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1 The finite dimensional theory

A note on Sobolev space

We consider the Sobolev space W 1,2 = W 1,2(R) of L2-functions u ∈ D′(R) for which the
distributional derivative u′ belongs to L2(R) as well. This space is a Hilbert space with norm
given by

‖u‖2
1,2 = ‖u‖2

2 + ‖u′‖2
2.

Lemma 1.1 W 1,2 ⊂ C(R). Moreover, for every T > 0, the restriction map ρT : f 7→ f |[−T,T ]

is compact from W 1,2 to C([−T, T ]).

Proof. By a standard convolution argument it follows that C0: = C(R) ∩W 1,2 is dense in
W 1,2. Let f ∈ W 1,2. Then there exists a sequence fk in C0 such that fk → f in W 1,2. In
particular the sequence is bounded in W 1,2. For every s, t ∈ R with s < t we have

|fk(s)− fk(t)| ≤
∫ t

s
|f ′k(τ)| dt ≤ ‖f ′k‖2

√
|s− t| ≤ ‖fk‖1,2

√
|s− t|

for all k. This shows that the sequence of functions is uniformly equicontinuous. Let now t ∈ R
and assume that the sequence (|fk(t)|) is unbounded. Then it follows from the estimate that
the sequence (min[t−1,t+1] |fk|) is unbounded and therefore also that (‖fk‖L2) is unbounded,
contradiction. We conclude the the sequence ‖fk(t)‖ is bounded, for every t ∈ R. Let now
T > 0. Then it follows by Ascoli’s theorem that the sequence has a subsequence fkj

which
converges to a continuous function g ∈ C[−T, T ], uniformly on [−T, T ]. It follows that also
fkj

→ g in L2([−T, T ]), so that g = f on [−T, T ]. This establishes the continuity of f. The
final statement follows by exactly the same argument. �

The Fredholm property

We assume that V is a finite dimensional real linear space equipped with a positive definite
inner product 〈 · , · 〉 and denote by End(V ) the space of linear endomorphisms of V, equipped
with the operator norm. For B ∈ End(V ) we put

Es(B) : = {x ∈ V | lim
t→∞

etBx = 0}

Eu(B) : = {x ∈ V | lim
t→−∞

etBx = 0}.
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Then Es(B) is the sum of the generalized eigenspaces for the eigenvalues of B with real part
strictly negative, and Eu(B) is the sum of the generalized eigenspaces for the eigenvalues with
real part strictly positive. The linear map B ∈ End(B) is said to be hyperbolic if non of its
eigenvalues is purely imaginary, or equivalently, if

V = Es(B)⊕ Eu(B).

By Cb(R,End(V )) we denote the space of bounded continuous functions R → End(V ).
Equipped with the norm

‖A‖∞: = sup
t∈R

‖A(t)‖op

this space is a Banach space.
For A ∈ Cb(R,End(V )) we define the continuous linear map DA:W 1,2(R, V ) → L2(R, V )

by

DAξ =
d

dt
ξ −Aξ.

Lemma 1.2 The map A 7→ DA is Lipschitz-continuous, with Lipschitz-constant 1, from
Cb(R, V )⊗Mn(R) to L(W 1,2(R, V ), L2(R, V )).

Proof. Straightforward. �

The purpose of this section is to prove the following result.

Theorem 1.3 Let A ∈ Cb(R,End(V )) and assume that the limits limt→±∞A(t) = A± exist
and are hyperbolic matrices. Then the operator DA:W 1,2(R, V ) → L2(R, V ) is Fredholm.

We start by proving a stronger result in case A is constant.

Lemma 1.4 Let A be constant and hyperbolic. Then the operator DA is a topological linear
isomorphism from W 1,2(R, V ) onto L2(R, V ).

Proof. We will give a proof based on Fourier transform. Let F :L2(R, V ) → L2(R, V ) be
the (isometric) Fourier transform. Then the image Ŵ of W 1,2(R, V ) under F consists of the
measurable functions ϕ: R → V with ω 7→ (1+ |ω|)ϕ(ω) an L2-function. We equip Ŵ with the
obvious Hilbert norm, so that F becomes a topological linear isomorphism from W 1,2(R, V )
onto Ŵ .

If ξ ∈ W 1,2(R), then
F(DAξ)(ω) = (iωI −A)Fξ(ω).

Put ν(ω) = ω. Then it suffices to show that the map iνI−A is a topological linear isomorphism
from L2(R, V ) onto Ŵ .

As A is hyperbolic, there exists a constant c > 0 such that

‖(A− iωI)−1‖op ≤ C(1 + |ω|)−1

for every ω ∈ R. This implies that there exists a constant C2 > 0 such that for all ϕ ∈
L2(R, V ),

‖(1 + |ν|)ϕ‖L2(R,V ) = ‖(1 + |ν|)(iνI −A)−1(iνI −A)ϕ‖L2(R,V )

≤ C ‖(iνI −A)ϕ‖L2(R,V )

≤ C2 ‖(1 + |ν|)ϕ‖L2(R,V ).

From this we see that (iνI − A) is a topological linear isomorphism from L2(R, V ) onto Ŵ .
�
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We will need the following consequence of the above result.

Lemma 1.5 Let A be as in Theorem 1.3. Then there exist constants T > 0 and C > 0 such
that for all ξ ∈ W 1,2(R, V ) with supp ξ ∩ [−T, T ] = ∅ we have

‖ξ‖L2 ≤ ‖DAξ‖L2 .

Proof. For reasons of symmetry, we may restrict ourselves to ξ with supp ξ ⊂ [0,∞ [, as we
shall do from now on.

Let A+ = limt→∞A(t) and let A0 be constant and equal to A+. There exists a constant
C0 > 0 such that for all ξ ∈ W 1,2 ⊗ Rn we have

‖ξ‖L2 ≤ C0‖DA0ξ‖L2 .

Let δ > 0 be such that δC0 < 1. There exists a constant T > 0 such that for t ≥ T we
have ‖A(t)−A0(t)‖ < δ. Let ξ ∈ W 1,2(R, V ) have support contained in [T,∞ [. Then

‖DA(ξ)−DA0(ξ)‖L2 = ‖Aξ −A0ξ‖L2 ≤ δ‖ξ‖L2 .

It follows that
‖ξ‖L2 ≤ C0(‖DA(ξ)‖L2 + δ‖ξ‖L2)

from which we conclude that

‖ξ‖L2 ≤ (1− δC0)−1C0‖DA(ξ)‖L2 .

The result follows. �

Proposition 1.6 Let A be as in Theorem 1.3. Then DA has closed range and finite dimen-
sional kernel.

Proof. We select T > 1 and C as in the above lemma. Moreover, we select a cut off function
χ ∈ C∞

c (R) with 0 ≤ χ ≤ 1, χ = 1 on [−T, T ] and χ = 0 on R \ [−S, S], where S = T + 1.
Then one readily sees that for all ξ ∈ W 1,2(R, V ) we have

‖ξ‖L2 ≤ ‖χξ‖L2 + ‖(1− χ)ξ‖L2 ≤ ‖ξ‖L2([−T,T ]) + ‖(1− χ)ξ‖L2 . (1.1)

Moreover, from the above lemma it follows that

‖(1− χ)ξ‖L2 ≤ C‖DA((1− χ)ξ)‖L2

= C‖(1− χ)DAξ − χ′ξ‖L2

≤ C‖DAξ‖L2 + C‖χ′‖∞‖ξ‖L2[−S,S].

Combining this estimate with (1.1) we see that there exists a constant C1 > 0 such that for
all ξ ∈ W 1,2 ⊗ Rn we have

‖ξ‖W 1,2 ≤ C1(‖ξ‖L2([−S,S]) + ‖DAξ‖L2 .

In view of Lemma 1.1 it follows that there exists a compact operator ρ:W 1,2(R, V ) → L2(R, V )
such that

‖ξ‖W 1,2 ≤ C1(‖ρξ‖L2 + ‖DAξ‖L2 .

