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Abstract Most rank two Drinfeld modules are known to have infinitely many
supersingular primes. But how many supersingular primes of a given degree can
a fixed Drinfeld module have? In this paper, a congruence between the Hasse
invariant and a certain Eisenstein series is used for obtaining a bound on the
number of such supersingular primes. Certain exceptional cases correspond to
zeros of certain Eisenstein series with rational j-invariants.
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It appears to be Deligne who has first observed that the Hasse-invariant for a
prime number p is congruent modulo p to the Eisenstein series of weight p− 1
on SL(2,Z) ([11],(2.1)). Said otherwise, the polynomial

Pp(X) =
∏

Ep−1(z)=0

(X − j(z))

lifts the supersingular polynomial to characteristic zero. This observation brings
to mind the following idea: if a rational elliptic curve has supersingular reduc-
tion at a prime p, then the Eisenstein series Ep−1 acquires a zero modulo p at
the complex point z whose j-invariant j = j(z) is that of the elliptic curve.
This means that if the value Pp(j) is integral, then either

(∗) |Pp(j)| ≥ p,

or z is a zero of Ep−1. If one can exclude the latter possibility (namely, that
zeros of Eisenstein series have rational j-invariants), then (∗) provides a relation
between j and p such that j is a supersingular invariant modulo p.

Unfortunately, I have not yet been able to make this idea produce meaning-
ful information about elliptic curves. But, as was pointed out by E.-U. Gekeler
([6]), the Hasse invariant modulo a prime polynomial p for rank-two Drinfeld
modules over the polynomial ring A = Fq[T ] is equally congruent to an appro-
priate Eisenstein series for GL(2, A). In this paper, I want to exploit the above
idea to gain information on the arithmetic of function fields. It turns out to
bound the number of primes of supersingular reduction of a fixed degree for a
given Drinfeld module over A with “sufficiently small” j-invariant (what this
means exactly will be stated below).

Let φ : A→ End(Ga(Fq(T )) be a ring morphism such that

φ(T ) = TX + gXq + ∆Xq2 , where g ∈ A,∆ ∈ A− {0},

and we have identified the endomorphisms of the additive group scheme with
additive polynomials in the variable X. Such φ is called a (rank-two) Drinfeld
module (defined over A), and for any prime p ∈ A, it makes sense to consider
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the reduction of φ modulo p, obtained by reducing the coefficients g and ∆ of
φ. A prime p not dividing ∆ is called supersingular if the coefficient of Xqdeg(p)

in φ(p) is divisible by p. Let

j =
gq+1

∆
and m(k) =

qk − qχ(k)

q2 − 1
,

where χ is the characteristic function of the odd integers, i.e. χ(2Z + 1) = 1
and χ(2Z) = 0. Let si(g,∆) be the number of monic primes of degree i which
do not divide ∆ and which are supersingular for φ.

Theorem A. If j 6= 0 and j 6= T q − T , then

k∑
i=1

isi(g,∆) ≤ (m(k) + χ(k)) ·max{q + deg(∆), (q + 1) deg(g)}+ χ(k) deg(g).

Furthermore, if j = 0, then an ordinary prime of A is supersingular if and only
if it has odd degree. If j = T q−T , then the formula holds for k > 2, but should
be replaced by 2s2(g,∆) ≤ q2 − q for k = 2.

R e m a r k. The Drinfeld module φ can also have good supersingular
reduction at a prime dividing ∆, in the correct (technical) sense to be defined
below. But theorem A applies in particular to a global minimal model of φ, for
which the divisors of ∆ are the precisely the primes of bad reduction (cf. infra).
So for a minimal model, si(g,∆) is really the number of supersingular primes
of degree i for φ.

For Drinfeld modules with integral j-invariants (j ∈ A), there is a second
version of this theorem. A typical example of such a Drinfeld module is given
by φ(T ) = TX + jXq + jqXq2 .

Theorem B. If j ∈ A and j /∈ {0, T q − T}, then

k∑
i=1

i(si(g,∆)− εi(g)) ≤ m(k) ·max{q,deg j},

where εi(g) is the number of monic primes of degree i not dividing ∆ but
dividing g if i is odd, and zero otherwise.

This formula is trivial if deg(j) is large (say, larger then q3, since isi(g,∆) ≤
qi and m(k) ≈ qk−2), and produces only very weak asymptotics as k grows
(of type: the fraction of primes of degree k which is supersingular remains
bounded). It is known in general that the set of supersingular primes {p} of a
Drinfeld module without complex multiplication has density zero, but is infinite
of asymptotic order >> log log x for qdeg(p) < x, at least for the infinite class
of so-called non-exceptional Drinfeld modules. (Brown [1], David [2]). On the
other hand, Poonen has constructed Drinfeld modules without supersingular
primes, and at the same time corrected the notion of exceptional module, as a
miscalculation occurred in the work of Brown ([12]).

