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Abstract The zeta function of a number field can be interpreted as the partition
function of an associated quantum statistical mechanical (QSM) system, built from
abelian class field theory.
We introduce a general notion of isomorphism of QSM-systems and prove that it
preserves (extremal) KMS equilibrium states.
We prove that two number fields with isomorphic quantum statistical mechanical
systems are arithmetically equivalent, i.e., have the same zeta function. If one of
the fields is normal over Q, this implies that the fields are isomorphic. Thus, in this
case, isomorphism of QSM-systems is the same as isomorphism of number fields,
and the noncommutative space built from the abelianized Galois group can replace
the anabelian absolute Galois group from the theorem of Neukirch and Uchida.

Introduction

The starting point for this study is the observation that the zeta function of a number
field K can be realized as the partition function of a quantum statistical mechanical
(QSM) system in the style of Bost and Connes (cf. [3] for K = Q). The QSM-
systems for general number fields that we consider are those that were constructed
by Ha and Paugam (see section 8 of [12], which is a specialization of their more
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general class of QSM-systems associated to Shimura varieties), and further studied
by Laca, Larsen and Neshveyev in [16]. This quantum statistical mechanical sys-
tem (AK,σK) consists of a C∗-algebra AK (the noncommutative analogue of a topo-
logical space) with a time evolution σK (i.e., a continuous group homomorphism
R→ AutAK). The structure of the algebra is that of a semigroup crossed product

AK :=C(XK)o J+K , with XK := Gab
K ×Ô

∗
K
ÔK,

where ÔK is the ring of finite integral adeles and J+K is the semigroup of ideals,
which acts on the space XK by Artin reciprocity. The time evolution is only non-
trivial on elements µn ∈ AK corresponding to ideals n ∈ J+K , where it acts by multi-
plication with the norm N(n)it . For exact definitions, see Section 2.

We call two general QSM-systems isomorphic if there is a C∗-algebra isomor-
phism between the algebras that intertwines the time evolutions. In Section 1, we
prove that such an isomorphism induces a homeomorphism between (extremal)
KMS-equilibrium states of the systems at a given temperature.

Our main result for the QSM-systems of number fields is:

Theorem (= Theorem 4.1 below). If the QSM-systems (AK,σK) and (AL,σL) of two
number fields K and L are isomorphic, then K and L are arithmetically equivalent,
i.e., they have the same Dedekind zeta function.

Using some other known consequences of arithmetical equivalence, we get the
following ([19], Theorem 1): if number fields K and L have isomorphic QSM-
systems, then, for any rational prime p, there is a bijection between the prime ideals
p of K above p and the prime ideals q of L above p that preserves the inertia degrees:
f (p |K) = f (q |L). Furthermore, the number fields have the same degree over Q, the
same discriminant, normal closure, isomorphic unit groups, and the same number of
real and complex embeddings. However, it does not follow from arithmetical equiv-
alence that K and L have the same class group (or even class number), cf. [10].
In general, arithmetic equivalence does not imply that K and L are isomorphic, as
was shown by Gaßmann ([11], cf. also Perlis [19], or [14]). An example is provided
by K = Q( 8

√
3) and L = Q(

8√3 ·24) ([19], [15]). However, the implication is true
if K and L are Galois over Q (Theorem of Bauer [1] [2], nowadays a corollary of
Chebotarev’s density theorem, see, e.g., Neukirch [18] 13.9), so we find:

Corollary. If the QSM-systems (AK,σK) and (AL,σL) of two number fields K and
L are isomorphic and the extension K/Q is normal, then K and L are isomorphic
as fields. ut

This corollary is somewhat reminiscent of the anabelian theorem of Neukirch
and Uchida ([17], [20]), which says that number fields with isomorphic absolute
Galois groups are isomorphic (Neukirch [17] proved this if one of the fields is nor-
mal over Q, just as in our corollary). It is interesting to notice that the QSM-system
involves the abelianized Galois group and the adeles, but not the absolute Galois
group. In this sense, it is “not anabelian”; but of course, it is “noncommutative” (in
noncommutative topology, the crossed product construction is an analog of taking
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quotients). The emerging philosophy seems to be that one can substitute the con-
sideration of the “anabelian” absolute Galois group (with its difficult representation
theory studied in the Langlands programme) by the dynamics of the action of Frobe-
niusses in the abelianized Galois group, with its “easy” representation theory given
by class field theory.