The result now follows by application of the lemma below. �
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Lemma 1.7 Let W,V1, V2 be Banach spaces, let K: W → V1 and D: W → V2 be bounded
linear operators, and assume that K is compact. Assume moreover that there exists a constant
C > 0 such that

‖x‖W ≤ C(‖Kx‖V1 + ‖Dx‖V2) (1.2)

for all x ∈ W. Then D has closed range and finite dimensional kernel.

Proof. Let (xn) be a bounded sequence in W with Dxn → y ∈ V2. Then Kxn has a
converging subsequence. From the estimate (1.2) it now follows that (xn) has a subsequence
which is Cauchy, hence converges.

In particular, it follows from the above argument that that every bounded sequence in
ker D has a converging subsequence. Hence ker D is finite dimensional.

Let W0 ⊂ W be a closed subspace such that W = kerD ⊕ W0. Then D0: = D|W0 is
bounded and injective, K0: = K|W0 is compact, and it suffices to show that D0 has closed
image. Thus, without loss of generality we may assume that D is injective.

Let (xn) now be a sequence in W such that Dxn converges in V2 with limit y. We claim
that (xn) must be bounded. For assume not, then passing to a subsequence we may arrange
that ‖xn‖ → ∞. Put ξn = xn/‖xn‖. Then Dξn → 0, and by the first part of the proof (ξn)
has a converging subsequence whose limit ξ belongs to kerD. On the other hand, the limit
must have norm 1, contradicting the injectivity of D.

Thus, (xn) is bounded. By the first part of the proof, (xn) has a convergent subsequence
(xnk

) with limit x ∈ W. It follows that Dx = y, hence y ∈ im D. �

Lemma 1.8 Let A be as in Theorem 1.3. Then ker DA equals the space of functions ξ ∈
C1(R, V ) such that ξ′ = Aξ and ξ ∈ L2. Moreover, im (DA)⊥ equals the kernel of D−A∗ .

Proof. If ξ ∈ ker DA, then ξ ∈ C(R, V ) and the differential equation holds in the sense of
distributions, from which we conclude that ξ ∈ C1(R, V ). Conversely, if ξ ∈ C1(R, V ) satisfies
the equation and belongs to L2(R, V ), then from ξ′ = Abξ and the uniform boundedness of
A, it follows that ξ′ ∈ L2. Hence ξ ∈ W 1,2(R, V ) and it follows that ξ ∈ ker DA.

Now assume that η ∈ L2(R, V ) is orthogonal to im (DA). Then for all ξ ∈ C∞
c (R)⊗ V we

have
〈η , DAξ〉 = 〈η ,

d

dt
ξ〉 − 〈A∗η , ξ〉 = 0,

which implies that d
dtη = −A∗η in distribution sense. From the fact that −A∗ is uniformly

bounded, we conclude that η ∈ W 1,2(R, V ) and D−A∗η = 0. Thus, η ∈ ker D−A∗ . Conversely,
if η ∈ ker D−A∗ , then it follows that η ⊥ DA(C∞

c (R, V )). By density and continuity, this
implies that η ∈ im (DA). We have proved that (im DA)⊥ = ker(D−A∗). Since DA has closed
image, the result follows. �

Completion of the proof of Theorem 1.3 It follows from the previous lemma that DA

has a closed range of finite codimension, which equals dim kerD−A∗ . Hence, DA is Fredholm,
and

index (DA) = dim kerDA − dim kerD−A∗ .
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Spectral flow, computation of the index

We consider the fundamental matrix Φ(t, τ) ∈ End(V ) associated with the differential oper-
ator DA. For each τ ∈ R the function t 7→ Φ(t, τ) is C1 and uniquely determined by

d

dt
Φ(t, τ) = A(t)Φ(t, τ), (t ∈ R), Φ(τ, τ) = IV .

The existence and uniqueness of Φ corresponds to the existence and uniqueness for the initial
value problem for the differential operator DA. It follows from the uniqueness and existence
that

Φ(t, s)Φ(s, τ) = Φ(t, τ) (1.3)

for all t, s, τ ∈ R. In particular, we see that

Φ(t, s)Φ(s, t) = I.

From this equation it follows that s ∈ Φ(t, s) is C1 as well, with derivative given by

d

ds
Φ(t, s) = −Φ(t, s)A(s).

Taking conjugates on both sides of the equation, we see that the fundamental matrix Φ̃
associated with D eA, where Ã = −A∗, is given by

Φ̃(s, t) = Φ(t, s)∗.

For every t ∈ R we define

Es(t) = {ξ ∈ V | lim
τ→∞

Φ(τ, t)ξ = 0}

Eu(t) = {ξ ∈ V | lim
τ→−∞

Φ(τ, t)ξ = 0}.

Then it is immediate from (1.3) that

Φ(τ, t)Es(t) = Es(τ), (1.4)

and we have analogous relations for Eu(t).
We now come to the determination of the index of DA. First of all, by homotopy invariance

of the index, we may assume that A is locally constant outside a compact interval of the form
[−T, T ]. Thus, from now on we will assume that

A(t) =
{

A+ for t ≥ T,
A− for t ≤ −T.

In this setting we have that

Φ(t, s) = e(t−s)A+ for s, t ≥ T,

and a similar equation with A−, for s, t ≤ T. Accordingly,

Es(t) = Es(A+), and Eu(t) = Eu(A+) for t ≥ T,
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and similar relations with A−, for t ≤ −T. Combining this with (1.4), we find that, for all
t ∈ R,

Es(t) = Φ(t, T )Es(A+), and Eu(t) = Φ(t, T )Eu(A+).

Moreover, similar relations hold with A− and −T in place of A+ and T. Let Ẽs(t) denote the
analogue of Es(t) for Ã. Then

Ẽs(t) = Φ(t, T )Es(−A∗+), and Ẽu(t) = Φ(t, T )Eu(−A∗+)

Lemma 1.9 Let T :V → V be a linear map. Then for each linear subspace E ⊂ V we have
T ∗(E)⊥ = T−1(E⊥). In particular, (im T ∗)⊥ = kerT.

Proof. Straightforward. �

Lemma 1.10 Let B ∈ End(V ) be hyperbolic. Then

Es(−B∗) = Es(B)⊥, and Eu(−B∗) = Eu(B)⊥.

Proof. We may replace V by its complexification equipped with the Hermitian continuation
of the given inner product, and prove a similar statement there. Let n = dim V. Let Λ denote
the set of eigenvalues of B and Λ+± the subset of eigenvalues λ with ±Re λ > 0.

For λ ∈ Λ, the map (B−λI)n has image equal to the sum Sλ of the remaining generalized
eigenspaces, and kernel equal to the generalized eigenspace Vλ of eigenvalue λ. It follows by
application of the previous lemma that (B∗ − λ̄I)n has kernel equal to the orthocomplement
of the image S of (B − λI)n. This shows that −λ̄ is an eigenvalue of −B∗, with associated
generalized eigenspace equal to S⊥λ . We thus see that

Es(−B∗) = ⊕λ∈Λ−S⊥λ = (∩λ∈Λ−Sλ)⊥ = [⊕λ∈Λ+Vλ]⊥ = Es(B)⊥.

The proof of the second assertion is similar. �

Corollary 1.11 For every t ∈ R, we have

Ẽs(t) = Es(t)⊥, and Ẽu(t) = Eu(t)⊥.

Proof. We have

Ẽs(t) = Φ̃(t, T )Es(−A∗+) = Φ(T, s)∗[Es(A+)⊥] = [Φ(T, s)−1Es(A+)]⊥ = Es(t)⊥.

The proof of the remaining identity is similar. �

Lemma 1.12 Let t ∈ R. Then the map ξ 7→ ξ(t) is a linear isomorphism from ker DA onto
Es(t) ∩ Eu(t).

Proof. Let S be the space of ξ ∈ C1(R, V ) with ξ′ = Aξ. Then the map evt:S → V, ξ 7→ ξ(t)
is a linear isomorphism. For ξ ∈ S, the condition ξ|[T,∞[ ∈ L2 is equivalent to ξ(T ) ∈ Es(A+),
which in turn is equivalent to ξ(t) ∈ Es(t). Similarly, the condition ξ|]−∞,−T ] ∈ L2 is equivalent
to ξ(−T ) ∈ Eu(A−), hence to ξ(t) ∈ Eu(t). We conclude that for ξ ∈ S, the condition
ξ ∈ L2(R, V ) is equivalent to ξ(t) ∈ Es(t) ∩ Eu(t). The result follows. �
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Theorem 1.13 Let A be as before. Then the index of DA is given by

index DA = dim Es(A+)− dim Es(A−).

