Exercises Geometric Analysis

Exercise 1

We assume that (M, g) is an oriented Riemannian manifold, and that Ω is the associated positively oriented volume form on M. Thus, for $x \in M$ and v_1, \ldots, v_m a positively oriented orthonormal basis of $T_x M$ we have $\Omega_x(v_1, \ldots, v_m) = 1$. We define the bilinear pairing $\langle \cdot, \cdot \rangle : C^{\infty}(M) \times C^{\infty}_c(M) \to \mathbb{C}$ by

$$\langle f,g\rangle = \int_M fg \ \Omega$$

(a) Show that this pairing is non-degerate in the sense that $\langle f, g \rangle = 0$ for all $g \in C_c^{\infty}(M)$ implies f = 0.

Show that the Laplace-Beltrami operator is the unique second order differential operator Δ on $C^{\infty}(M)$ such that the following properties are fulfilled:

- (b) The principal symbol is given by $\sigma_{\Delta}^2(x,\xi) = -g_x(\xi,\xi)$ for $x \in M, \xi \in T_x M$.
- (c) For all $f, g \in C_c^{\infty}(M)$ we have $\langle \Delta f, g \rangle = \langle f, \Delta g \rangle$.
- (d) The operator Δ annihilates the constant function 1_M .

Exercise 2 Let V be a linear space. Let \mathcal{P} be a collection of seminorms on V. We equip V with the translation invariant topology generated by the neighborhoods

$$B_p(0;r) := \{ x \in V \mid p(x) < r \}.$$

- (a) Show that the following assertions are equivalent:
 - (1) V is a Hausdorff space;
 - (2) $\{0\}$ is closed;
 - (3) if $x \in V$ and p(x) = 0 for all $p \in \mathcal{P}$, then x = 0.
- (b) If $p_1, \ldots, p_n \in \mathcal{P}$ show that $p := \max_j p_j$ is a seminorm on V.

We assume that V is Hausdorff and define $\widetilde{\mathcal{P}}$ to be the collection of seminorms on V of the form $p = \max_{1 \le j \le k} p_j$, for $k \in \mathbb{Z}_+$ and $p_j \in \mathcal{P}$.

(c) Show that the sets $B_p(0;r)$ for $p \in \widetilde{\mathcal{P}}$ and r > 0 form a basis of neighborhoods of 0.

We note that \widetilde{P} is a fundamental system of seminorms on \mathcal{P} , i.e.,

- (i) If $x \in V$ and p(x) = 0 for all $p \in \widetilde{\mathcal{P}}$, then x = 0.
- (ii) For all $p_1, p_2 \in \widetilde{\mathcal{P}}$ there exists $q \in \widetilde{\mathcal{P}}$ such that $p_1, p_2 \leq q$.

- (d) Let s be a seminorm on V. Show that the following conditions are equivalent:
 - (1) s is continuous;
 - (2) $B_s(0;1)$ is a neighborhood of 0 in V;
 - (3) there exists a $p \in \widetilde{\mathcal{P}}$ and a constant C > 0 such that $s \leq Cp$.

We denote by \mathcal{P}_V the collection of all continuous seminorms on V.

- (e) Let $T: V \to W$ be a linear map of locally convex spaces. Show that the following conditions are equivalent:
 - (1) T is continuous
 - (2) for every $q \in \mathcal{P}_W$ there exists a $p \in \mathcal{P}_V$ such that $q \circ T \leq p$

the latter estimate should be read as: $\forall x \in V : q(T(x)) \leq p(x)$.

Exercise 3 The purpose of this exercise is to have a better understanding of the locally convex topology on $C_c^{\infty}(\mathbb{R}^n)$.

- (a) Show that there exists a sequence K_j of compact subsets of \mathbb{R}^n such that the collection $\{K_j \mid j \in \mathbb{N}\}$ is locally finite and has union \mathbb{R}^n .
- (b) For each sequence $c = (c_i)$ in $]0, \infty[$ show that

$$s_c: f \mapsto \sup_{j \ge 0} \left(c_j \cdot \sup_{K_j} |f| \right)$$

defines a seminorm on $C_c(\mathbb{R}^n)$. The collection of these seminorms is denoted by \mathcal{S} .

- (c) Show that the following assertions are equivalent for a sequence (f_j) in $C_c(\mathbb{R}^n)$.
 - (1) there exists a compact subset $K \subset \mathbb{R}^n$ such that $\operatorname{supp} f_j \subset K$ for all j and f_j converges uniformly to zero.
 - (2) $s(f_i) \to 0$ for every seminorm $s \in \mathcal{S}$.
- (d) Let $u: C_c(\mathbb{R}^n) \to \mathbb{C}$ be a linear functional. Show that the following assertions are equivalent:
 - (1) u is continuous relative to (the topology defined by) \mathcal{S} .
 - (2) for every compact subset $K \subset \mathbb{R}^n$ the restriction of u to $C_K(\mathbb{R}^n)$ (equipped with the sup-norm) is continuous.
- (e) Define a collection \mathcal{P} of seminorms on $C_c^{\infty}(\mathbb{R}^n)$ such that the following conditions are equivalent for every linear functional u on $C_c^{\infty}(\mathbb{R}^n)$.
 - (1) u is continuous relative to (the topology defined by) \mathcal{P} .
 - (2) for every compact subset $K \subset \mathbb{R}^n$ the restriction $u|_{C_K^{\infty}(\mathbb{R}^n)}$ is continuous.