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Exercise 1.

(a) Show that GL(n,R)) is dense in M(n,R) := M(n × n,R). Hint: let A ∈ End (Rn) and
consider the function t 7→ det (A+ tI).

(b) We consider the function R : M(n,R)→ R given by

R(H) = det (I +H)− 1− trace(H).

Show that there exists a C > 0 such that |R(H)| ≤ C‖H‖2 for all H ∈ M(n,R) with
‖H‖ ≤ 1.

(c) Show that the function f : M(n,R) → R given by f(X) = detX is differentiable at I.
Show that the associated derivative Df(I) is equal to the linear map M(n,R) → R given
by

Df(I) : H 7→ trace(H).

(d) If A ∈ GL(n,R) show that f is differentiable at A and that

Df(A)(H) = tr (A#H), (H ∈ M(n,R)).

Here A# is the complementary matrix which appears in Cramer’s rule.

(e) Show that the result of (d) is true for any A ∈ M(n,R).

Exercise 2.

(a) Let β : Rp × Rq → RN be a bilinear map, i.e., β( · , v) ∈ Lin(Rp,RN) and β(u, · ) ∈
Lin(Rq,RN) for all u ∈ Rp and v ∈ Rq. Show that there exists a constant C > 0 such that

‖β(u, v)‖ ≤ C‖u‖‖v‖

for all u ∈ Rp and v ∈ Rq.
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(b) Let µ : M(n,R)×M(n,R)→ M(n,R) be a bilinear map, let U ⊂ M(n,R) be open, and
let A ∈ U. Let f, g : U → M(n,R) be maps which are differentiable at A. Show that the
map

M : U → M(n,R), X 7→ µ(f(X), g(X))

is differentiable at A, with derivative given by

DM(A)(H) = µ(Df(A)(H), g(A)) + µ(f(A), Dg(A)(H)), (H ∈ M(n,R)).

(c) We consider GL(n,R) := {X ∈ M(n,R) | det (X) 6= 0}. Show that GL(n,R) is an open
subset of M(n,R).

(d) Show that the map F : GL(n,R)→ GL(n,R), X 7→ X−1 is C1.

(e) For each A ∈ GL(n,R) show that the map F is differentiable at A, with derivative
DF (A) : M(n,R)→ M(n,R) given by

DF (A)H = −A−1HA−1.

Hint: use the equality F (X)X = I.

Exercise 3. Let U ⊂ Rn be an open subset.

(a) If g : Rn → R is differentiable, and attains a local minimum at a point x0 ∈ U, show that
Dg(x0) = 0. Hint: consider partial derivatives.

We consider a differentiable map Φ : U → Rn such that DΦ(x) is invertible for every x ∈ U.
Let a ∈ U and put b := Φ(a).

(b) Show that there exists a constant C > 0 such that ‖DΦ(a)v‖ ≥ C‖v‖ for all v ∈ Rn.

(c) Show that there exists a δ > 0 such that B̄(a; δ) ⊂ U and

‖Φ(x)− b‖ ≥ 2

3
C ‖x− a‖

for all x ∈ B̄(a; δ) (the bar indicates that the closed ball is taken).

For y ∈ B(b; 1
3
C δ) we consider the function

fy : B̄(a; δ)→ R, x 7→ ‖Φ(x)− y‖2.

(d) Show that the function fy attains a minimum value m(y) at a point x(y) ∈ B̄(a; δ).

(e) Show that
√
m(y) < 1

3
Cδ and that x(y) ∈ B(a; δ).

(f) Show that Φ(x(y)) = y.

(g) By using the previous items, prove that Φ(U) is open.
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Exercise 4. Let U ⊂ Rn and V ⊂ Rp be open subsets and let π : U → V be a Ck map which
is a surjective submersion. By a local Ck section of π we mean a Ck-map s : V0 → U with V0

open in U, such that π ◦ s = idV0 .

(a) Let b ∈ V and a ∈ U be such that π(a) = b. Show that there exists an open neighborhood
V0 of b in V and a local Ck section s : V0 → U such that s(b) = a.

(b) Let f : V → Rq be a map. Show that f is Ck if and only if f ◦π is Ck.

Exercise 5. We consider the determinant map f : M(n× n,R)→ R, X 7→ detX.

(a) Show that the set SL(n,R) := f−1({1}) is a subgroup of GL(n,R).

(b) Show that SL(n,R) is a C∞ submanifold of M(n× n,R) at its point I.