One may wonder whether QSM-system isomorphism in general implies field
isomorphism. In [8], this is proven for global function fields. We will discuss the
number field case in the remaining instalments of this work.

The structure of this paper is as follows: first, we introduce isomorphism of QSM-
systems. We deduce some basic properties, such as preservation of (extremal) KMS-
states. Then we recall the QSM-system of a number field, and we prove our main
theorem. In the final section, we make explicit the matching of KMS states for num-
ber fields.

1 Isomorphism of QSM systems

We recall some definitions and refer to [4], [6], and Chapter 3 of [7] for more infor-
mation and for some physics background. After that, we introduce isomorphism of
QSM-systems, and prove it preserves KMS-states.

1.1 Definition. A quantum statistical mechanical system (QSM-system) (A,σ) is a
(unital) C∗-algebra A together with a so-called time evolution σ , which is a contin-
uous group homomorphism σ : R→ Aut A : t 7→ σt . A state on A is a continuous
positive unital linear functional ω : A→ C. We say ω is a KMSβ state for some
β ∈ R>0 if for all a,b ∈ A, there exists a function Fa,b, holomorphic in the strip
0 < ℑz < β and bounded continuous on its boundary, such that

Fa,b(t) = ω(aσt(b)) and Fa,b(t + iβ ) = ω(σt(b)a) (∀t ∈ R).

Equivalently, ω is a σ -invariant state with ω(ab) = ω(bσiβ (a)) for a,b in a dense
set of σ -analytic elements. The set KMSβ (A,σ) of KMSβ states is topologized as
a subspace of the convex set of states, a weak* closed subset of the unit ball in the
operator norm of bounded linear functionals on the algebra. A KMSβ state is called
extremal if it is an extremal point in the (compact convex) set of KMSβ states for
the weak (i.e., pointwise convergence) topology.

1.2 Remark (Physical origins). This notion of QSM-system is one of the possible
physical theories of quantum statistical mechanics; one should think of A as the al-
gebra of observables, represented on some Hilbert space H with orthonormal basis
{Ψi}; the time evolution, in the given representation, is generated by a Hamiltonian
H by

σt(a) = eitHae−itH , (1)

and (mixed) states of the system are combinations
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a 7→∑λi〈Ψi|aΨi〉

which will mostly be of the form a 7→ trace(ρa) for some density matrix ρ . A typical
equilibrium state (here, this means stable by time evolution) is a Gibbs state

a 7→ trace(ae−βH)/ trace(e−βH)

at temperature 1/β , where we have normalized by the partition function trace(e−βH).
The KMS-condition (named after Kubo, Martin and Schwinger) is a correct gener-
alization of the notion of equilibrium state to more general situations, for example
when the trace class condition trace(e−βH) < ∞, needed to define Gibbs states, no
longer holds (cf. Haag, Hugenholtz and Winnink [13]).

We now introduce the following equivalence relation for QSM-systems:

1.3 Definition. An isomorphism of two QSM-systems (A,σ) and (B,τ) is a C∗-
algebra isomorphism ϕ : A ∼→ B that intertwines time evolutions, i.e., such that the
following diagram commutes:

A
ϕ

∼
//

σ

��

B

τ

��
A

ϕ

∼
// B

1.4 Proposition. Let ϕ : (A,σ)
∼→ (B,τ) denote an isomorphism of QSM systems.

Then for any β > 0,

(i) pullback
ϕ
∗ : KMSβ (B,τ)→ KMSβ (A,σ) : ω 7→ ω ◦ϕ

is a homeomorphism between the spaces of KMSβ states on B and A;
(ii) ϕ∗ induces a homeomorphism between extremal KMSβ states on B and A.

