Exercise HW1

- (a) Show that $GL(n,\mathbb{R})$ is dense in $Mat(\mathbb{R}^n)$. Hint: let $A \in End(\mathbb{R}^n)$ and consider the function $t \mapsto det(A + tI)$.
- (b) We consider the function $R : Mat(n, \mathbb{R}) \to \mathbb{R}$ given by

$$R(H) = \det(I+H) - 1 - \operatorname{trace}(H).$$

Show that there exists a C > 0 such that $|R(H)| \le C ||H||^2$ for all $H \in Mat(n, \mathbb{R})$ with $||H|| \le 1$.

(c) Show that the function $f : Mat(n, \mathbb{R}) \to \mathbb{R}$ given by f(X) = det X is differentiable at *I*. Show that the associated derivative Df(I) is equal to the linear map $Mat(n, \mathbb{R}) \to \mathbb{R}$ given by

$$Df(I): H \mapsto \operatorname{trace}(H).$$

(d) If $A \in GL(n, \mathbb{R})$ show that *f* is differentiable at *A* and that

$$Df(A)(H) = tr(A^{#}H), \qquad (H \in Mat(n,\mathbb{R})).$$

Here $A^{\#}$ is the complementary matrix which appears in Cramer's rule.

(e) Show that the result of (d) is true for any $A \in Mat(n, \mathbb{R})$.