(c) Let now A ∈ SL(n,R). Show that the map LA : M(n× n,R)→ M(n× n,R), X 7→ AX
is a C∞ diffeomorphism.

(d) Show that SL(n,R) is a C∞ submanifold of M(n× n,R). What is its dimension?

Exercise 6.

(a) Let Sn(R) denote the set of symmetric n × n-matrices. Show that this set is a linear
subspace of Mn(R) which is linearly isomorphic to Rn(n+1)/2.

(b) Let O(n) be the set of matrices A ∈ Mn(R) such that ATA = I. We consider the map
g : Mn(R) → Sn(R), X 7→ XTX − I. Show that the total derivative of g at A ∈ Mn(R)
equals the linear map given by

Dg(A) : Mn(R)→ Sn(R), H 7→ ATH +HTA.

Hint: use the definition.

(c) Show that g is a submersion at I ∈ O(n).

(d) Show that O(n) is a submanifold of Mn(R) at the point I. Determine the tangent space
TIOn(R).

(e) Show that for B ∈ O(n) the map LB : Mn(R) → Mn(R) given by LB(X) = BX is a
linear automorphism of Mn(R), which preserves O(n).

(f) Show that O(n) is a submanifold of Mn(R). Determine the dimension of this submanifold.
Determine the tangent space TAO(n) for every A ∈ O(n).
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Exercise 7. Let A ∈ Mn(R) be a symmetric matrix, i.e., Aij = Aji for all 1 ≤ i, j ≤ n.

(a) Show that
〈Ax, y〉 = 〈x,Ay〉

for all x, y ∈ Rn.

(b) Consider the C∞-function f : Rn → R given by f(x) = 〈Ax, x〉. Determine the total
derivativeDf(x) ∈ Lin(Rn,R), for every x ∈ Rn.Determine the gradient gradf(x) ∈ Rn

for every x ∈ Rn.

(c) Consider the unit sphere S = Sn−1 in Rn given by the equation g(x) = 0, where g : Rn →
R, ‖x‖2 − 1. Show that f |S attains a maximal value M at a suitable x0 ∈ S.

(d) By using the multiplier method, show that Ax0 = Mx0. Thus, M is an eigenvalue for A.

(e) Formulate and prove a similar result with the minimal value m of f |S.

(f) Show that all eigenvalues of A are contained in [m,M ].

Exercise 8. In this exercise we assume that M ⊂ Rm and N ⊂ Rn are Ck submanifolds of
dimensions d and e, respectively. In addition, we assume that f : M → N is a Ck map, that
a ∈M and b = f(a) ∈ N. Here we do not assume that f is defined on an neighborhood of M in
Rm.

(a) Let I be an open interval in R and γ : I → M a C1 curve (just differentiable would be
enough). Show that f ◦ γ : I → N is a C1-curve.

(b) (U, κ) be a chart ofM with a ∈ U.Assume 0 ∈ I and let γ1, γ2 : I →M be two C1-curves
such that γj(0) = a, for j = 1, 2. Show that κ ◦ γj define C1 curves with domain a suitable
open interval containing 0. Furthermore, show that

γ′1(0) = γ′2(0) ⇐⇒ (κ ◦ γ1)′(0) = (κ ◦ γ2)′(0)

(c) Show that there exists a unique map L : TaM → TbN such that

L(γ′(0)) = (f ◦ γ)′(0)

for every C1-curve γ : I →M with γ(0) = a.

(d) Let (V, λ) be a chart of N with b ∈ V and (U, κ) a chart of M with a ∈ U and f(U) ⊂ V.
Argue that the following diagram makes sense and commutes:

TaM
L−→ TbN

D(κ−1)(a′) ↑ ↑ D(λ−1)(b′)

Rd L′−→ Re

Here we have written a′ = κ(a), b′ = λ(b) and L′ = D(λ ◦ f ◦κ−1)(a′).
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(e) Show that the map L in (c) is linear. We will denote it by Taf and call it the tangent map
of f at a.

(f) Let g : N → R be a Ck map from N to a Ck submanifold R of Rr. Show that g ◦ f : M →
R is Ck and that

Ta(g ◦ f) = Tbg ◦Taf.

This formula is known as the chain rule for tangent maps.

Exercise 9.

(a) Show that the following result is a particular case of [DK2, Thm. 6.4.5]: Let B =∏n
j=1[aj, bj] be a block in Rn and f : B → R a continuous function. Then∫

B

f(x) dx =

∫ b1

a1

· · ·
∫ bn

an

f(x1, . . . , xn) dxn . . . dx1.