Proof. The map ϕ obviously induces a bijection between states on B and states on
A.

For (i), let Fa,b be the holomorphic function that implements the KMSβ -condition
for the state ω on (B,τ) at a,b ∈ B, so

Fa,b(t) = ω(aτt(b)) and Fa,b(t + iβ ) = ω(τt(b)a).

The following direct computation then shows that the function Fϕ(c),ϕ(d) implements
the KMSβ -condition for the state ϕ∗ω on (A,σ) at c,d ∈ A:

(ω ◦ϕ)(cσt(d)) = ω(ϕ(c)τt(ϕ(d)) = Fϕ(c),ϕ(d)(t),

and similarly at t + iβ . Also, note that pullback is continuous, since C∗-algebra
isomorphism is compatible with the topology on the set of KMS-states.
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For (ii), if a KMSβ state ω on B is not extremal, then the GNS-representation πω

of ω is not factorial. As in Prop 3.8 of [6], there exists a positive linear functional,
which is dominated by ω , namely ω1 ≤ ω , and which extends from B to the von
Neumann algebra given by the weak closure M ω of B in the GNS representation.
The functional ω1 is of the form ω1(b) = ω(hb) for some positive element h in the
center of the von Neumann algebra M ω . Consider then the pullbacks

ϕ
∗(ω)(a) = ω(ϕ(a))

and
ϕ
∗(ω1)(a) = ω1(ϕ(a)) = ω(hϕ(a))

for a ∈ A. The continuous linear functional ϕ∗(ω1) has norm ‖ϕ∗(ω1)‖ ≤ 1. In
fact, since we are dealing with unital algebras, ‖ϕ∗(ω1)‖ = ϕ∗(ω1)(1) = ω(h).
The linear functional ω2(b) = ω((1− h)b) also satisfies the positivity property
ω2(b∗b)≥ 0, since ω1 ≤ ω . The decomposition

ϕ
∗(ω) = λη1 +(1−λ )η2,

with λ = ω(h),

η1 = ϕ
∗(ω1)/ω(h) and η2 = ϕ

∗(ω2)/ω(1−h)

shows that the state ϕ∗(ω) is not extremal. Notice that η1 and η2 are both KMS
states. To see this, it suffices to check that the state ω1(b)/ω(h) is KMS. In fact, one
has for all analytic elements a,b ∈ B:

ω1(ab) = ω(hab) = ω(ahb) = ω(hbτiβ (a)).

This proves the proposition. ut

2 A QSM-system for number fields

Bost and Connes ([3]) introduced a QSM-system for the field of rational numbers.
More general QSM-systems associated to arbitrary number fields were constructed
by Ha and Paugam in [12] as a special case of their more general class of systems for
Shimura varieties, which in turn generalize the GL(2)-system of [6]. We recall here
briefly the construction of the systems for number fields in an equivalent formulation
(cf. also [16]).

2.1. We denote by J+K the semigroup of integral ideals, with the norm function

N : J+K → Z : n 7→ N(n) = NK
Q (n) = NK(n).
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Denote by Gab
K the Galois group of the maximal abelian extension of K. The Artin

reciprocity map is denoted by

ϑK : A∗K→ Gab
K .

By abuse of notation, we will also write ϑK(n) for the image under this map of an
ideal n, which is seen as an idele by choosing a non-canonical section s of

A∗K, f
// // JK

s
^^

: (xp)p 7→ ∏
p finite

pvp(xp) .

The abuse lies in the fact that the image depends on this choice of section (thus,
up to a unit in the finite ideles), but it is canonically defined in (every quotient of) the
Galois group Gab

K,n of the maximal abelian extension unramified at prime divisors of
n: on every finite quotient of this, it is the “Frobenius element” of n. The notation
ϑK(n) will only occur in situations where this ambiguity plays no role.

