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1 Groups

The purpose of this section is to collect some basic facts about groups. We leave it to the reader
to prove the easy statements given in the text.

We recall that agroup is a setG together with a map� W G � G ! G; .x; y/ 7! xy and an
elemente D eG ; such that the following conditions are fulfilled

(a) .xy/z D x.yz/ for all x; y; z 2 GI
(b) xe D ex D x for all x 2 GI
(c) for everyx 2 G there exists an elementx�1 2 G such thatxx�1 D x�1x D e:

Remark 1.1 Property (a) is calledassociativityof the group operation. The elemente is called
theneutral elementof the group.

The elementx�1 is uniquely determined by the property (c); indeed, ifx 2 G is given, and
y 2 G an element withxy D e; thenx�1.xy/ D x�1e D x�1; hencex�1 D .x�1x/y D ey D
y: The elementx�1 is called theinverseof x:

Example 1.2 Let S be a set. Then Sym.S/; the set of bijectionsS ! S; equipped with
composition, is a group. The neutral elemente equalsIS ; the identity mapS ! S; x 7! x:

If S D f1; : : : ; ng; then Sym.S/ equalsSn; the group of permutations ofn elements.

A groupG is said to becommutativeor abelianif xy D yx for all x; y 2 G: We recall that a
subgroupof G is a subsetH � G such that

(a) eG 2 H I
(b) xy 2 H for all x 2 H andy 2 H I
(c) x�1 2 H for everyx 2 H:

We note that a subgroup is a group of its own right. IfG;H are groups, then ahomomorphism
fromG toH is defined to be a map' W G ! H such that

(a) '.eG/ D eH I
(b) '.xy/ D '.x/'.y/ for all x; y 2 G:

We note that theimageim.'/ WD '.G/ is a subgroup ofH: Thekernelof '; defined by

ker' WD '�1.feH g/ D fx 2 G j '.x/ D eH g

is also readily seen to be a subgroup ofG: A surjective group homomorphism is called anepi-
morphism. An injective group homomorphism is called amonomorphism. We recall that a group
homomorphism' W G ! H is injective if and only if its kernel is trivial, i.e., ker' D feGg: A
bijective group homomorphism is called anisomorphism. The inverse'�1 of an isomorphism
' W G ! H is a group homomorphism fromH toG: Two groupsG1 andG2 are calledisomor-
phic if there exists an isomorphism fromG1 ontoG2:

If G is a group, then by an automorphism ofG we mean an isomorphism ofG onto itself.
The collection of such automorphisms, denoted Aut.G/; is a subgroup of Sym.G/:
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Example 1.3 If G is a group andx 2 G; then the maplx W G ! G; y 7! xy; is calledleft
translationby x: We leave it to the reader to verify thatx 7! lx is a group homomorphism from
G to Sym.G/:

Likewise, if x 2 G; thenrx W G ! G; y 7! yx; is calledright translationby x: We leave it
to the reader to verify thatx 7! .rx/

�1 is a group homomorphism fromG to Sym.G/:
If x 2 G; thenCx W G ! G; y 7! xyx�1 is calledconjugationby x: We note thatCx is an

automorphism ofG; with inverseCx�1 : The mapC W x ! Cx is a group homomorphism fromG
into Aut.G/: Its kernel is the subgroup ofG consisting of the elementsx 2 G with the property
thatxyx�1 D y for all y 2 G; or, equivalently, thatxy D yx for all y 2 G: Thus, the kernel of
C equals thecenterZ.G/ of G:

We end this preparatory section with the isomorphism theorem for groups. To start with we recall
that arelation on a setS is a subsetR of the Cartesian productS � S: We agree to also write
xRy in stead of.x; y/ 2 R: A relation� onS is called anequivalence relationif the following
conditions are fulfilled, for allx; y; z 2 S;

(a) x � x (reflexivity);

(b) x � y ) y � x (symmetry);

(c) x � y ^ y � z ) x � z (transitivity).

If x 2 S; then the collectionŒx� WD fy 2 S j y � xg is called theequivalence classof x: The
collection of all equivalence classes is denoted byS= � :

A partition of a setS is a collectionP of non-empty subsets ofS with the following proper-
ties

(a) if A;B 2 P; thenA \ B D ; orA D BI
(b) [A2PA D S:

If � is an equivalence relation onS thenS= � is a partition ofS: Conversely, ifP is a
partition ofS; we may define a relation�P as follows: x �P y if and only if there exists a
setA 2 P such thatx andy both belong toA: One readily verifies that�P is an equivalence
relation; moreover,S= �PD P:

Equivalence relations naturally occur in the context of maps. If f W S ! T is a map between
sets, then the relation� onS defined byx � y () f .x/ D f .y/ is an equivalence relation.
If x 2 S andf .x/ D c; then the classŒx� equals thefiber

f �1.c/ WD f �1.fcg/ D fy 2 S j f .y/ D cg:

Let � denote the natural mapx 7! Œx� from S ontoS= � : Then there exists a unique map
Nf W S= � ! T such that the following diagram commutes

S
f�! T

� # % Nf

S= �
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We say thatf factorsthrough a mapNf W S= � ! T: Note that Nf .Œx�/ D f .x/ for all x 2 S: The
map Nf is injective, and has image equal tof .S/: Thus, iff is surjective, thenNf is a bijection
from S= � ontoT:

Partitions, hence equivalence relations, naturally occurin the context of subgroups. IfK is a
subgroup of a groupG; then for everyx 2 G we define theright cosetof x by xK WD lx.K/:

The collection of these cosets, called the rightcoset space, is a partition ofG and denoted by
G=K: The associated equivalence relation is given byx � y () xK D yK; for all x; y 2 G:

The subgroupK is called anormal subgroupif xKx�1 D K; for everyx 2 G: If K is a
normal subgroup thenG=K carries a unique group structure for which the natural map� W G !
G=K; x 7! xK is a homomorphism. Accordingly,xK � yK D �.x/�.y/ D �.xy/ D xyK:

Lemma 1.4 (The isomorphism theorem)Letf W G ! H be an epimorphism of groups. Then
K WD kerf is a normal subgroup ofG: There exists a unique mapNf W G=K ! H; such that
Nf ı� D f: The factor map Nf is an isomorphism of groups.

Proof: Let x 2 G andk 2 K: Thenf .xkx�1/ D f .x/f .k/f .x/�1 D f .x/eHf .x/
�1 D eH ;

hencexkx�1 2 kerf D K: It follows thatxKx�1 � K: Similarly it follows thatx�1Kx � K;

henceK � xKx�1 and we see thatxKx�1 D K: It follows thatK is normal.
Let x 2 G and writef .x/ D h: Then, for everyy 2 G; we haveyK D xK () f .y/ D

f .x/ () y 2 f �1.h/: HenceG=K consists of the fibers off: In the above we saw that there
exists a unique mapNf W G=K ! H; such that Nf ı� D f: The factor map is bijective, sincef is
surjective. It remains to be checked thatNf is a homomorphism. NowNf .eK/ D f .eG/ D eH ;

sincef is a homomorphism. Moreover, ifx; y 2 G; then Nf .xKyK/ D Nf .xyK/ D f .xy/ D
f .x/f .y/: This completes the proof. �

2 Lie groups, definition and examples

Definition 2.1 (Lie group) A Lie group is a smooth (i.e.,C1) manifoldG equipped with a
group structure so that the maps� W .x; y/ 7! xy; G � G ! G and� W x 7! x�1; G ! G are
smooth.

Remark 2.2 For a Lie group, the group operation is usually denoted multiplicatively as above.
The neutral element is denoted bye D eG : Sometimes, if the group is commutative, i.e.,
�.x; y/ D �.y; x/ for all x; y 2 G; the group operation is denoted additively,.x; y/ 7! x C yI
in this case the neutral element is denoted by0:

Example 2.3 We begin with a few easy examples of Lie groups.
(a)Rn together with additionC and the neutral element0 is a Lie group.
(b)Cn ' R2n together with additionC and the neutral element0 is a Lie group.
(c) R� WD R n f0g is an open subset ofR; hence a smooth manifold. Equipped with the

ordinary scalar multiplication and the neutral element1; R� is a Lie group. Similarly,RC WD
� 0;1 Œ together with scalar multiplication and1 is a Lie group.

(d) C� WD C n f0g is an open subset ofC ' R2; hence a smooth manifold. Together with
complex scalar multiplication and1; C� is a Lie group.
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If G1 andG2 are Lie groups, we may equip the product manifoldG D G1 � G2 with the
product group structure, i.e.,.x1; x2/.y1; y2/ WD .x1y1; x2y2/; andeG D .eG1

; eG2
/:

Lemma 2.4 LetG1; G2 be Lie groups. ThenG WD G1 �G2; equipped with the above manifold
and group structure, is a Lie group.

Proof: The multiplication map� W G � G ! G is given by�..x1; x2/; .y1; y2// D Œ�1 �
�2�..x1; y1/; .x2; y2/: Hence,� D .�1��2/ ı .IG1

�S � IG2
/; whereS W G2�G1 ! G1�G2

is the ‘switch’ map given byS.x2; y1/ D .y1; x2/: It follows that� is the composition of smooth
maps, hence smooth.

The inversion map� of G is given by� D .�1; �2/; hence smooth. �

Lemma 2.5 LetG be a Lie group, and letH � G be both a subgroup and a smooth submani-
fold. ThenH is a Lie group.

Proof: Let� D �G W G �G ! G be the multiplication map ofG: Then the multiplication map
�H of H is given by�H D �jH�H : Since� is smooth andH � H a smooth submanifold of
G�G; the map�H W H �H ! G is smooth. SinceH is a subgroup,�H maps into the smooth
submanifoldH; hence is smooth as a mapH �H ! H: Likewise,�H D �GjH is smooth as a
mapH ! H: �

Example 2.6
(a) The unit circleT WD fz 2 C j jzj D 1g is a smooth submanifold as well as a subgroup of

the Lie groupC�: Therefore it is a Lie group.
(b) Theq-dimensional torusTq is a Lie group.

So far, all of our examples of Lie groups were commutative. Weshall formulate a result that
asserts that interesting connected Lie groups are not to be found among the commutative ones.
For this we need the concept of isomorphic Lie groups.

Definition 2.7 LetG andH be Lie groups.

(a) A Lie group homomorphismfrom G toH is a smooth map' W G ! H that is a homo-
morphism of groups.

(b) An Lie group isomorphismfrom G ontoH is a bijective Lie group homomorphism' W
G ! H whose inverse is also a Lie group homomorphism.

(c) An automorphismof G is an isomorphism ofG onto itself.

Remark 2.8 (a) If ' W G ! H is a Lie group isomorphism, then' is smooth and bijective and
its inverse is smooth as well. Hence,' is a diffeomorphism.

(b) The collection of Lie group automorphisms ofG; equipped with composition, forms a
group, denoted Aut.G/:
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We recall that a topological spaceX is said to beconnectedif ; andX are the only subsets
of X that are both open and closed. The spaceX is said to bearcwise connectedif for each pair
of pointsa; b 2 X there exists a continous curvec W Œ0; 1� ! X with initial point a and end
pointb; i.e.,c.0/ D a andc.1/ D b: If X is a manifold thenX is connected if and only ifX is
arcwise connected.

We can now formulate the promised results about connected commutative Lie groups.

Theorem 2.9 LetG be a connected commutative Lie group. Then there exist integersp; q � 0

such thatG is isomorphic toTp � Rq:

The proof of this theorem will be given at a later stage, when we have developed enough
technology. See Theorem 6.1.

A more interesting example is the following. In the sequel wewill often discuss new general
concepts in the context of this important particular example.

Example 2.10 Let n be a positive integer, and let M.n;R/ be the set of realn � n matrices.
Equipped with entry wise addition and scalar multiplication, M.n;R/ is a linear space, which in
an obvious way may be identified withRn

2

: ForA 2 M.n;R/ we denote byAij the entry ofA
in the i -th row and thej -th column. The maps�ij W A 7! Aij may be viewed as a system of
(linear) coordinate functions on M.n;R/:

In terms of these coordinate functions, the determinant function detW M.n;R/ ! R is given
by

detD
X

�2Sn

sgn.�/�1�.1/ � � � �n�.n/;

whereSn denotes the group of permutations off1; : : : ; ng; and where sgn denotes the sign of a
permutation. It follows from this formula that det is smooth.

The set GL.n;R/ of invertible matrices in M.n;R/; equipped with the multiplication of ma-
trices, is a group. As a set it is given by

GL.n;R/ D fA 2 M.n;R/ j detA ¤ 0g:

Thus, GL.n;R/ is the pre-image of the open subsetR� D R n f0g of R under det: As the latter
function is continuous, it follows that GL.n;R/ is an open subset of M.n;R/: As such, it may
be viewed as a smooth manifold of dimensionn2: In terms of the coordinate functions�ij ; the
multiplication map� W GL.n;R/ � GL.n;R/ ! GL.n;R/ is given by

�kl .�.A;B// D
nX

iD1

�ki .A/�il .B/:

It follows that� is smooth. GivenA 2 M.n;R/ we denote byAT the transpose ofA: Moreover,
for 1 � i; j � n we denote byMij .A/ the matrix obtained fromA by deleting thei -th row
andj -th column. The co-matrix ofA is defined byAcoij D .�1/iCjdetMij .A

T/: Clearly, the
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mapA 7! Aco is a polynomial, hence smooth map from M.n;R/ to itself. By Cramer’s rule the
inversion� W GL.n;R/ ! GL.n;R/; A ! A�1 is given by

�.A/ D .detA/�1Aco:

It follows that� is smooth, and we see that GL.n;R/ is a Lie group.

Example 2.11 Let V be a real linear space of finite dimensionn: Let v D .v1; : : : ; vn/ be
an ordered basis ofV: Then there is a unique linear isomorphismev from Rn ontoV; mapping
the j -th standard basis vectorej ontovj : If w is a second basis, thenL WD e�1

v ew is a linear
isomorphism ofRn onto itself, hence a diffeomorphism. It follows thatV has a unique structure
of smooth manifold such that the mapev is a diffeomorphism, for any choice of basisv:

We denote by End.V / the set of linear endomorphisms ofV; i.e., linear maps ofV into
itself. Equipped with pointwise addition and scalar multiplication, End.V / is a linear space. Let
v D .v1; : : : ; vn/ be an ordered basis ofV: GivenA 2 End.V /; we write mat.A/ D matv.A/
for the matrix ofA with respect tov: The entriesAij of this matrix are determined byAvj DPn
iD1Aijvi ; for all 1 � j � n: As in Example 2.10 we denote by M.n;R/ the set of all realn�n

matrices. Equipped with entry wise addition and scalar multiplication, M.n;R/ is a linear space.
Accordingly, mat is a linear isomorphism from End.V / onto M.n;R/: Via this map, composition
in End.V / corresponds with matrix multiplication in M.n;R/:More precisely,

mat.A ıB/ D mat.A/ mat.B/

for all A;B 2 End.V /:
We note that the matrix matv.A/ equals the matrix ofe�1

v ıA ı ev with respect to the standard
basis ofRn: Let noww D .w1; : : : ; wn/ be a second ordered basis ofV and letS be the matrix
of the linear endomorphismL D e�1

v ı ew 2 End.Rn/ with respect to the standard basis. Then
from e�1

v Aev D L ı e�1
w Aew ıL�1 it follows that

matv.A/ D S matw.A/ S
�1:

By conjugation invariance of determinant and trace, we find that

detmatv.A/ D detmatwA and trmatv.A/ D trmatwA

for all A 2 End.V /: It follows that determinant and trace are independent of thechoice of
basis. Hence, there exist unique maps det; tr W End.V / ! R such that detA D detmatA and
trA D trmatA for any choice of basis.

We denote by GL.V /; or also Aut.V /; the set of invertible elements of End.V /: Then GL.V /
is a group. Moreover, fix a basis ofV; then the associated matrix map matW End.V / ! M.n;R/
is a diffeomorphism, mapping GL.V / onto GL.n;R/: It follows that GL.V / is an open subset,
hence a submanifold of End.V /:Moreover, as mat restricts to a group isomorphism from GL.V /

onto GL.n;R/; it follows from the discussion in the previous example that GL.V / is a Lie group
and that mat is an isomorphism of Lie groups from GL.V / onto GL.n;R/:
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Remark 2.12 In the above example we have distinguished between linear maps and their ma-
trices with respect to a basis. In the particular situation thatV D Rn; we shall often use the map
mat D mate; defined relative to the standard basise of Rn to identify the linear space End.Rn/
with M.n;R/ and to identify the Lie group GL.Rn/ with GL.n;R/:

We shall now discuss an important criterion for a subgroup ofa Lie groupG to be a Lie
group. In particular this criterion will have useful applications forG D GL.V /: We start with a
result that illustrates the idea of homogeneity.

Let G be a Lie group. Ifx 2 G; then the left translationlx W G ! G; see Example 1.3, is
given byy 7! �.x; y/; hence smooth. The maplx is bijective with inverselx�1; which is also
smooth. Therefore,lx is a diffeomorphism fromG onto itself. Likewise, the right multiplication
map rx W y 7! yx is a diffeomorphism fromG onto itself. Thus, for every pair of points
a; b 2 G both lba�1 and ra�1b are diffeomorphisms ofG mappinga onto b: This allows us
to compare structures onG at different points. As a first application of this idea we have the
following.

Lemma 2.13 LetG be a Lie group andH a subgroup. Leth 2 H be a given point (in the
applicationsh D e will be most important). Then the following assertions are equivalent.

(a) H is a submanifold ofG at the pointhI
(b) H is a submanifold ofG:

Proof: Obviously, (b) implies (a). Assume (a). Letn be the dimension ofG and letm be the
dimension ofH at h: Thenm � n: Moreover, there exists an open neighborhoodU of h in
G and a diffeomorphism� of U onto an open subset ofRn such that�.h/ D 0 and such that
�.U \H/ D �.U /\ .Rm � f0g/: Let k 2 H: Puta D kh�1: Thenla is a diffeomorphism ofG
onto itself, mappingh ontok: We shall use this to show thatH is a submanifold of dimension
m at the pointk: Sincea 2 H; the mapla maps the subsetH bijectively onto itself. The set
Uk WD la.U / is an open neighborhood ofk in G: Moreover,�k D � ı l�1a is a diffeomorphism
of Uk onto the open subset�.U / of Rn: Finally,

�k.Uk \H/ D �k.laU \ laH/ D �k ı la.U \H/ D �.U \H/ D �.U / \ .Rm � f0g/:

This shows thatH is a submanifold of dimensionm at the pointk: Sincek was an arbitrary point
of H; assertion (b) follows. �

Example 2.14 Let V be a finite dimensional real linear space. We define thespecial linear
group

SL.V / WD fA 2 GL.V / j detA D 1g:
Note that det is a group homomorphism from GL.V / to R�: Moreover, SL.V / is the kernel of
det: In particular, SL.V / is a subgroup of GL.V /: We will show that SL.V / is a submanifold of
GL.V / of codimension1: By Lemma 2.13 it suffices to do this at the elementI D IV :
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SinceG WD GL.V / is an open subset of the linear space End.V / its tangent spaceTIG may
be identified with End.V /: The determinant function is smooth fromG to R hence its tangent
map is a linear map from End.V / to R: In Lemma 2.15 below we show that this tangent map is
the trace trW End.V / ! R; A 7! tr.A/: Clearly tr is a surjective linear map. This implies that det
is submersive atI: By thesubmersion theorem,it follows that SL.V / is a smooth codimension1
submanifold atI:

Lemma 2.15 The functiondet W GL.V / ! R� has tangent map atI given byTI det D tr W
End.V / ! R; A 7! trA:

Proof: PutG D GL.V /: In the discussion in Example 2.14 we saw thatTIG D End.V / and,
similarly,T1R� D R: ThusTIdet is a linear map End.V / ! R: LetH 2 End.V /: Then by the
chain rule,

TI .det/.H/ D d

dt

ˇ̌
ˇ̌
tD0

det.I C tH/:

Fix a basisv1; : : : ; vn of V:We denote the matrix coefficients of a mapA 2 End.V / with respect
to this basis byAij ; for 1 � i; j � n: Using the definition of the determinant, we obtain

det.I C tH/ D 1C t .H11 C � � � CHnn/C t2R.t;H/;

whereR is polynomial int and the matrix coefficientsHij : Differentiating this expression with
respect tot and substitutingt D 0 we obtain

TI .det/.H/ D H11 C � � � CHnn D trH:
�

We shall now formulate a result that allows us to give many examples of Lie groups. The
complete proof of this result will be given at a later stage. Of course we will make sure not to
use the result in the development of the theory until then.

Theorem 2.16 LetG be a Lie group and letH be a subgroup ofG: Then the following asser-
tions are equivalent.

(a) H is closed in the sense of topology.

(b) H is a submanifold.

Proof: For the moment we will only prove that (b) implies (a). Assume(b). Then there exists
an open neighborhoodU of e in G such thatU \ NH D U \ H: Let y 2 NH: Sincely is a
diffeomorphism fromG onto itself,yU is an open neighborhood ofy inG; henceyU \H ¤ ;:
Selecth 2 yU \ H: Theny�1h 2 U: On the other hand, fromy 2 NH; h 2 H it follows that
y�1h 2 NH: Hence,y�1h 2 U \ NH D U \H; and we see thaty 2 H:We conclude thatNH � H:

Therefore,H is closed. �
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By a closed subgroupof a Lie groupG we mean a subgroup that is closed in the sense of
topology.

