Deligne’s congruence and
supersingular reduction of Drinfeld modules
By

GUNTHER CORNELISSEN

Abstract Most rank two Drinfeld modules are known to have infinitely many
supersingular primes. But how many supersingular primes of a given degree can
a fixed Drinfeld module have? In this paper, a congruence between the Hasse
invariant and a certain Eisenstein series is used for obtaining a bound on the
number of such supersingular primes. Certain exceptional cases correspond to
zeros of certain Eisenstein series with rational j-invariants.
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It appears to be Deligne who has first observed that the Hasse-invariant for a
prime number p is congruent modulo p to the Eisenstein series of weight p — 1
on SL(2,Z) ([11],(2.1)). Said otherwise, the polynomial

PX)= [ xX-i()

Ep_1(2)=0

lifts the supersingular polynomial to characteristic zero. This observation brings
to mind the following idea: if a rational elliptic curve has supersingular reduc-
tion at a prime p, then the Eisenstein series ), 1 acquires a zero modulo p at
the complex point z whose j-invariant j = j(z) is that of the elliptic curve.
This means that if the value P,(j) is integral, then either

(%) 1P(5)] = p,

or z is a zero of E, 1. If one can exclude the latter possibility (namely, that
zeros of Eisenstein series have rational j-invariants), then () provides a relation
between j and p such that j is a supersingular invariant modulo p.

Unfortunately, I have not yet been able to make this idea produce meaning-
ful information about elliptic curves. But, as was pointed out by E.-U. Gekeler
([6]), the Hasse invariant modulo a prime polynomial p for rank-two Drinfeld
modules over the polynomial ring A = F[T] is equally congruent to an appro-
priate Eisenstein series for GL(2, A). In this paper, I want to exploit the above
idea to gain information on the arithmetic of function fields. It turns out to
bound the number of primes of supersingular reduction of a fixed degree for a
given Drinfeld module over A with “sufficiently small” j-invariant (what this
means exactly will be stated below).

Let ¢ : A — End(G,(F4(T)) be a ring morphism such that

¢(T) = TX + gX9+AXT, where g € A,A € A— {0},

and we have identified the endomorphisms of the additive group scheme with
additive polynomials in the variable X. Such ¢ is called a (rank-two) Drinfeld
module (defined over A), and for any prime p € A, it makes sense to consider



the reduction of ¢ modulo p, obtained by reducing the coefficients g and A of
¢. A prime p not dividing A is called supersingular if the coefficient of X gies)
in ¢(p) is divisible by p. Let

- _qk_qx(k)
N

and m(k) = 21

where x is the characteristic function of the odd integers, i.e. x(2Z +1) = 1
and x(2Z) = 0. Let s;(g,A) be the number of monic primes of degree i which
do not divide A and which are supersingular for ¢.

Theorem A. Ifj#0and j+#T9—T, then

k
Z isi(g, A) < (m(k) + x(k)) - max{q + deg(A), (¢ + 1) deg(9)} + x(k) deg(g).

Furthermore, if j = 0, then an ordinary prime of A is supersingular if and only
if it has odd degree. If j = T9—T, then the formula holds for k > 2, but should
be replaced by 2s2(g,A) < ¢*> — q for k = 2.

Remark  The Drinfeld module ¢ can also have good supersingular
reduction at a prime dividing A, in the correct (technical) sense to be defined
below. But theorem A applies in particular to a global minimal model of ¢, for
which the divisors of A are the precisely the primes of bad reduction (cf. infra).
So for a minimal model, s;(g,A) is really the number of supersingular primes
of degree 7 for ¢.

For Drinfeld modules with integral j-invariants (j € A), there is a second
version of this theorem. A typical example of such a Drinfeld module is given
by ¢(T) = TX + j X1+ jIXT

Theorem B. Ifj € A and j ¢ {0,79— T}, then

i(si(g,A) —ei(g)) < m(k) - max{q,degj},

i=1

where €;(g) is the number of monic primes of degree i not dividing A but
dividing ¢ if ¢ is odd, and zero otherwise.