(b) WriteB = [a1, b1]×C with C a rectangle in Rn−1. Inspect the proof of [DK2, Thm. 6.4.5]
and show that the function

F : x1 7→
∫
C

f(x1, y) dy

is continuous [a1, b1]→ R.

Exercise 10. Let A ⊂ Rn be a bounded set. Prove that the following assertions are equivalent.

(a) the set A is (Jordan) negligable.

(b) for every ε > 0 there exists a finite collection of rectangles R1, . . . , Rk such that

A ⊂ ∪kj=1Rj and
n∑
j=1

voln(Rj) < ε.

(c) for every ε > 0 there exists a finite collection of rectangles R1, . . . , Rk such that

A ⊂ ∪kj=1int(Rj) and
n∑
j=1

voln(Rj) < ε.

Exercise 11. For the purpose of this exercise, by a semi-rectangle in Rn we shall mean a subset
R for which there exists an n-dimensional rectangle B ⊂ Rn such that int(B) ⊂ R ⊂ B.

(a) Argue that a semi-rectangle R is Jordan measurable, with volume given by

voln(R) = voln(R̄).
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(b) Let B ⊂ Rn be a rectangle and B = {B1, B2, . . . , Bk} a partition of B. Show that there
exist semi-rectangles R1, . . . , Rk with Rj ⊂ Bj and

k∑
j=1

1Rj = 1B.

By a step function on Rn we mean a finite linear combination of functions of the form 1R, with
R a semi-rectangle in Rn. The linear space of these step functions is denoted by Σ(Rn).

(c) Let f : B → R be a bounded function. Show that there exist step functions s± with

s− ≤ f ≤ s+, S(f,B) =

∫
s+(x) dx, S(f,B) =

∫
s−(x) dx.

(d) We denote by Σ+(f) the set of step functions s : Rn → R with f ≤ s. Show that∫
B

f(x) dx = inf
s∈Σ+(f)

∫
s(x) dx.

Give a similar characterisation of the lower integral of f over B.

Exercise 12. We define Σ(Rn) as above.

(a) Let B be a rectangle, and S ⊂ ∂B. Show that 1S is a step function.

(b) Let B be a partition of B. Let s : Rn → R be a function such that

(1) s(Rn) has finitely many values;

(2) for all B′ ∈ B, s is constant on int(B′);

(3) s = 0 outside B.

(c) Let s ∈ Σ(Rn) vanish outside the rectangle B. Show that there exists a partition B of B
such that the above condition (2) is fulifilled.

(d) If s, t are step functions, show that both min(s, t) and max(s, t) are step functions.

Exercise 13. Let U ⊂ Rn be an open subset. We denote by J (U) the collection of compact
subsets of U which are Jordan measurable.

(a) If f : U → R is absolutely Riemann integrable, show that there exists a unique real number
I ∈ R such that for every ε > 0 there exists a K0 ∈ J (U) such that for all K ∈ J (U)
with K ⊃ K0 we have ∣∣∣∣∫

K

f(x) dx− I
∣∣∣∣ < ε.

(b) Show that I =
∫
U
f(x) dx.
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Exercise 14.

(a) Determine the collection of all s ∈ R for which the integral∫
R2

(1 + ‖x‖)−s dx

is absolutely convergent. Hint: use polar coordinates. Prove the correctness of your an-
swer.

(b) Answer the same question for ∫
R3

(1 + ‖x‖)−s dx.

(c) Wat is your guess for the similar integral over Rn, for n ≥ 4. ? We will return to this
question at a later stage.

Exercise 15. We consider the cone C : x2
2 + x2

3 = mx2
1, with m > 0 a constant.

(a) Show that M := C \ {0} is a C∞ submanifold of dimension 2 of R3.

(b) Determine the area of the subset Mh of M given by

Mh = {x ∈ C | 0 < x1 < h}, (h > 0).

Exercise 16. We consider a C1-function f : (a, b) → (0,∞). Consider the graph G of f in
R2 ' R2 × {0} ⊂ R3. Let S be the surface arising from G by rotating G about the x1-axis over
all angles from [0, 2π].

(a) Guess a formula for the area of S. Explain the heuristics.

(b) Show that S is a C1-submanifold of R3.

(c) Prove that the conjectured formula is correct.

Exercise 17. Let v1, . . . , vn−1 be n− 1 vectors in Rn.