Corollary 2.17 LetG be a Lie group. Then every closed subgroup ofG is a Lie group.

Proof: LetH be a closed subgroup ofG: ThenH is a smooth submanifold ofG, by Theorem
2.16. By Lemma 2.5 it follows thatH is a Lie group. �

Corollary 2.18 Let ' W G ! H be a homomorphism of Lie groups. Then the kernel of' is a
closed subgroup ofG: In particular, ker ' is a Lie group.

Proof: PutK D ker': ThenK is a subgroup ofG: Now ' is continuous andfeH g is a closed
subset ofH: Hence,K D '�1.feH g/ is a closed subset ofG: Now apply Corollary 2.17. �

Remark 2.19 We may apply the above corollary in Example 2.14 as follows. The map detW
GL.V / ! R� is a Lie group homomorphism. Therefore, its kernel SL.V / is a Lie group.

Example 2.20 Let nowV be a complex linear space of finite complex dimensionn: Then by
End.V / we denote the complex linear space of complex linear maps from V to itself, and by
GL.V / the group of invertible maps. The discussion of Examples 2.10 and 2.11 goes through
with everywhereR replaced byC: In particular, the determinant det is a complex polynomial map
End.V / ! C; hence continuous. SinceC� D C n f0g is open inC; the set GL.V / D det�1.C�/

is open in End.V /: As in Example 2.11 we now see that GL.V / is a Lie group.
The map detW GL.V / ! C� is a Lie group homomorphism. Hence, by Corollary 2.18 its

kernel, SL.V / WD fA 2 GL.V / j detA D 1g; is a Lie group.
Finally, let v D .v1; : : : ; vn/ be a basis ofV (over C). Then the associated matrix map

mat D matv is a complex linear isomorphism from End.V / onto the space M.n;C/ of complex
n � n matrices. It restricts to a Lie group isomorphism GL.V / ' GL.n;C/ and to a Lie group
isomorphism SL.V / ' SL.n;C/:

Another very useful application of Corollary 2.17 is the following. LetV be a finite dimen-
sional real linear space, and letˇ W V � V ! W be a bilinear map into a finite dimensional
real linear spaceW: For g 2 GL.V / we define the bilinear mapg � ˇ W V � V ! W by
g � ˇ.u; v/ D ˇ.g�1u; g�1v/: From g1 � .g2 � ˇ/ D .g1g2/ � ˇ one readily deduces that the
stabilizer ofˇ in GL.V /;

GL.V /ˇ D fg 2 GL.V / j g � ˇ D ˇg

is a subgroup of GL.V /: Similarly SL.V /ˇ WD SL.V / \ GL.V /ˇ is a subgroup.

Lemma 2.21 The groupsGL.V /ˇ andSL.V /ˇ are closed subgroups ofGL.V /: In particular,
they are Lie groups.
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Proof: DefineCu;v D fg 2 GL.V / j ˇ.g�1u; g�1v/ D ˇ.u; v/g; for u; v 2 V: Then GL.V /ˇ
is the intersection of the setsCu;v; for all u; v 2 V: Thus, to establish closedness of this group,
it suffices to show that each of the setsCu;v is closed in GL.V /: For this, we consider the func-
tion f W GL.V / ! W given byf .g/ D ˇ.g�1u; g�1v/: Thenf D ˇ ı .�; �/; hencef is
continuous. Sincefˇ.u; v/g is a closed subset ofW; it follows thatCu;v D f �1.fˇ.u; v/g/ is
closed in GL.V /: This establishes that GL.V /ˇ is a closed subgroup of GL.V /: By application
of Corollary 2.17 it follows that GL.V /ˇ is a Lie group.

Since SL.V / is a closed subgroup of GL.V / as well, it follows that SL.V /ˇ D SL.V / \
GL.V /ˇ is a closed subgroup, hence a Lie group. �

By application of the above to particular bilinear forms, weobtain interesting Lie groups.

Example 2.22 (a) TakeV D Rn andˇ the standard inner product onRn: Then GL.V /ˇ D
O.n/; theorthogonal group. Moreover, SL.V /ˇ D SO.n/; thespecial orthogonal group.

Example 2.23 Let n D p C q; with p; q positive integers and putV D Rn: Let ˇ be the
standard inner product of signature.p; q/; i.e.,

ˇ.x; y/ D
pX

iD1

xiyi �
nX

iDpC1

xiyi :

Then GL.V /ˇ D O.p; q/ and SL.V /ˇ D SO.p; q/: In particular, we see that theLorentz group
O.3; 1/ is a Lie group.

Example 2.24 Let V D R2n and letˇ be the standardsymplectic formgiven by

ˇ.x; y/ D
nX

iD1

xiynCi �
nX

iD1

xnCiyi :

Then GL.V /ˇ is thereal symplectic groupSp.n;R/:

Example 2.25 Let V be a finite dimensional complex linear space, equipped with acomplex
inner producť : This inner product is not a complex bilinear form, since it isskew linear in its
second component (this will always be our convention with complex inner products). However,
as a mapV � V ! C it is bilinear overRI in particular, it is continuous. As in the proof of
Lemma 2.21 we infer that the associatedunitary groupU.V / D GL.V /ˇ is a closed subgroup
of GL.V /; hence a Lie group. Likewise, thespecial unitary groupSU.V / WD U.V / \ SL.V / is
a Lie group.

Via the standard basis ofCn we identify End.Cn/ ' M.n;C/ and GL.Cn/ ' GL.n;C/; see
also Remark 2.12. We equipCn with the standard inner product given by

hz ; wi D
nX

iD1

zi Nwi .z; w 2 Cn/:

The associated unitary group U.Cn/ may be identified with the group U.n/ of unitaryn � n-
matrices. Similarly, SU.Cn/ corresponds with the special unitary matrix group SU.n/:

13



Remark 2.26 It is possible to immediately apply Lemma 2.21 in the above example, in order
to conclude thatU.n/ is closed. For this we observe that we may forget the complex structure of
V and view it as a real linear space. We writeV.R/ for V viewed as a linear space. Ifn D dimCV

and ifv1; : : : ; vn is a basis ofV; thenv1; iv1; : : : ; vn; ivn is a basis of the real linear spaceV.R/:
In particular we see that dimRV.R/ D 2n: Any complex linear mapT 2 End.V / may be viewed
as a real linear map fromV to itself, hence as an element of End.V.R//; which we denote by
T.R/: We note thatT 7! T.R/ is a real linear embedding of End.V / into End.V.R//: Accordingly
we may view End.V / as a real linear subspace of End.V.R//: Let J denote multiplication byi;
viewed as a real linear endomorphism ofV.R/: We leave it to the reader to verify that

End.V / D fA 2 End.V.R// j A ıJ D J ıAg:

Accordingly,
GL.V / D fa 2 GL.V.R// j a ıJ D J ıAg:

From this one readily deduces that GL.V / is a closed subgroup of GL.V.R//: In the situation
of Example 2.25,H WD GL.V.R//ˇ is a closed subgroup of GL.V.R//; by Lemma 2.21. Hence
U.V / D GL.V / \H is a closed subgroup as well.

We end this section with useful descriptions of the orthogonal, unitary and symplectic groups.

Example 2.27 For a matrixA 2 M.n;R/ we define its transposeAt 2 M.n;R/ by .At /ij D
Aj i : Let ˇ D h � ; � i be the standard inner product onRn: Then hAx ; yi D hx ; Atyi: Let
a 2 GL.n;R/: Then for allx; y 2 Rn;

a�1 � ˇ.x; y/ D hax ; ayi D hatax ; yi:

Since O.n/ D GL.n;R/ˇ ; we infer that

O.n/ D fa 2 GL.n;R/ j ata D I g:

Example 2.28 If A 2 M.n;C/ we denote its complex adjoint by.A�/ij D NAj i : Let h � ; � i be
the complex standard inner product onCn: ThenhAx ; yi D hx ; A�yi for all x; y 2 Cn: As in
the previous example we now deduce that

U.n/ D fa 2 GL.n;C/ j a�a D I g:

Example 2.29 Let ˇ be the standard symplectic form onR2n; see Example 2.24. LetJ 2
M.2n;R/ be defined by

J D
�

0 I

�I 0

�
;

where the indicated blocks are of sizen � n:
Let h � ; � i denote the standard inner product onR2n: Then for allx; y 2 R2n; we have

ˇ.x; y/ D hx ; Jyi: Let a 2 GL.n;R/; then

a�1 � ˇ.x; y/ D hax ; Jayi D hx ; atJayi:
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From this we see that Sp.n;R/ D GL.2n;R/ˇ consists of alla 2 GL.2n;R/ with atJa D J;

or, equivalently, with
.at /�1 D JaJ�1 (1)

This description motivates the following definition. The map A 7! At uniquely extends to
a complex linear endomorphism of M.2n;C/: This extension is given by the usual formula
.At/ij D Aj i : We now define Sp.n;C/ to be the collection ofa 2 GL.2n;C/ satisfying condi-
tion (1). One readily verifies that Sp.n;C/ is a closed subgroup of GL.2n;C/ hence a Lie group.
We call it thecomplex symplectic group.

Note that GL.2n;R/ is a closed subgroup of GL.2n;C/ and that Sp.n;R/ D GL.2n;R/ \
Sp.n;C/:

Finally, we define thecompact symplectic groupby

Sp.n/ WD U.2n/ \ Sp.n;C/:

Clearly, this is a closed subgroup of GL.2n;C/; hence a Lie group.

Remark 2.30 In this section we have frequently used the following principle. If G is a Lie
group, and ifH;K � G are closed subgroups, thenH \ K is a closed subgroup, hence a Lie
group.

3 Invariant vector fields and the exponential map

If M is a manifold, we denote byV.M/ the real linear space of smoothvector fieldsonM: A
vector fieldv 2 V.G/ is calledleft invariant, if .lx/�v D v for all x 2 G; or, equivalently if

v.xy/ D Ty.lx/ v.y/ .x; y 2 G/: (2)

The collection of smooth left invariant vector fields is a linear subspace ofV.G/; which we
denote byVL.G/: From the above equation withy D e we see that a left invariant vector field
is completely determined by its valuev.e/ 2 TeG at e: Differently said,v 7! v.e/ defines an
injective linear map fromVL.G/ into TeG: The next result asserts that this map is surjective as
well. If X 2 TeG; we define the vector fieldvX onG by

vX.x/ D Te.lx/X; .x 2 G/: (3)

Lemma 3.1 The mapX 7! vX defines a linear isomorphism fromTeG ontoVL.G/: Its inverse
is given byv 7! v.e/:

Proof: From the fact that.x; y/ 7! lx.y/ is a smooth mapG � G ! G; it follows by differen-
tiation with respect toy at y D e in the direction ofX 2 TeG thatx 7! Te.lx/X is smooth as
a mapG ! TG: This implies thatvX is a smooth vector field onG: HenceX 7! vX defines a
real linear mapTeG ! V.G/: We claim that it maps intoVL.G/:

Fix X 2 TeG: Differentiating the relationlxy D lx ı ly and applying the chain rule we see
thatTe.lxy/ D Ty.lx/Te.ly/: Applying this to the definition ofvX we see thatvX satisfies (2),
hence is left invariant. This establishes the claim.

FromvX.e/ D X we see that the map� W v 7! v.e/ fromVL.G/ toTeG is not only injective,
but also surjective. Thus,� is a linear isomorphism, with inverseX 7! vX : �
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If X 2 TeG; we definę X to be themaximal integral curveof vX with initial point e:

Lemma 3.2 Let X 2 TeG: Then the integral curvę X has domainR: Moreover, we have
˛X.s C t / D ˛X.s/˛X.t/ for all s; t 2 R: Finally the map.t; X/ 7! ˛X.t/; R � TeG ! G is
smooth.

Proof: Let ˛ be any integral curve forvX ; let y 2 G; and put̨ 1.t/ D y˛.t/: Differentiating
this relation with respect tot we obtain:

d

dt
˛1.t/ D T˛.t/ly

d

dt
˛.t/ D T˛.t/lyvX.˛.t// D vX.˛1.t//;

by left invariance ofvX : Hence˛1 is an integral curve forvX as well.
Let nowI be the domain of̨ X ; fix t1 2 I; and putx1 D ˛X.t1/: Then˛1.t/ WD x1˛X.t/

is an integral curve forvX with starting pointx1 and domainI: On the other hand, the maximal
integral curve forvX with starting pointx1 is given by˛2 W t 7! ˛X .tC t1/: It has domainI � t1:
We infer thatI � I � t1: It follows thats C t1 2 I for all s; t1 2 I: Hence,I D R:

Fix s 2 R; then by what we saw abovec W t 7! ˛X.s/˛X.t/ is the maximal integral curve for
vX with initial pont˛X.s/: On the other hand, the same holds ford W t 7! ˛X .s C t /: Hence, by
uniqueness of the maximal integral curve,c D d:

The final assertion is a consequence of the fact that the vector fieldvX depends linearly, hence
smoothly on the parameterX: Let 'X denote the flow ofvX : Then it is a well known (local)
result that the map.X; t; x/ 7! 'X.t; x/ is smooth. In particular,.t; X/ 7! ˛X.t/ D 'X.t; e/ is
a smooth mapR � TeG ! G: �

Definition 3.3 LetG be a Lie group. Theexponential mapexpD expG W TeG ! G is defined
by

exp.X/ D ˛X.1/

where˛X is defined as above; i.e.,̨X is the maximal integral curve with initial pointe of the
left invariant vector fieldvX onG determined byvX.e/ D X:

Example 3.4 We return to the example of the group GL.V /; with V a finite dimensional real
linear space. Its neutral elemente equalsI D IV : Since GL.V / is open in End.V /; we have
TeGL.V / D End.V /: If x 2 GL.V /; then lx is the restriction of the linear mapLx W A 7!
xA; End.V / ! End.V /; to GL.V /; henceTe.lx/ D Lx; and we see that forX 2 End.V /
the invariant vectorfieldvX is given byvX.x/ D xX: Hence, the integral curvęX satisfies the
equation:

d

dt
˛.t/ D ˛.t/X:

Since t 7! etX is a solution to this equation with the same initial value, wemust have that
˛X.t/ D etX : Thus in this case exp is the ordinary exponential mapX 7! eX ; End.V / !
GL.V /:
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Remark 3.5 In the above example we have used the exponentialeA of an endomorphismA 2
End.V /: One way to define this exponential is precisely by the method of differential equations
just described. Another way is to introduce it by its power series

eA D
1X

nD0

1

nŠ
An:

From the theory of power series it follows thatA ! eA is a smooth map End.V / ! End.V /:
Moreover,

d

dt
etA D AetA D etAA;

by termwise differentiation of power series. By multiplication of power series we obtain

eXeY D eXCY if X; Y 2 End.V / commute, i.e., XY D YX: (4)

Applying this withX D sA andY D tA; we obtaine.sCt /A D esAetA; for all A 2 End.V / and
s; t 2 R: This formula will be established in general in Lemma 3.6 (b) below.

Lemma 3.6 For all s; t 2 R; X 2 TeG we have

(a) exp.sX/ D ˛X.s/:

(b) exp.s C t /X D expsX exptX:

Moreover, the mapexp W TeG ! G is smooth and a local diffeomorphism at0: Its tangent map
at the origin is given byT0 expD ITeG:

Proof: Consider the curvec.t/ D ˛X.st/: Thenc.0/ D e; and

d

dt
c.t/ D s P̨X.st/ D s vX.˛X.st// D vsX.c.t//:

Hencec is the maximal integral curve ofvsX with initial point e; and we conclude thatc.t/ D
˛sX.t/: Now evaluate att D 1 to obtain the equality.

Formula (b) is an immediate consequence of (a) and Lemma 3.2.Finally, from Lemma 3.2
we have that.t; X/ 7! ˛X.t/ is a smooth mapR � TeG ! G: Substitutingt D 1 we obtain
smoothness of exp: Moreover,

T0.exp/X D d

dt
exp.tX/jtD0 D P̨X.0/ D vX.e/ D X:

HenceT0.exp/ D ITeX ; and from theinverse function theoremit follows that exp is a local
diffeomorphism at0; i.e., there exists an open neighborhoodU of 0 in TeG such that exp maps
U diffeomorphically onto an open neighborhood ofe in G: �
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Definition 3.7 A smooth group homomorphism̨ W .R;C/ ! G is called aone-parameter
subgroupof G:

Lemma 3.8 If X 2 TeG; then t 7! exptX is a one-parameter subgroup ofG: Moreover, all
one-parameter subgroups are obtained in this way. More precisely, let˛ be a one-parameter
subgroup inG; and putX D P̨ .0/: Then˛.t/ D exp.tX/ .t 2 R/:

Proof: The first assertion follows from Lemma 3.2. Let˛ W R ! G be a one-parameter
subgroup. Then̨ .0/ D e; and

d

dt
˛.t/ D d

ds
˛.t C s/jsD0 D d

ds
˛.t/˛.s/jsD0 D Te.l˛.t// P̨ .0/ D vX.˛.t//;

hence˛ is an integral curve forvX with initial point e: Hence˛ D ˛X by the uniqueness of
integral curves. Now apply Lemma 3.6. �

We now come to a very important application.

Lemma 3.9 Let ' W G ! H be a homomorphism of Lie groups. Then the following diagram
commutes:

G
'�! H

expG " " expH

TeG
Te'�! TeH

Proof: LetX 2 TeG: Then˛.t/ D '.expG.tX// is a one-parameter subgroup ofH: Differen-
tiating att D 0 we obtain P̨ .0/ D Te.'/T0.expG/X D Te.'/X: Now apply the above lemma to
conclude that̨ .t/ D expH .tTe.'/X/: The result follows by specializing tot D 1: �

4 The Lie algebra of a Lie group

In this section we assume thatG is a Lie group. Ifx 2 G then the translation mapslx W y 7! xy

andrx W y 7! yx are diffeomorphisms fromG onto itself. Therefore, so is the conjugation map
Cx D lx ı r�1

x W y 7! xyx�1: The latter map fixes the neutral elementeI therefore, its tangent
map ate is a linear automorphism ofTeG: Thus,TeCx 2 GL.TeG/:

Definition 4.1 If x 2 G we define Ad.x/ 2 GL.TeG/ by Ad.x/ WD TeCx: The map AdW G !
GL.TeG/ is called theadjoint representationof G in TeG:

Example 4.2 We return to the example of GL.V /; with V a finite dimensional real linear
space. Since GL.V / is an open subset of the linear space End.V / we may identify its tan-
gent space atI with End.V /: If x 2 GL.V /; then Cx is the restriction of the linear map
Cx W A 7! xAx�1; End.V / ! End.V /: Hence Ad.x/ D Te.Cx/ D Cx is conjugation by
x:
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The above example suggests that Ad.x/ should be looked at as an action ofx on TeG by
conjugation. The following result is consistent with this point of view.

Lemma 4.3 Letx 2 G; then for everyX 2 TeG we have

x expX x�1 D exp.Ad.x/X/:

Proof: We note thatCx W G ! G is a Lie group homomorphism. Hence we may apply
Lemma 3.9 withH D G and' D Cx: SinceTeCx D Ad.x/; we see that the following diagram
commutes:

G
Cx�! G

exp " " exp

TeG
Ad.x/�! TeG

The result follows. �

Lemma 4.4 The mapAd W G ! GL.TeG/ is a Lie group homomorphism.

Proof: From the fact that.x; y/ 7! xyx�1 is a smooth mapG �G ! G it follows by differen-
tiation with respect toy aty D e thatx 7! Ad.x/ is a smooth map fromG to End.TeG/: Since
GL.V / is open in End.TeG/ it follows that Ad W G ! GL.TeG/ is smooth.

FromCe D IG it follows that Ad.e/ D ITeG : Moreover, differentiating the relationCxy D
CxCy ate; we find, by application of the chain rule, that Ad.xy/ D Ad.x/Ad.y/ for all x; y 2 G:
�

Since Ad.e/ D I D ITeG andTIGL.TeG/ D End.TeG/; we see that the tangent map of Ad
at e is a linear mapTeG ! End.TeG/:

Definition 4.5 The linear map adW TeG ! End.TeG/ is defined by

ad WD TeAd:

We note that, by the chain rule, for allX 2 TeG;

ad.X/ D d

dt

ˇ̌
ˇ̌
tD0

Ad.exptX/:

Lemma 4.6 For all X 2 TeG we have:

Ad.expX/ D e adX :

Proof: In view of Lemma 4.4, we may apply Lemma 3.9 withH D GL.TeG/ and' D Ad:
SinceTeH D TIGL.TeG/ D End.TeG/; whereas expH is given byX 7! eX ; we see that the
following diagram commutes:

G
Ad�! GL.TeG/

exp " " e. � /

TeG
ad�! End.TeG/

The result follows. �
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Example 4.7 Let V be finite dimensional real linear space. Then forx 2 GL.V / the linear
map Ad.x/ W End.V / ! End.V / is given by Ad.x/Y D xYx�1: Substitutingx D etX and
differentiating the resulting expression with respect tot at t D 0 we obtain:

. adX/Y D d

dt
ŒetXYe�tX �tD0 D XY � YX:

Hence in this case. adX/Y is the commutator bracket ofX andY .

Motivated by the above example we introduce the following notation.