Proof. In view of the previous results, we have, with Ã = −A∗, for every t ∈ R,

index DA = dim kerDA − dim kerDÃ

= dim(Es(t) ∩ Eu(t))− dim(Ẽs(t) ∩ Ẽu(t))
= dim(Es(t) ∩ Eu(t))− dim(Es(t) + Eu(t))⊥

= dim Es(t) + dim Eu(t)− dim(Es(t) + Eu(t))− codim (Es(t) + Eu(t))]
= dim Es(t)− codim Eu(t)
= dim Es(A+)− dim Es(A−).

The last number may be interpreted as minus the spectral flow of the family t 7→ A(t), in the
sense that it gives minus the net change of the number of eigenvalues with negative real part
into eigenvalues with positive real part as t goes from −∞ to ∞.

2 Self-adjoint operators in Hilbert space

Let H be a complex Hilbert space. By a densely defined operator on H we mean a linear map
A:D(A) → H with D(A) a dense subset of H. The set D(A) is called the domain of A. The
adjoint A∗ of A is defined in two steps, as follows. First of all, its domain D(A∗) is defined
to be the set of y ∈ H such that the linear functional x 7→ 〈Ax , y〉 extends to a continuous
linear functional on H. As D(A) is dense, this continuous linear functional is unique. Let
y ∈ D(A∗). Then by the Riesz representation theorem there exists a unique z ∈ H such that
〈Ax , y〉 = 〈x , z〉 for all x ∈ D(A). We put A∗y = z. Thus, for y ∈ D(A∗), the image A∗y ∈ H
is uniquely defined by the requirement that

〈Ax , y〉 = 〈x , A∗y〉 for all x ∈ D(A).

Lemma 2.1 Let A:D(A) → H be a densily defined operator. Then A∗ has closed graph.

Proof. Let (yn, xn) be a sequence in the graph of A∗ which converges to a point (y, x) ∈
H×H. Then for every v ∈ D(A) we have 〈Av , y〉 = lim〈Av , yn〉 = lim〈v , xn〉 = 〈v , x〉. This
shows that y ∈ D(A∗) and x = A∗y. Hence (y, x) belongs to the graph of A∗. �

The operator A is called symmetric if

〈Ax , y〉 = 〈x , Ay〉

for alle x, y ∈ D(A). Equivalently, this means that D(A) ⊂ D(A∗) and A∗ = A on D(A).
Identifying A with its graph {(x, Ax) | x ∈ D(A)} ⊂ H ×H this may in turn be reformulated
as A ⊂ A∗.

Definition 2.2 A densely defined operator A on H with domain D(A) is said to be self-
adjoint if A = A∗.

Thus, a densily defined operator is self-adjoint if and only if it is symmetric and D(A) =
D(A∗).
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Remark 2.3 It follows from this definition combined with Lemma 2.1 that a self-adjoint
operator has closed graph. This fact plays an important role in the spectral theory of such
operators.

Remark 2.4 If A:H → H is a bounded linear operator, then D(A∗) = D(A) = H and it
follows that A is self-adjoint if and only if A is symmetric. A bounded symmetric operator is
also called a bounded Hermitean operator.

A complex number λ ∈ C is said to belong to the resolvent set of the densily defined
operator A if A − λI has dense image, and (A − λI)−1 extends to a bounded operator on
H. This extension R(A, λ) is called the resolvent of A at λ. It is not hard to show that the
resolvent set Ω is open in C and that the map λ 7→ R(A, λ) is holomorphic from Ω to L(H,H),
equipped with the operator norm. The complement of the resolvent set is called the spectrum
of A and denoted by σ(A).

A bounded operator A on H is said to be normal if A and its adjoint A∗ commute.

Lemma 2.5 Let A:H → H be a bounded normal operator. Let V ⊂ H be a linear subspace
such that AV ⊂ V. Then AV ⊥ ⊂ V ⊥.

Proof. Easy. �

In case H is finite dimensional, it follows from the above lemma by induction on the
dimension that any operator A ∈ L(H,H) is normal if and only if A diagonalizes on an
orthonormal basis of H.

This result has a rather straightforward generalization to compact normal operators in
Hilbert space.

Lemma 2.6 Let H be a Hilbert space, and A:H → H a bounded operator. Then A is
compact and normal if and only if the following conditions are fulfilled, with Λ be the set of
eigenvalues of A.

(a) 0 is the only possible accumulation point of Λ;

(b) for every λ ∈ Λ \ {0} the associated eigenspace Hλ is finite dimensional;

(c) the eigenspaces Hλ, for λ ∈ Λ are mutually orthogonal;

(d) the direct sum ⊕λ∈ΛHλ is dense in H.

Proof. See, for instance, [3]. �

3 The spectral theorem
for densely defined self-adjoint operators

There is also a spectral theory for densely defined self-adjoint operators, which we shall now
briefly review. The key ingredient of this theory is the notion of a projection valued or spectral
measure in a Hilbert space H.

We recall that the Borel σ-algebra B of a locally compact Hausdorf space M is the σ-
algebra generated by the open subsets of M.
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Definition 3.1 Let M be a locally compact Hausdorf space and H a Hilbert space. A
projection-valued Borel measure in H based on M is a map P from the Borel σ-algebra B on
M to the set of orthogonal projections in B(H) with the following properties,

(a) for all U, V ∈ B, P (U ∩ V ) = P (U)P (V );

(b) P (M) = I;

(c) P is countably additive, i.e., for each countable sequence (Un) of mutually disjoint
measurable subsets,

P (∪nUn) =
∑

n

P (Un).

The sum on the right-hand side is required to converge in the strong operator topology.

The requirement in (c) of convergence in the strong operator topology means that
∑

n P (Un)x
should converge in H, for any x ∈ H. It follows from (c) that P is finitely additive, by letting
Un = 0 after some index. From combining (c) and (b) we see that P (M) = P (M) + P (∅), so
that P (∅) = 0. If we combine this with (a), we see that P (U) and P (V ) have perpendicular
images if U and V are disjoint measurable sets.

Let x, y ∈ H. Then it follows from the above definition that

µx,y:U 7→ 〈P (U)x , y〉

defines a bounded Borel measure.

Lemma 3.2 Let P be a projection valued measure based on M. Then, for every x ∈ H and
each Borel set U ⊂ M,

µx,x(U) = ‖P (U)x‖2.

In particular, µx,x has all its values in [0, ‖x‖].

Proof. µx,x(U) = 〈P (U)x , x〉 = 〈P (U)x , P (U)x〉 = ‖P (U)x‖2. �

If P is a spectral measure on the locally compact Hausdorff space M, with values in H,
then we have an associated map IP (integration against P) from the spaceMb(M) of bounded
Borel measurable functions on M to the space L(H,H) of bounded linear operators on H,
such that

〈x , IP (f)y〉 =
∫

M
f(m) dµx,y(m).

For obvious reasons, we also write

IP (f) =
∫

M
f(m) dP (m).

Theorem 3.3 (Spectral theorem for self-adjoint operators) Let A be a densely defined
self-adjoint operator in H. Then there exists a unique projection-valued measure P based on
R, such that

Tv =
∫

R
λ dP (λ)v

for all v ∈ DT . Moreover, DT consists of the elements v ∈ H with∫
R

λ2 〈dP (λ)v , v〉 < ∞.
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4 The space S(W, H)

Let H be a separable Hilbert space, and let W ⊂ H be a dense linear subspace. We assume
that W is equipped with a norm ‖ · ‖W for which it is a Banach space and for which the
inclusion map ιW :W → H is compact.

Let L(W,H) denote the space of continuous linear maps W → H. Equipped with the
operator norm, this space is a Banach space. An element A ∈ L(W,H) will be viewed as a
linear operator on H with dense domain D(A) = W.

Lemma 4.1 Let A ∈ L(W,H). Then the following conditions are equivalent.

