
Exercises Geometric Analysis

Exercise 1

We assume that (M, g) is an oriented Riemannian manifold, and that Ω is the
associated positively oriented volume form on M. Thus, for x ∈M and v1, . . . , vm
a positively oriented orthonormal basis of TxM we have Ωx(v1, . . . , vm) = 1. We
define the bilinear pairing 〈 · , · 〉 : C∞(M)× C∞c (M)→ C by

〈f, g〉 =

∫
M

fg Ω

(a) Show that this pairing is non-degerate in the sense that 〈f, g〉 = 0 for all
g ∈ C∞c (M) implies f = 0.

Show that the Laplace-Beltrami operator is the unique second order differential
operator ∆ on C∞(M) such that the following properties are fulfilled:

(b) The principal symbol is given by σ2
∆(x, ξ) = −gx(ξ, ξ) for x ∈M, ξ ∈ TxM.

(c) For all f, g ∈ C∞c (M) we have 〈∆f, g〉 = 〈f,∆g〉.

(d) The operator ∆ annihilates the constant function 1M .

Exercise 2 Let V be a linear space. Let P be a collection of seminorms on V. We
equip V with the translation invariant topology generated by the neighborhoods

Bp(0; r) := {x ∈ V | p(x) < r}.

(a) Show that the following assertions are equivalent:

(1) V is a Hausdorff space;

(2) {0} is closed;

(3) if x ∈ V and p(x) = 0 for all p ∈ P , then x = 0.

(b) If p1, . . . , pn ∈ P show that p := maxj pj is a seminorm on V.

We assume that V is Hausdorff and define P̃ to be the collection of seminorms
on V of the form p = max1≤j≤k pj, for k ∈ Z+ and pj ∈ P .

(c) Show that the sets Bp(0; r) for p ∈ P̃ and r > 0 form a basis of neighbor-
hoods of 0.

We note that P̃ is a fundamental system of seminorms on P , i.e.,

(i) If x ∈ V and p(x) = 0 for all p ∈ P̃ , then x = 0.

(ii) For all p1, p2 ∈ P̃ there exists q ∈ P̃ such that p1, p2 ≤ q.
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(d) Let s be a seminorm on V. Show that the following conditions are equivalent:

(1) s is continuous;

(2) Bs(0; 1) is a neighborhood of 0 in V ;

(3) there exists a p ∈ P̃ and a constant C > 0 such that s ≤ Cp.

We denote by PV the collection of all continuous seminorms on V.

(e) Let T : V → W be a linear map of locally convex spaces. Show that the
following conditions are equivalent:

(1) T is continuous

(2) for every q ∈ PW there exists a p ∈ PV such that q ◦T ≤ p

the latter estimate should be read as: ∀x ∈ V : q(T (x)) ≤ p(x).

Exercise 3 The purpose of this exercise is to have a better understanding of
the locally convex topology on C∞c (Rn).

(a) Show that there exists a sequence Kj of compact subsets of Rn such that
the collection {Kj | j ∈ N} is locally finite and has union Rn.

(b) For each sequence c = (cj) in ] 0,∞ [ show that

sc : f 7→ sup
j≥0

(cj · sup
Kj

|f |)

defines a seminorm on Cc(Rn). The collection of these seminorms is denoted
by S.

(c) Show that the following assertions are equivalent for a sequence (fj) in
Cc(Rn).

(1) there exists a compact subset K ⊂ Rn such that supp fj ⊂ K for all j
and fj converges uniformly to zero.

(2) s(fj)→ 0 for every seminorm s ∈ S.

(d) Let u : Cc(Rn) → C be a linear functional. Show that the following asser-
tions are equivalent:

(1) u is continuous relative to (the topology defined by) S.
(2) for every compact subset K ⊂ Rn the restriction of u to CK(Rn)

(equipped with the sup-norm) is continuous.

(e) Define a collection P of seminorms on C∞c (Rn) such that the following
conditions are equivalent for every linear functional u on C∞c (Rn).

(1) u is continuous relative to (the topology defined by) P .
(2) for every compact subset K ⊂ Rn the restriction u|C∞

K (Rn) is continu-
ous.
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