Definition 4.8 ForX; Y 2 TeG we define the Lie bracketŒX; Y � 2 TeG by

ŒX; Y � WD . adX/Y

Lemma 4.9 The map.X; Y / 7! ŒX; Y � is bilinear TeG � TeG ! TeG: Moreover, it isanti-
symmetric, i.e.,

ŒX; Y � D �ŒY; X� .X; Y 2 TeG/:
Proof: The bilinearity is an immediate consequence of the fact thatad W TeG ! End.TeG/ is
linear. LetZ 2 TeG: Then for alls; t 2 R we have

exp.tZ/ D exp.sZ/ exp.tZ/ exp.�sZ/ D exp.tAd.exp.sZ//Z/;

by Lemmas 3.6 and 4.3. Differentiating this relation with respect tot at t D 0 we obtain:

Z D Ad.exp.sZ//Z .s 2 R/:

Differentiating this with respect tos at s D 0 we obtain:

0 D ad.Z/T0.exp/Z D ad.Z/Z D ŒZ;Z�:

Now substituteZ D X C Y and use the bilinarity to arrive at the desired conclusion. �

Lemma 4.10 Let' W G ! H be a homomorphism of Lie groups. Then

Te'.ŒX; Y �G/ D ŒTe'X; Te'Y �H ; .X; Y 2 TeG/: (5)

Proof: One readily verifies that' ı CGx D CH
'.x/

ı': Taking the tangent map of both sides of this
equation ate; we obtain that the following diagram commutes:

TeG
Te'�! TeH

AdG.x/ " " AdH .'.x//

TeG
Te'�! TeH

Differentiating once more atx D e; in the direction ofX 2 TeG;we obtain that the following
diagram commutes:

TeG
Te'�! TeH

adG.X/ " " adH .Te'X/

TeG
Te'�! TeH

We now agree to writeŒX; Y � D ad.X/Y: Then by applyingTe' ı adGX to Y 2 TeG the
commutativity of the above diagram yields (5). �
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Corollary 4.11 For all X; Y;Z 2 TeG;
ŒŒX; Y �; Z� D ŒX; ŒY; Z�� � ŒY; ŒX;Z��: (6)

Proof: Put' D Ad andH D GL.TeG/: TheneH D I andTIH D End.TeG/: Moreover,
ŒA; B�H D AB �BA for all A;B 2 End.TeG/: Applying Lemma 4.10 and using thatŒ � ; � �G D
Œ � ; � � andTe' D ad; we obtain

ad.ŒX; Y �/ D Œ adX; adY �H D adX adY � adY adX:

Applying the latter relation toZ 2 TeG; we obtain (6). �

Definition 4.12 A real Lie algebrais a real linear spacea equipped with a bilinear mapŒ�; �� W
a � a ! a; such that for allX; Y;Z 2 a we have:

(a) ŒX; Y � D �ŒY; X� (anti-symmetry);

(b) ŒX; ŒY; Z��C ŒY; ŒZ;X��C ŒZ; ŒX; Y �� D 0 (Jacobi identity).

Remark 4.13 Note that condition (a) may be replaced by the equivalent condition (a’): ŒX;X� D
0 for all X 2 a: In view of the anti-symmetry (a), condition (b) may be replaced by the equiva-
lent condition (6). We leave it to the reader to check that another equivalent form of the Jacobi
identity is given by the Leibniz type rule

ŒX; ŒY; Z�� D ŒŒX; Y �; Z�C ŒY; ŒX;Z��: (7)

Corollary 4.14 LetG be a Lie group. ThenTeG equipped with the bilinear map.X; Y / 7!
ŒX; Y � WD . adX/Y is a Lie algebra.

Proof: The anti-linearity was established in Lemma 4.9. The Jacobiidentity follows from (6)
combined with the anti-linearity. �

Definition 4.15 Let a; b be Lie algebras. ALie algebra homomorphismfrom a to b is a linear
map' W a ! b such that

'.ŒX; Y �a/ D Œ'.X/; '.Y /�b;

for all X; Y 2 a:

From now on we will adopt the convention that Roman capitals denote Lie groups. The
corresponding Gothic lower case letters will denote the associated Lie algebras. If' W G ! H

is a Lie group homomorphism then the associated tangent mapTe' will be denoted by'�: We
now have the following.

Lemma 4.16 Let ' W G ! H be a homomorphism of Lie groups. Then the associated tan-
gent map'� W g ! h is a homomorphism of Lie algebras. Moreover, the following diagram
commutes:

G
'�! H

expG " " expH

g
'��! h

Proof: The first assertion follows from Lemma 4.10, the second from Lemma 3.9. �
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Example 4.17 We consider the Lie groupG D Rn: Its Lie algebrag D T0R
n may be identified

with Rn: From the fact thatG is commutative, it follows thatCx D IG ; for all x 2 G: Hence,
Ad.x/ D Ig; for all x 2 G: It follows that ad.X/ D 0 for all X 2 g: HenceŒX; Y � D 0 for all
X; Y 2 g:

LetX 2 g ' Rn: Then the associated one-parameter subgroup˛X is given by˛X.t/ D tX:

Hence exp.X/ D X; for all X 2 g:

We consider the Lie group homomorphism' D .'1; : : : ; 'n/ W Rn ! Tn given by'j .x/ D
e2�ixj : One readily verifies that' is a local diffeomorphism. Its kernel equalsZn: Hence, by
the isomorphism theorem for groups, the map' factors through an isomorphism of groupsN' W
Rn=Zn ! Tn: Via this isomorphism we transfer the manifold structure ofTn to a manifold
structure onRn=Zn: Thus,Rn=Zn becomes a Lie group, andN' an isomorphism of Lie groups.
Note that the manifold structure onH WD Rn=Zn is the unique manifold structure for which the
canonical projection� W Rn ! Rn=Zn is a local diffeomorphism. The projection� is a Lie
group homomorphism. The associated homomorphism of Lie algebras�� W g ! h is bijective,
since� is a local diffeomorphism. Hence,�� is an isomorphism of Lie algebras. We adopt
the convention to identifyh with g ' Rn via ��: It then follows from Lemma 4.16 that the
exponential map expH W Rn ! H D Rn=Zn is given by expH .X/ D �.X/ D X C Zn:

5 Commuting elements

In the following we assume thatG is a Lie group with Lie algebrag: Two elementsX; Y 2 g are
said tocommuteif ŒX; Y � D 0: The Lie algebrag is calledcommutativeif every pair of elements
X; Y 2 g commutes.

Example 5.1 If G D GL.V /; with V a finite dimensional real or complex linear space, then
g D End.V /: In this case the Lie bracket of two elementsA;B 2 End.V / equals the commutator
bracketŒA; B� D AB �BA: Hence, the assertion thatA andB commute means thatAB D BA;

as we are used to. In this case we know that the associated exponentialseA andeB commute as
linear maps, hence as elements ofGI moreover,eAeB D eACB : The following lemma generalizes
this fact to arbitrary Lie algebras.

Lemma 5.2 LetX; Y 2 g be commuting elements. Then the elementsexpX andexpY of G
commute. Moreover,

exp.X C Y / D expX expY:

Proof: We will first show thatx D expX andy D expY commute. For this we observe that, by
Lemma 4.3,xyx�1 D exp.Ad.x/Y /: Now Ad.x/Y D e adXY; by Lemma 4.6. Since ad.X/Y D
ŒX; Y � D 0; it follows that ad.X/nY D 0 for all n � 1: Hence, Ad.x/Y D e adXY D Y:

Therefore,xyx�1 D y and we see thatx andy commute.
For everys; t 2 R we have thatŒsX; tY � D st ŒX; Y � D 0:Hence by the first part of this proof

the elements exp.sX/ and exp.tY / commute for alls; t 2 R: Define the map̨ W R ! G by

˛.t/ D exp.tX/ exp.tY / .t 2 R/:
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Then˛.0/ D e: Moreover, fors; t 2 R we have

˛.s C t / D exp.s C t /X exp.s C t /Y

D expsX exptX expsY exptY

D expsX expsY exptX exptY D ˛.s/˛.t/:

It follows that˛ is a one-parameter subgroup ofG: Hence˛ D ˛Z with Z D ˛0.0/; by Lemma
3.8. Now, by Lemma 5.3 below,

˛0.0/ D
�
d

dt

�

tD0

exp.tX/ exp.0/C
�
d

dt

�

tD0

exp.0/ exp.tY / D X C Y:

From this it follows that̨ .t/ D ˛Z.t/ D exp.tZ/ D exp.t.X C Y //; for t 2 R: The desired
equality follows by substitutingt D 1: �

The following lemma gives a form of the chain rule for differentiation that has been used in
the above, and will often be useful to us.

Lemma 5.3 LetM be a smooth manifold,U a neighborhood of.0; 0/ in R2 and' W U ! M

a map that is differentiable at.0; 0/: Then
�
d

dt

�

tD0

'.t; t/ D
�
d

dt

�

tD0

'.t; 0/C
�
d

dt

�

tD0

'.0; t/:

Proof: LetD1'.0; 0/ denote the tangent map ofs 7! '.s; 0/ at zero. Similarly, letD2'.0; 0/

denote the tangent map ofs 7! '.0; s/ at zero. Then the tangentT.0;0/' W R2 ! T'.0;0/M of '
at the origin is given byT.0;0/'.X; Y / D D1'.0; 0/X CD2'.0; 0/Y; for .X; Y / 2 R2:

Let d W R ! R2 be defined byd.t/ D .t; t/: Then the tangent map ofd at 0 is given by
T0d W R 7! R2; X 7! .X;X/: By application of the chain rule, it follows that

.d=dt/tD0 '.t; t/ D .d=dt/tD0 '.d.t// D T0.' ı d/ 1

D ŒT.0;0/' ı T0d� 1 D ŒT.0;0/'�.1; 1/

D D1'.0; 0/1CD2'.0; 0/1

D .d=dt/tD0 '.t; 0/C .d=dt/tD0 '.0; t/:

�

Definition 5.4 The subgroupGe generated by the elements expX; for X 2 g; is called the
component of the identityof G:

Remark 5.5 From this definition it follows that

Ge D fexp.X1/ � � � exp.Xk/ j k � 1; X1; : : : ; Xk 2 gg:

In general it is not true thatGe D exp.g/: Nevertheless, many properties ofg can be lifted to
analogous properties ofGe: As we will see in this section, this is in particular true for the property
of commutativity.

23



By anopen subgroupof a Lie groupG we mean a subgroupH of G that is an open subset
of G in the sense of topology.

Lemma 5.6 Ge is an open subgroup ofG:

Proof: Leta 2 Ge: Then there exists a positive integerk � 1 and elementsX1; : : : ; Xk 2 g such
thata D exp.X1/ : : :exp.Xk/: The map expW g ! G is a local diffeomorphism at0 hence there
exists an open neighborhood� of 0 in g such that exp is a diffeomorphism of� onto an open
subset ofG: Sincela is a diffeomorphism, it follows thatla.exp.�// is an open neighborhood of
a: We now observe thatla.exp.�// D fexp.X1/ : : :exp.Xk/ exp.X/ j X 2 �g � Ge: Hencea
is an interior point ofGe: It follows thatGe is open inG: �

Lemma 5.7 LetH be an open subgroup ofG: ThenH is closed as well.

Proof: For all x; y 2 G we havexH D yH or xH \ yH D ;: Hence there exists a subset
S � G such thatG is the disjoint union of the setssH; s 2 S: The complement ofH in G is the
disjoint union of the setssH with s 2 S; s … H: Being the union of open sets, this complement
is open. HenceH is closed. �

Lemma 5.8 Ge equals the connected component ofG containinge: In particular, G is con-
nected if and only ifGe D G:

Proof: The setGe is open and closed inG; hence a (disjoint) union of connected compo-
nents. On the other handGe is arcwise connected. For leta 2 Ge; then we may write
a D exp.X1/ : : :exp.Xk/ with k � 1 andX1; : : : ; Xk 2 g: It follows thatc W Œ0; 1� ! G; t 7!
exp.tX1/ : : :exp.tXk/ is a continuous curve with initial pointc.0/ D e and end pointc.1/ D a:

This establishes thatGe is arcwise connected, hence connected. ThereforeGe is a connected
component; it obviously containse: �

Lemma 5.9 LetG be a Lie group,x 2 G: Then the following assertions are equivalent.

(a) x commutes withGeI
(b) Ad.x/ D I:

Proof: Assume (a). Then for everyY 2 g andt 2 R we have exp.tY / 2 Ge; hence

exp.tAd.x/Y / D x exptYx�1 D exptY

Differentiating this expression att D 0 we see that Ad.x/Y D Y: This holds for anyY 2 g;

hence (b).
For the converse implication, assume (b). IfY 2 g; then

x expYx�1 D exp Ad.x/Y D expY:

Hencex commutes with exp.g/: Since the latter set generates the subgroupGe; it follows thatx
commutes withGe: �
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Remark 5.10 Note that the point of the above proof is that one does not needexp W g ! G

to be surjective in order to derive properties of a connectedLie groupG from properties of its
Lie algebra. It is often enough thatG is generatedby expg: Another instance of this principle is
given by the following theorem.

Theorem 5.11 LetG be a Lie group. The following conditions are equivalent.

(a) The Lie algebrag is commutative.

(b) The groupGe is commutative.

In particular, ifG is connected theng is commutative if and only ifG is commutative.

Proof: Assume (a). ThenŒX; Y � D 0 for all X; Y 2 g: Hence expX and expY commute for
all X; Y 2 g and it follows thatGe is commutative.

Conversely, assume (b). Letx 2 Ge: Then it follows by the previous lemma that Ad.x/ D I:

In particular this holds forx D exp.tX/; with X 2 g and t 2 R: It follows that e ad.tX/ D
Ad.exp.tX// D I: Differentiating att D 0 we obtain ad.X/ D 0: HenceŒX; Y � D 0 for all
X; Y 2 g and (a) follows.

Finally, if G is connected, thenGe D G and the last assertion follows. �

6 Commutative Lie groups

From Example 4.17, we recall that the groupRp=Zp .p 2 N/ has a unique structure of manifold
which turns the natural projection� W Rp ! Rp=Zp into a local diffeomorphism. With this
structure of manifold, the groupRp=Zp is a commutative Lie group. It is isomorphic with the
p-dimensional torusTp:

In this section we will prove the following classification ofcommutative Lie groups.

Theorem 6.1 LetG be a commutative connected Lie group. Then there existp; q 2 N such that
G ' Tp � Rq:

Before we give the proof, we need to collect some results on discrete subgroups of a Lie group. A
subgroupH of a Lie group is called discrete if it is discrete as a topological space for the restric-
tion topology. Equivalently, this means that for everyh 2 H there exists an open neighborhood
U in G such thatU \H D fhg:

Proposition 6.2 LetG be a Lie group andH a subgroup. Then the following statements are
equivalent.

(a) There exists an open neighborhoodU of e such thatU \H D feg:
(b) The groupH is discrete.

(c) For every compact subsetC � G; the intersectionC \H is finite.

(d) The groupH is a closed Lie subgroup with Lie algebraf0g:
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Proof: ‘(a) ) (b)’: Let h 2 H: ThenUh D hU is an open neighborhood ofh in G: Moreover,
Uh \H D hU \H D h.U \ h�1H/ D h.U \H/ D fhg:

‘(b) ) (c)’: We first prove thatH is closed inG: Let U be an open neighborhood ofe in
G such thatU \ H D feg: Let g 2 G be a point in the closure ofH: Then it suffices to show
that g 2 H: There exists a sequencefhj g in H converging tog: It follows that hjC1h

�1
j !

gg�1 D e; asj ! 1: Hence forj sufficiently large we havehjC1h
�1
j 2 U \H D feg; hence

hj D hjC1: It follows that the sequencehj becomes stationary after a certain index; hence
hj D g for j sufficiently large and we conclude thatg 2 H:

It follows from the above that the setH \C is closed inC; hence compact. Forh 2 H \ C
we select an open subset ofUh of G such thatUh \ H D fhg: ThenfUh j h 2 H \ C g is an
open cover ofH \C which does not contain a proper subcover. By compactness ofH \C this
cover must therefore be finite, and we conclude thatH \ C is finite.

‘(c) ) (d)’ Let g 2 G be a point in the closure ofH: The pointg has a compact neighborhood
C: Nowg lies in the closure ofH \C I the latter set is finite, hence closed. Henceg 2 H \C �
H and we conclude that the closure ofH is contained inH: Therefore,H is closed.

It follows thatH is a closed Lie subgroup. Its Lie algebrah consists of theX 2 g with
exp.RX/ � H: Since expW g ! G is a local diffeomorphism at0, there exists an open neigh-
borhood� of 0 if g such that exp is injective on�: LetX 2 g n f0g: Then there exists an� > 0
such thatŒ��; ��X � �: The curvec W Œ��; �� ! G; t 7! exptX has compact image; this
image has a finite intersection withH: Henceft 2 Œ��; �� j exptX 2 H g is finite, and we see
thatX … h: It follows thath D f0g:

‘(d) ) (a)’ Assume (d). ThenH is a closed smooth submanifold ofX of dimension0: By
definition this implies that there exists an open neighborhoodU of e inG such thatU\H D feg:
Hence (a). �

Proof of Theorem 6.1: Assume thatG is a connected Lie group that is commutative. Then
its Lie algebrag is commutative, i.e.,ŒX; Y � D 0 for all X; Y 2 g: From this it follows that
expX expY D exp.X C Y / for all X; Y 2 g: Therefore, the map expW g ! G is a homomor-
phism of the Lie group.g;C; 0/ toG: It follows that exp.g/ is already a subgroup ofG; hence
equals the subgroupGe generated by it. SinceG is connected,Ge D G; and it follows that
exp has imageG; hence is a surjective Lie group homomorphism. Let� be the closed subgroup
ker.exp/ of g: By the isomorphism theorem for groups we haveG ' g=� as groups.

Since exp is a local diffeomorphism at0; there exists an open neighborhood� of 0 in g on
which exp is injective. In particular this implies that�\ � D f0g: By Proposition 6.2 it follows
that� is a discrete subgroup ofg: In view of Lemma 6.4 below there exists a collection1; : : : ; p
of linear independent elements ing such that� D Z1 ˚ � � � ˚ Zp: We may extend the above
set to a basis1; : : : ; n of gI heren D dimg D p C q for someq 2 N: Via the basis1; : : : ; n
we obtain a linear isomorphism' W g ! Rp � Rq: Let � D exp ı'�1; then� W Rn ! G is
a surjective Lie group homomorphism, and a local diffeomorphism everywhere. Moreover, its
kernel equals'.�/ D Zp�f0g: It follows that� factors through a bijective group homomorphism
N� W .R=Z/p � Rq ' Rn=.Zp � f0g/ ! G: The canonical map� W Rn ! .R=Z/p � Rq is a
local diffeomorphism. Moreover,� D N� ı� is a local diffeomorphism as well. HenceN� is a local
diffeomorphism. SinceN� is a bijective as well, we conclude thatN� is a diffeomorphism, hence an

26



isomorphism of Lie groups. �

Lemma 6.3 Let' W G ! H be a homomorphism of Lie groups. If' is a local diffeomorphism
at e; then' is a local diffeomorphism at every point ofG:

Proof: We prove this by homogeneity. Leta 2 G: Then from'.ax/ D '.a/'.x/ we see that
' ı l˛ D l'.a/ ı'; hence' D l'.a/ ı' ı l�1a : Now la and l'.a/ are diffeomorphisms. Sincel�1a
mapsa to e; whereas' is a local diffeomorphism ate it follows that l'.a/ ı' ı l�1a is a local
diffeomorphism ataI hence' is a local diffeomorphism ata: �

Lemma 6.4 Let V be a finite dimensional real linear space. Let� be a discrete subgroup
of V: Then there exists a collection of linearly independent elements1; : : : ; p of V such that
� D Z1 ˚ � � � ˚ Zp:

Proof: We prove the lemma by induction on the dimension ofV:

First assume that dimV D 1: Via a choice of basis we may identifyV withRI then� becomes
a discrete subgroup ofR: Suppose� ¤ f0g: Then there exists an elementa 2 � n f0g: Passing
to �a is necessary, we may assume thata > 0: Now � \ Œ0; a� is finite (cf. Prop. 6.2), hence
contains a smallest element: We note that�\ � 0; 1 Œ  D ;: Now � � Z: On the other hand,
if g 2 �; theng … Z would imply thatg 2 � m;m C 1 Œ  for a suitablem 2 Z: This would
imply thatg � m 2 �\ � 0; 1 Œ  D ;; contradiction. It follows that� � Z: Hence� D Z:

This completes the proof of the result for dimV D 1:

Now assume that dimV > 1 and that the result has been established for spaces of strictly
smaller dimension. If� D f0g we may takep D 0 and we are done. Thus, assume that
 2 � n f0g: Then the intersection ofR with � is discrete inR and non-trivial, hence of the
formZ1 by the first part of the proof. Select a linear subspaceW of V such thatR1˚W D V:

Let � denote the corresponding projectionV ! W: LetC be a compact subset ofW: Then

��1.C / D R1 C C D .Œ0; 1�1 C C/C Z1:

From this it follows that

C \ �.�/ � �.��1.C / \ �/ D �..C C Œ0; 1�1/ \ � C Z1/

D �..C C Œ0; 1�1/ \ �/I

the latter set is finite by compactness ofC C Œ0; 1�1: Thus we see that�.�/ \ C is finite for
every compact subset ofW: By Prop. 6.2 this implies that�.�/ is a discrete subgroup ofW: By
the induction hypothesis there exist linearly independentelementsN2; : : : ; Np of �.�/ such that
�.�/ D Z N2 ˚ � � �Z Np: Fix 2; : : : ; p 2 � such that�.j / D Nj : Then the elements1; : : : ; p
are readily seen to be linear independent; moreover,� D Z1 ˚ � � � ˚ Zp: �
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7 Lie subgroups

Definition 7.1 A Lie subgroupof a Lie groupG is a subgroupH; equipped with the structure
of a Lie group, such that the inclusion map� W H ! G is a Lie group homomorphism.