The statements in theorem A and B are of a non-asymptotic sort. They
typically produce corollaries of the following type:
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Example A. If a Drinfeld module has supersingular reduction at no primes
of degree one and at all primes of degree two, then (1) if deg j ≤ q, either
j = T q − T or deg ∆ ≥ q2 − 2q; (2) if deg j > q then deg(g) ≥ (q2 − q)/(q + 1).

Example B. For an integral j-invariant of degree deg j < q, the number of
supersingular primes of degree 2 is less then q/2, and if this bound is attained,
the number of supersingular primes of degree 3 not dividing g is less then or
equal to q2/3.

To any Drinfeld module φ over A one can associate a two-dimensional p-adic
Galois representation of the separable Galois group of K given by its action on
the Tate module

lim
←−
n

{x ∈ C : φ(pn)(x) = 0}

of p∞-division points of φ. The above theorems impose restrictions on the local
structure (the image of the decomposition group) at p of such representations,
e.g.: for Drinfeld modules with integral j-invariants of degree less then q, the
p-adic representation is not ordinary at p for at most ≈ 1/q primes p of any
fixed degree.

That the elliptic point j = 0 occurs separately in the theorem comes as no
surprise, but the invariant j = T q − T seems to be more mysterious.

1. Drinfeld modules and modular forms We give the basic defini-
tions and fix notations. The existence of global minimal models for Drinfeld
modules is shown.

(1.1) Function Fields. Let A = Fq[T ] be the polynomial ring over
the finite field Fq of q(> 2) elements, K its quotient field, and K∞ and C
respectively its completion w.r.t. the valuation −deg, and the completion of an
algebraic closure of K∞.

We will denote T q
i − T by the symbol 〈i〉. It equals the product of all

irreducibles in A of degree dividing i ([9]).

(1.2) Drinfeld modules ([3]). Let L be a field with a morphism i : A→
L. A (rank-two) Drinfeld (A-)module over L is a ring morphism

φ : A → End Ga(L)

T 7→ i(T )X + gXq + ∆Xq2 ,

where g = g(φ) ∈ L,∆ = ∆(φ) ∈ L∗, and we have identified the endomorphisms
of the additive group scheme with additive polynomials in the variable X.

A morphism u of two Drinfeld modules φ and ψ is an element u ∈ End Ga(L)
such that φ ◦ u = u ◦ ψ. Two Drinfeld modules are isomorphic over the alge-
braic closure L̄ if and only if j(φ) = j(ψ), where j(φ) = gq+1/∆ is called the
j-invariant of φ.

(1.3) Supersingularity ([4], [7]). The ring of endomorphisms of a Drin-
feld module φ over L̄ is either A, an order in an imaginary extension of K
(imaginary means that the valuation −deg is inert), or a maximal order in a
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quaternion algebra over K which is ramified at a unique finite prime. The latter
case can only occur if i is not injective, and then we call φ supersingular. It
turns out that

φ(ker(i)) = lXqdeg(ker(i)) + (higher degree terms),

and φ is supersingular if and only if l = 0.

(1.4) Reduction of Drinfeld modules. A Drinfeld module φ over a
complete local field L with maximal ideal m is called minimal if its coefficients
g,∆ are integral and the m-valuation of ∆ is minimal within the L-isomorphism
class of φ. We denote by φmin a minimal Drinfeld module belonging to φ. A
Drinfeld module φ is said to have good reduction over L if m does not divide
∆(φmin), and it then makes sense to consider the reduction of φmin (obtained
by reducing the coefficients) as a Drinfeld module over the residue field of L,
where the map i from (1.2) is the reduction map modulo m. We say that a
Drinfeld module φ over L has supersingular reduction modulo a prime m of
good reduction if the reduction of a minimal model φmin at m is supersingular.

Now suppose that φ is a Drinfeld module defined over the global field K,
and assume that p is a prime of A. The φ is said to have good (resp. supersin-
gular) reduction modulo p if it has good (resp. supersingular) reduction when
considered over the completion Kp of K at p.

(1.4.1) Lemma For any Drinfeld module φ defined over A, there exists
a minimal model φ′ over A within the K-isomorphism class of φ, in the sense
that

ordm(∆(φ′)) = ordm(∆(φmin/Km))

for all m in A.

P r o o f. Assume that um is the isomorphism of φ/Km with its minimal model
φmin/Km. Then

∆(φ) = uq
2−1

m ∆(φmin/Km),

and um is non-zero for only finitely many m. If we set

u =
∏
m

mordm(um),

then φ′ = u ◦ φ ◦ u−1 is the desired global minimal model. 2

Observe that a minimal Drinfeld module φ has good reduction at a prime p
if and only if p does not divide the discriminant ∆ of φ. This means that for a
minimal Drinfeld module, si(g,∆) is the total number of supersingular primes
of degree i.