This formula is trivial if deg(j) is large (say, larger then ¢3, since is;(g, A) <
¢" and m(k) ~ ¢*72), and produces only very weak asymptotics as k grows
(of type: the fraction of primes of degree k which is supersingular remains
bounded). It is known in general that the set of supersingular primes {p} of a
Drinfeld module without complex multiplication has density zero, but is infinite
of asymptotic order > loglogz for ¢¢8®) < 2 at least for the infinite class
of so-called non-exceptional Drinfeld modules. (Brown [1], David [2]). On the
other hand, Poonen has constructed Drinfeld modules without supersingular
primes, and at the same time corrected the notion of exceptional module, as a
miscalculation occurred in the work of Brown ([12]).

The statements in theorem A and B are of a non-asymptotic sort. They
typically produce corollaries of the following type:



Example A. Ifa Drinfeld module has supersingular reduction at no primes
of degree one and at all primes of degree two, then (1) if degj < gq, either
j=T7—T ordegA > q* —2q; (2) if deg j > q then deg(g) > (¢*> —q)/(q +1).

Example B. For an integral j-invariant of degree deg j < ¢, the number of
supersingular primes of degree 2 is less then q/2, and if this bound is attained,
the number of supersingular primes of degree 3 not dividing g is less then or
equal to ¢°/3.

To any Drinfeld module ¢ over A one can associate a two-dimensional p-adic
Galois representation of the separable Galois group of K given by its action on
the Tate module

lim{z € C: ¢(p")(z) = 0}

of p°°-division points of ¢. The above theorems impose restrictions on the local
structure (the image of the decomposition group) at p of such representations,
e.g.: for Drinfeld modules with integral j-invariants of degree less then ¢, the
p-adic representation is not ordinary at p for at most ~ 1/q primes p of any
fixed degree.

That the elliptic point j = 0 occurs separately in the theorem comes as no
surprise, but the invariant j = T9 — T' seems to be more mysterious.

1. Drinfeld modules and modular forms We give the basic defini-
tions and fix notations. The existence of global minimal models for Drinfeld
modules is shown.

(1.1) Function Fields. Let A = Fy[T] be the polynomial ring over
the finite field F, of ¢(> 2) elements, K its quotient field, and K, and C
respectively its completion w.r.t. the valuation — deg, and the completion of an
algebraic closure of K.

We will denote 79 — T by the symbol (i). It equals the product of all
irreducibles in A of degree dividing i ([9]).

(1.2) Drinfeld modules ([3]). Let L be a field with a morphism i : A —
L. A (rank-two) Drinfeld (A-)module over L is a ring morphism

¢:A — End G(L)
T — i(T)X +gX9+AXY,

where g = g(¢) € L, A = A(¢) € L*, and we have identified the endomorphisms
of the additive group scheme with additive polynomials in the variable X.

A morphism u of two Drinfeld modules ¢ and 1 is an element u € End G,(L)
such that ¢ ou = uw o t. Two Drinfeld modules are isomorphic over the alge-
braic closure L if and only if j(¢) = j(3), where j(¢) = g9t!/A is called the
j-invariant of ¢.

(1.3) Supersingularity ([4], [7]). The ring of endomorphisms of a Drin-
feld module ¢ over L is either A, an order in an imaginary extension of K
(imaginary means that the valuation —deg is inert), or a maximal order in a



quaternion algebra over K which is ramified at a unique finite prime. The latter
case can only occur if ¢ is not injective, and then we call ¢ supersingular. It
turns out that

o(ker(i)) = px iRt (higher degree terms),

and ¢ is supersingular if and only if [ = 0.

(1.4) Reduction of Drinfeld modules. A Drinfeld module ¢ over a
complete local field L with maximal ideal m is called minimal if its coefficients
g, A are integral and the m-valuation of A is minimal within the L-isomorphism
class of ¢. We denote by ¢™™ a minimal Drinfeld module belonging to ¢. A
Drinfeld module ¢ is said to have good reduction over L if m does not divide
A(¢™™) and it then makes sense to consider the reduction of ¢™" (obtained
by reducing the coefficients) as a Drinfeld module over the residue field of L,
where the map ¢ from (1.2) is the reduction map modulo m. We say that a
Drinfeld module ¢ over L has supersingular reduction modulo a prime m of
good reduction if the reduction of a minimal model ™™ at m is supersingular.

Now suppose that ¢ is a Drinfeld module defined over the global field K,
and assume that p is a prime of A. The ¢ is said to have good (resp. supersin-
gular) reduction modulo p if it has good (resp. supersingular) reduction when
considered over the completion K, of K at p.