(a) The graph ΓA of A is closed in H ×H.

(b) There exists a constant c > 0 such that

‖x‖W ≤ c(‖x‖H + ‖Ax‖H), (x ∈ W ).

Proof. Assume (a). The natural Hilbert norm on H ×H is given by ‖(x, y)‖2
H×H = ‖x‖2

H +
‖y‖2

H . It is readily seen that this norm is equivalent to the sum norm (x, y) 7→ ‖x‖H + ‖y‖H .
The graph Γ = ΓA is a Banach space for the restriction of the sum norm. Moreover, the
map x 7→ (x,Ax) is a bijective and a continuous linear map from the Banach space W onto
the closed Banach space Γ. By the closed graph theorem for Banach spaces, the map is a
topological linear isomorphism. This implies (b).

Now assume (b). Let (xn) be a sequence in W such that (xn, Axn) converges in Γ, say to
a point (x, y). Then (xn, Axn) is a Cauchy-sequence for the sum-norm, and it follows from (b)
that (xn) is Cauchy in the Banach space W. Hence (xn) converges in W with a limit x̃. By
continuity of the embedding W ↪→ H, it follows that xn → x̃ in H, hence x̃ = x. By continuity
of A it follows that Axn → Ax. Hence Ax = y and we see that (x, y) ∈ Γ. It follows that Γ is
closed. �

Corollary 4.2 Let A ∈ L(W,H) have a graph which is closed in H ×H. Let V ⊂ W be a
subspace such that A|V :V → H is continuous. Then V is finite dimensional.

Proof. There exists a constant C1 > 0 such that ‖Ax‖H ≤ C1‖x‖H for all x ∈ V. In view of
the above lemma it follows that ‖ · ‖H and ‖ · ‖W define the same topologies on V.

Let now (xn) be a bounded sequence in V. Then by compactness of the embedding W ⊂ H,
it follows that (xn) has a subsequence which converges in H. This subsequence is Cauchy in the
‖ · ‖H norm, hence also in the ‖ · ‖W norm, hence converges to an element of W. It follows that
every ‖ · ‖W -bounded sequence (xn) in V has a converging subsequence in W. Let now (yn)
be a bounded sequence in the closure V̄ of V in W. Choose xn ∈ V with ‖xn − yn‖ < 2−n.
Then (xn) is bounded hence has a subsequence that converges to an element y ∈ V̄ . The
corresponding subsequence of (yn) converges to y as well. It follows that every closed and
bounded subset of V̄ is compact. Hence V̄ is finite dimensional and we conclude that V = V̄
is finite dimensional. �

The space Ls(W,H) is defined to be the subspace of A ∈ L(W,H) that are symmetric,
i.e.,

〈Ax , y〉H = 〈x , Ay〉H , for all x, y ∈ W.
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Clearly, this is a closed subspace of L(W,H), hence a Banach space of its own right. We define
S(W,H) to be the subset of self-adjoint elements in Ls(W,H), i.e., the set of A ∈ Ls(W,H)
with A = A∗. The goal of this section is to investigate the structure of the set S(W,H).

Let A ∈ Ls(W,H). Any complex number λ ∈ C such that A− λI has a non-trivial kernel
in W is called an eigenvalue for A. The set of eigenvalues of A is denoted by Λ(A) and for
λ ∈ Λ(A) we denote the associated eigenspace by

E(λ) = ker(A− λI).

Thus, E(λ) is defined to be a subspace of W.

Lemma 4.3 Let A ∈ Ls(W,H). Then every eigenvalue of A real. If λ, µ ∈ Λ(A) are
distinct, then E(λ) ⊥ E(µ). If the graph of A is closed in H × H, then every eigenspace is
finite dimensional.

Proof. Let λ, µ ∈ Λ(A) and x ∈ E(λ), y ∈ E(µ) Then x, y ∈ W, hence λ〈x , y〉 = 〈Ax , y〉 =
〈x , Ay〉 = µ̄〈x , y〉, from which we see that

(λ− µ̄)〈x , y〉 = 0.

Taking λ = µ and x = y 6= 0 we see that λ is real. On the other hand, if λ, µ are different, it
follows that 〈x , y〉 = 0, from which we see that E(λ) ⊥ E(µ).

The restriction A|E(λ) equals x 7→ λx hence is continuous linear from E(λ) to H. If A has
a closed graph we may apply Cor. 4.2 with V = E(λ). �

If E(λ) is finite dimensional, we agree to write Pλ for the associated orthogonal projection
H → E(λ).

Theorem 4.4 Let A ∈ Ls(W,H). Then the following conditions are equivalent.

(a) A ∈ S(W,H).

(b) All eigenspaces of A are finite dimensional,

H =
⊕̂

λ∈Λ(A)
E(λ), (4.5)

and
W = {x ∈ H |

∑
λ∈Λ(A)

λ2‖Pλx‖2
H < ∞ }.

Moreover, if any of these conditions is satisfied, then the norm ‖ · ‖W on W is equivalent to
the norm ‖ · ‖g given by

‖x‖2
g =

∑
λ∈Λ(A)

(1 + λ2)‖Pλx‖2.

Proof. First, assume (a). By the spectral theorem for unbounded self-adjoint operators,
there exists a spectral measure P such that

A =
∫

R
λdP (λ).

11



Let R > 0 and let Ω ⊂ R be a Borel subset contained in [−R,R]. Then H(Ω) = P (Ω)H is a
linear subspace of W. If x ∈ E(Ω) then

Ax =
∫

Ω
λ dP (λ)x

and
‖Ax‖2 =

∫
Ω

λ2〈dP (λ)x , x〉 ≤ 2R3‖x‖2,

from which we see that A|H(Ω):H(Ω) → W is bounded with respect to the restriction of ‖ · ‖H

on these spaces. Since A is self-adjoint, its graph is closed, and it follows by application of
Corollary 4.2 that H(Ω) is finite dimensional and that P (Ω) is an orthogonal projection
of finite rank. This implies that the restriction of the spectral measure P to [−R,R] has
finite support SR. Hence, the full spectral measure P has discrete support S. We note that
SR = S ∩ [−R,R]. If λ ∈ S, we put Pλ = P ({λ}). Then Pλ is an orthogonal projection of
finite rank. Moreover, if λ, µ ∈ S are distinct, then PλPµ = 0. The full spectral measure is
given by

P (Ω) =
∑

λ∈Ω∩S

Pλ, (4.6)

with absolute convergence in the strong operator topology. Equivalently, the image of P (Ω)
equals the closure of the orthogonal direct sum of the spaces H({λ}), for λ ∈ S. On the other
hand, P (R) = I, so that

H = H(R) =
⊕̂

λ∈S
H(λ).

Using (4.6) with Ω = {λ}, we see that H(λ) ⊂ E(λ), for every λ ∈ S. We conclude that S =
Λ(A), and that H(λ) = E(λ) for every λ ∈ S. Hence, all eigenspaces are finite dimensional,
and (4.5) follows.

Finally, it follows from the spectral theorem that W = D(A) consists of the vectors x ∈ H
with ∫

R
λ2〈dP (λ)x , x〉 < ∞.

The given integral equals ∑
λ∈Λ(A)

λ2〈Pλ x , x〉H =
∑

λ∈Λ(A)

λ2‖Pλ x‖2
H ,

whence the last assertion of (b).
We will now prove the converse implication. If x ∈ W and y ∈ H then it follows that

〈Ax , y〉 =
∑

λ∈Λ(A)

〈λPλx , y〉 =
∑

λ

〈x , λPλ y〉.

Thus, x 7→ 〈Ax , y〉 extends to a continuous linear map on H if and only if
∑

λ λ2‖Pλy‖2 < ∞.
It follows that D(A∗) ⊂ W = D(A), hence A is self-adjoint.

The final assertion follows from the fact that there exist constants C1, C2 > 0 such that

‖x‖2
W ≤ C1(‖x‖2

H + ‖Ax‖2
H) ≤ C2‖x‖2

W .

Indeed, this follows from () and the fact that iW :W → H and A:W → H are bounded. �
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Using the above result we shall now derive some other useful characterizations of S(W,H).