For a Drinfeld module which is not necessarily minimal, a prime p which
doesn’t divide ∆ is a prime of good reduction. For such p

φ(p) = lpX
qdeg(p) + (higher degree terms) mod p,

and hence p is a prime of supersingular reduction if and only if lp = 0 mod p.
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(1.5) Eisenstein series ([3], [8], [5]). The space Ω = C − K∞ can be
given the structure of a rigid analytic space, and w.r.t. it the function

El(z) : Ω→ C :
∑

(0,0)6=(a,b)∈A

(
1

az + b
)l

is a holomorphic modular form for the action of GL(2, A) on Ω given by frac-
tional transformations (with the appropriate notion of analyticity at the the
cusp ∞). It is non-zero if l is divisible by q − 1.

There is a correspondence between Drinfeld modules over C and rank-two
A-lattices Λ = Az ⊕ A in C (z ∈ Ω) given by φ 7→ z if for all a ∈ A and all
ω ∈ Ω, φ(a)(eΛ(ω)) = eΛ(aω), where

eΛ(ω) = ω
∏

λ∈Λ−{(0,0)}

(1− ω

λ
)).

Via this correspondence, the coefficients g and ∆ of the Drinfeld module become
modular forms of the variable z, if we let z vary in Ω. As a matter of fact, the
ring of modular forms for GL(2, A) is the free C-algebra spanned by g and ∆,
hence El is a polynomial in g and ∆.

2. Deligne’s congruence As above, let φ be a Drinfeld module defined
over A and p a prime of degree k which does not divide ∆. Let lp(g,∆) be the

coefficient of Xqk in φ(p).
Let Ak(X,Y ) denote the two-variable polynomial such that

∀z ∈ Ω : (−1)k+1(
∏
i≤k
〈i〉)Eqk−1(z) = Ak(g(z),∆(z)).

(2.1) Lemma The polynomials Ak satisfy the two term recursion relation

Ak = Xqk−1
Ak−1 − 〈k − 1〉Y qk−2

Ak−2

with starting values A−1 = 0, A0 = 1. Hence they are defined over A.

P r o o f. (Sketch – [6], (12.2)) It follows from the corresponding identity for
Eisenstein series, which in its turn follows from the fact that the Eisenstein series
are coefficients in the expansion of the lattice function eAz⊕A at infinity (like
Eisenstein series for SL(2,Z) are coefficients in the expansion of the Weierstraß
℘-function). 2

(2.2) Lemma (“Deligne’s congruence”) The congruence lp(g,∆) ≡
Ak(g,∆) mod p holds for any p of degree k in A.

P r o o f. (Sketch – [6], (12.3)) It follows because both sides as modular
forms modulo p reduce to 1, and because Ak(X,Y ) − 1 is the only relation in
the ring of modular forms modulo p. 2

This congruence is remarkable in so far that, whereas the “Hasse-invariant”
lp depends on p, its lift via Deligne’s congruence depends only on the degree k
of p.
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(2.3) Lemma The congruences An ≡ Aq
k

n−kAk mod p hold for any prime
p of degree k.

P r o o f. Using the fact that 〈n − 1〉 ≡ 〈n − k − 1〉qk mod p, it follows
inductively from the recursion (2.1). 2

3. j-invariants of zeros of Eisenstein series Define the polynomial
Pk by the formula

Ak(X,Y ) = Pk(
Xq+1

Y
)Y m(k)Xχ(k).

Denote the coefficients of Pk by c
(k)
i , i.e.

Pk(Z) =

m(k)∑
i=0

c
(k)
i Zm(k)−i,

where m(k) is as in the introduction.

(3.1) Lemma The coefficients c
(k)
i are integral (i.e., in A), c

(k)
0 6= 0 and

c
(k)
m(k) = 1 for all k > 0. If a coefficient c

(k)
i is non-zero, then it is of exact degree

qi. All roots of Pk have degree q.

P r o o f. The recursion (2.1) translates into

(3.1.1) Pk(Z) = Zd(k)Pk−1(Z)− 〈k− 1〉Pk−2(Z) where d(k) =
qk−1 + (−1)k

q + 1
.

From this, the statement about the leading and constant term follows induc-
tively. It is easy to prove that d(k) > m(k−2), and hence the following recursion
holds for the coefficients:

c
(k)
i =

{
c

(k−1)
i if i < m(k − 2)

−〈k − 1〉c(k−2)
m(k−2)−m(k)+i otherwise

.

