

n

is given by

λcan
x = p pr =

n∑

i=1

pidq
i(x),

as claimed.
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(iii) It follows from (ii), the definition of the exterior derivative, and (2) that

ωcan = −dλcan

= −

n∑

i=1

dpi ∧ dqi

=

n∑

i=1

dqi ∧ dpi

= ω0,

as claimed.

(iv) Lemma 1 We have

Φ∗λcan
X′ = λcan

X . (4)

Proof: Let x = (q, p) ∈ T ∗X. We denote

x′ := (q′, p′) := Φ(x).

We have

(
Φ∗λcan

X′

)
x
=

(
λcan
X′

)
x′
dΦ(x)

= p′dπ′(x′)dΦ(x)

= p dϕ(q)−1d(π′ ◦ Φ)(x)

= p dπ(x) =
(
λcan
X

)
x
,

where in the second to last equality we used that

π′ ◦ Φ = ϕ ◦ π.

Equality (4) follows. This proves Lemma 1.

�

It follows from this lemma that

Φ∗ωcan
X′ = Φ∗(−dλcan

X′ )

= −d
(
Φ∗λcan

X′

)

= −dλcan
X = ωcan

X ,

as claimed.

(v) Let x = (q, p) ∈ T ∗X. We choose an open neighbourhood U ⊆ X of q and a local coordinate chart

ϕ : U → R

n. This means that ϕ is a diffeomorphism onto its image V := ϕ(U). We define

Φ : T ∗U ⊆ T ∗X → T ∗V ⊆ T ∗
R

n
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as in the previous part of this exercise. By parts (iv,iii) we have

ωcan
X |T ∗U = ωcan

U

= Φ∗ωcan
V

= Φ∗
(
ωcan
R

n |T ∗V

)

= Φ∗ω0.

Since T ∗U is an open neighbourhood of x, it follows that ωcan
X is locally isomorphic to ω0.

(vi) By Exercise 3 ω0 is nondegenerate. Hence by part (v) the same holds for ωcan
X .

Solution to Exercise 7 (harmonic oscillator) The force exerted on the mass is given by

F = −kq,

where k denotes the spring constant and q the elongation of the spring = position of the mass. Up to

an additive constant the potential energy is given by

U(q) =
k

2
|q|2,

since ∇U(q) = −kq = F . Hence the Hamilton function is given by

H(q, p) =
|p|2

2m
+

k

2
|q|2.

(This is the total energy of the system = sum of kinetic and potential energy. Here | · | denotes the

Euclidian norm in Rn.) We choose our units in such a way that m = 1 and k = 1. Then Hamilton’s

equations are given

q̇i =
∂H

∂pi
= pi,

ṗi = −
∂H

∂qi
= −qi.

The unique solution of these equations with initial condition (q, p)(0) = (q0, p0) is

(q, p)(t) =

(
(cos t)q0 + (sin t)p0
−(sin t)q0 + (cos t)p0

)
.

Remarks:

• We identify R2n with Cn via the map (q, p) 7→ q+ ip. Then we may write the Hamilton function,

Hamilton’s equations, and their solution compactly as

H(x) =
1

2
|x|2, ẋ = −ix, x(t) = e−itx.
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• It follows that in phase space R2n = Cn the solution of Hamilton’s equations describes a circle.

• This solution is 2π-periodic. The period does not depend on the initial condition (q0, p0).

Solution to Exercise 8 (fixed points and periodic orbits) In this exercise we assume that the

flow of
(
XH(t,·)

)
t∈R

exists for all times. This is a smooth map ϕH : R × M → M . The solutions

x ∈ C∞(R,M) of Hamilton’s equation

ω(ẋ, ·) = dH

are precisely the integral curves of the family of vector fields XH :=
(
XH(t,·)

)
t∈R

, i.e., solutions of

ẋ(t) = XH(t,·) ◦ x(t), ∀t ∈ R.

This follows from the definition of the Hamiltonian vector field of a function on M . Since H is 1-

periodic in R, the same holds for XH .

Therefore, it suffices to prove the following: Let X = (Xt)t∈R be a smooth family of vector fields

on M that is 1-periodic in R. (Smoothness means that the map R × M ∋ (t, x) 7→ Xt(x) ∈ TM is

smooth.) We denote by (ϕt
X)t∈R its flow. Then the map

Φ : M → C∞(R,M), Φ(x0) :=
(
R ∋ t 7→ ϕt

X(x0) ∈ M
)

(5)

maps the fixed points of ϕ1
X bijectively onto the set X of solutions x : R→ M of the equation

ẋ = X ◦ x. (6)

To see this, note that the map Φ is injective. We show that it maps

Fix(ϕ1
X) =

{
x0 ∈ M

∣∣ϕ1
X(x0) = x0

}

to X : Let x0 ∈ Fix(ϕ1
X). We define x := Φ(x0). The path

y : R→ M, y(t) := x(t+ 1)

satisfies

y(0) = ϕ1
X(x0) = x0, ẏ(t) =

d

dt
ϕt+1
X (x0) = Xt+1 ◦ ϕ

t+1
X (x0) = Xt ◦ y(t), ∀t ∈ R.