Lemma 4.5 Let A ∈ S(W,H). Then for every µ ∈ C \ Λ(A), the map A− µI extends to a
topological linear isomorphism from W onto H. In particular, the spectrum σ(A) of A equals
Λ(A).

Proof. Assume that µ ∈ C \ Λ(A). Then there exist constants C1, C2 > 0 such that

C1 <
|λ− µ|2

1 + λ2
< C2.

for all λ ∈ Λ(A). If x ∈ W then for every λ ∈ Λ(A) we have

C1(1 + λ2)‖Pλx‖2 ≤ ‖(A− µI)Pλx‖2 ≤ C2(1 + λ2)‖Pλx‖2.

Summing up over λ ∈ Λ(A) we obtain

C1‖x‖2
g ≤ ‖(A− µI)x‖2 ≤ C2‖x‖2

g,

where ‖x‖g is the norm defined in the last part of Theorem 4.4. Since this norm is equivalent
to ‖ · ‖W , the result follows. �

Theorem 4.6 Let A ∈ Ls(W,H). Then the following statements are equivalent.

(a) A ∈ S(W,H)

(b) There exists a µ ∈ R such that A−µI is a topological linear isomorphism from W onto
H.

Proof. Assume (a). Then (b) follows from Thm. and the fact that σ(A) is a discrete subset
of R.

Conversely, assume (b). As W ↪→ H is a compact embedding, the operator T = ιW ◦ (A−
µI)−1:H → H is compact. We claim that T is symmetric. Indeed, let x′, y′ ∈ H. Then there
exist x, y ∈ W such that x′ = (A − µI)x and y′ = (A − µI)y. We note that Tx′ = x and
Ty′ = y so that

〈Tx′ , y′〉 = 〈x , y′〉 = 〈x , (A− µI)y〉

and
〈x′ , T y′〉 = 〈x′ , y〉 = 〈(A− µI)x , y〉.

Thus the symmetry of A implies that T is symmetric as well. By the spectral theorem for
compact symmetric operators on H, it follows that T has a set Λ(T ) of real eigenvalues with
only 0 as a possible accumulation point. Moreover, as T has trivial kernel, zero is not an
eigenvalue, and it follows that all eigenspaces are finite dimensional and mutually orthogonal.
Finally, the vector sum of the eigenspaces is dense in H.

For λ ∈ Λ(T ) we denote the associated eigenspace by H(T, λ) and the associated orthog-
onal projection by PT,λ. If x ∈ H(T, λ), then x = T (λ−1x) ∈ T (H) = W. It follows that
(A − µI) = λ−1I on H(T, λ). Hence H(T, λ) ⊂ H(A,µ + λ−1). Conversely, let x ∈ W be an
eigenvector for A, with eigenvalue ν. then (A−µI)x = (ν−µ)x hence x = T ((ν−µ)x). It fol-
lows that ν 6= µ and that (ν−µ)−1 is an eigenvalue for T. Thus we see that Λ(A) = µ+Λ(T )−1

is a discrete subset of R and that for every λ ∈ λ(T ),

H(A,µ + λ−1) = H(T, λ).
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It follows that all eigenspaces for A are finite dimensional and mutually orthogonal. Finally,
H is the closure of the direct sum of these. It remains to be shown that the characterization of
W is valid. From now on, for ν ∈ Λ(A) we put Pν = PA,ν . Similarly, we put H(ν) = H(A, ν).

From the spectral representation of T it follows that W = im T consists of all vectors of
the form

x =
∑

λ∈Λ(A)

(λ− µ)−1vλ,

with vλ ∈ H(λ) and
∑

λ∈Λ(A) ‖vλ‖2 < ∞. We note that for such an expression we have
Pλx = (λ− µ)−1vλ. Therefore, W consists of all x ∈ H with∑

λ∈Λ(A)

|λ− µ|2‖Pλx‖2 < ∞.

We now observe that there exist constants C1, C2 > 0 such that

C1 < |λ− µ|−2(1 + λ2) < C2

for all λ ∈ Λ(A). Hence W consists of all vectors x ∈ H with∑
λ∈Λ(A)

(1 + λ2)‖Pλx‖2 < ∞.

Since
∑

λ ‖Pλx‖2 = ‖x‖2 for all x ∈ H, the desired characterization of W follows. We conclude
that A ∈ S(W,H). �

Corollary 4.7 The set S = S(W,H) is open in Ls(W,H) with respect to the operator norm
topology.

Proof. Let A ∈ S(W,H). Then there exists a µ ∈ C such that A−µI extends to a topological
linear isomorphism from W onto H. Let B ∈ Ls(W,H). Then

(A− µI)−1(B − µI)− IW = (A− µI)−1(B −A).

It follows that the continuous linear operator (A−µI)−1(B−µI)−IW :W → W has operator
norm at most

‖(A− µI)−1‖op‖B −A‖op.

This implies that (A− µI)−1(B − µI) is a topological linear isomorphism from W onto itself
if

‖B −A‖op < ‖(A− µI)−1‖−1
op .

The result follows. �

5 Perturbations in S(H, W ).

Due to the special spectral properties of operators from S(H,W ), there is a decent perturba-
tion theory for these operators.

We will need the following well known fact.
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Lemma 5.1 Let V1, V2 be isomorphic Banach spaces, and let L0(V1, V2) denote the space
of topological linear isomorphisms from V1 onto V2. Then L0(V1, V2) is open in L(V1, V2).
Moreover, the map T 7→ T−1 is analytic from L0(V1, V2) to L0(V2, V1).

Proof. It suffices to establish the result for V1 = V2 = V in which case L0 = GL(V ). By
homogeneity it suffices to show that I is an interior point, and that T 7→ T−1 is analytic
in a neighborhood of I. This in turn follows from the convergence of the power series for
H 7→ (I −H)−1 in the ball ‖H‖op < 1. �

In what follows, we assume that Ω is a non-empty open subset of a real or complex Banach
space, and that F : Ω → S(H,W ) is a Cp map, where p ∈ N ∪ {∞, ω}.

Lemma 5.2 Let t0 ∈ Ω and let Λ0 = σ(A(t0)).

(a) Let U be an open subset of C with closure compact and disjoint from Λ0. Then there
exists an open neighborhood Ω0 of t0 in Ω such that Λt: = σ(A(t)) is disjoint from U for
every t ∈ Ω0.

(b) If U is any open subset of C such that σ(A(t)) ∩ U = ∅ for all t ∈ Ω, then

(z, t) 7→ (zI −A(t))−1

is a Cp-map U × Ω → L(H,W ), which in addition is holomorphic in z.

Proof. From the assumption it follows that A(t0)− zI ∈ L0(W,H), for z ∈ U. By continuity
and compactness, we may select Ω0 such that zI −A(t) ∈ L0(W,H), for (z, t) ∈ U ×Ω. This
implies the assertion about the spectrum of A(t).

Assume now that the hypothesis of (b) is fulfilled. Then zI − A(t) ∈ L0(W,H), satisfies
the stated properties as a function of (z, t). By analyticity of the inversion map, the same
holds for (zI −A(t)−1 ∈ L(H,W ). �

Lemma 5.3 Let t0 ∈ Ω and let γ be a closed oriented C1-curve in C \ σ(A(t0)). Then there
exists an open neighborhood Ω0 of t0 such that γ is disjoint from σ(A(t)), for every t ∈ Ω0.
Moreover, if Ω0 is any open neighborhood with this property, then

M(t):=
1

2πi

∫
γ
(zI −A(t))−1 dz

defines a Cp-map Ω0 → L(H,W ). Moreover, for every t ∈ Ω0 we have

M(t) =
∑

λ∈σ(A(t))

W (γ, λ)PA(t),λ. (5.7)

Here W (γ, λ) denotes the winding number of γ with respect to λ and PA(t),λ the orthogonal
projection onto the (finite dimensional) eigenspace ker(A(t)− λI).