(1.4.1) Lemma For any Drinfeld module ¢ defined over A, there exists
a minimal model ¢ over A within the K-isomorphism class of ¢, in the sense
that .
ordm(A(¢')) = ordm(A(¢™"/ Kn))

for all m in A.

Proof. Assume that uy is the isomorphism of ¢ /K with its minimal model
™" /K. Then
A(9) = ufy T A(G™/ Ko),

and uy, is non-zero for only finitely many m. If we set
U= H mordm(um)’
m

then ¢/ = uo ¢ou~! is the desired global minimal model. O

Observe that a minimal Drinfeld module ¢ has good reduction at a prime p
if and only if p does not divide the discriminant A of ¢. This means that for a
minimal Drinfeld module, s;(g, A) is the total number of supersingular primes
of degree i.

For a Drinfeld module which is not necessarily minimal, a prime p which
doesn’t divide A is a prime of good reduction. For such p

deg(p)

P(p) =1, X1 + (higher degree terms) mod p,

and hence p is a prime of supersingular reduction if and only if [, = 0 mod p.



(1.5) Eisenstein series ([3], [8], [5]). The space 2 = C' — K, can be
given the structure of a rigid analytic space, and w.r.t. it the function

1
E(2):Q—=C : Z (az—i—b)l
(0,0)#(a,b)eA

is a holomorphic modular form for the action of GL(2, A) on 2 given by frac-
tional transformations (with the appropriate notion of analyticity at the the
cusp 00). It is non-zero if [ is divisible by ¢ — 1.

There is a correspondence between Drinfeld modules over C' and rank-two
A-lattices A = Az @ A in C (z € Q) given by ¢ — z if for all @ € A and all
w € Q, ¢(a)(ea(w)) = ep(aw), where

eaw) =w [ A=

AeA—{(0,0)}

Via this correspondence, the coefficients g and A of the Drinfeld module become
modular forms of the variable z, if we let z vary in . As a matter of fact, the
ring of modular forms for GL(2, A) is the free C-algebra spanned by g and A,
hence Ej is a polynomial in g and A.

2. Deligne’s congruence As above, let ¢ be a Drinfeld module defined
over A and p a prime of degree k£ which does not divide A. Let I,(g, A) be the
coefficient of X7 in ¢(p).

Let Ax(X,Y) denote the two-variable polynomial such that

Vze Q: (=) [) Egeoi(2) = Ak(9(2), A(2)).
i<k

(2.1) Lemma The polynomials Ay, satisfy the two term recursion relation
Ay =X A — (k—1Y? 44,

with starting values A_1 = 0, Ag = 1. Hence they are defined over A.

Proof. (Sketch - [6], (12.2)) It follows from the corresponding identity for
FEisenstein series, which in its turn follows from the fact that the Eisenstein series
are coefficients in the expansion of the lattice function e4,q4 at infinity (like
Eisenstein series for SL(2,Z) are coefficients in the expansion of the Weierstraf
p-function).

(2.2) Lemma (“Deligne’s congruence”) The congruence l,(g,A) =
Ag(g,A) mod p holds for any p of degree k in A.

P roof (Sketch — [6], (12.3)) It follows because both sides as modular
forms modulo p reduce to 1, and because Ax(X,Y) — 1 is the only relation in
the ring of modular forms modulo p. O

This congruence is remarkable in so far that, whereas the “Hasse-invariant”
Iy depends on p, its lift via Deligne’s congruence depends only on the degree k
of p.



(2.3) Lemma The congruences A, = Azk_ wAr mod p hold for any prime
p of degree k.

Proof Using the fact that (n — 1) = (n — k — 1)7° mod p, it follows
inductively from the recursion (2.1). O

3. j-invariants of zeros of Eisenstein series Define the polynomial
Py, by the formula

q+1

Ap(X,Y) = Py( Yy k) xx(k),
Denote the coefficients of P by cgk), ie.
P(2) = Pz,
i=0

where m(k) is as in the introduction.

(%)

(3.1) Lemma The coefficients ¢; ’ are integral (i.e., in A), c(()k) # 0 and

cfjjzk) =1 for all k > 0. If a coefficient cgk) is non-zero, then it is of exact degree

qi. All roots of P, have degree q.

