Exercises Geometric Analysis

Exercise 1

We assume that (M, g) is an oriented Riemannian manifold, and that Ω is the associated positively oriented volume form on M. Thus, for $x \in M$ and v_{1}, \ldots, v_{m} a positively oriented orthonormal basis of $T_{x} M$ we have $\Omega_{x}\left(v_{1}, \ldots, v_{m}\right)=1$. We define the bilinear pairing $\langle\cdot, \cdot\rangle: C^{\infty}(M) \times C_{c}^{\infty}(M) \rightarrow \mathbb{C}$ by

$$
\langle f, g\rangle=\int_{M} f g \Omega
$$

(a) Show that this pairing is non-degerate in the sense that $\langle f, g\rangle=0$ for all $g \in C_{c}^{\infty}(M)$ implies $f=0$.

Show that the Laplace-Beltrami operator is the unique second order differential operator Δ on $C^{\infty}(M)$ such that the following properties are fulfilled:
(b) The principal symbol is given by $\sigma_{\Delta}^{2}(x, \xi)=-g_{x}(\xi, \xi)$ for $x \in M, \xi \in T_{x} M$.
(c) For all $f, g \in C_{c}^{\infty}(M)$ we have $\langle\Delta f, g\rangle=\langle f, \Delta g\rangle$.
(d) The operator Δ annihilates the constant function 1_{M}.

Exercise 2 Let V be a linear space. Let \mathcal{P} be a collection of seminorms on V. We equip V with the translation invariant topology generated by the neighborhoods

$$
B_{p}(0 ; r):=\{x \in V \mid p(x)<r\} .
$$

(a) Show that the following assertions are equivalent:
(1) V is a Hausdorff space;
(2) $\{0\}$ is closed;
(3) if $x \in V$ and $p(x)=0$ for all $p \in \mathcal{P}$, then $x=0$.
(b) If $p_{1}, \ldots, p_{n} \in \mathcal{P}$ show that $p:=\max _{j} p_{j}$ is a seminorm on V.

We assume that V is Hausdorff and define $\widetilde{\mathcal{P}}$ to be the collection of seminorms on V of the form $p=\max _{1 \leq j \leq k} p_{j}$, for $k \in \mathbb{Z}_{+}$and $p_{j} \in \mathcal{P}$.
(c) Show that the sets $B_{p}(0 ; r)$ for $p \in \widetilde{\mathcal{P}}$ and $r>0$ form a basis of neighborhoods of 0 .

We note that \widetilde{P} is a fundamental system of seminorms on \mathcal{P}, i.e.,
(i) If $x \in V$ and $p(x)=0$ for all $p \in \widetilde{\mathcal{P}}$, then $x=0$.
(ii) For all $p_{1}, p_{2} \in \widetilde{\mathcal{P}}$ there exists $q \in \widetilde{\mathcal{P}}$ such that $p_{1}, p_{2} \leq q$.
(d) Let s be a seminorm on V. Show that the following conditions are equivalent:
(1) s is continuous;
(2) $B_{s}(0 ; 1)$ is a neighborhood of 0 in V;
(3) there exists a $p \in \widetilde{\mathcal{P}}$ and a constant $C>0$ such that $s \leq C p$.

We denote by \mathcal{P}_{V} the collection of all continuous seminorms on V.
(e) Let $T: V \rightarrow W$ be a linear map of locally convex spaces. Show that the following conditions are equivalent:
(1) T is continuous
(2) for every $q \in \mathcal{P}_{W}$ there exists a $p \in \mathcal{P}_{V}$ such that $q \circ T \leq p$ the latter estimate should be read as: $\forall x \in V: q(T(x)) \leq p(x)$.
Exercise 3 The purpose of this exercise is to have a better understanding of the locally convex topology on $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$.
(a) Show that there exists a sequence K_{j} of compact subsets of \mathbb{R}^{n} such that the collection $\left\{K_{j} \mid j \in \mathbb{N}\right\}$ is locally finite and has union \mathbb{R}^{n}.
(b) For each sequence $c=\left(c_{j}\right)$ in $] 0, \infty$ [show that

$$
s_{c}: f \mapsto \sup _{j \geq 0}\left(c_{j} \cdot \sup _{K_{j}}|f|\right)
$$

defines a seminorm on $C_{c}\left(\mathbb{R}^{n}\right)$. The collection of these seminorms is denoted by \mathcal{S}.
(c) Show that the following assertions are equivalent for a sequence $\left(f_{j}\right)$ in $C_{c}\left(\mathbb{R}^{n}\right)$.
(1) there exists a compact subset $K \subset \mathbb{R}^{n}$ such that $\operatorname{supp} f_{j} \subset K$ for all j and f_{j} converges uniformly to zero.
(2) $s\left(f_{j}\right) \rightarrow 0$ for every seminorm $s \in \mathcal{S}$.
(d) Let $u: C_{c}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}$ be a linear functional. Show that the following assertions are equivalent:
(1) u is continuous relative to (the topology defined by) \mathcal{S}.
(2) for every compact subset $K \subset \mathbb{R}^{n}$ the restriction of u to $C_{K}\left(\mathbb{R}^{n}\right)$ (equipped with the sup-norm) is continuous.
(e) Define a collection \mathcal{P} of seminorms on $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ such that the following conditions are equivalent for every linear functional u on $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$.
(1) u is continuous relative to (the topology defined by) \mathcal{P}.
(2) for every compact subset $K \subset \mathbb{R}^{n}$ the restriction $\left.u\right|_{C_{K}^{\infty}\left(\mathbb{R}^{n}\right)}$ is continuous.