Proof. The first assertion follows by compactness of γ. By the previous result on holomorphy
and by differentiation under the integral sign, the first assertion on M follows. For the second
assertion, fix t. As σ(A(t)) is finite, the expression on the right-hand side defines a continuous
linear map, so that the equation needs only be checked on a dense subspace of H. Thus, it
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suffices to check the equation on each eigenspace Eµ = ker(A(t) − µI), for µ ∈ σ(A(t)). Fix
such an eigenvalue µ. Then on Eµ we have

M(t) =
1

2πi

∫
γ
(zI − µI)−1 dz = W (γ;µ)I,

by Cauchy’s integral formula. On the other hand, the map on the right-hand side of (5.7)
restricts on the space Eµ to W (γ;µ)I. The identity follows. �

Proposition 5.4 Let t0 ∈ Ω, let µ ∈ σ(A(t0)) and let m = dim ker(A − µI). Let U be an
open disc around µ whose closure is disjoint from Σ(A(t0)) \ {µ}. Then there exists an open
neighborhood Ω0 of t0 such that the following holds.

(a) for every t ∈ Ω0 the map A(t) has precisely m eigenvalues λ1(t), λ2(t), . . . , λm(t) con-
tained in U, counting multiplicities;

(b) the functions λj may be chosen in such a fashion that they are continuous on t ∈ Ω0;

(c) the orthogonal projection P (t) onto the sum of the eigenspaces for the eigenvalues λj(t)
is a L(H,W )-valued continuous function of t ∈ Ω0.

(d) if m = 1, then λ1 is a Cp-function.

Remark 5.5 Note that λj(t0) = µ for all j.

Proof. We select a ball neighborhood Ω0 of t0 such that σ(A(t)) is disjoint from the boundary
∂U for t ∈ Ω0. Then by the above result,

P (t) =
1

2πi

∫
∂U

(zI −A(t))−1 dz

depends Cp on t and defines the orthogonal projection onto the sum of the eigenspaces for
the eigenvalues of A(t) contained in U. The projection P (t) depends continuously on t and
has finite rank which therefore must be constant. This proves (a) and (c). We now order the
eigenvalues λ1(t) ≤ · · · ≤ λm(t). Then the eigenvalues are continuous at t = t0. Applying the
same reasoning at any other point of Ω0, we see that the λj , thus ordered, are continuous
functions. Hence (b).

Finally, assume that m = 1. We select a unit vector v ∈ ker(A(t0)− µI) and define

v(t) =
P (t)v
‖P (t)v‖

.

Then v(t) depends Cp on t, for t in a sufficiently small neighborhood Ω1 of t0 in Ω0. Now
λ1(t) = 〈A(t)v(t) , v(t)〉, from which we see that λ1 is Cp on Ω1. Treating the other points of
Ω0 in a similar fashion, we conclude (d). �

Remark 5.6 If Ω is an open interval in R and p = 1, then using techniques from [1] it can
be proved that the eigenvalues λ1, . . . , λm can be chosen in C1 fashion. This fact is quite hard
to prove (of course one should not teke the eigenvalues in increasing order).

Surprisingly, the following result is also true. Let Ω ⊂ R be an interval and assume that
t 7→ A(t) is analytic on Ω. Then the eigenvalues may be chosen to depend analytically on t.
Another surprise: this is in fact easier to prove than the previous assertion, by using complex
function theory.
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Thus prepared, we are now able to establish a few useful facts about the geometry of
S(W,H). For k ∈ N we define Sk = Sk(W,H) to be the subset of operators A ∈ S(W,H)
with dim kerA = k.

Lemma 5.7 Let k ∈ N. Then Sk is a smooth Banach submanifold of Ls(W,H) of codimen-
sion equal to 1

2k(k + 1).

Proof. Let A ∈ Sk. Then N : = ker A is k-dimensional. Let P denote the orthogonal projec-
tion onto N. We consider the analytic family A(X) = A + X ∈ Ls(W,H), for X ∈ Ls(W,H).

Select ε > 0 such that [−ε, ε] ∩ σ(A) = {0}. Let Ω0 be a sufficiently small neighborhood
of 0 in Ls(W,H) with the properties of Proposition 5.4, relative µ = 0 and U = ] − ε, ε [. For
X ∈ Ω0, let P (X) denote the orthogonal projection onto the sum of the eigenspaces of A(X),
associated with the eigenvalues of A(X) in ] − ε, ε [. Then P (X) has rank k and depends
analytically on X.

Let iN denote the inclusion map N → H. Then we may adapt Ω0 to achieve that
P ◦P (X) ◦ iN is an invertible element of Ls(N,N) for every X ∈ Ω0. It follows that P (X) ◦ iN
has rank at least k hence is surjective onto im P (X) for every X ∈ Ω0. Moreover, P (X) is
injective on im (P ) for every X ∈ Ω0. Since A(X) maps im P (X) onto itself, it follows that
A(X)P (X) = 0 if and only if PA(X)P (X)iN = 0.

We define the function f : Ω0 → Ls(N,N) by

f(X) = P ◦A(X) ◦P (X) ◦ iN .

In the above we showed that f−1(0) consist of X ∈ Ω0 for which A(X)P (X) = 0. We observe
that kerA(X) ⊂ im P (X). Hence if ker A(X) is k-dimensional, then ker A(X) = im P (X).
Conversely, if A(X)P (X) = 0, then 0 is the only eigenvalue of A(X) contained in ] − ε, ε [,
and it follows that dim kerA(X) = k. Thus, A(X) belongs to Sk if and only if A(X)P (X) = 0.
We see that

A(X) ∈ Sk ⇐⇒ f(X) = 0.

To show that Sk is a smooth Banach submanifold of Ls(W,H), it suffices to show that the
total derivative Df(0):Ls(W,H) → Ls(N,N) is surjective.

By application of the chain rule it follows that the derivative is given by

Df(0)X = P DA(0)(X) P (0)iN + PA(0)DP (0)(X) iN .

We now observe that A(0) = A and PA = 0, so that the second term vanishes. On the other
hand, DA(0)(X) = X and P (0) = P, so that

Df(0)X = PXiN .

From this it is readily seen that the differential is onto Ls(N,N). The latter space has dimen-
sion 1

2k(k + 1), hence Sk is a smooth Banach submanifold at A of codimension k. Moreover,
the tangent space TASk equals kerDf(0), so that

TASk = {X ∈ Ls(W,H) | PXiN = 0}
= {X ∈ Ls(W,H) | X(N) ⊂ N⊥}.

�
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From the last part of the above proof, the following result is an easy consequence.

Lemma 5.8 Let A ∈ Sk and let N = kerA. Then the map (X, Y ) 7→ X + iN ◦Y ◦PN defines
a topological linear isomorphism from TASk ⊕ Ls(N,N) onto Ls(W,H).

Proof. Since dim Ls(N,N) = 1
2k(k + 1) = codim TASk, it suffices to show, for Y ∈

Ls(N,N), that iN ◦Y ◦PN ∈ TASk ⇒ Y = 0. For this we note: if iN ◦Y ◦PN ∈ TASk

then PN ◦ (iN ◦Y ◦PN ) ◦ iN = 0. The expression on the right-hand side of this equation equals
Y. �

Lemma 5.9 The manifold S1 comes equipped with a natural orientation.

Proof. We now consider the map ν:S1 → Ls(W,H)′ defined by νA(T ) = tr (Pker A ◦T ◦Pker A).
As kerA is one dimensional, it follows that νA(T ) = 0 if and only if Pker A ◦T ◦ iker A = 0, which
in turn is equivalent to T ∈ TAS1. Thus, ν is a smooth nowhere vanishing one form defined
along S1, with ker νA = TAS1 for all A ∈ S1. This defines an orientation of S1. �

Remark 5.10 Alternatively, the orientation may be defined by means of a vector field along
S1. For A ∈ S1 we define v(A) ∈ Ls(W,H) to be the orthogonal projection onto ker A. Let
A ∈ S1 and put N = kerA. Then v(A) = iN ◦ idN ◦PN , and by the above lemma we see
that Ls(W,H) = TAS1 ⊕Rv(A). Thus v defines a vector field along the manifold S1 which is
everywhere transversal to it. We observe that νA(v(A)) = 1 for A ∈ S1.