The above definition allows examples of Lie subgroups that are not submanifolds. This is
already so if we restrict ourselves to one-parameter subgroups.

Lemma 7.2 LetG be a Lie group, and letX 2 g: The image of the one-parameter subgroup
˛X is a Lie subgroup ofG:

Proof: The result is trivial forX D 0: Thus, assume thatX ¤ 0: The map̨ X W R ! G is a Lie
group homorphism. Its imageH is a subgroup ofG:

Assume first that̨ X is injective. ThenH has a unique structure of smooth manifold for
which the bijection̨ X W R ! H is a diffeomorphism. Clearly, this structure turnsH into a Lie
group and the inclusion mapi W H ! G is a Lie group homomorphism.

Next, assume that̨X is not injective. As̨ 0
X.0/ D X ¤ 0; the mapt 7! ˛X.t/ D exptX is

injective on a suitable open intervalI containing0: It follows that ker̨ X is a discrete subgroup
of R: Hence ker̨ X D Z for some 2 R: This implies that there exists a unique group
homomorphismN̨ W R=Z ! R such that̨ X D N̨ ı pr: Since pr is a local diffeomorphism, the
map N̨ is smooth, hence a Lie group homomorphism. Therefore,H D im N̨ is compact. By
homogeneity,N̨ is an injective immersion. This implies thatN̨ is an embedding ofR=Z onto a
smooth submanifold ofG: We conclude thatH D im N̨ is a smooth submanifold ofG; hence a
Lie subgroup. �

We will give an example of a one-parameter subgroup ofT2 whose image is everywhere
dense. The following lemma is needed as a preliminary.

Lemma 7.3 LetS be an infinite subgroup ofT: ThenS is everywhere dense.

Proof: If the subgroupS were discrete at1; it would be finite, by compactness ofT: It follows
that there exists a sequence�n in S n f1g such that�n ! 1:We consider the surjective Lie group
homomorphismp W R ! T given byp.t/ D e2�it : Sincep W R ! T is a local diffeomorphism
at0; there exists a sequencesn in R n f0g such thatp.sn/ D �n andsn ! 0:

Let � 2 T: Fix x 2 R with p.x/ D �: For eachn there exists a uniquekn 2 Z such that
x 2 Œknsn; .knC1/sn/: Thus,jknsn�xj < jsnj and it follows thatknsn ! x: Therefore, inT we
have�kn

n D p.knsn/ ! �: Since�kn
n 2 S for everyn; we conclude thatx belongs to the closure

of S: Hence,S is dense. �

Corollary 7.4 Let˛ W R ! T2 be an injective one-parameter subgroup ofT2: Then the image
of ˛ is dense inT2:
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Proof: LetH denote the image of̨: For j D 1; 2; let pj W T2 ! T denote the projection onto
thej -th component and consider the one-parameter subgroup˛j WD pj ı˛ W R ! T: Its kernel
�j is an additive subgroup ofR; hence either trivial or infinite. If̨ 0

j .0/ D 0 then�j D R:

If ˛0
j .0/ ¤ 0 then˛j is immersive at0; hence everywhere by homogeneity. It follows that the

image of˛j is an open subgroup ofT; hence equal toT; by connectedness of the latter group.
It follows that˛j is a local diffeomorphism fromR ontoT: On the other hand,̨j cannot be a
diffeomorphism, asT is compact andR is not. It follows that�j is not trivial, hence infinite.
Thus, in all cases�1 and�2 are infinite additive subgroups ofR:

As ˛ is injective, we observe that�1 \ �2 D ker˛ D f0g: Hence,̨ maps�2 injectively to
H \ .T � f1g/: Since�2 is infinite, it follows thatH \ .T � f1g/ must be infinite. By Lemma
7.3 it follows thatH \ .T � f1g/ is dense inT � f1g:

Likewise,H \ .f1g�T/ is dense inf1g�T: Let z D .s; t/ 2 T: Then there exists a sequence
xn in H \ .T � f1g/ with limit .s; 1/: Similarly, there exists a sequenceyn in H \ .f1g � T /

converging to.1; t/: It follows thatxnyn is a sequence inH with limit z: Hence,H is dense.�

We finally come to our example.

Example 7.5 We consider the groupG D R2=Z2: The canonical projection� W R2 ! R2=Z2 is
a homomorphism of Lie groups. We recall from Example 4.17 that � is a local diffeomorphism.
Accordingly, we use its tangent map�� to identifyR2 D T0R

2 with g: Let X 2 R2I then the
associated one-parameter subgroup˛ D ˛X in G is given by

˛.t/ D tX C Z2; .t 2 R/:

From Lemma 7.2 it follows that the imageH of ˛X is a Lie subgroup ofG: If X D 0; then˛X is
constant, and its image is the trivial group. We now assume thatX ¤ 0: If X1; X2 have a rational
ratio, andX1 ¤ 0; thenX2 D pX1=q;with p; q 2 Z; q > 0: HenceqX�1

1 X 2 Z2; and it follows
that˛X is not injective. In the proof of Lemma 7.2 we saw thatH is a compact submanifold of
G; diffeomorphic to the circle. A similar assertion holds in caseX1=X2 2 Q:

If X1; X2 have an irrational ratio, thentX … Z2 for all t 2 R; so that̨ X is injective. From
Corollary 7.4 it follows thatH is dense inG in this case.

Lemma 7.6 Let' W H ! G be an injective homomorphism of Lie groups. Then' is immersive
everywhere. In particular, the tangent map'� D Te' W h ! g is injective.

Proof: We will first establish the last assertion. There exists an open neighborhood� of 0 in h

such that expH maps� diffeomorphically onto an open neighborhood ofe in H: The following
diagram commutes:

H
'�! G

expH " " expG

h
'��! g

Since expH is injective on�; it follows that' ı expH is injective on�I hence so is expG ı'�:

It follows that'� is injective on�: Hence ker.'�/ \� D f0g: But ker.'�/ is a linear subspace
of hI it must be trivial, since its intersection with an open neighborhood of0 is a point.
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We have shown that' is immersive ate: We may complete the proof by homogeneity. Let
h 2 H be arbitrary. Thenl'.h/ ı' ı lh�1 D ': Hence, by taking tangent maps ath it follows that
Th' is injective. �

In the following we assume thatH is a Lie subgroup ofG: The inclusion map is denoted by
� W H ! G: As usual we denote the Lie algebras of these Lie groups byh andg; respectively.
The following result is an immediate consequence of the above lemma.

Corollary 7.6’ The tangent map�� WD Te� W h ! g is injective.

We recall that�� is a homomorphism of Lie algebras. Thus, via the embedding�� the Lie algebra
h may be identified with aLie subalgebraof g; i.e., a linear subspace that is closed under the Lie
bracket. We will make this identification from now on. Note that after this identification the map
�� of the above diagram becomes the inclusion map.

Lemma 7.7 As a subalgebra ofg; the Lie algebra ofH is given by:

h D fX 2 g j 8t 2 R W expG.tX/ 2 H g:

Proof: We denote the set on the right-hand side of the above equationby V:
Let X 2 h: Then expG.tX/ D �.expH tX/ by commutativity of the above diagram with

' D �: Hence, expG.tX/ 2 �.H/ D H for all t 2 R: This shows thath � V:

To prove the converse inclusion, letX 2 g; and assume thatX … h: We consider the map
' W R � h ! G defined by

'.t; Y / D exp.tX/ exp.Y /:

The tangent map of' at .0; 0/ is the linear mapT.0;0/' W R � h ! g given by

T.0;0/' W .�; Y / 7! �X C Y:

SinceX … h; its kernel is trivial. By the immersion theorem there existsa constant� > 0 and
an open neighbourhood� of 0 in h; such that' maps� � �; � Œ�� injectively intoG: Shrinking
� if necessary, we may in addition assume that expH maps� diffeomorphically onto an open
neighborhoodU of e in H:

The mapm W .x; y/ 7! x�1y; H � H ! H is continuous, and maps.e; e/ to e: SinceU
is an open neighborhood ofe in H; there exists an open neighborhoodU0 of e in H such that
m.U0 � U0/ � U; or, written differently,

U�1
0 U0 � U:

SinceH is a union of countably many compact sets, there exists a countable collectionfhj j j 2
Ng � H such that the open setshjU0 coverH: For everyj 2 N we define

Tj D ft 2 R j exptX 2 hjU0g:

Let now j 2 N be fixed for the moment, and assume thats; t 2 Tj ; js � t j < �: Then it
follows from the definition ofTj that expŒ.t � s/X� D exp.�sX/ exp.tX/ 2 U�1

0 U0 � U:
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Hence expŒ.t � s/X� D expY for a uniqueY 2 �; and we see that'.t � s; 0/ D '.0; Y /: By
injectivity of ' on � � �; � Œ�� it follows thatY D 0 ands D t: From the above we conclude
that different elementss; t 2 Tj satify js � t j � �: HenceTj is countable.

The union of countably many countable sets is countable. Hence the union of the setsTj is
properly contained inR and we see that there exists at 2 R such thatt … Tj for all j 2 N: This
implies that exptX … [j2NhjU0 D H: HenceX … V: Thus we see thatg n h � g n V and it
follows thatV � h: �

Example 7.8 Let V be a finite dimensional linear space (withk D R or C). In Example
2.14 we saw that SL.V / is a submanifold of GL.V /; hence a Lie subgroup. The Lie algebra of
GL.V / is equal togl.V / D End.V /; equipped with the commutator brackets. We recall from
Example 2.14 that detW GL.V / ! k is a submersion atI: Hence the tangent spacesl.V / of
SL.V / D det�1.1/ at I is equal to ker.TI det/ D ker tr: We conclude that the Lie algebra of
SL.V / is given by

sl.V / D fX 2 End.V / j trX D 0gI (8)

in particular, it is a subalgebra ofgl.V /: The validity of (8) may also be derived by using the
methods of this section, as follows.

If X 2 sl.V /; then by Lemma 7.7, exp.tX/ 2 SL.V / for all t 2 R; hence

trX D d

dt

ˇ̌
ˇ̌
tD0

det.etX/ D d

dt

ˇ̌
ˇ̌
tD0

1 D 0:

It follows thatsl.V / is contained in the set on the right-hand side of (8).
For the converse inclusion, letX 2 End.V /; and assume that trX D 0: Then for everyt 2 R

we have detetX D etr.tX/ D 1; hence exptX D etX 2 SL.V /: Using Lemma 7.7 we conclude
thatX 2 sl.V /:

Example 7.9 We consider the subgroup O.n/ of GL.n;R/ consisting of realn � n matricesx
with xtx D I: Being a closed subgroup, O.n/ is a Lie subgroup. We claim that its Lie algebra is
given by

o.n/ D fX 2 M.n;R/ j X t D �Xg; (9)

the space of anti-symmetricn�nmatrices. Indeed, letX 2 o.n/: Then by Lemma 7.7, expsX 2
O.n/; for all s 2 R: Hence,

I D .esX /tesX D esX
t

esX :

Differentiating with respect tos at s D 0 we obtainX t C X D 0; henceX belongs to the set on
the right-ghand side of (9).

For the converse inclusion, assume thatX 2 M.n;R/ andX t D �X: Then, for everys 2 R;

.esX/tesX D esX
t

esX D e�sXesX D I:

Hence expsX 2 O.n/ for all s 2 R; and it follows thatX 2 o.n/:

If X 2 o.n/ then its diagonal elements are zero. Hence trX D 0 and we conclude that
X 2 sl.n;R/: Therefore,o.n/ � sl.n;R/: It follows that exp.o.n// � SL.n;R/; hence O.n/e �
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SL.n;R/: We conclude that O.n/e � SO.n/ � O.n/: Since SO.n/ is connected, see exercises,
it follows that

O.n/e D SO.n/:

The determinant detW O.n/ ! R� has imagef�1; 1g and kernel SO.n/; hence induces a group
isomorphism O.n/=O.n/e ' f�1; 1g: It follows that O.n/ consists of two connected compo-
nents, O.n/e andxO.n/e; wherex is any orthogonal matrix with determinant�1: Of course,
one may takex to be the diagonal matrix with�1 in the bottom diagonal entry, and1 in the
remaining diagonal entries, i.e.,x is the reflection in the hyperplanexn D 0:

Lemma 7.10 Let G be a Lie group andH � G a subgroup. ThenH allows at most one
structure of Lie subgroup.

Proof: See exercises. �

We now come to a result that is the main motivation for allowing Lie subgroups that are not
closed.

Theorem 7.11 Let G be a Lie group with Lie algebrag: If h � g is a Lie subalgebra, then
the subgrouphexphi generated byexph has a unique structure of Lie subgroup. Moreover, the
maph 7! hexphi is a bijection from the collection of Lie subalgebras ofg onto the collection of
connected Lie subgroups ofG:

Proof: See next section. �

Remark 7.12 In the literature, the grouphexphi is usually called the analytic subgroup ofG
with Lie algebrah:

8 Proof of the analytic subgroup theorem

The proof of Theorem 7.11 will be based on the following result. Throughout this section we
assume thatG is a Lie group and thath is a subalgebra of its Lie algebrag:

Lemma 8.1 There exists an open neighborhood� of 0 in g such thatM D exp.h \ �/ is a
submanifold ofG with tangent space equal to

TmM D Te.lm/h; (10)

for everym 2 M: If � is any such neighborhood, then alsoTmM D Te.rm/h for all m 2 M:

In the literature one usually proves this result by using theFrobenius integrability theorem
for subbundles of the tangent bundle. We will first recall this proof, and then give an independent
proof based on a calculation of the derivative of the exponential map.
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Proof: We consider the subbundleS of TG given bySx D Te.lx/: Then for allX 2 h the
left invariant vector fieldvX is a section ofS: We note thatŒvX ; vY � D ˙vŒX;Y � (see one of the
exercises). Hence for allX; Y 2 h the Lie bracket ofvX andvY defines a section ofS as well.
Let nowX1; : : : ; Xk and putvj D vXj

:

Let now�; � be any pair of smooth sections ofS I then� D
Pk
iD1 �

ivi and� D
Pk
jD1 �

jvj

for uniquely defined smooth functions�i and�j onG: Since

Œ�; �� D
X

i;j

�i�j Œvi ; vj �C �ivi.�
j /vj C �jvj .�

i /vi ;

it follows that Œ�; �� is a section ofS: By the Frobenius integrability theorem it follows that the
bundleS is integrable. In particular, there exists ak-dimensional submanifoldN ofG containing
e; such thatTxN D Sx for all x 2 N:

ForX 2 h; the vector fieldvX is everywhere tangent toN; hence restricts to a smooth vector
field vNX onN: By smooth parameter dependence of this vector field onX there exists an open
neighborhoodU of 0 in h and a positive constantı > 0 such that for everyX 2 U the integral
curveX of vNX with initial point e is defined onIı WD� � ı; ı Œ: This integral curve is also an
integral curve forvX ; hence equals̨X W t 7! exptX on Iı : It follows that expıU � N: We
may now select an open neighborhood� of 0 in g such that exp is a diffeomorphism from�
onto an open subset ofG and such that� \ h is contained inıU: ThenM WD exp.� \ h/ is
a k-dimensional hence open submanifold ofN: It follows thatTxM D TxN D Te.lx/h for all
x 2 M:

For the last assertion, we note thatrm D rml
�1
m lm so thatrm D lmCm�1 andTe.rm/ D

Te.lm/Ad.m�1/; and it suffices to show that Ad.m�1/ leavesh invariant. Writem D expX with
X 2 � \ h: Then

Ad.m�1/ D Ad.exp.�X// D e� adX

and the result follows, since ad.X/ leaves the closed subspaceh invariant. �

We shall now give a different proof of Lemma 8.1. The following result plays a crucial role.

Lemma 8.2 LetX 2 g: Then

TX exp D Te.lexpX / ı

Z 1

0

e�s adX ds

D Te.rexpX/ ı

Z 1

0

es adX ds:

Proof: ForX; Y 2 g; we define

F.X; Y / D ŒTe.lexpX/�
�1

ıTX .exp/Y 2 g

and note that, by the chain rule,

F.X; Y / D TexpX.lexp.�X//TX .exp/Y D @

@t

ˇ̌
ˇ̌
tD0

exp.�X/ exp.X C tY /:
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From this it follows by interchanging partial derivatives,that

@

@s
F.sX; sY / D @

@t

ˇ̌
ˇ̌
tD0

@

@s
exp.�sX/ exp.sX C tsY /:

Now,

@

@s
exp.�sX/ exp.sX C tsY / D @

@�

ˇ̌
ˇ̌
�D0

exp.�.�s C �/X/ exp..s C �/.X C tY //

D @

@�

ˇ̌
ˇ̌
�D0

exp.�sX/ exp.��X/ exp.�.X C tY // exp.sX C tsY /

D Te.lexp.�sX/rexp.sXCstY //
@

@�

ˇ̌
ˇ̌
�D0

exp.��X/ exp.�X C �tY /

D Te.lexp.�sX/rexp.sXCstY //.tY /;

and we conclude that
@

@s
F.sX; sY / D @

@t

ˇ̌
ˇ̌
tD0

Te.lexp.�sX/rexp.sXCstY //.tY /

D @

@t

ˇ̌
ˇ̌
tD0

Te.lexp.�sX/rexp.sXCstY //.0/C @

@t

ˇ̌
ˇ̌
tD0

Te.lexp.�sX/rexp.sX//.tY /

D Ad.exp.�sX//Y D e�s adXY:

It follows that

F.X; Y / D
Z 1

0

@

@s
F.sX; sY / ds D

Z 1

0

e�s adXY ds;

whence the first identity. The second identity may be obtained in a similar manner. It can also be
derived from the first as follows. We haveTe.lexpX/ D Te.rexpX/ ı Ad.expX/; hence

Te.lexpX / ı

Z 1

0

e�s adX ds D Te.rexpX/ ı e adX

Z 1

0

e�s adX ds

D Te.rexpX/ ı

Z 1

0

e.1�s/ adX ds

D Te.rexpX/ ı

Z 1

0

es adX ds:

�

Remark 8.3 The integral in the above expression may be expressed as a power series as follows.
Let V be a finite dimensional linear space, andA 2 End.V /: Then using the power series
expansion foresA; we obtain

Z 1

0

es A ds D
1X

nD0

Z 1

0

1

nŠ
Ansn ds

D
1X

nD0

1

.nC 1/Š
An:
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For obvious reasons, the sum of the latter series is also denoted by.eA � I /=A:

Alternative proof of Lemma 8.1:Let � be an open neighborhood of0 in g such that expj� is
a diffeomorphism onto an open subset ofG: ThenM WD exp.h \ �/ is a smooth submanifold
of G of dimension dimM D dimh: For (10), we putm D expX; with X 2 h \�: Sinceh is a
subalgebra,.e� adX � I /= adX leavesh invariant. Hence

TmM D TX.exp/h D Te.lm/ ı

�
I � e� adX

adX

�
h � Te.lm/h:

Equality follows for dimensional reasons. The identity with Term is proved in a similar manner.
�

We shall now proceed with the proof of Theorem 7.11, startingwith the the result of Lemma
8.1, with� andM as given there.

Lemma 8.4 LetC be a compact subset ofM: Then there exists an open neighborhoodU of 0
in g such thatm exp.h \U/ is open inM for all m 2 C: In particular,C exp.h\U/ is an open
neighborhood ofC inM:

Proof: For everyX 2 h; we denote bŷ X W R � G ! G the flow of the left invariant
vectorfieldvX : We recall that̂ X .t; x/ D x exptX; for all X 2 h; t 2 R andx 2 G: For fixed
X 2 h; x 2 G; the mapt 7! ˆX .x; t/ is the maximal integral curve ofvX with initial point x:

Since the vector fieldvX is everywhere tangent toM; it follows thatvX jM is a vector field
onM: For everyX 2 h; andm 2 M; we denote byt 7! 'X.t; m/ the maximal integral curve of
vX jM inM; with initial pointm: By the theory of systems of ordinary differential equationswith
parameter dependence, it follows that.X; t; m/ 7! 'X.t; m/ is smooth on its domain, which is
an open subsetD � h�R�M containingh�f0g�M: Clearly,t 7! 'X.t; m/ is also an integral
curve ofvX inG with initial pointm: Therefore,'X.t; m/ D ˆX.t; m/ for all .X; t; m/ 2 D:We
conclude that̂ X.t; m/ 2 M for all .X; t; m/ 2 D: Using that̂ sX.t; m/ D ˆX.st; m/ and that
C is compact, we now readily deduce that there exists an open neighborhoodU0 of 0 in h such
thatm exp.tX/ D ˆX .t; m/ 2 M; for all X 2 U0; t 2 Œ0; 1� andm 2 C: We may now select an
open neighborhoodU of 0 in g such that expjU is a diffeomorphism. Moreover, replacingU by a
smaller subset if necessary, we may in addition assume thath\U � U0: Then, for everym 2 C;
the mapX 7! m expX is an injective immersion ofh \ U intoM: Since dimM D dimh; the
map is a diffeomorphism onto an open subset ofM: The final assertion follows asC exp.h\U/
is the union of the open setsm exp.h \ U/; for m 2 C: �

Corollary 8.5 LetM � G be as in Lemma 8.1. Then for everyx1; x2 2 G; the intersection
x1M \ x2M is open in bothx1M andx2M:

Proof: Let y 2 x1M \ x2M: Then by Lemma 8.4, there exists an open neighborhoodU of 0 in
g; such that the setsx�1

j y exp.U \ h/ are open inM; for j D 1; 2: It follows thaty exp.U \ h/

is open in bothx1M andx2M: �
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Proof of Theorem 7.11.LetH be the group generated by exph: We will first equipH with the
structure of a manifold.