From this, it follows by induction that a non-zero c
(k)
i has degree qi, since

m(k − 2)−m(k) = −qk−2.
The Newton polygon for the valuation −deg is then a straight line of slope

q, and hence the statement about the roots of Pk holds. 2

(3.2) R e m a r k. The polynomial Pk is such that

(−1)k+1(
∏
i≤k
〈i〉)Eqk−1(z) = g(z)χ(k)∆(z)m(k)Pk(j(z))

for all z ∈ Ω. Since ∆ is non-zero on Ω, this means that the zeros of Pk are
exactly the non-zero j-invariants of the zeros of the Eisenstein series Eqk−1.

(3.3) Lemma If Pk has a rational zero (i.e., Pk(a) = 0 for some a ∈ K),
then k = 2 and a = 〈1〉.

6



P r o o f. Assume that Pk(a) = 0 for some a ∈ K. Since Pk is an integral

equation over A, we have a ∈ A. Also, since all coefficients c
(k)
i for i 6= m(k) are

divisible by 〈1〉, a has to be divisible by 〈1〉. But a has degree q by (3.1), it has

to be of the form a = α · 〈1〉 for some α ∈ F∗q (note that a 6= 0 since c
(k)
0 6= 0).

By considering the recursion (3.1.1) for Pk modulo primes of degree k − 1,
it follows that all such primes divide (α〈1〉)d(k)Pk−1(α〈1〉). Hence if k > 2∏

deg(p)=k−1

p divides Pk−1(α〈1〉).

If N denotes the number of such primes p, then the left hand side has degree
(k− 1)N , whereas if Pk−1(a) 6= 0, the degree of the right hand side is bounded

from above by qm(k− 1), since we know the degree of the coefficients c
(k−1)
i by

the previous lemma. But

(k − 1)N = qk−1 + (lower terms in q with coefficients ± 1)

> qm(k − 1) = qk−2 + (lower terms in q with coefficients 1)

(consider the two numbers as written down in their q-adic expansion, q > 2).
It follows that Pk−1(a) = 0 too, and by applying the recursion (3.1.1) repeat-

edly in the opposite direction, it would follow that P1(a) = 0, whereas P1 = 1.
From this contradiction, we conclude that k = 2, and since P2(Z) = Z − 〈1〉,
also that a = 〈1〉. 2

4. Proofs of theorem A and theorem B

(4.1) P r o o f o f t h e o r e m A. Assume that the Drinfeld module
φ has supersingular reduction modulo si primes of degree i ≤ k which do not

divide ∆, and denote the set of these primes by Si = {p(i)
α }siα=1. Then for any

p in Si, we have lp(g,∆) ≡ 0 mod p, hence by (2.2), any such prime p divides
Ai(g,∆). From the congruences (2.3), we conclude that

k∏
i=1

si∏
α=1

p(i)
α divides Ak(g,∆) = gχ(k)

k∑
i=0

c
(k)
i g(q+1)(m(k)−i)∆i.

The degree of the left hand side equals
∑k

i=1 isi. On the other hand, using
(3.1), we find that if Ak(g,∆) 6= 0, the degree of the right hand side is bounded
by

max{[q + deg(∆)− (q + 1) deg(g)]i}+ [(q + 1)m(k) + χ(k)] deg(g).

Since for i ∈ {0,m(k)} the coefficient c
(k)
i is non-zero, this maximum is attained

for one of these values, and a bit of computation shows that

deg(Ak(g,∆)) ≤ m(k) max{q + deg(∆), (q + 1) deg(g)}+ χ(k) deg(g).

Hence either the inequality in theorem A holds, or Ak(g,∆) = 0.
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Assume first of all that g = 0. Then

Ak(0,∆) =

{
0 if k is odd∏k/2
l=1〈2l − 1〉∆m(k) if k is even

.

Since primes of even degree do not divide 〈2l−1〉, we see that exactly the primes
of odd degree are supersingular for φ.

If Ak(g,∆) = 0 and g 6= 0, it follows that Pk(j) = 0 for j = gq+1/∆ ∈ K.
Then from (3.3) we conclude that j = 〈1〉 and k = 2. So in that case, the
formula has to be replaced by 2s2 ≤ q2 − q. This finishes the proof of theorem
A. 2

(4.2) P r o o f o f t h e o r e m B. Assume that the primes in Si are
arranged in such a way that if i is odd, the divisors of g are the last εi = εi(g)
elements in Si. If j is integral, we find in a similar way (eliminating the divisors
of g and ∆) that

k∏
i=1

si−εi∏
α=1

p(i)
α divides Pk(j).

Unless it is zero, the right hand side has its degree bounded from above by
m(k) ·max{q,deg(j)}, and one can proceed as in the proof of theorem A. 2
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