6 Fredholm operators associated with curves in S(W, H).

Following [2] we introduce the space B = B(R,W, H) of continuous (with respect to the
operator norm topology) curves A: R → Ls(W,H) for which the limits

A± = lim
t→±∞

A(t)

exist in the operator norm topology. Equipped with the norm

‖A‖ = sup
t∈R

‖A(t)‖op

this space is a Banach space. Moreover, we define A = A(R,W, H) to be the subset of
elements A ∈ B such that

(a) A(t) ∈ S(W,H) for each t ∈ R;

(b) A± are topological linear isomorphisms W → H.

Observe that condition (b) is equivalent to A± ∈ S(W,H) and kerA± = {0}. Since for
B ∈ Ls(W,H) the conditions B ∈ S(W,H) and B invertible are open, it is readily seen that
A is an open subset of the Banach space B.

18



Lemma 6.1 Let A in L(W,H) and assume that there exists a constant c > 0 such that

‖ξ‖W ≤ c(‖Aξ‖H + ‖ξ‖H)

for all ξ ∈ W. Then for every C > 0 there exists a constant δ > 0 such that for all A′ ∈
L(W,H) with ‖A−A′‖ < δ we have

‖ξ‖W ≤ C(‖A′ξ‖H + ‖ξ‖H), (ξ ∈ W ).

Proof. We fix δ > 0 such that c < C(1− cδ). Then for all ξ ∈ W,

‖ξ‖W ≤ ‖Aξ‖H + ‖ξ‖H)
≤ c‖A′ξ‖H + ‖(A−A′)ξ‖H + ‖ξ‖H)
≤ c‖A′ξ‖H + ‖ξ‖H) + cδ‖ξ‖W .

This implies the desired estimate. �

Corollary 6.2 If A ∈ A, then A is uniformly self-adjoint in the sense that there exists a
constant c > 0 such that

‖ξ‖W ≤ c(‖A(t)ξ‖H + ‖ξ‖H)

for all t ∈ R.

Remark 6.3 Note that this is condition (A-2) of [2]. In view of Remark 3.1, which we will
prove further down, this shows that the condition is really superfluous!

Proof. In view of Lemma 4.1 the estimate holds for each t separately, with a constant
ct possibly depending on t. A similar estimate holds for the operators A±. Using the above
lemma and a compactness argument, we see that the constant may in fact be chosen uniformly
bounded as a function of t. �

It follows from the corollary that the space of families of bounded linear operators A(t):W →
H satisfying (A-1), (A-2) and (A-3) of [2], page 8, coincides with the space Aw1, which we
shall now introduce. First of all, we define Bw1 = Bw1(R,W, H) to be the space of A ∈ B with
the property that t 7→ A(t) is C1 for the weak operator topology, and such that ‖A′(t)‖op is
uniformly bounded in t. This space carries an obvious locally convex topology, for which it is
complete.

Next, we define
Aw1(R,W, H) = A ∩ Bw1.

It is convenient to work with the even smaller space

A1 = A ∩ B1,

where B1 is the space of C1-maps A: R → Ls(W,H) with the property that ‖A(t)‖ and ‖A′(t)‖
are uniformly bounded in t. This space is Banach for the norm

sup
t∈R

(‖A(t)‖op + ‖A′(t)‖op).
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It is easy to verify that B1 ⊂ Bw1 ⊂ B, hence also

A1 ⊂ Aw1 ⊂ A.

Let ϕ ∈ C1
0 (R), ϕ ≥ and

∫
ϕ(t) dt = 1. For δ > 0 we put ϕδ(t) = δ−1ϕ(δ−1t. Then ϕδ is an

approximation of the Dirac measure for δ → 0, and the following lemma can be proved in a
standard fashion.

Lemma 6.4 Let A ∈ B and put Aδ: = ϕδ ∗A. Then

(a) Aδ ∈ B1 for all δ > 0;

(b) supR ‖A′δ‖ is uniformly bounded as δ → 0

(c) if A ∈ Bw1, then A′δ(t) → A′(t), in the weak operator topology, locally uniformly with
respect to t.

Since A is open in B, the above lemma implies in particular that the elements of A may
be approximated by elements from A1.

For A ∈ Aw1 we may define a differential operator DA as in the finite dimensional case.
However, we have to be a bit careful with our function spaces.

First of all, we define the Hilbert spaces H = L2(R,H) and W 1,2(R,H) in the usual
fashion (for the latter space the definition is most easily given by using Fourier transform).
Secondly, we define

W = L2(R,W ) ∩W 1,2(R,W ).

This space naturally is a Hilbert space with norm

‖ξ‖2
W =

∫
R
(‖ξ(t)‖2

W + ‖ξ′(t)‖2
H) dt.

For A ∈ B, we define the differential operator DA:W → H by

DAξ(t) =
d

dt
ξ(t)−A(t)ξ(t).

It is readily checked that DA:W → H is continuous. Moreover, the map A 7→ DA is continuous
from B to L(W,H). More precisely,

‖DA −DB‖op ≤ sup
t∈R

‖A(t)−B(t)‖,

for all A,B ∈ B. This result is important, as it allows perturbation of A ∈ Aw1 in A1 without
changing the Fredholm index.

Theorem 6.5 Let A ∈ Aw1. Then DA:W → H is Fredholm. In particular, if A is constant
then DA is bijective.

Proof. The proof uses the same ideas as the proof in the finite dimensional case, with an
added elliptic regularity result, needed to pass to the transpose operator, see [2]. �

In the next section we will define a map µ = µW,H :A(R,H, W ) → Z, which turns out
to be an appropriate generalization of the spectral flow. We will then finally show that for
A ∈ Aw1, we have

index (DA) = −µ(A).

The proof will make use of reduction to the finite dimensional case.
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7 Spectral flow for curves in S(H, W ).

Let now A ∈ A1(R,W, H). Then using the transversality theory of Fredholm maps between
Banach manifolds, we may define the intersection number µ(A) of A with S1 in the usual
fashion.

This intersection number is a C1-homotopy invariant and for A transversal to all Sk,
k ≥ 1, it may be computed as follows. The fact that A is transversal to all Sk means that A
is disjoint from Sk for k ≥ 2 and intersects S1 transversally. The set of t ∈ R with A(t) ∈ S1

is discrete and contained in a compact subset of R hence finite. Let t1 < · · · < tn be an
ordering of its elements. In view of the earlier considerations concerning the orientation of
S1, see Lemma 5.8, the intersection number µ(A) of A with S1 is given by

µ(A) =
n∑

j=1

sign νA(tj)(A
′(tj)) =

n∑
j=1

sign trace [P (tj) ◦A′(tj) ◦P (tj)]. (7.8)

Here P (tj) denotes the rank one orthogonal projection onto the kernel of A(tj).

Lemma 7.1 In the above setting, let 1 ≤ j ≤ n be fixed. Then there exist constants ε, δ > 0
and a C1-function λ: Iδ: =] tj − δ, tj + δ [ −→ ] − ε, ε [ , such that for t ∈ Iδ,

(a) σ(A(t))∩ ] − ε, ε [ = {λ(t)} and the multiplicity of λ(t) is one;

(b) trace [P (tj)A′(tj)P (tj)] = λ′(tj).

Proof. The existence of δ, ε, λ such that (a) holds is a consequence of Proposition 5.4. We
turn to the proof of (b). Let P (t) denote the orthogonal projection on ker(A(t)−λ(t)I), then
P (t) has rank one, and is a C1-function of t. Let x be a unit vector in kerA(tj), and define
x(t) = ‖P (t)x‖−1P (t)x. Then for δ sufficiently small, the function x: Iδ → W is C1 on Iδ.
Moreover, the projection P (t) is given by v 7→ 〈v , x(t)〉x(t). Accordingly, we have

λ(t) = 〈A(t)x(t) , x(t)〉.

Differentiating this expression with respect to t, and evaluating at t = tj , we obtain

λ′(tj) = 〈A′(tj)x(tj) , x(tj)〉+ 〈A(tj)x′(tj) , x(tj)〉+ 〈A(tj)x(tj) , x′(tj)〉.

Using that A(tj)x(tj) = 0, that x′ has values in W, and that A(tj) ∈ L(W,H) is symmetric,
we see that the last two terms in the above expression equal zero. It follows that

λ′(tj) = 〈A′(tj)x(tj) , x(tj)〉 = trace [P (tj)A′(tj)P (tj)].