We fix� andM as in Lemma 8.1. Replacing� by a smaller neighborhood if necessary, we
may assume that expj� is a diffeomorphism of� onto an open subset ofG: Then exp restricts
to a diffeomorphism of�0 WD � \ h onto the submanifoldM of G: Accordingly, its inverse
� W M ! �0 is a diffeomorphism of manifolds as well.

SinceM � H; it follows thatH is covered by the submanifoldshM of G; whereh 2 H:

We equipH with the finest topology that makes the inclusionshM ,! H continuous. Then
by definition a subsetU � H is open if and only ifU \ hM is open inhM for everyh 2 H:

We note that by Corollary 8.5, each sethM , for h 2 H; is open inH: For each open subset
O � G and eachh 2 H; the setO \ hM is open inhM I henceO \H is open inH: It follows
that the inclusion mapH ,! G is continuous. SinceG is Hausdorff, it now follows thatH;
with the defined topology, is Hausdorff. For eachh 2 H; the map�h D � ı l�1

h
W hM ! �0

is a diffeomorphism. This automatically implies that the transition maps are smooth. Hence
f�h j h 2 H g is an atlas.

Fix a compact neighborhoodC0 of 0 in�\ h: ThenC D expC0 is a compact neighborhood
of e in M: It follows thatC is compact inH: Sinceh is the union of the setsnC0 for n 2 N; it
follows that exph is the union of the setsfcn j c 2 C g; for n 2 N: One now readily sees that
H is the union of the setsC n; for n 2 N: Each of the setsC n is compact, being the image of
the compact Cartesian productC � � � � �C (n factors) under the continuous multiplication map.
Hence the manifoldH is a countable union of compact subsets, which in turn implies that its
topology has a countable basis.

We will finish the proof by showing thatH with the manifold structure just defined is a Lie
group. Ifh 2 H then the maplh W H ! H is a diffeomorphism by definition of the atlas. We
will first show that right multiplicationrh W H ! H is a diffeomorphism as well.

If X 2 h then the linear endomorphism Ad.expX/ W g ! g equalse adX hence leavesh
invariant. SinceH is generated by elements of the form expX with X 2 h; it follows that
for everyh 2 H the linear endomorphism Ad.h/ of g leavesh invariant. Fixh 2 H: Then
there exists an open neighborhoodO of 0 in � � g such that Ad.h�1/.O/ � � hence also
Ad.h�1/.h \ O/ � h \�: From expXh D h exp Ad.h�1/X we now see that

�h ı rh D Ad.h/�1 ı�e on exp.h \ O/:

This implies thatrh W exp.h \ O/ ! M is smooth. Hence,rh W H ! H is smooth ate: By
left homogeneity it follows thatrh W H ! H is smooth everywhere. Sincerh is bijective with
inverserh�1; it follows thatrh is a diffeomorphism fromH to itself.

We will finish by showing that the multiplication map�H W H � H ! H; .h; h0/ 7! hh0

and the inversion map�H W H ! H; h 7! h�1 are both smooth. Ifh1; h2 2 H then�H ı .lh1
�

rh2
/ D lh1

rh2
ı�H : Sincelh1

andrh2
are diffeomorphisms, smoothness of�H at.h1; h2/ follows

from smoothness of�H at .e; e/: Thus, it suffices to show smoothness of�H at .e; e/: From
�H ı lh D r�1

h
ı �H ; we see that it also suffices to prove smoothness of the inversion map�H at e:

Fix an open neighborhoodNe of e in M such that NNe is a compact subset ofM: Then by
Lemma 8.4, there exists an open neighborhoodU of 0 in g such thatNe exp.h \ U/ � M:
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ReplacingU by its intersection with�; we see thatN0 D exp.h \ U/ is an open neighborhood
of e inM and thatNeN0 � M: It follows that the smooth map�G mapsNe �N0 intoM; hence
its restriction�GjNe�N0

; which equals�H jNe�N0
; mapsNe � N0 smoothly into the smooth

submanifoldM of G: This implies that�H is smooth in an open neighborhood of.e; e/ in
H �H:

For the inversion, we note that�1 WD � \ .��/ is an open neighborhood of0 in g that
is stable under reflection in the origin. It follows that�G maps the open neighborhoodN1 WD
exp.�1 \ h/ of e in M into itself. Hence its restriction toN1; which equals�H jN1

; mapsN1
smoothly into the smooth manifoldM: It follows that �H is smooth in an open neighborhood of
e: �

9 Closed subgroups

Theorem 9.1 LetH be a subgroup of a Lie groupG: Then the following assertions are equiv-
alent:

(a) H is aC1-submanifold ofG at the pointeI
(b) H is aC1-submanifold ofGI
(c) H is a closed subset ofG:

Note that condition (b) implies thatH is a Lie subgroup ofG: Indeed, the map�H W H !
H; h 7! h�1 is the restriction of the smooth map�G to the smooth manifoldH; hence smooth.
Similarly�H is the restriction of�G to the smooth submanifoldH �H ofG�G; hence smooth.

In the proof of the theorem we will need the following result.If G is a Lie group we shall
use the notation log for the mapG �! g; defined on a sufficiently small neighborhoodU of e;
that inverts the exponential map, i.e., expı log D I onU:

Lemma 9.2 LetX; Y 2 g: Then

X C Y D lim
n!1

n log.exp.n�1X/ exp.n�1Y //:

Proof: Being the local inverse to exp; the map log is a local diffeomorphism ate: Its tangent
map ate is given byTe log D .T0 exp/�1 D Ig:

The map W g � g ! G; .X; Y / 7! expX expY has tangent map at.0; 0/ given by
T.0;0/ W .X; Y / 7! X C Y: The composition logı is well defined on a sufficiently small
neighborhood of.0; 0/ in g � g: Moreover, by the chain rule its derivative at.0; 0/ is given by
.X; Y / 7! X C Y:

It follows that, for.X; Y / 2 g � g sufficiently close to.0; 0/;

log.expX expY / D X C Y C �.X; Y /; (11)
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where�.X; Y / D o.kXk C kY k/ as.X; Y / ! .0; 0/ (herek � k is any choice of norm ong).
Hence

n log.exp.n�1X/ exp.n�1Y // D nŒn�1X C n�1Y C �.n�1X; n�1Y /�

D X C Y C n o.n�1/ ! X C Y .n ! 1/:

�

Proof of Theorem 9.1.Let n D dimG: We first show that.a/ ) .b/: Let k be the dimension of
H ate: By the assumption there exists an open neighborhoodU of e in G and a diffeomorphism
� onto an open subset ofRn; such that�.U \ H/ D �.U / \ Rk � f0g: Let nowh 2 H: Then
Uh WD hU D lh.U / is an open neighborhood ofh in G; and�h WD � ı l�1

h
is a diffeomorphism

from Uh onto �.U /: Moreover, sincehU \ H D h.U \ H/; it follows that �h.Uh \ H/ D
�.U \H/ D �.U / \ Rk � f0g: It follows thatH is aC1-submanifold at any of its points.

Next we show that.b/ ) .c/: Assume (b). Then there exists an open neighborhoodU of e
in G such thatU \ NH D U \H: Let y 2 NH: ThenyU is an open neighborhood ofy 2 NH in G;
hence there exists ah 2 yU \H: Hencey�1h 2 U: On the other hand, fromy 2 NH; h 2 H it
follows thaty�1h 2 NH: Hencey�1h 2 U \ NH D U \H; and we see thaty 2 H: We conclude
that NH � H; henceH is closed.

Finally, we show that.c/ ) .a/: We call an elementX 2 g tangential toH if there exist
sequencesXn 2 g; �n 2 R such that limn!1Xn D 0; expXn 2 H; and limn!1 �nXn D X:

Let T be the set ofX 2 g that are tangential toH: From the definition it is obvious that for all
X 2 T we haveRX � T:

We claim that for everyX 2 T we have expX 2 H: Indeed, letX 2 T; and letXn; �n be
sequences as above. IfX D 0 then obviously expX 2 H: If X ¤ 0; thenj�nj ! 1: Choose
mn 2 Z such that�n 2 Œmn; mn C 1�: Thenmn ! 1 hence

j�n=mn � 1j � 1=jmnj ! 0

and it follows thatmn=�n ! 1: Thus,mnXn D .mn=�n/�nXn ! X: Hence

expX D lim
n!1

.expXn/
mn 2 NH � H:

We also claim thatT is a linear subspace ofg: Let X; Y 2 T: PutXn D 1
n
X andYn 2 1

n
Y:

ThenXn; Yn ! 0 andXn; Yn 2 T; hence expXn; expYn 2 H: For n 2 N sufficiently large we
may defineZn D log.expXn expYn/: Then expZn D exp.Xn/ exp.Yn/ 2 H:Moreover, by (11)
we haveZn ! 0 andnZn ! X C Y: It follows from this thatX C Y 2 T:

We will finish the proof by showing thatH is aC1 submanifold at the pointe: Fix a linear
subspaceS � g such that

g D S ˚ T:

Then' W .X; Y / 7! expX expY is smooth as a mapS � T ! G and has tangent map at.0; 0/
given byT.0;0/' W .�; �/ 7! � C �; S � T ! g: This tangent map is bijective, and it follows that
' is a local diffeomorphism at.0; 0/: Hence, there exist open neighborhoods�S and�T of the
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origins inS andT respectively such that' is a diffeomorphism from�S � �T onto an open
neighborhoodU of e in G:

We will finish the proof by establishing the claim that for�S and�T sufficiently small, we
have

'.f0g ��T / D U \H:
Assume the latter claim to be false. Fix decreasing sequences of neighborhoods�kS and�kT of
the origins in�S and�T ; respectively, with�kS ��kT ! f0g: By the latter assertion we mean
that for every open neighborhoodO of .0; 0/ in S � T; there exists ak such that�kS ��kT � S:

By the assumed falseness of the claim, we may selecthk 2 '.�kS � �kT / \ H such thathk …
'.f0g ��kT /; for all k:

There exist uniqueXk 2 �kS andYk 2 �kT such thathk D '.Xk; Yk/ D expXk expYk:
From the above it follows thatXk is a sequence inS n f0g converging to0: Moreover, from
expXk D hk exp.�Yk/ we see that expXk 2 H for all k: Fix a normk � k on S: Then the
sequenceXk=kXkk is contained in the closed unit ball inS; which is compact. Passing to a
suitable subsequence we may arrange thatkXkk�1Xk converges to an elementX 2 S of norm
1: Applying the definition ofT with �n D kXkk�1; we see that alsoX 2 T: This contradicts the
assumption thatS \ T D f0g: �

Corollary 9.3 LetG;H be Lie groups, and let' W G ! H be a continuous homomorphism of
groups. Then' is aC1-map (hence a homomorphism of Lie groups).

Proof: Let � D f.x; '.x// j x 2 Gg be the graph of': Then obviously� is a subgroup of the
Lie groupG �H: From the continuity of' it follows that� is closed. Indeed, let.g; h/ belong
to the closure of� in G �H: Let n D .gn; hn/ be a sequence in� converging to.g; h/: Then
gn ! g andhn ! h asn ! 1: Note thathn D '.gn/: By the continuity of' it follows that
hn D '.gn/ ! '.g/: Hence'.g/ D h and we see that.g; h/ 2 �: Hence� is closed.

It follows that� is aC1-submanifold ofG�H: Letp1 W G�H ! G andp2 W G�H ! H

the natural projection maps. Thenp D p1j� is a smooth map from the Lie group� ontoG:Note
thatp is a bijective Lie group homomorphism with inversep�1 W g 7! .g; '.g//: Thusp�1 is
continuous. By the lemma belowp is a diffeomorphism, hencep�1 W G ! � isC1: It follows
that' D p2 ıp�1 is aC1-map. �

Lemma 9.4 LetG;H be Lie groups, andp W G ! H a bijective Lie homomorphism. Ifp is a
homeomorphism (i.e.,p�1 is continuous), thenp is a diffeomorphism (i.e.,p�1 isC1).

Proof: Consider the commutative diagram

G
p�! H

expG " " expH

g
p��! h

wherep� D Tep: Fix open neighborhoods�G ; �H of the origins ing; h; respectively, such that
expG j�G

; expH j�H
are diffeomorphisms onto open subsetsUG ofG andUH ofH respectively.
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Replacing�G by a smaller neigborhood if necessary we may assume thatp.UG/ � UH (use
continuity ofp). Sincep is a homeomorphism,p.UG/ is an open subset ofUH ; containinge:
Thus�0

H WD .expH /
�1.p.UG//\�H is an open neighborhood of0 in h; contained in�H :Note

that expH is a diffeomorphism from�0
H ontoU 0

H D p.UG/ � UH : From the commutativity of
the diagram and the bijectivity of expG W �G ! UG; expH W �0

H ! U 0
H andp W UG ! U 0

H

it follows thatp� is a bijection of�G onto�0
H : It follows from this thatp� is a bijective linear

map. Its inversep�1
� is linear, henceC1: Lifting via the exponential maps we see thatp�1 maps

U 0
H smoothly ontoUG I it follows thatp�1 isC1 ate: By homogeneity it follows thatp�1 isC1

everywhere. Indeed, leth 2 H: Thenp�1 D lp.h/ ıp�1
ı l�1
h
; sincep�1 is a homomorphism.

But l�1
h

mapshU 0
H smoothly ontoU 0

H I hencep�1 isC1 onhU 0
H : �

10 The groups SU(2) and SO(3)

We recall that SU.2/ is the closed subgroup of matricesx 2 SL.2;C/ satisfyingx�x D I: Here
x� denotes the Hermitian adjoint ofx: By a simple calculation we find that SU.2/ consists of all
matrices �

˛ � Ň
ˇ N̨

�
; (12)

with .˛; ˇ/ 2 C2; j˛j2 C jˇj2 D 1:

Let j W C2 ! M.2;C/ be the map assigning to any point.˛; ˇ/ the matrix given in (12).
Thenj is an injective real linear map fromC2 ' R4 into M.2;C/ ' C4 ' R8: In particular,
it follows thatj is an embedding. Hence, the restriction ofj to the unit sphereS � C2 ' R4

is an embedding ofS onto a compact submanifold of M.2;C/ ' R8: On the other hand, it
follows from the above thatj.S/ D SU.2/: Hence, as a manifold, SU.2/ is diffeomorphic to the
3-dimensional sphere. In particular, SU.2/ is a compact and connected Lie group.

By a calculation which is completely analogous to the calculation in Example 7.9 we find
that the Lie algebrasu.2/ of SU.2/ is the algebra ofX 2 M.2;C/ with

X� D �X; trX D 0:

From this one sees that as a real linear spacesu.2/ is generated by the elements

r1 D
�
i 0

0 �i

�
; r2 D

�
0 1

�1 0

�
; r3 D

�
0 i

i 0

�
:

Note thatr j D i�j ; where�1; �2; �3 are the famous Pauli spin matrices. One readily verifies
thatr21 D r22 D r23 D �I andr1r2 D �r2r1 D r3; andr2r3 D �r3r2 D r1:

Remark 10.1 One often sees the notationi D r1; j D r2; k D r3: Indeed, the real linear span
H D RI ˚Ri ˚Rj ˚Rk is a realization of the quaternion algebra. The latter is theunique (up to
isomorphism) associativeR algebra with unit, on the generatorsi; j ; k; subject to the above well
known quaternionic relations.
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It follows from the above product rules that the commutator brackets are given by

Œr1; r2� D 2r3; Œr2; r3� D 2r1; Œr3; r1� D 2r2:

From this it follows that the endomorphisms adr j 2 End.su.2// have the following matrices
with respect to the basisr1; r2; r3 W

mat adr1 D

0
@
0 0 0

0 0 �2
0 2 0

1
A ; mat adr2 D

0
@

0 0 2

0 0 0

�2 0 0

1
A ; mat adr3 D

0
@
0 �2 0

2 0 0

0 0 0

1
A :

The above elements belong to

so.3/ D fX 2 M.3;R/ j X� D �Xg;

the Lie algebra of the group SO.3/:
If a 2 R3; then the exterior product mapX 7! a �X; R3 ! R3 has matrix

Ra D

0
@

0 �a3 a2
a3 0 �a1

�a2 a1 0

1
A

with respect to the standard basise1; e2; e3 of R3: ClearlyRa 2 so.3/:

Lemma 10.2 Let t 2 R: ThenexptRa is the rotation with axisa and anglet jaj:

Proof: Let r 2 SO.3/: Then one readily verifies thatRa D r ıRr�1a ı r�1; and hence

exptRa D r ı expŒtRr�1a� ı r�1:

Selectingr such thatr�1a D jaje1; we see that we may reduce to the case thata D jaje1: In that
case one readily computes that:

exptRa D

0
@
1 0 0

0 cost jaj � sint jaj
0 sint jaj cost jaj

1
A :

�

WriteRj D Rej
; for j D 1; 2; 3: Then by the above formulas for mat ad.r j / we have

mat ad.r j / D 2Rj .j D 1; 2; 3/: (13)

We now define the map' W SU.2/ ! GL.3;R/ by '.x/ D matAd.x/; the matrix being taken
with respect to the basisr1; r2; r3: Then' is a homomorphism of Lie groups.
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Proposition 10.3 The map' W SU.2/ ! GL.3;R/; x 7! matAd.x/ is a surjective group
homomorphism ontoSO.3/; and induces an isomorphism:

SU.2/=f˙I g ' SO.3/:

Proof: From
'.expX/ D mate adX D emat adX

we see that' maps SU.2/e into SO.3/: Since SU.2/ is obviously connected, we have SU.2/ D
SU.2/e; so that' is a Lie group homomorphism from SU.2/ to SO.3/: The tangent map of
' is given by'� W X 7! mat adX: It maps the basisfr j g of su.2/ onto the basisf2Rj g of
so.3/; hence is a linear isomorphism. It follows that' is a local diffeomorphism atI; hence
its image im' contains an open neighborhood ofI in SO.3/: By homogeneity, im' is an open
connected subgroup of SO.3/; and we see that im' D SO.3/e: As SO.3/ is connected, it follows
that im' D SO.3/: From this we conclude that' W SU.2/ ! SO.3/ is a surjective group
homomorphism. Hence SO.3/ ' SU.2/= ker': The kernel of' may be computed as follows.
If x 2 ker'; then Ad.x/ D I: Hencexr j D r jx for j D 1; 2; 3: From this one sees that
x 2 f�I; I g: Hence ker' D f�I; I g: �

It is of particular interest to understand the restriction of ' to one-parameter subgroups of
SU.2/: We first consider the one-parameter group˛ W t 7! exp.t r1/: Its imageT in SU.2/
consists of the matrices

ut D
�
eit 0

0 e�it

�
; .t 2 R/:

Obviously,T is the circle group. The image ofut under' is given by

'.ut / D '.et r1/ D e'�.t r1/ D e2tR1 :

By a simple calculation, we deduce that, for� 2 R;

R� WD e�R1 D

0
@
1 0 0

0 cos� sin�
0 � sin� cos�

1
A ;

the rotation with angle� around thex1-axis. LetD be the group consisting of these rotations.
Then' mapsT ontoD:Moreover, from'.ut / D R2t we see that' restricts to a double covering
from T ontoD:

More generally, ifX is any element ofsu.2/; different from0; there exists ax 2 SU.2/ such
that Ad.x�1/X D x�1Xx D �r1; for some� > 0: It follows that the one-parameter subgroup
˛X has image expRX D expŒAd.x/Rr1� D xT x�1 in SU.2/: The image ofxT x�1 under'
equalsrDr�1; with r D '.x/: Moreover, the following diagram commutes:

T
Cx�! xT x�1

# ' # '

D
Cr�! rDr�1:

The horizontal arrows being diffeomorphisms, it follows that'jxT x�1 is a double covering from
xT x�1 ontorDr�1:
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11 Group actions and orbit spaces

Definition 11.1 LetM be a set andG a group. A(left) actionofG onM is a map̨ W G�M !
M such that

(a) ˛.g1; ˛.g2; m// D ˛.g1g2; m/ .m 2 M; g1; g2 2 G/I
(b) ˛.e;m/ D m .m 2 M/:

Instead of the cumbersome notation˛ we usually exploit the notationg � m or gm for ˛.g;m/:
Then the above rules (a) and (b) become:g1 � .g2 �m/ D .g1g2/ �m; ande �m D m:

If g 2 G; then we sometimes use the notation˛g for the mapm 7! ˛.g;m/ D gm; M !
M: From (a) and (b) we see that˛g is a bijection with inverse map equal tǫg�1 : Let Sym.M/

denote the set of bijections fromM onto itself. Then Sym.M/; equipped with the composition
of maps, is a group. According to (a) and (b) the map˛ W g 7! ˛g is a group homomorphism of
G into Sym.M/: Conversely, any group homomorphismG ! Sym.M/ comes from a unique
left action ofG onM in the above fashion.