We consider the fibered product

XK := Gab
K ×Ô

∗
K
ÔK,

(where ÔK is the ring of finite integral adeles), where the balancing is defined for
γ ∈ Gab

K and ρ ∈ ÔK by the equivalence

(γ,ρ)∼ (ϑK(u−1) · γ,uρ) for all u ∈ Ô
∗
K.

2.2 Definition. The QSM-system (AK,σK) associated to a number field K is defined
as the semigroup crossed product algebra

AK :=C(XK)o J+K =C(Gab
K ×Ô

∗
K
ÔK)o J+K , (2)

where the crossed product structure is given by n ∈ J+K acting on f ∈C(XK) as

(n, f ) 7→ ρn( f )(γ,ρ) = f (ϑK(n)γ,s(n)−1
ρ)en,

with en = µnµ∗n the projector onto the space of [(γ,ρ)] where s(n)−1ρ ∈ ÔK. Here
µn is the isometry that implements the action of J+K . Note that, because of the bal-
ancing over the finite idelic units Ô

∗
K, the dependence of ϑK(n) on s is again of no

influence. The action has a partial inverse defined by

σn( f )(x) = f (n∗x)

where we have defined the action n∗x of an ideal n ∈ J+K on an element x ∈ XK as

n∗[(γ,ρ)] = [(ϑK(n)
−1

γ,s(n)ρ)].

Then the following defining relations hold in the semigroup crossed product algebra:
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µnµ
∗
n = en; µ

∗
nµn = 1; ρn( f ) = µn f µ

∗
n;

σn( f ) = µ
∗
n f µn; σn(ρn( f )) = f ; ρn(σn( f )) = f en.

Finally, the time evolution is given by{
σK,t( f ) = f , ∀ f ∈C(Gab

K ×Ô
∗
K
ÔK);

σK,t(µn) = N(n)it µn, ∀n ∈ J+K .
(3)

where µn are the isometries that implement the semigroup action of J+K .

3 Hilbert space representation, partition function, KMS-states

3.1. Let us abbreviate KMSβ (K) := KMSβ (AK,σK). A complete classification of
the KMS states for the systems (AK,σK) was obtained in [16], Thm. 2.1. In particu-
lar, in the low temperature range β > 1, the extremal KMSβ states are parameterized
by elements γ ∈ Gab

K , and are in Gibbs form, given by

ωβ ,γ( f ) =
1

ζK(β )
LK(γ, f ,β ), where LK(γ, f ,β ) := ∑

n∈J+K

f (n∗γ)
N(n)β

(4)

is a generalized L-series associated to γ ∈ Gab
K and f ∈ AK.

3.2. Associated to any element γ ∈Gab
K is a natural representation πγ of the algebra

AK on the Hilbert space `2(J+K ). Namely, let εm denote the canonical basis of `2(J+K ).
Then the action on `2(J+K ) of an element fnµn ∈ AK with n ∈ J+K and fn ∈C(XK) is
given by

πγ( fnµn) εm = fn(nm∗γ)εnm.

In this picture, the time evolution is implemented (in the sense of formula (1)) by a
Hamiltonian

HσKεn = logN(n) εn. (5)

3.3. In this representation,

trace(πγ( f )e−βHσK ) = ∑
n∈J+K

f (n∗γ)
N(n)β

.

Setting f = 1, the Dedekind zeta function

ζK(β ) = ∑
n∈J+K

N(n)−β

appears as the partition function
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ζK(β ) = trace(e−βHσK )

of the system (convergent for β > 1).

4 Hamiltonians and arithmetic equivalence

We show that the existence of an isomorphism of the quantum statistical mechanical
systems implies arithmetic equivalence; this is basically because the zeta functions
of K and L are the partition functions of the respective systems. Some care has to
be taken since the systems are not represented on the same Hilbert space.