This proves the assertion. �

With notation of the above lemma, we see that (7.8) becomes

µ(A) =
n∑

j=1

signλ′(tj). (7.9)

This means that µ(A) may be interpreted as the spectral flow of the family A(t) as t goes
from −∞ to ∞.
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8 The main theorem

We now come to the main theorem. First of all, we note that the intersection number µW,H

can be extended to a continuous homotopy invariant A → Z, so that in particular it becomes
well defined on Aw1.

Theorem 8.1 Let A ∈ Aw1. Then index (DA) = −µ(A).

Proof in the finite dimensional case. In this case, W = H are finite dimensional,
and A: R → End(H) is a C1-map. It suffices to show that dim Es(A−)− dim Es(A+) equals
−µ(A). Both numbers are invariant under homotopies with fixed endpoints A±, so that we
may assume that A(t) is transversal to Sk(R,W, W ), for every k ≥ 1, as in the beginning of
Section 7. In particular, we have the validity of formula (7.9). For t ∈ O = R \ {t1, . . . , tn},
we define P−(t) to be the orthogonal projection onto the sum of the eigenspaces of A(t) for
the negative eigenvalues, and we define P+(t) to be the orthogonal projection onto the sum
of the eigenspaces for the positive eigenvalues. Then it follows from the perturbation theory
discussed before that P− and P= are C1 functions, with ranks that are locally constant.
Moreover, rkP−(t) equals dim As(A−) for t < t1 and equals dim As(A+) for t > tn. We now
claim that at every point tj , we have

lim
t↑tj

rkP−(t)− lim
t↓tj

rkP−(t) = sign λ′(tj).

Adding these equalities for j = 1, . . . , n, we obtain the desired equality. We restrict our
attention to a sufficiently small neighborhood I of tj and put I±: = {t ∈ I | ±(t − tj) > 0}.
Let P (t) denote the projection onto the one dimensional eigenspace of A(t), of eigenvalue
λ(t). Then t 7→ P (t) is a C1-map. We will discuss the case signλ′(tj) = +1. The other
case is handled similarly. In the present case, λ < 0 on I− and λ > 0 on I+. Put P ∗

±(t) =
P±(t)(I − P (t)), then P ∗

± is readily seen to extend C1 to the interval I. Moreover, I =
P ∗
−(t)+P (t)+P ∗

+(t), where for each t the images of the projections are mutually orthogonal.
Now P−(t) = P ∗

−(t) + P (t) for t ∈ I− and P−(t) = P ∗
−(t) for t ∈ I+. The result follows. �

We proceed to prove the general case by reduction to the finite dimensional case. For this
we need the index and spectral flow to behave well with respect to direct sums.

If Aj ∈ A(R,Wj ,Hj), for j = 1, 2, we define A1 ⊕A2: t 7→ A1(t)⊕A2(t). Then A1 ⊕A2 ∈
A(R,W1⊕W2,H1⊕H2). Moreover, if Aj ∈ Aw1 then A1⊕A2 ∈ Aw1 and a similar statement
holds with A1 instead of Aw1.

Lemma 8.2 Let Aj ∈ A(R,Wj ,Hj), for j = 1, 2.

(a) µ(A1 ⊕A2) = µ(A1) + µ(A2).

(b) If Aj ∈ Aw1, then index (DA1⊕A2) = index (DA1) + index (DA2).

Proof. Assertion (b) is an immediate consequence of the definitions. For (a), we note
that by standard approximation arguments we may reduce the identity to the case that
Aj ∈ A1(R,Wj ,Hj). By obvious homotopy arguments, we may then reduce to the situation
that A1 is constant on [−1,∞[ and that A2 is constant on ]−∞, 1]. By a further homotopy
we may further reduce to the case that, in addition, Aj intersects Sk(R,Wj ,Hj) transversally.
Property (b) now follows by a straightforward application of (7.9). �

22



The key to the reduction to the finite dimensional case is the following result, formulated
as Theorem 4.5 in [2].

Theorem 8.3 Let A ∈ A(R,W, H). Then there exists a finite dimensional space V and a
b ∈ A(R, V, V ), such that A⊕ b is homotopic to a constant curve inside A(R,W ⊕ V,H ⊕ V ).

Proof. Let A1
0 denote the set of A ∈ A1(R,W, H) intersecting all Sk transversally. For A in

this set, we define m0(A) to be the number of intersection points of A with S1. Moreover, for
A ∈ A(R,W, H) we define m(A) to be the minimum of m0(B) as B ranges over the elements
of A1

0 that are continuously homotopic to A.
If m(A) = 0, then A is homotopic to a curve B ∈ A1 that has no intersections with

∪k≥1Sk. This means that B(t) is bijective for all t. Now Bτ (t) = B(tan(τ arctan t)) defines
a continuous homotopy of B with the constant family B0: t 7→ B(0), showing that A is
homotopic to a constant family.

We will now establish the result by induction on m(A). Thus, let m(A) = m > 0 and
assume the result has been established for A with m(A) < m. Then it suffices to establish
the existence of a b ∈ A1(R, C, C) such that m(A⊕ b) < m. This is done as follows.

By homotopy we may as well assume that A ∈ A1
0 and that A intersects S1 in precisely

m points. Let t1 < t2 < . . . < tm be the points of intersection, and use the notation of .....
In particular, let λ(t) be the eigenvalue of A(t) for t in a sufficiently small neighborhood Iδ

of t1, such that λ is C1 and λ(t1) = 0.
We choose a C1-function b: R → R such that b(t) = −λ(t) on Iδ, such that b is locally

constant outside a compact set, and such that b has t = tj as its only zero. Then b determines
an element of A1(R, C, C). We will show that m(A⊕ b) < m, establishing the induction step.

We select a unit vector x(t) ∈ N(t):= ker(A(t) − λ(t)I), depending on t ∈ Iδ in a C1-
fashion. Moreover, for t ∈ Iδ we define two orthogonal unit vectors in W ⊕ C by e1(t) =
(x(t), 0) and e2(t) = (0, 1). Let E(t) be the span of these vectors. We note that the restriction
of A(t)⊕ b(t) to E(t) has matrix with respect to e1(t), e2(t) given by

M(t) =
(

λ(t) 0
0 −λ(t)

)
.

We will first define a suitable homotopy Mτ of this matrix. Let β ∈ C∞
0 (R) be a real valued

cut off function with β(0) = 1 and suppβ ⊂ Iδ. Put

Mτ (t) =
(

λ(t) τβ(t)
τβ(t) −λ(t)

)
.

Then Mτ is a symmetric matrix of determinant −λ(t)2 − τβ(τ) which is strictly positive
on Iδ as soon as τ 6= 0. It follows that for τ 6= 0 the matrix Mτ (t) has two non-zero real
eigenvalues, one positive and one negative. We now define the homotopy Bτ of A ⊕ b on Iδ

by Bτ (t) = A(t)⊕ b(t) on N(t)⊥ ⊕C and by Bτ (t)|E(t) determined by the matrix Mτ (t). By
the choice of the cut off function β it follows that Bτ = A⊕ b outside a fixed compact subset
of Iδ. We extend Bτ outside Iδ by putting Bτ = A⊕ b. If τ 6= 0, then Bτ (t) has no non-zero
eigenvalues for t ∈ Iδ, whereas Bτ = A⊕b outside Iδ. It follows that m0(Bτ ) = m−1, showing
that m(A⊕ b) ≤ m− 1. �
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Proof of Theorem 8.1. By standard approximation arguments (e.g. involving convolution
operators), it follows that Theorem 8.3 holds in the A1 setting.

Let now A ∈ A1(R,W, H), and let b ∈ A1(R, V, V ) be such that A⊕ b is C1-homotopic to
a constant curve. Then index (DA⊕b) = 0. Similarly, µ(A⊕ b) = 0. It follows that

index (DA) + index (Db) = index (DA⊕b) = −µ(A⊕ b) = −(µ(A) + µ(b)).

By the finite dimensional case, index (Db) = −µ(b). This implies the result. �
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