Let M1;M2 be two sets equipped with (left)G-actions. A map' W M1 ! M2 is said to
intertwinetheG-actions, or to beequivariant,if '.gm/ D g'.m/ for all m 2 M1 andg 2 G:

Remark 11.2 Similarly, a right action of a groupG on a setM is defined to be a map̨ W
M �G ! M; .m; g/ 7! mg; such thatmeG D m and.mg1/g2 D m.g1g2/ for all m 2 M and
g1; g2 2 G: Notice that these requirements on˛ are equivalent to the requirement that the map
˛_ W G �M ! M defined by̨ _.g;m/ D mg�1 is a left action. Thus, all results for left actions
have natural counterparts for right actions.

Our goal is to study smooth actions of a Lie group on a manifold. As a first step we concen-
trate on continuous actions. This is most naturally done fortopological groups.

Definition 11.3 A topological groupis a groupG equipped with a topology such that the mul-
tiplication map� W G � G ! G; .x; y/ 7! xy and the inversion map� W G ! G; x 7! x�1 are
continuous.

Note that a Lie group is in particular a topological group.

Definition 11.4 Let G be a topological group. By acontinuous right actionof G on a topo-
logical spaceM we mean an action̨ W M � G ! M that is continuous as a map between
topological spaces. A (right)G-space is a topological space equipped with a continuous (right)
G-action.

We assume thatH is a topological group and thatM is a topological space equipped with
a continuous right action̨ of H: Givenh 2 H we denote by̨ h the mapM ! M given by
m 7! mh: Then˛h is continuous and so is its inverse˛h�1 : Therefore,̨ h is a homeomorphism
of M onto itself.
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Sets of the formmH .m 2 M/ are calledorbits for the action˛: Note that for two orbits
m1H;m2H eitherm1H D m2H or m1H \ m2H D ;: Thus, the orbits constitue a partition
of M: The set of all orbits, called theorbit space, is denoted byM=H: The canonical projection
M ! M=H; m 7! mH is denoted by�:

The orbit spaceX D M=H is equipped with the quotient topology. This is the finest topology
for which the map� W M ! M=H is continuous. Thus, a subsetO of X is open if and only if
its preimage��1.O/ is open inM:

In general this topology need not be Hausdorff even ifM is Hausdorff. We will return to this
issue later.

The following result is useful, but particular for group actions. It is not true for quotient
topologies in general.

Lemma 11.5 The natural map� W M ! M=H is open.

Proof: Let U � M be open and putO D �.U /: Then the preimage��1.O/ equals the union
of the setsUh D ˛h.U /; which are open inM: It follows that��1.O/ is open, henceO is open
by definition of the quotient topology. �

We denote byF.M/ the complex linear space of functionsM ! C: LetF.M/H denote the
subspace ofF.M/ consisting of functionsg W M ! C that areH -invariant, i.e.,g.mh/ D g.m/

for all m 2 M; h 2 H:
If f W M=H ! C is a function, then the pull-back off by�; defined by��.f / WD f ı�; is

a function onM that isH -invariant, i.e., it belongs toF.M/H : One readily verifies that�� is a
linear isomorphism fromF.M=H/ ontoF.M/H :

Let C.M/H be the spaceC.M/ \ F.M/H of continuous functionsM ! C which are
H -invariant.

Lemma 11.6 The pull-back map�� W f 7! f ı� mapsC.M=H/ bijectively ontoC.M/H :

Proof: Obviously�� mapsC.M=H/ injectively intoC.M/H : It remains to establish surjectiv-
ity. Let f 2 C.M/H : Thenf D ��.g/ for a unique functiong W M=H ! C: We must show
thatg is continuous. Let� be an open subset ofC: ThenU D f �1.�/ is open inM: From the
H -invariance off it follows thatU is rightH -invariant. HenceU D ��1.�.U // and it follows
that�.U / is open inM=H: But �.U / D g�1.�/: Thus,g is continuous. �

Remark 11.7 With exactly the same proof it follows: ifX is an arbitrary topological space, then
�� mapsC.M=H;X/ (bijectively) ontoC.M;X/H : In fact, the quotient topology onM=H is
uniquely characterized by this property for allX:

In what follows we shall mainly be interested in actions on locally compact Hausdorff spaces.
Recall that the topological spaceM is said to be Hausdorff if for each pair of distinct points
m1; m2 of M there exist open neighborhoodsUj of mj such thatU1 \ U2 D ;: The space
M is said to be locally compact if each point inM has a compact neighborhood. Note that
in a Hausdorff spaceM each compact subset is closed. Moreover, ifM is locally compact
Hausdorff, then for every pointm 2 M and every open neighborhoodU of m there exists a
compact neighborhoodN of m contained inU:
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Lemma 11.8 LetM be a locally compact Hausdorff space, equipped with a continuous right
action of a topological groupH: Then the following assertions are equivalent.

(a) The orbit spaceM=H is Hausdorff.

(b) For each compact subsetC � M the setCH is closed.

Proof: Assume (a) and letC � M be compact. Then�.C/ is compact. AsM=H is Hausdorff,
it follows that�.C/ is closed. AsCH D ��1.�.C //; it follows thatCH is closed.

Next, assume (b). From the fact thatfmg is compact, form 2 M; it follows that the orbit
mH is closed. Letx1; x2 2 X D M=H be distinct points. Selectmj 2 ��1.xj /: Then
xj D mjH; with m1H \ m2H D ;: The complementV of m2H in M is open, rightH -
invariant, and containsm1H: Select an open neighborhoodU1 of m1 in M such that NU1 is
compact and contained inV: Then by (a), the setNU1H is closed and still contained inV: Its
complementV2 is open and containesm2H: Hence,�.V2/ is open inX and containsx2:

On the other hand,V1 D U1H is the union of the open setsU1h; hence open inM:Moreover,
V1 containsm1; so that�.V1/ is an open neighborhood ofx1 inX:Clearly, the setsV1 andV2 are
rightH -invariant and disjoint. It follows that the sets�.V1/ and�.V2/ are disjoint open subsets
of X containing the pointsx1 andx2; respectively. This establishes the Hausdorff property.�

12 Smooth actions and principal fiber bundles

Definition 12.1 LetM be a smooth manifold andH a Lie group. An action ofH onM is said
to besmoothif the action map̨ W M �H ! M; .m; h/ 7! mh is aC1 map of manifolds.

In the rest of this section we will always assume thatM is a smooth manifold on whichH
has a smooth right action. We will first study smooth actions for which the quotientM=H allows
a natural structure of smooth manifold.

If � is a smooth manifold, thenH has a right action on the manifold� � H; given by
.x; g/ � h D .x; gh/: We will say that such an action is of trivial principal fiber bundle (or trivial
PFB) type.1

More generally, the right action ofH on a manifoldM is called of trivial PFB type if there
exist a smooth manifold� and a diffeomorphism� W M ! � � H that intertwines theH -
actions. Such a map� is called a trivialization of the action. Note that dim� D dimM � dimH:

Definition 12.2 The right action ofH onM is called of principal fiber bundle (PFB) type if the
following two conditions are fulfilled.

(a) Every pointm of M possesses an openH -invariant neighborhoodU such that the right
H -action onU is of trivial PFB type.

(b) If C is a compact subset ofM; thenCH is closed.

1The terminology ‘principal fiber bundle type’ is not standard, but used here for purposes of exposition.
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In view of Lemma 11.8, the second condition is equivalent to the condition that the quotient
spaceM=H is Hausdorff.

We call the pair.U; �/ of condition (a) a local trivialization of the rightH -spaceM at the
pointm: Clearly, if the rightH -spaceM is of PFB type, then there exists a collectionf.U˛; �˛/ j
˛ 2 Ag of local trivializations such that the open setsU˛ coverM: Such a covering is called a
trivializing covering.

Remark 12.3 If H is a closed subgroup of a Lie groupG; then the map.h; g/ 7! gh; H�G !
G defines a smooth right action ofH onG: At a later stage we will see that this action is of PFB-
type.

If the rightH -action onM is of PFB type, then the quotientM=H admits a unique natural
structure of smooth manifolds. In order to understand the uniqueness, the following preliminary
result about submersions will prove to be very useful.

Lemma 12.4 LetX; Y;Z be smooth manifolds, and let� W X ! Y; ' W X ! Z and W Y !
Z be maps such that the following diagram commutes

X
'�! Z

� # %  

Y

If ' is smooth and� a submersion, then is smooth on�.X/:

Proof: The map�; being a submersion, is open. In particular,�.X/ is an open subset ofY: Let
y0 2 �.X/: Fix x0 2 X such that�.x0/ D y0: Since� is a submersion, there exists an open
neighborhoodU of x0 and a diffeomorphism' W U ! �.U /� F; with F a smooth manifold of
dimension dimX�dimY; such that� D pr2 ı': Here pr2 denotes the projection�.U /�F ! F

onto the second component. Letb D pr2'.x0/: Then the smooth map� W �.U / ! X defined
by �.y/ D '�1.y; b/ satisfies� ı � D I on�.U / and�.y0/ D x0: In other words,� admits a
smooth locally defined section� with �.y0/ D x0: From this it follows that D  ı� ı � D
' ı � on�.U /: Hence, is smooth on�.U /: �

Theorem 12.5 Let the rightH action onM be of PFB type. ThenM=H carries a unique
structure ofC1-manifold (compatible with the topology) such that the canonical projection
� W M ! M=H is a smooth submersion.

If m 2 M; then the tangent mapTm� W TmM ! T�.m/.M=H/ has kernelTm.mH/;
the tangent space of the orbitmH at m: Accordingly, it induces a linear isomorphism from
TmM=Tm.mH/ ontoT�.m/.M=H/:

Finally,�� W f 7! f ı� restricts to a bijective linear map fromC1.M=H/ ontoC1.M/H :

Remark 12.6 It follows from the assertion on the tangent maps that the dimension ofM=H
equals dimM � dimH:
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Proof: We will first show that the manifold structure, if it exists, is unique. LetXj denote
M=H; equipped with a manifold structure labeled byj 2 f1; 2g and assume that the projection
map� W M ! M=H is submersive for both manifold structures. We will show theidentity map
I W X1 ! X2 is smooth for the given manifold structures. The following diagram commutes

M

� . & �

X1
I�! X2

Since� W M ! X1 is a submersion and� W M ! X2 smooth, it follows by Lemma 12.4
thatI W X1 ! X2 is smooth. By symmetry of the argument it follows that the inverse toI is
smooth as well. Hence,X1 andX2 are diffeomorphic manifolds. This establishes uniquenessof
the manifold structure.

We defer the treatment of existence until the end of the proof, and will first derive the other
assertions as consequences.

We first address the assertion about the tangent map of�: Letm 2 M: Since� is a submer-
sion,Tm� W TmM ! T�.m/.M=H/ is a surjective linear map, with kernel equal to the tangent
space of the fiber��1.�.m//: This fiber equalsmH: Hence kerTm� D Tm.mH/:

Finally, it is obvious that�� restricts to a linear injection fromC1.M=H/ into C1.M/H :

Let g 2 C1.M/H : Theng D f ı� for a unique functionf W M ! C: Sinceg is smooth
and� a smooth submersion, it follows by application of Lemma 12.4thatf is smooth. This
establishes the surjectivity, and hence the bijectivity of��:

We end the proof by establishing the existence of a manifold structure onX D M=H for
which� becomes a smooth submersion. First of all,X is a topological space, which is Hausdorff
because of Lemma 11.8.

Let f.U˛; �˛/g˛2A be a trivializing covering ofM as above. Thus,�˛ is a diffeomorphism of
U˛ onto�˛ �H which intertwines the rightH -actions. Writing the manifolds�˛ as unions of
charts, we see that we may replace the trivializing coveringby one for which each�˛ equals an
open subset ofRn: We write i˛ for the injectionx 7! .x; e/; �˛ ! �˛ � H andp˛ for the
projection�˛ �H ! �˛ onto the first coordinate.

We will use the trivializing covering to define a smooth atlasof X: The map�˛ W U˛ !
�˛ �H is a diffeomorphism intertwining theH -actions, hence induces a homeomorphism�˛ W
�.U˛/ ! .�˛ � H/=H: The projection mapp˛ induces a homeomorphism of the latter space
onto�˛; by which we shall identify. PutV˛ D �.U˛/: Then the following diagram commutes:

U˛
�˛�! �˛ �H

� # # p˛

V˛
�˛�! �˛

(14)

The setsV˛; for ˛ 2 A; constitute an open covering ofX; and the maps�˛ W V˛ ! �˛ are
homeomorphisms. We will show that the pairs.V˛; �˛/; for ˛ 2 A; constitute a smooth atlas.
Put�˛

ˇ
D �ˇ .V˛ \ Vˇ /: Then the transition map

�ˇ˛ WD �ˇ ı��1
˛
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is a homeomorphism from�ˇ˛ onto�˛
ˇ
:We must show it is smooth.

The transition map�ˇ˛ D �ˇ ı ��1
˛ is a diffeomorphism from�ˇ˛�H onto�˛

ˇ
�H:Moreover,

the diagram

�
ˇ
˛ �H

�ˇ˛�! �˛
ˇ

�H
p˛ # # pˇ

�
ˇ
˛

�ˇ˛�! �˛
ˇ

commutes. As the vertical arrow represent smooth submersions, it follows by application of
Lemma 12.4 that�ˇ˛ is smooth.

LetX be equipped with the structure ofC1-manifold determined by the atlas defined above.
The map� mapsU˛ ontoV˛:Moreover, from the commutativity of the diagram (14) we see that
�jU˛

corresponds via the horizontal diffeomorphisms�˛ and�˛ with the smooth projectionp˛:
Hence� is smooth and submersive on eachU˛I it follows that� is a smooth submersion. �

The following terminology is standard in the literature, and explains the terminology ‘PFB
type’ used so far. We assume thatX is a smooth manifold.

Definition 12.7 A principal fiber bundleoverX with structure groupH is a pair.P; �/ consist-
ing of a smooth rightH -manifoldP and a smooth map� W P ! X with the following property.
For every pointx 2 X there exists an open neighborhoodV of x in X and a diffeomorphism
� W ��1.V / ! V �H such that

(a) � D prV ı � on��1.V /; where prV denotes the projectionV �H ! V I
(b) � intertwines the rightH -actions.

The manifoldP is called thetotal space, X is called thebase spaceof the bundle. A map� as
above is called alocal trivializationof the bundle.

The terminology ‘action of PFB type’ is finally justified by the following result.

Lemma 12.8 LetH be a Lie group.
(a) If � W P ! X is a principal bundle with structure groupH; then the right action ofH

onP is of PFB-type. Moreover,� factors through a diffeomorphismP=H
'�!X:

(b) Conversely, ifM is a smooth manifold equipped with a smooth right-action ofH that is
of PFB type, then� W M ! M=H is a principal fiber bundle with structure groupH:

Proof: Assertion (a) is a straightforward consequence of Definition 12.7. Assertion (b) is easily
seen from the proof of Theorem 12.5. �

Example 12.9 (Frame bundle of a vector bundle) LetV be a finite dimensional real vector space
of dimensionk: Let Hom.Rk; V / denote the linear space of linear mapsRk ! V: A frame in
V is defined to be an injective linear mapf W Rk ! V: The set of frames, denotedF.V /, is
a dense open subset of Hom.Rk; V /: Let e1; : : : ; ek be the standard basis ofRk: Then the map
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f 7! .f .e1/; : : : ; f .ek// is a bijection fromF.V / onto the set of ordered bases ofV: Thus, a
frame may be specified by giving an ordered basis ofV:

The groupH WD GL.k;R/ ' GL.Rk/ acts onF.V / from the right; indeed the action is
given by.f; a/ 7! f ı a: This action is free and transitive; see the text preceding Theorem 13.5
and Proposition 15.5 for the definitions of these notions. Thus, for eachf 2 F.V / the map
a 7! fa is a diffeomorphism fromH ontoF.V /:

Let nowp W E ! M be a vector bundle of rankk over a smooth manifoldM: For an open
subsetU � M we writeEU WD p�1.U /: Thenp W EU ! U is a vector bundle overU; called
the restriction ofE to U: A trivialization ofE over an open subsetU � M is defined to be an
isomorphism� W EU ! U �Rk of vector bundles. Forx 2 U we define the linear isomorphism
�x W Ex ! Rk by � D .x; �x/ onEx: Let RkM denote the trivial vector bundleM � Rk overM:
Then the vector bundle Hom.RkM ; E/ has fiber Hom.Rk; Ex/ at the pointx 2 M: A trivialization
.U; �/ of E induces a trivialization� 0 of Hom.Rk; E/ given by � 0

x.Tx/ D �x ıTx for Tx 2
Hom.Rk; Ex/:

We defineF.E/ to be the subset[x2MF.Ex/ of Hom.RkM ; E/: This subset is readily seen
to be open; the natural mapF.E/ ! M mappingF.E/x to x defines a sub fiber bundle of
Hom.RkM ; E/: A trivialization � of E overU induces a trivialization� 00 of F.E/ overU given
by � 00

x .f / D �x ıf for f 2 F.Ex/: The groupH acts from the right on each fiberF.Ex/: By
looking at trivializations we see that these actions together constitute a smooth right action ofH
onF.E/ which turnsF.E/ into a principal fiber bundle with structure groupH:

13 Proper free actions

In this section we discuss a useful criterion for smooth actions to be of PFB type.
We recall that a continuous mapf W X ! Y between locally compact Hausdorff (topo-

logical) spacesX andY is said to beproper if for every compact subsetC � Y the preimage
f �1.C / is compact.

For the moment we assume thatM is a locally compact Hausdorff space equipped with a
continuous right action of a locally compact Hausdorff topological groupH:

Definition 13.1 The action ofH onM is calledproper if .m; h/ 7! .m;mh/ is a proper map
M �H ! M �M:

Remark 13.2 Note that a continuous action of a compact (in particular of afinite) group is
always proper.

Lemma 13.3 The following conditions are equivalent.

(a) The action is proper.

(b) For every pair of compact subsetsC1; C2 � M the setHC1;C2
WD fh 2 H j C1h\C2 ¤ ;g

is compact.
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Proof: Let ' W M � H ! M � M; .m; h/ 7! .m;mh/: Assume (a) and letC1; C2 � M be
compact sets. ThenC1 � C2 is compact, hence'�1.C1 � C2/ is a compact subset ofM � H:
Now

'�1.C1 � C2/ D f.m; h/ j m 2 C1; mh 2 C2g;
henceHC1;C2

D p2.'
�1.C1 � C2//; with p2 denoting the projectionM �H ! H: It follows

thatHC1;C2
is compact. Hence (b).

Now assume that (b) holds, and letC be a compact subset ofM�M: Then there exist compact
subsetsC1; C2 � M such thatC � C1 � C2: Now '�1.C / is a closed subset of'�1.C1 � C2/;
hence it suffices to show that the latter set is compact. The latter set is clearly closed; moreover,
it is contained inC1 �HC1;C2

; hence compact. �

Remark 13.4 We leave it to the reader to verify that condition (b) is equivalent to the condition
thatfh 2 H j Ch \ C ¤ ;g be compact, for any compact setC � M:

The action ofH onM is calledfree if for all m 2 M;h 2 H we havemh D m ) h D e:

From now on we assume thatH is a Lie group.

Theorem 13.5 LetM be a smooth manifold equipped with a smooth rightH -action. Then the
following statements are equivalent.

(a) the action ofH onM is proper and free;

(b) the action ofH onM is of PFB type.

As a preparation for the proof we need the following lemma.

Lemma 13.6 LetM be a smooth rightH -manifold. IfC � H is compact, andm 2 M a point
such thatm … mC; then there exists an open neighborhoodU ofm inM such thatUh\U D ;
for all h 2 C:

Proof: SincemC is compact, there exist disjoint open neighborhoods�1; �2 of m andmC in
M: By continuity of the action and compactness ofC there exists an open neighborhoodU ofm
in�1 such thatUC � �2: It follows thatUC \ U D ;: �

The following lemma is the key to the proof of Theorem 13.5.

Lemma 13.7 (Slice Lemma). LetM be a smooth manifold equipped with a smooth rightH

action which is proper and free. Then for eachm 2 M there exists a smooth submanifoldS of
M containingm such that the map.s; h/ 7! sh mapsS � H diffeomorphically onto an open
H -invariant neighborhood ofm inM:

Remark 13.8 The manifoldS is called aslicefor theH -action at the pointm:
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Proof: Fix m 2 M and define the map̨m W H ! M by h 7! mh: By freeness of the action,
this map is injective. We claim that its tangent map ate is an injective linear maph ! TmM:

GivenX 2 h we define the smooth vector fieldvX onM by

vX.m/ D d

dt

ˇ̌
ˇ̌
tD0

m exptX:

By application of the chain rule we see that

vX.m/ D Te.˛m/.X/:

One readily sees that the integral curve ofvX with initial pointm is given byc W t 7! m exptX:
FromvX.m/ D 0 it follows thatc is constant; by freeness of the action this implies that exptX D
e for all t 2 R; henceX D 0: ThusvX.m/ D 0 ) X D 0 and it follows that the linear map
Te.˛m/ has trivial kernel, hence is injective.