4.1 Theorem. Let ϕ : (AK,σK)
∼→ (AL,σL) be an isomorphism of QSM-systems of

number fields K and L. Then K and L are arithmetically equivalent, i.e., they have
the same Dedekind zeta function.

Proof. The isomorphism ϕ : (AK,σK)
∼→ (AL,σL) induces an identification of the

sets of extremal KMS-states of the two systems, via pullback ϕ∗ : KMSβ (L)→
KMSβ (K).

Consider the GNS representations associated to regular low temperature KMS
states ω = ωβ and ϕ∗(ω). We denote the respective Hilbert spaces by Hω and
Hϕ∗ω . As in Lemma 4.3 of [5], we observe that the factor Mω obtained as the weak
closure of AL in the GNS representation is of type I∞, since we are only consider-
ing the low temperature KMS states that are of Gibbs form. Thus, the space Hω

decomposes as
Hω = H (ω)⊗H ′,

with an irreducible representation πω of AL on H (ω) and

Mω = {T ⊗1 |T ∈B(H (ω))}

(B indicates the set of bounded operators). Moreover, we have

〈(T ⊗1)1ω ,1ω〉= Tr(T ρ)

for a density matrix ρ (positive, of trace class, of unit trace).
We know that the low temperature extremal KMS states for the system (AL,σL)

are of Gibbs form and given by the explicit expression in equation (4) for some
γ ∈ Gab

L ; and similarly for the system (AK,σK). Thus, we can identify H (ω) with
`2(J+L ) and the density ρ correspondingly with

ρ = e−βHσL/Tr(e−βHσL );

this is the representation considered in Section 3.2. As in Lemma 4.3 of [5], the
evolution group eitHω generated by the Hamiltonian Hω that implements the time
evolution σL in the GNS representation on Hω agrees with eitHσL on the factor
Mω . We find
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eitHω πω( f )e−itHω = πω(σL( f )) = eitHσL πω( f )e−itHσL .

As observed in §4.2 of [5], this gives us that the Hamiltonians differ by a constant:

Hω = HσL + logλ1 for some λ1 ∈ R∗+ . (6)

The argument for the GNS representation for πϕ∗(ω) is similar and it gives an iden-
tification of the Hamiltonians

Hϕ∗(ω) = HσK + logλ2 for some λ2 ∈ R∗+ . (7)

The algebra isomorphism ϕ induces a unitary equivalence Φ of the Hilbert
spaces of the GNS representations of the corresponding states, and the Hamiltonians
that implement the time evolution in these representations are therefore related by

Hϕ∗(ω) = ΦHω Φ
∗. (8)

In particular the Hamiltonians Hϕ∗(ω) and Hω then have the same spectrum.
By combining (6), (7) and (8), we find that

HσK = ΦHσLΦ
∗+ logλ

for a unitary operator Φ and a λ ∈ R∗+. This gives at the level of zeta functions

ζL(β ) = λ
−β

ζK(β ) (9)

for sufficiently large real β , hence for all β by analytic continuation. Now consider
the left hand side and right hand side as classical Dirichlet series of the form

∑
n≥1

an

nβ
and ∑

n≥1

bn

(λn)β
,

respectively. Observe that a1 = b1 = 1. Taking the limit as β →+∞ in (9), we find

a1 = lim
β→+∞

b1λ
−β ,

from which we conclude that λ = 1. Thus, we obtain ζK(β ) = ζL(β ), which gives
arithmetic equivalence of the number fields. ut

5 Matching of generalized L-series

Since the zeta functions are equal, the matching of extremal KMSβ states as in 3.1
implies a matching of generalized L-series, as follows:
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5.1 Corollary. Let ϕ : (AK,σK)
∼→ (AL,σL) be an isomorphism of QSM-systems of

number fields K and L. There exists a homeomorphism ψ : Gab
L
∼→Gab

K such that we
have an identification of generalized L-series

LL(γ, f ,β ) = LK(ψ(γ),ϕ−1( f ),β )

for all f ∈ AL and all γ ∈ Gab
L . ut
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