Proof. The recursion (2.1) translates into

¢+ (=D

(3.1.1) Pu(2)=2¥®P,_(Z) — (k—1)P,_5(Z) where d(k) = por

From this, the statement about the leading and constant term follows induc-
tively. It is easy to prove that d(k) > m(k—2), and hence the following recursion
holds for the coefficients:

(k) { Cgk_l) if i <m(k—2)
¢ = )

! —(k — 1>C£nk(7€2—)2)—m(k)+i otherwise

From this, it follows by induction that a non-zero cgk) has degree ¢i, since
m(k —2) —m(k) = —¢*2.
The Newton polygon for the valuation — deg is then a straight line of slope

q, and hence the statement about the roots of P holds. O
(3.2) Remark. The polynomial Py is such that
(DM I LN B o1 (2) = 9B A )™ Pr(i(2))
i<k
for all z € Q. Since A is non-zero on €2, this means that the zeros of Pj are
exactly the non-zero j-invariants of the zeros of the Eisenstein series FEx_;.

(3.3) Lemma If P has a rational zero (i.e., Py(a) = 0 for some a € K),
then k = 2 and a = (1).



Proof  Assume that P;(a) = 0 for some a € K. Since Py is an integral

equation over A, we have a € A. Also, since all coefficients cgk) for « # m(k) are
divisible by (1), a has to be divisible by (1). But a has degree ¢ by (3. 1) it has

to be of the form a = - (1) for some o € F;; (note that a # 0 since Co 7é 0).
By considering the recursion (3.1.1) for Pk modulo primes of degree k — 1,
it follows that all such primes divide (a(1))**) P,_;(a(1)). Hence if k > 2

I » divides Pe_y(a(1)).
deg(p)=k—1
If N denotes the number of such primes p, then the left hand side has degree
(k —1)N, whereas if P;_1(a) # 0, the degree of the right hand side is bounded

from above by gm(k — 1), since we know the degree of the coefficients cgkfl) by
the previous lemma. But

(k—1)N = ¢" '+ (lower terms in ¢ with coefficients + 1)
> gm(k—1) = ¢+ (lower terms in ¢ with coefficients 1)

(consider the two numbers as written down in their ¢g-adic expansion, ¢ > 2).
It follows that Py_1(a) = 0 too, and by applying the recursion (3.1.1) repeat-
edly in the opposite direction, it would follow that Pj(a) = 0, whereas P; = 1.
From this contradiction, we conclude that £ = 2, and since P»(Z) = Z — (1),
also that a = (1). O

4. Proofs of theorem A and theorem B

(41)Proof of theorem A. Assume that the Drinfeld module
¢ has supersingular reduction modulo s; primes of degree ¢ < k which do not
divide A, and denote the set of these primes by S; = {pg)}i"zl. Then for any
p in S;, we have l,(g,A) = 0 mod p, hence by (2.2), any such prime p divides
Ai(g,A). From the congruences (2.3), we conclude that

k

H H p@ divides Ay (g, A) = ZC (a+1)(m(k)—i) Ad

i=1a=1

The degree of the left hand side equals ZZ 1%8;. On the other hand, using
(3.1), we find that if Ax(g, A) # 0, the degree of the right hand side is bounded
by

max{[q + deg(A) — (¢ + 1) deg(g)]i} + [(g + 1)m(k) + x (k)] deg(g).

Since for i € {0, m(k)} the coefficient cgk) is non-zero, this maximum is attained
for one of these values, and a bit of computation shows that

deg(Ar(g,A)) < m(k) max{q + deg(A), (¢ + 1) deg(g)} + x (k) deg(g)-

Hence either the inequality in theorem A holds, or Ag(g,A) = 0.



Assume first of all that ¢ = 0. Then

0 if k is odd
A(0,4) = fﬁ(Ql — DA™ if kis even
Since primes of even degree do not divide (2/—1), we see that exactly the primes
of odd degree are supersingular for ¢.

If Ax(g,A) =0 and g # 0, it follows that Py(j) = 0 for j = ¢4t /A € K.
Then from (3.3) we conclude that j = (1) and £k = 2. So in that case, the
formula has to be replaced by 2ss < ¢> — g. This finishes the proof of theorem
A. O

(42)Proof of theorem B. Assume that the primes in S; are
arranged in such a way that if ¢ is odd, the divisors of g are the last ¢; = €;(g)
elements in S;. If j is integral, we find in a similar way (eliminating the divisors
of g and A) that

k si—e;
IT I 5% divides Py(5).
i=1 a=1

Unless it is zero, the right hand side has its degree bounded from above by
m(k) - max{q,deg(j)}, and one can proceed as in the proof of theorem A. O
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