We now select a linear spaces � TmM such thats ˚ Te.˛m/.h/ D TmM: Moreover, we
select a submanifoldS 0 of M of dimension dimM � dimH which has tangent space atm equal
to s: Consider the map' W S 0 � H ! M; .s; h/ 7! sh: ThenT.m;e/' W s � h ! TmM is
given by.X; Y / 7! X C Te.˛m/Y; hence bijective. ReplacingS 0 by a neighborhood (inS 0) of
its pointm we may as well assume thatS 0 has compact closure and that there exists an open
neighborhoodO of e in H such that' mapsS 0 � O diffeomorphically onto an open subset of
M: In particular it follows that the tangent mapT.s;e/' is injective for everys 2 S 0: Using the
homogeneity̨ h ı' ı .I � r�1

h
/ D ' for all h 2 H we see that' has bijective tangent map at

every point ofS 0 �H:
Let C D H NS 0; NS 0: ThenC is a compact subset ofH: HenceC0 D C n O is a compact subset

ofH; not containinge: Note thatm … mC0 by freeness of the action. Hence there exists an open
subsetS of S 0 containingm such thatS \ Sh D ; for all h 2 C0 (use Lemma 13.6).

We claim that the map' is injective onS � H: Indeed, assume'.s1; h1/ D '.s2; h2/;

for s1; s2 2 S; h1; h2 2 H: Thens2 D s1.h1h
�1
2 /; henceh1h�1

2 belongs to the compact set
C D H NS 0; NS 0 : From the definition ofS it follows thath1h�1

2 2 C n C0 � O: From the injectivity
of ' onS 0 � O it now follows thats1 D s2 andh1h�1

2 D e: Hence' is injective onS �H:
Since we established already that' has a bijective tangent map at every point ofS�H it now

follows that' is a diffeomorphism fromS �H onto an open subsetU of M: As '.m; e/ D m;

it follows thatm 2 U: Moreover,' intertwines theH -action onS �H with theH -action onU:
Therefore,U isH -invariant. �

Proof of Theorem 13.5.‘(a) ) (b)’: Assume (a). We shall first prove that the first conditionof
Definition 12.2 holds. Letm 2 M and letS be a slice throughm as in the above lemma. Then
the map' W S �H ! M given in the lemma is anH -equivariant diffeomorphism onto anH -
invariant open neighborhoodU ofm inM: It follows that the inverse map� D '�1 W U ! S�H
is a trivialization of theH -action onU:

We now turn to the second condition of Definition 12.2. LetC � M be compact and letx
be a point in the closure ofCH: Fix a compact neighborhoodC 0 of x in M: Then there exists a
sequence.xn/n�1 in C 0 \ CH such thatxn ! x asn ! 1: Write xn D cnhn; with cn 2 C
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andhn 2 H: Thenhn is contained inHC;C 0 I the latter set is compact by condition (a). By
passing to subsequences if necessary, we arrive in the situation that the sequences.cn/ and.hn/
are convergent, say with limitsc 2 C andh 2 H; respectively. Nowx D lim cnhn D ch 2 CH:
It follows CH contains its closure, hence is closed. This establishes thesecond condition of
Definition 12.2. Thus, (b) follows.

‘(b) ) (a)’: Assume (b) holds. To see that the action ofH onM is free, letx 2 M; h 2 H
and assume thatxh D x: There exists anH -invariant open neighborhoodU of x on which the
H -action is of trivial PFB-type. Let� W U ! ��H be a trivialization of the action. Then from
�.xh/ D �.x/ and�.xh/ D �.x/h it follows that�.x/h D �.x/: Henceh D e: This establishes
freeness of the action.

To see that the action ofH on M is proper, letC;C 0 � M be compact subsets. Then
it suffices to show thatHC;C 0 D fh 2 H j Ch \ C 0 ¤ ;g is compact. For everyx 2 C

there exists anH -invariant open neighborhoodUx of x on which the action is of trivial type.
Moreover, there exists a compact neighborhoodCx of x contained inUx: The interiors of the
setsCx form an open cover ofC; hence contain a finite subcover, parametrized by finitely many
elementsx1; : : : ; xn 2 M: PutCi D Cxi

; thenC � [niD1Ci whereCi is contained inUxi
: One

easily verifies thatH[iCi ;C 0 D [iHCi ;C 0 : Therefore it suffices to prove thatHC;C 0 is compact
under the assumption thatC is contained in anH -invariant open setU on which the action is of
trivial type. NowCH is closed, henceC 00 D CH \C 0 is compact and contained inU:Moreover,
HC;C 0 D HC;C 00 : Thus, we may as well assume thatC 0 � U:Using a trivializing diffeomorphism
we see that we may as well assume thatM is of the form��H: LetD andD0 be the projections
of C andC 0 ontoH; respectively. ThenD andD0 are compact. Moreover,HC;C 0 is a closed
subset offh 2 H j Dh \ D0 ¤ ;g D D�1D0: The latter set is the image of the compact set
D �D0 under the continuous mapH �H ! H; .h1; h2/ 7! h�1

1 h2; hence compact. It follows
thatHC;C 0 is compact as well. This establishes (a). �

Example 13.9 We return to the setting of Example 12.9, withp W E ! M a rankk-vector
bundle. The frame bundle� W F.E/ ! M is a principal fiber bundle with structure groupH D
GL.k;R/: Thus, the action ofH onF.E/ is proper and free, with quotient spaceF.E/=H ' M:

We observe that the bundleE can be retrieved fromF.E/ as follows. The map' W F.E/ �
Rk ! E defined by.f; v/ 7! f .v/ onF.E/x � Rk; for x 2 M; is a surjective smooth map.
Using trivializations ofE one sees that' is a submersion. Two elements.f1; v1/ and.f2; v2/
have the same image if and only if they belong to the same fiberF.E/x � Rk and there exists
a h 2 H such that.f2; v2/ D .f1 ı h; h�1v1/: Define the right action ofH onF.E/ � Rk by
.f; v/a D .f h; h�1v/: Then it follows that the fibers of' are precisely the orbits for the right
action ofH onF.E/ � Rk:

Via the projectionq W F.E/ � Rk ! F.E/ we viewF.E/ � Rk as a trivial vector bundle
overF.E/: The mapq intertwines the given right actions ofH: As the action ofH onF.E/ is
proper and free, so is the action ofH on F.E/ � Rk (argument left to the reader). It follows
that the induced mapNq W .F.E/ � Rk/=H ! F.E/=H D M is smooth (show this). Using
trivializations ofE, hence ofF.E/; one readily checks that the projectionNq defines a smooth
rankk vector bundle overM:
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The map' W F.E/�Rk ! E defined above induces a smooth mapN' W .F.E/�Rk/=H ! E

(give the argument). Again using trivializations ofE one checks thatN' is an isomorphism
of vector bundles. Thus, the vector bundleNq W .F.E/ � Rk/=GL.k;R/ ! M is naturally
isomorphic toE:

14 Coset spaces

We now consider a type of proper and free action that naturally occurs in many situations. Let
G be a Lie group andH a closed subgroup. The map.g; h/ 7! gh defines a smooth right action
of H onG: The associated orbit space is the coset spaceG=H; consisting of the right cosets
gH; g 2 G:
Lemma 14.1 LetH be a closed subgroup of the Lie groupG: Then the right action ofH onG
is proper and free.

Proof: It is clear that the action is free. To prove it is proper, letC1; C2 be compact subsets of
G: ThenHC1;C2

D C�1
1 C2 \H: NowC�1

1 C2 is the image ofC1 �C2 under the continuous map
.x; y/ 7! x�1y; hence compact. Moreover,H is closed, henceHC1;C2

is compact. �

Corollary 14.2 LetG be a Lie group andH a closed subgroup. Then the coset spaceG=H has
a unique structure of smooth manifold such that the canonical projection� W G ! G=H is a
smooth submersion. Relative to this manifold structure, the following hold.

(a) The map� W G ! G=H is a principal fiber bundle with structure groupH:

(b) The left action ofG onG=H given by.g; xH/ 7! gxH is smooth.

Proof: From Lemma 14.1 and Theorem 13.5 it follows that the right action of H onG is of
PFB type. Hence, the first assertion is an immediate consequence of Theorem 12.5. Moreover,
assertion (a) follows from Lemma 12.8 (b). Finally, putX D G=H and let˛ denote the action
mapG �X ! X: Then the following diagram commutes:

G �G ��! G

# I�� # �

G �X ˛�! X:

Since the vertical map on the left side of the diagram is a submersion, whereas� and� are
smooth, it follows that̨ is smooth (see Lemma 12.4). �

Corollary 14.3 Let G be a Lie group andH a closed subgroup. The tangent mapTe� of
� W G ! G=H is surjective and has kernel equal toh:

Proof: This is an immediate consequence of the fact that� is a submersion with fiber��1.eH/ D
H: �

Remark 14.4 It follows from the above that the tangent mapTe� induces a linear isomorphism
from g=h ontoTeH .G=H/I we agree to identify the two spaces via this isomorphism fromnow
on. With this identification,Te� becomes identified with the canonical projectiong ! g=h:
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15 Orbits of smooth actions

In this section we assume thatG is a Lie group and thatM is a smooth manifold equipped with
a smooth leftG-action˛:

GivenX 2 g; we denote by̨ X the smooth vector field onM defined by

˛X.m/ WD d

dt

ˇ̌
ˇ̌
tD0

.exptX/m

We leave it to the reader to verify that for everym 2 M; the curvet 7! .exptX/m is the maximal
integral curve of̨ X with initial pointm:

Lemma 15.1 The mapX 7! ˛X is a Lie algebra anti-homomorphism fromg into the Lie
algebraV.M/ of smooth vector fields onM:

Proof: Fix m 2 M; and let˛m W G ! M; g 7! gm: Then˛X .m/ D Te.˛m/X: It follows that
X 7! ˛X.m/ is a linear mapg ! TmM: This shows thatX 7! ˛X is a linear mapg ! V.M/:

It remains to be shown thatŒ˛X ; ˛Y � D ˛ŒY;X�; for allX; Y 2 g:Since.t; m/ 7! .exptX/m D
˛exptX.m/ is the flow of˛X ; the Lie bracket of the vector fields̨X and˛Y is given by

Œ˛X ; ˛Y �.m/ D d

dt

ˇ̌
ˇ̌
tD0

˛�
exptX˛Y .m/

D d

dt

ˇ̌
ˇ̌
tD0

T.exptX/m.˛exp�tX/˛Y ..exptX/m/

D d

dt

ˇ̌
ˇ̌
tD0

d

ds

ˇ̌
ˇ̌
sD0

.exp�tX/.expsY /.exptX/m

D d

dt

ˇ̌
ˇ̌
tD0

d

ds

ˇ̌
ˇ̌
sD0

.expse�t adXY /m

D d

dt

ˇ̌
ˇ̌
tD0

˛e�t adXY .m/:

By linearity of Z 7! ˛Z.m/ it follows from this thatŒ˛X ; ˛Y �.m/ D ˛Z.m/; whereZ D
.d=dt/e�t adXY jtD0 D �ŒX; Y �: �

Remark 15.2 Right multiplicationx 7! rx defines a right action ofG on itself. The associated
mapg ! V.G/ is given by the mapX 7! vX of Lemma 3.1 and defines a linear isomorphism of
g onto the spaceVL.G/ of left invariant vector fields ong: It follows from the above thatVL.G/
is a Lie subalgebra ofV.G/ and thatX 7! vX is an isomorphism of Lie algebras fromg onto
VL.G/:

If x 2 M; then thestabilizerGx of x in G is defined by

Gx D fg 2 G j gx D xg:

Being the pre-image ofx under the continuous mapg 7! gx; the stabilizer is a closed subgroup
of G:
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Lemma 15.3 Letx 2 M: The Lie algebragx ofGx is given by

gx D fX 2 g j ˛X.x/ D 0g: (15)

Proof: Let gx denote the Lie algebra ofGx: Then for allt 2 R we have exptX 2 Gx; hence
.exptX/x D x: Differentiating this expression with respect tot at t D 0 we see that̨ X.x/ D 0:

It follows thatgx is contained in the set on the right-hand side of (15).
To establish the converse inclusion, assume that˛X.x/ D 0: Then c.t/ D .exptX/ x is

the maximal integral curve of the vector field̨X with initial point x: On the other hand, since
˛X.x/ D 0; the constant curved.t/ D x is also an integral curve. It follows that exptX x D
c.t/ D d.t/ D x; hence exptX 2 Gx for all t 2 R: In view of Lemma 7.7 it now follows that
X 2 gx: �

AsGx is a closed subgroup ofG; it follows from Corollary 14.2 that the coset spaceG=Gx
has the structure of a smooth manifold. Moreover, let� W G ! G=Gx denote the canonical
projection. Then� is a submersion, and the tangent space ofG=Gx at Ne WD �.e/ is given by
T Ne.G=Gx/ ' g= kerTe� D g=gx:

The map̨ x W g 7! gx factors through a bijectionN̨x of G=Gx onto the orbitGx:

Lemma 15.4 The mapN̨x W G=Gx ! M is a smooth immersion.

Proof: It follows from Corollary 14.2 that the natural projection� W G ! G=Gx is a smooth
submersion. Sincęx D N̨x ı�; it follows by application of Lemma 12.4 thatN̨x is smooth.

From˛x D N̨x ı� it follows by taking tangent maps ate and application of the chain rule
that

Te˛x D T Ne. N̨x/ ıTe�: (16)

Now Te� is identified with the canonical projectiong ! g=gx: Moreover, ifX 2 g; then
Te.˛x/.X/ D d=dt ˛x.exptX/jtD0 D ˛X.x/: Hence kerTe.˛x/ D gx D kerTe�: Combining
this with (16) we conclude thatT Ne N̨x is injectiveg=gx ! TxM: Hence,N̨x is immersive atNe:

We finish the proof by applying homogeneity. Forg 2 G; let lg denote the left action ofg on
G=Gx; and let̨ g denote the left action ofg onM: Then the mapslg and˛g are diffeomorphisms
of G=Gx andM respectively, and

˛g ı N̨x ı lg�1 D N̨x:

By taking the tangent map of both sides at�.g/ and applying the chain rule we may now con-
clude thatN̨x is immersive at�.g/: �

The action ofG onM is calledtransitiveif it has only one orbit, namely the full manifold
M: In this case theG-manifoldM is said to be ahomogeneous spaceforG: The following result
asserts that all homogeneous spaces forG are of the formG=H withH a closed subgroup ofG:

Proposition 15.5 Let the smooth action ofG onM be transitive, and letx 2 M: Then the map
˛x W G ! M; g 7! gx induces a diffeomorphismG=Gx ' M:
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Proof: The map N̨x W G=Gx ! M is a smooth immersion and a bijection. By Corollary 16.6
(see intermezzo on the Baire theorem) it must be a submersionat some point ofG=Gx: By
homogeneity it must be a submersion everywhere. HenceN̨x is a local diffeomorphism. Since
N̨x is a bijection, we conclude that it is a diffeomorphism. �

Example 15.6 Let n � 0: The special orthogonal group SO.nC 1/ acts smoothly and naturally
onRnC1: Let e1 be the first standard basis vector inRnC1: Then the orbit SO.n C 1/e1 equals
then-dimensional unit sphereS D Sn in RnC1: SinceS is a smooth submanifold ofRnC1; it
follows that the action of SO.nC 1/ onS is smooth and transitive. The stabilizer SO.nC 1/e1

equals the subgroup consisting of.nC 1/ � .nC 1/ matrices of the form
�
1 0

0 B

�
; with B 2 SO.n/:

It follows thatSn is diffeomorphic to SO.nC 1/=SO.nC 1/e1
' SO.nC 1/=SO.n/:

Example 15.7 Let n � 0: We recall thatn-dimensional real projective spaceP WD Pn.R/ is
defined to be the space of1-dimensional linear subspaces ofRnC1: It has a structure of smooth
manifold, characterized by the requirement that the natural map� W RnC1 n f0g ! P; v 7! Rv

is a smooth submersion.
We consider the natural smooth action ofG WD GL.n C 1;R/ on RnC1 n f0g given by

.g; x/ 7! gx: ThenG maps fibers of� onto fibers, hence the given action induces an action
G � P ! P: Since� is a submersion, it follows by application of Lemma 12.4 thatthe action of
G onP is smooth. Letm 2 P be the line spanned by the first standard basis vectore1 of RnC1:

ThenGm equals the group of invertible.nC 1/ � .nC 1/ matrices with first column a multiple
of e1: One readily sees that the action is transitive. Therefore, the induced mapG=Gm ! P is a
diffeomorphism of manifolds.

We now consider the subgroupK D O.n C 1/ of G: One readily sees thatK already acts
transitively onP: Hence the action induces a diffeomorphism fromK=Km ontoP: Here we note
thatKm D K \Gm consists of the matrices

�
a 0

0 B

�
;

with a D ˙1 andB 2 O.n/: Thus,Km ' O.1/ � O.n/; and we see that

Pn.R/ ' O.nC 1/=.O.1/ � O.n//:

16 Intermezzo: the Baire category theorem

Let X be a topological space. A subsetA � X whose closure equalsX is said to be dense.
Equivalently this means thatA \ U ¤ ; for every non-empty open subsetU of X:
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If O1;O2 are two open dense subsets ofX; thenO1\O2 is still open dense. Indeed, ifU � X

is open non-empty, thenU \ O1 is open non-empty by density ofO1: Hence,U \ O1 \ O2 is
open non-empty by density ofO2:

It follows that the intersection of finitely many open dense subsets ofX is still open and
dense.

Definition 16.1 The topological spaceX is called a Baire space if everycountableintersection
of open dense subsets is dense.

Remark 16.2 LetX be a topological space. A subsetS � X is said to be nowhere dense inX
if its closure NS has empty interior. We leave it to the reader to verify thatX is Baire if and only
if every countable union of nowhere dense subsets ofX has empty interior.

We recall that a topological spaceX is said to be locally compact if every pointp of X is
contained in a compact neighborhoodC: If X is assumed to be locally compact and Hausdorff,
then it is known that for every pointp 2 X and every neighborhoodN of p there exists a
compact neighborhoodC of p contained inN:

Theorem 16.3 (Baire category theorem)LetX be a Hausdorff topological space. ThenX is a
Baire space as soon as one of the following two conditions if fulfilled.

(a) X is locally compact.

(b) There exists a complete metric onX that induces the topology ofX:

Proof: Let fOk j k 2 Ng be a countable collection of open dense subsets ofX: Let x0 2 X be
any point and letU0 be an open neighborhood ofx0: In case (a) we assume thatU 0 is compact,
in case (b) assume thatU 0 is contained in a ball of radius1: It now suffices to show thatU0 has
a non-empty intersection with\n2NOn:

We will show inductively that we may select a sequence of non-empty open subsetsUk of X;
for k 2 N; with the property thatU kC1 � Ok \ Uk for all k 2 N: In case (b) we will show that
this can be done with the additional assumption thatUk is contained in a ball of radius1=.kC1/:

Suppose thatU0; : : : ; Un have been selected. SinceOn is open dense,On \ Un ¤ ;: Select
a pointxnC1 of the latter set, then in either of the cases (a) and (b) we mayselect an open
neighborhoodUnC1 of xnC1 whose closure is contained inOn \ Un: In case (b) we may select
UnC1 with the additional property that it is contained in the ballof radius1=.nC2/ aroundxnC1:

The sequence.U n/ is a descending sequence of non-empty closed subsets of the subsetU0:
At the end of the proof we will show that its intersection is non-empty. Since obviously\n�Un
is contained inU0 \ \n2NOn; it then follows that the latter intersection is non-empty.

Thus, it remains to show that the intersection of the setsU n is non-empty. In case (b) this
follows from the lemma below. In case (a), the sequence.U n/ is a decreasing sequence of closed
subsets of the compact setU 0: Since each finite intersection contains a setUm; it is non-empty.
Hence, by compactness, the intersection is non-empty. �
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Lemma 16.4 Let .X; d/ be a complete metric space and letCk be a decreasing sequence of
non-empty closed subsets ofX whose diametersd.Ck/ tend to zero. Then\k2NCk consists of
precisely one point.

Proof: The condition about the diameter means that we may select a ball of radiusrk containing
the setCk; for k 2 N; such thatrk ! 0 ask ! 1: For eachk we may selectxk 2 Ck: Then
d.xm; xn/ < 2rk for all m; n � k; hence.xn/ is a Cauchy sequence. By completeness of the
metric, the sequence.xn/ has a limitx:

Fix k 2 N: Let ı > 0; then there existsn � k such thatxn 2 B.xI ı/: HenceB.xI ı/ \
Ck ¤ ;: It follows thatx belongs to the closure ofCk; hence toCk; for everyk 2 N: Hence
x 2 \k2NCk: If y is a second point in the intersection, then for everyk; bothx; y belong toCk;
henced.x; y/ < 2rk: It follows thatd.x; y/ D 0; hencex D y: �

A useful application of the above is the following result.

Proposition 16.5 Let X be a manifold of dimensionn: Let fYk j k 2 Ng be a countable
collection of submanifolds ofX of dimension strictly smaller thann: Then the union[k2NYk has
empty interior.