Here in the last step we used that X is 1-periodic in R. Since x also solves the equations x(0) = x0,

ẋ(t) = Xt ◦x(t), it follows that x = y. Here we used uniqueness of the solution of a first order ordinary

differential equation (with smooth coefficients) with given initial value. It follows that x is 1-periodic,

and therefore Φ(x0) ∈ X .

To see that X is contained in the image of Φ, let x ∈ X . Then y := Φ(x(0)) solves the equations

y(0) = x(0), ẏ(t) = Xt ◦ ϕ
t
X(x(0)) = Xt ◦ y(t), ∀t ∈ R.

It follows that y = x. Hence x ∈ imΦ.

Hence the map Φ has the claimed properties.
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Solution to Exercise 9 (critical points) Since M is compact, f attains a maximum at some point

x+ ∈ M and a minimum at some point x− ∈ M . We show that x+ is a critical point: Let v ∈ Tx+
M .

We choose a smooth path x : R→ M satisfying x(0) = x+ and ẋ(0) = v. The function f ◦ x : R→ R

attains its maximum at 0. It follows that

0 =
d

dt
(f ◦ x)(0) = df(x(0))ẋ(0) = df(x+)v.

Since this holds for every v ∈ Tx+
M , it follows that df(x+) = 0. Hence x+ is a critical point of f .

A similar argument shows that x− is a critical point of f . If x+ = x− then f is constant and hence

every point in M is a critical point of f . Otherwise f has at least the two critical points x− and x+.

Solution to Exercise 10 (Hamiltonian flow on sphere) (i) For x ∈ S2 and v ∈ TxS
2 we have

ωx






−x2
x1
0


 , v


 = x ·






−x2
x1
0


× v


 = x ·




x1v3
x2v3

−x2v2 − x1v1


 = |x|2v3 − x3x · v.

Since |x| = 1 and x · v = 0, this number equals

v3 = dH(x)v.

It follows that

XH(x) =
(
− x2, x1, 0

)
,

as claimed. The flow of this vector field is given by

ϕt
H(x) =

(
Rt(x1, x2), x3

)
,

where Rt : R2 → R

2 denotes the counter-clockwise rotation by t. (Check that this map satisfies

ϕ0
H = id and d

dt
ϕt
H = XH ◦ ϕt

H .)

(ii) The Arnold conjecture states that every Hamiltonian diffeomorphism of a closed symplectic ma-

nifold (M,ω) has at least CritM fixed points, where CritM is the minimal number of critical

points of a smooth function from M to R. By Exercise we have CritS2 ≥ 2. (In fact, H as in

(i) has exactly two critical points, hence also CritS2 ≤ 2.) On the other hand, for H as in (i)

the Hamiltonian diffeomorphism ϕ1
H has only 2 fixed points. Hence the statement of the Arnold

conjecture for (S2, ω) is indeed sharp.

Solution to Exercise 11 (volume preserving embedding of ball into cylinder) The linear map

ϕ : R2n → R

2n, ϕ
(
q1, p1, . . . , qn, pn

)
:=

(
r−1q1, r

−1p1, r
2q2, p2, . . . , qn, pn

)

has the desired properties.
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Solution to Exercise 12 (Liouville’s theorem) We claim that

1

n!
ω∧n
0 = Ω0. (7)

To see this, let x ∈ R2n. We denote by e1, . . . , e2n the standard basis of R2n and by S2n the symmetric

group on 2n letters. Identifying the tangent space TxR
2n with R2n in a canonical way, we have, by

definition,

1

n!
(ω0)

∧n
x (e1, . . . , e2n) =

1

n!2n

∑

σ∈S2n

(−1)signσ

n∏

i=1

(ω0)x
(
eσ(2i−1), eσ(2i)

)
. (8)

A given summand on the right hand side vanishes, unless for each index i = 1, . . . , n there exists a

ji ∈ {1, . . . , n}, such that

(
σ(2i− 1), σ(2i)

)
=

(
2ji − 1, 2ji

)
or

(
2ji, 2ji − 1

)

On the other hand, if this condition is satisfied then

(−1)signσ

n−1∏

i=0

(ω0)x
(
eσ(2i−1), eσ(2i)

)
= 1.

The number of permutations σ ∈ S2n with the above property is 2nn!. Hence using equality (8), it

follows that
1

n!
(ω0)

∧n
x (e1, . . . , e2n) = 1 = (Ω0)x(e1, . . . , e2n).

Since the space of skew-symmetric linear (2n)-forms on R2n is one-dimensional, it follows that

1

n!
(ω0)

∧n
x = (Ω0)x.

Since x ∈ R2n is arbitrary, the claimed equality (7) follows.

Let now U ⊆ R2n be an open subset and ϕ : U → R

2n a symplectic embedding. Using equality (7),

we have

ϕ∗Ω0 =
1

n!
(ϕ∗ω0)

∧n =
1

n!
ω∧n
0 = Ω0.
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