(a) Show that ξ : v 7→ det (v, v1, v2, . . . , vn−1) defines a map in Lin(Rn,R).

(b) Show that there exists a unique vector v ∈ Rn such that

ξ(u) = 〈u, v〉 (∀u ∈ Rn).

The uniquely determined element v of (c) is called the exterior product of v1, . . . , vn−1 and
denoted by v1 × · · · vn−1.
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(c) Show that the map (v1, . . . , vn−1) 7→ v1×· · · vn−1 is alternating multilinear (Rn)×(n−1) →
Rn. Furthermore, show that v1×· · ·× vn−1 ⊥ vj for every j = 1, . . . , n− 1. Finally, show
that v1 × · · · × vn−1 = 0 if and only if v1, . . . , vn−1 are linearly independent.

(d) Show that for n = 3, the above corresponds to the usual exterior product.

We consider an injective linear map L : Rn−1 → Rn. Let V = L(Rn) and let dV be the Euclidean
density on V. Let n be a unit vector in V ⊥ such that det (n | L) > 0.

(e) Show that for every v ∈ Rn we have

L∗(〈v,n〉 dV ) = det (v | L) v ∈ Rn

Hint: first show this for v = n.

(f) Show that
L∗(dV ) = ‖Le1 × · · · × Len‖ · dRn−1 .

(g) Show that
‖Le1 × · · · × Len‖ =

√
det (LTL).

Let now U ⊂ Rn−1 be open and ϕ : U → Rn an embedding onto a codimension 1 submanifold
M of Rn. Let n : M → Rn be defined by n(x) ⊥ TxM and

det (n(ϕ(y)), D1ϕ(y), . . . Dn−1ϕ(y)) > 0, (y ∈ U).

(h) Show that for every vector field v : M → Rn we have

ϕ∗(〈v,n〉 dx) = det (v(ϕ(y)) | Dϕ(y)) dRn−1 .

Exercise 18. Let e1, . . . , en be the standardbasis of Rn. Let L : Rn → Rn be a bijective linear
map, and put vj = Lej.

(a) Show that the image of [0, 1]n under L equals the parallelepiped spanned by v1, . . . , vn,
defined by

P (v1, . . . , vn) = {x ∈ Rn|∃(t1, . . . , tn ∈ [0, 1]) : x =
n∑
j=1

tjvj}.

(b) Show that P (v1, . . . , vn) is Jordan measurable in Rn with volume given by

voln(P (e1, . . . , en)) = det (L).

(c) Is (b) still valid if L is not bijective?
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Exercise 19. Let V ⊂ Rn be open and let Bc(V ) be the space of bounded functions f : V →
R with suppf compact and contained inV. Let f ∈ Bc(V ) and let F+(f, V ) be the space of
functions g ∈ Cc(V ) with g ≥ f.

(a) Show that ∫
Rn
f(y) dy = inf

g∈F+(f,V )

∫
Rn
g(y) dy.

Let Φ : U → V be a diffeomorphism between an open subset U ⊂ Rn and V. Given a bounded
function g : V → R with compact support we define Φ#(g) : U → R by

Φ#(g)(x) = g(Φ(x))|detDΦ(x)|.

(b) Show that Φ# is a bijective linear map from Bc(V ) onto Bc(U).

(c) Show that Φ# maps F+(f, V ) bijectively onto F+(Φ#(f), U).

(d) Show that ∫
Rn
f(y) dy =

∫
Rn
f(Φ(x)) |detDΦ(x)| dx.

Exercise 20. Let U and V be open subsets of Rn with closures Ū and V̄ which are compact
Jordan measurable in Rn.

(a) Suppose that f : V̄ → R is continuous. Show that f is Riemann integrable over V̄ and
that f is absolutely Riemann integrable over V with integral∫

V

f(x) dx =

∫
V̄

f(x) dx.

(b) Let Φ : U → V be a C1-diffeomorphism such that both Φ and DΦ extend continuously to
Ū . Show that for every continuous function f : V̄ → Rn one has that (f ◦Φ)|detDΦ| is
Riemann integrable over Ū in the usual sense, and that∫

V̄

f(x) dx =

∫
Ū

f(Φ(y)) |detDΦ(y)| dy.

(c) Use (a), (b) and substitution of variables to show that for every continuous function f :
R2 → R and all R > 0 one has∫

D̄(0;R)

f(x) dx =

∫ 2π

0

∫ R

0

f(r cosϕ, r sinϕ) r dr dϕ.
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