Proof: SinceX is locally compact, it is a Baire space. Fixk 2 N: If y 2 Yk; then by the
definition of submanifold, there exists an open neighborhood Uy of y in Yk such thatUy is
nowhere dense inX: By the second countability assumption for manifolds, it follows thatYk
can be covered with countably many neighborhoodsUk;j that are nowhere dense inX: Thus, the
union[k2NYk is the countable union of the setsUk;j : Since all of them are nowhere dense, their
union has empty interior. �

Corollary 16.6 LetX andY be smooth manifolds withdimX < dimY: Let ' W X ! Y be a
smooth immersion. Then'.X/ has empty interior.

Proof: Putd D dimX: For everyx 2 X there exists an open neighborhoodUx of x in X such
that'.Ux/ is a smooth submanifold ofY of dimensiond: By the second countability assumption
there exists a countable covering ofX by open subsetsUk of X such that'.Uk/ is a smooth
submanifold ofY of dimensiond: It follows that'.X/ D [k2N'.Uk/ has empty interior. �

17 Normal subgroups and ideals

If G is a Lie group andH a closed subgroup, then the coset spaceG=H is a smooth manifold in
a natural way. IfH is a normal subgroup, i.e.,gHg�1 D H for all g 2 G; thenG=H is a group
as well. The following result asserts that these structuresare compatible and turnG=H into a
Lie group.

Proposition 17.1 LetG be a Lie group andH a closed normal subgroup. ThenG=H has a
unique structure of Lie group such that the canonical map� W G ! G=H is a homomorphism
of Lie groups.
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Proof: We equipG=H with the unique manifold structure for which� is a submersion. Since
H is normal,G=H has a unique group structure such that� is a group homomorphism. LetN�
denote the multiplication map of the quotient groupG=H: Then the following diagram commutes

G �G ��! G

# ��� # �

G=H �G=H N��! G=H

Since� and� are smooth, so is� ı�: Since the left vertical map is a submersion, it follows from
Lemma 12.4 thatN� is smooth. In a similar fashion it follows that the inversionmap ofG=H is
smooth. HenceG=H is a Lie group, and� is a Lie group homomorphism.

Suppose thatG=H is equipped with a second structure of Lie group such that� W G ! G=H

is a Lie group homomorphism. We shall denoteG=H; equipped with this structure of Lie group,
by .G=H/0: The identity mapI W G=H ! .G=H/0 clearly is an injective homomorphism of
groups. Since� is a submersion, it follows by application of Lemma 12.4 thatI is smooth,
hence a Lie group homomorphism. SinceI is injective, it follows by Lemma 7.6 thatI is
immersive everywhere. Hence, by Lemma 17.2 below we see thatI is a submersion. Thus,I
is a bijective local diffeomorphism, hence a diffeomorphism. Therefore,I is an isomorphism of
Lie groups, establishing the uniqueness. �

Lemma 17.2 Let ' W G ! G 0 be an immersive homomorphism of Lie groups. Then' is a
submersion if and only if'.G/ is an open subgroup ofG 0:

Remark 17.3 In Proposition 17.7 we will see that the assumption that' be immersive is super-
fluous.

Proof: If ' is a submersion, then'.G/ is open inG 0: Conversely, assume that'.G/ is open in
G 0: Then it follows by Corollary 16.6 that dimG D dimG 0: HenceTe' W TeG ! TeG

0 is an
injective linear map between spaces of equal dimension. Therefore, it is surjective as well. By
homogeneity it follows that' is a submersion everywhere. �

Theorem 17.4 (The isomorphism theorem for Lie groups).Let ' W G ! G 0 be a homomor-
phism of Lie groups. ThenH WD ker' is a closed normal subgroup ofG:Moreover, the induced
homomorphismN' W G=H ! G 0 is a smooth injective immersion. If' is surjective, thenN' is an
isomorphism of Lie groups.

Proof: The following diagram is a commutative diagram of group homomorphisms

G
'�! G 0

# � % N'

G=H

Moreover, since� is a submersion, whereas' is smooth, it follows thatN' is smooth. HenceN' is
an injective homomorphism of Lie groups. It follows by Lemma7.6 that' is an immersion. Now
assume that' is surjective. ThenN' is surjective, and it follows by application of Lemma 17.2
that N' is a submersion. We conclude thatN' is a local diffeomorphism, hence a diffeomorphism,
hence an isomorphism of Lie groups. �
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Example 17.5 The isomorphism of Proposition 10.3 is an isomorphism of Liegroups.

Example 17.6 Let G be a Lie group. Then Ad is a Lie group homomorphism fromG into
GL.g/: It induces an injective Lie group homomorphismG= ker Ad ! GL.g/; realizing the
image Ad.G/ as a Lie subgroup of GL.g/: If G is connected, then ker Ad is the centerZ.G/ of
G; see exercises. Consequently, Ad.G/ ' G=Z.G/ in this case.

Proposition 17.7 Let ' W G ! G 0 be a homomorphism of Lie groups. Then'.G/ is an open
subgroup ofG 0 if and only if' is submersive.

Proof: If ' is submersive, then'.G/ is open. Thus, it remains to prove the ‘only if’ statement.
LetH be the kernel of': Then by Theorem 17.4 it follows that the induced mapN' W G=H ! G 0

is an injective homomorphism of Lie groups. By application of Lemma 17.2 it follows thatN' is
a submersion. SinceN' D ' ı�; whereas� is surjective, we now deduce that' is a submersion
everywhere. �

We end this section with a discussion of the Lie algebra of a quotient of a Lie group by a
closed normal subgroup.

Definition 17.8 Let l be a Lie algebra. Anidealof l is by definition a linear subspacea of l such
thatŒl; a� � a; i.e. ŒX; Y � 2 a for all X 2 l; Y 2 a:

Remark 17.9 Note that an ideal is always a Lie subalgebra.

Lemma 17.10 (a) Let l be a Lie algebra,a � l an ideal. Then the quotient (linear) space
l=a has a unique structure of Lie algebra such that the canonicalprojection� W l ! l=a is a
homomorphism of Lie algebras.

(b) Let' W l ! l0 be a homomorphism of Lie algebras, with kernela: Thena is an ideal inl
and' factors through an injective homomorphism of Lie algebrasN' W l=a ! l0:

Proof: Left as an exercise for the reader. �

Lemma 17.11 LetG be a Lie group and leth be a subalgebra of its Lie algebrag:

(a) h is an ideal if and only ifh is invariant underAd.Ge/:

LetH be a Lie subgroup ofG with Lie algebrah:

(b) If H is normal inG; thenh is an ideal ing:

(c) If h is an ideal ing; thenHe is normal inGe:

Proof: Left to the reader. Use Lemmas 4.3 and 4.6. �
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Lemma 17.12 LetH be a closed subgroup of the Lie groupG: If H is normal, then its Lie
algebrah is an ideal ing: Moreover, the tangent map ate of the canonical projection� W G !
G=H induces an isomorphism from the quotient Lie algebrag=h onto the Lie algebra of the Lie
groupG=H:

Proof: Let l D T�.e/.G=H/ be equipped with the Lie algebra structure induced by the Lie
group structure ofG=H: The tangent map�� of the canonical projection� W G ! G=H is a
Lie algebra homomorphism fromg onto l: On the other hand, its kernel ish: Hence, by Lemma
17.10,�� factors through a Lie algebra isomorphism fromg=h ontol: �

Remark 17.13 Accordingly, ifG is a Lie group andH a closed normal subgroup, then we shall
identify the Lie algebra ofG=H with g=h via the isomorphism described above. In this fashion,
�� becomes the canonical projectiong ! g=h:

Corollary 17.14 Let' W G ! G 0 be a homomorphism of Lie groups, with kernelH:

(a) The induced mapN' W G=H ! G 0 is a homomorphism of Lie groups.

(b) Put'� D Te': Thenker'� equals the Lie algebrah ofH:

(c) The tangent mapN'� D T Ne. N'/ is the linear mapg=h ! g0 induced by'�:

(d) If ' is surjective, thenN' and N'� are isomorphisms.

Proof: Assertion (a) follows by application of Theorem 17.4. Let� W G ! G=H be the
canonical projection. Then� is a homomorphism and a smooth submersion. By the preceding
remark, its tangent map�� is identified with the natural projectiong ! g=h: From N' ı� D '

it follows by differentiation ate and application of the chain rule thatN'� ı�� D '�: Since N' is
a smooth immersion by Theorem 17.4, it follows that ker'� D ker�� D h: Hence, (b). From
N'� ı�� D '� we also deduce (c). If' is surjective, thenN' is an isomorphism of Lie groups by
Theorem 17.4. Hence,N'� is an isomorphism of Lie algebras. �

18 Detour: actions of discrete groups

LetH be a group (without additional structure) acting on a topological spaceM from the right
by continuous transformations. Equivalently, this means that the action mapM � H ! M is
continuous relative to the discrete topology onH (the topology for which all subsets ofH are
open).

The action ofH onM is said to beproperly discontinuousif for eachm 2 M there exists an
open neighborhoodU of m such thatUh \ U D ; for all h 2 H n feg: This condition amounts
to saying that the action ofH is locally of trivial PFB type relative to the discrete topology on
H: A third equivalent way of phrasing the condition is that the action ofH is free and that the
canonical projection� W M ! M=H is a covering map.

Now assume thatM is locally compact and Hausdorff. Then in the setting of an action by
diffeomorphisms on a smooth manifoldM the following result may be viewed as a consequence
of Theorem 13.5. We will give a direct proof to cover the topological setting.
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Lemma 18.1 LetM be a locally compact Hausdorff space equipped with a rightH -action by
continuous transformations. Then the following assertions are equivalent.

(a) The action ofH onM is continuous, proper and free for the discrete topology onH:

(b) The action ofH onM is properly discontinuous and the associated quotient spaceM=H
is Hausdorff.

Proof: Assume (a), and fixm 2 M: Then there exists a compact neighborhoodN of m: The set
HN;N of h 2 H with Nh \ N ¤ ; is compact inH; hence finite. PutC D HN;N n feg: For
everyh 2 C we may select an open neighborhoodUh 3 m such thatUhh \ Uh D ; (observe
thatmh ¤ m by freeness and use continuity of the action). LetU be the intersection of the finite
collection of open setsUh .h 2 C/ with the interior ofN: ThenU is open andUh \ U D ; for
all h 2 H n feg: It follows that the action ofH is properly discontinuous. By the same argument
as in the proof of Theorem 13.5 it follows thatCH is closed for every compact subsetC � M:

By Lemma 11.8 we conclude thatG=H is Hausdorff.
Next assume (b), and letH be equipped with the discrete topology. We will first show that

the action map̨ W M �H ! M is continuous. LetU � M be open. Then for eachh 2 H the
setUh�1 is open inM: HenceUh�1 � fhg is open inM �H: The preimagę �1.U / equals the
union of these sets forh 2 H; hence is open.

Now suppose thatC1; C2 are compact subsets ofM: We will show that the set

HC1;C2
D fh 2 H j C1h \ C2 ¤ ;g

is finite hence compact; from this (a) will follow.
For everym 2 M there exists an open neighborhoodUm of m such thatUm \ Umh D ;

for h 2 H; h ¤ e: It follows thatUmh1 \ Umh2 D ; for distincth1; h2 2 H: Let Nm be a
compact neighborhood ofm contained inUm: By compactness there exists a finite collectionF
of points fromC1 such thatC1 � [m2FUm: It follows thatHC1;C2

is contained in the finite union
[m2FHNm;C2

: Therefore, it suffices to show that the setHm WD HNm;C2
is finite.

It follows from Lemma 11.8 thatNmH is closed. The complementU0 WD M nNmH is open
in M: The setsU0 andUmh; h 2 Hm; form an open cover ofC2: Hence, there exists a finite
subsetS � Hm such thatC2 is contained in the union ofU0 and[h2SNmh: Let h 2 Hm: Then
Nmh \ C2 is non-empty; letc be one of its points. Asc … U0 there exists ah0 2 S such that
c 2 Umh0: Fromc 2 Nmh\Umh0 � Umh\Umh0 it follows that the intersectionUmh\Umh0 is
non-empty. Henceh D h0 and we see thath 2 S: We conclude thatHm is contained inS hence
is finite. �

19 Densities and integration

If V is ann-dimensional real linear space, then adensityonV is a map! W V n ! C transforming
according to the rule:

T �! WD ! ıT n D jdetT j! .T 2 End.V //:
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In these notes the (complex linear) space of densities onV is denoted byDV: A density! 2 DV

is calledpositiveif it is non-zero and has values inŒ0;1Œ: The set of such densities is denoted
by DCV: It is obviously non-empty.

Example 19.1 If ! is an element of̂ nV �; the space of alternating multilinear mapsV n ! R;

thenj!j is a positive density onV:

If ' is a linear isomorphism fromV onto a real linear spaceW , then the map'� W ! 7! ! ı'n

is a linear isomorphismDW ! DV of the associated spaces of densities. Indeed, if! 2 DW;

T 2 End.V /; then

Œ'�!� ıT n D ! ı Œ' ıT �n D .! ı Œ' ıT ı'�1�n/ ı'n

D jdet.' ıT ı'�1/j'�! D jdetT j'�!:

Note that'� mapsDCW ontoDCV:

The spaceDV is one dimensional; in fact, ifv1; : : : ; vn is a basis ofV then the map! 7!
!.v1; : : : ; vn/ is a linear isomorphism fromDV ontoC; mappingDCV onto�0;1Œ:

If X is a smooth manifold, then byTxX we denote the tangent space ofX at a pointx: By
a well known procedure we may define thebundleDTX of densitiesonX I it is a complex line
bundle with fiber.DTX/x ' D.TxX/: The space of continuous sections ofDTX is denoted
by �.DTX/I this space is called the space ofcontinuous densitiesonX: The space of smooth
densities onX is denoted by�1.DTX/: We also have the fiber bundleDCTX of positive
densities onX: Its fiber abovex equalsDCTxX: Its continuous sections are called thepositive
continuous densitiesonX:

If ' is a diffeomorphism ofX onto a manifoldY; then we define the (pull-back) map'� W
�.DT Y / ! �.DTX/ by

.'�!/.x/ D D'.x/�!.'.x//:

Note that'� maps positive densities to positive densities.
Let e1; : : : ; en be the standard basis ofRn: The density� 2 DRn given by�.e1; : : : ; en/ D 1

is called the standard density onRn: Let U � Rn be an open subset. Then by triviality of the
tangent bundleT U ' U � Rn; the mapf 7! f � defines a linear isomorphism fromC1.U /

onto�1.DT U /: If f belongs to the spaceCc.U / of compactly supported continuous functions
U ! C; we define the integral

Z

U

f � WD
Z

Rn

f .x/ dx;

wheredx denotes normalized Lebesgue measure. If' is a diffeomorphism fromU onto a second
open subsetV � Rn; then, forg 2 Cc.V /; we have'�.g�/.x/ D g.'.x// jdetD'.x/j�.'.x//:
Thus, by the substitution of variables theorem:

Z

U

'�! D
Z

V

! .! 2 �c.DT V //: (17)
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Let now .�; �/ be a coordinate chart ofX: If ! is a continuous density onX with compact
support supp! � �; then we define

Z

X

! WD
Z

�.�/

.��1/�!:

This definition is unambiguous, because if.�0; �0/ is a second chart such that supp! � �0; then
Z

�0.�0/

.�0/�1�! D
Z

�.�/

.�0
ı��1/�.�0/�1�! D

Z

�.�/

.��1/�!

by the substitution of variables theorem.
We can now define theintegral of a compactly supported densityon the manifoldX as fol-

lows. Letf�˛ j ˛ 2 Ag be an open cover of the manifoldX with coordinate neighborhoods.
Then there exists a partition of unityf ˛ j ˛ 2 Ag subordinate to this cover. We recall that the
 ˛ are functions inC1

c .X/ with 0 �  ˛ � 1: Moreover, the collection of supportsfsupp ˛g
is locally finite and

P
˛2A ˛ D 1 onX (note that the sum is finite at every point ofX; by the

local finiteness of the collection of supports). Let! 2 �c.DTX/ be a continuous density onX
with compact support. Then we define

Z

X

! D
X

˛2A

Z

�˛

 ˛!:

Just as in the theory of integration of differential forms one shows that this definition is inde-
pendent of the particular choice of partition of unity. Notethat integration of forms is oriented,
whereas the present integration of densities is non-oriented.

We note that! 7!
R
X
! is a linear map�cDTX ! C:Moreover, the following lemma is an

easy consequence of the definitions (reduction to charts et cetera).

Lemma 19.2 Let! be a positive density onX: Then for everyf 2 Cc.X/ with f � 0 every-
where we have

R
X
f! � 0:Moreover,

R
X
f! D 0 ) f D 0:

Also, by a straightforward reduction to charts we can prove the following substitution of
variables theorem.

Proposition 19.3 Let ' W X ! Y be a diffeomorphism ofC1-manifolds. Then for every
! 2 �c.DT Y / we have: Z

X

'�! D
Z

Y

!:

We now turn to the situation thatG is a Lie group acting smoothly from the left on a smooth
manifoldM: If g 2 G; we writelg for the diffeomorphismM ! M; m 7! gm:

Definition 19.4 A density! 2 �.DTM/ is said to beG-invariant if l�g! D ! for all g 2 G:

The space ofG-invariant continuous densities onM is denoted by�.DTM/G :
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The following result will be very important for applications.

Lemma 19.5 Let! be aG-invariant continuous density onM: Then for everyf 2 Cc.M/ and
all g 2 G we have: Z

M

l�g .f / ! D
Z

M

f !: (18)

Herel�gf WD f ı lg :

Proof: We note that by invariance of! we havel�g .f /! D l�g .f /l
�
g .!/ D l�g .f!/:Now observe

that lg is a diffeomorphism ofM and apply the substitution of variables theorem (Proposition
19.3) with' D lg : �

Lemma 19.6 LetG be a Lie group and let�.DTG/G denote the space of left invariant contin-
uous densities onG:

(a) The evaluation map� W ! 7! !.e/ defines a linear isomorphism�.DTG/G
'�! Dg:

(b) A density! 2 �.DTG/G is positive if and only if!.e/ is positive.

Proof: The map� is linear. If ! is a left invariant continuous density onG; then!.g/ D
..l�1g /�!/.g/ D Te.lg/

�1�!.e/ for all g 2 G: Hence,� has trivial kernel. On the other hand, if
!0 is a density inDg then the formula

!.g/ WD Te.lg/
�1�!0 (19)

defines a continuous density onG whose value ate is !0: By application of the chain rule for
tangent maps it follows that this density is leftG-invariant. Thus, (a) follows. Assertion (b)
follows from (19). �

The following result is an immediate consequence of the above lemma.

Corollary 19.7 Every Lie groupG has a left (resp. right) invariant positive density. Two such
densities differ by a positive factor.

If ! is a density onG; then the mapCc.G/ ! R; f 7! I.f / D
R
G
f! is continuous linear,

hence aRadon measureonG: For this reason we shall often writedx for an invariant density on
G; and

R
G
f .x/ dx for the associated invariant integral of a functionf 2 Cc.G/:Note that in the

example ofG D Rn with addition,dx is a (complex) multiple of Lebesgue measure. Positivity
then means that the multiple is positive, and invariance corresponds with translation invariance
of the Lebesge measure.

We now recollect some of the above results in the present notation. Letdx be a left invariant
positive density onG: (Analogous statements will be valid for right invariant positive densities.)

Proposition 19.8 The mapf 7! I.f / D
R
G
f .x/ dx is a complex linear functional onCc.G/:

It satisfies the following, for everyf 2 Cc.G/:
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(a) If f is real then so isI.f /I if f � 0 thenI.f / � 0:

(b) If f � 0 andI.f / D 0 thenf D 0:

(c) For everyy 2 G W Z

G

f .yx/ dx D
Z

G

f .x/ dx: (20)

Proof: Assertion (a) follows from the positivity of!: Assertion (b) is immediate from Lemma
19.2. Finally (c) is a reformulation of Lemma 19.5. �

Remark 19.9 One can show that up to a positive factor the linear functional I is uniquely
determined by the requirementI ¤ 0 and the properties (a) and (c). In particular property (b) is
a consequence. For details we refer the reader to the book by Bröcker and tom Dieck.

It follows from the proposition that the Radon measure associated with a left invariant density
is left invariant, non-trivial and positive.

In the literature a leftG-invariant positive Radon measure onG is called a leftHaar mea-
sureof G: The above statement about the uniqueness ofI is referred to as ‘uniqueness of the
Haar measure.’ More generally a left (resp. right) Haar measure exists (and is unique up to a
positive factor) for any locally compact topological group. Of course one cannot use the present
differential geometric method of proof to establish the existence and uniqueness result in that
generality.

Lemma 19.10 LetG be a compact Lie group. Then there exists a unique left invariant density
dx onG with Z

G

dx D 1:

This density is positive.

Proof: Fix a positive density� onG: Then it follows from assertions (a) and (b) of Proposition
19.8 forf D 1; that

R
G
� equals a positive constantc > 0: The densititydx D c�1� satifies

the above. This proves existence. If! is a density with the same property, then! D Cdx for a
constantC 2 C: Integration overG shows thatC D 1: This establishes uniqueness. �

Remark 19.11 The density of the above lemma is called the normalized left invariant density
of G: The associated Haar measure is callednormalized Haar measure.

The following result expresses how left invariant densities behave under right translation.

Lemma 19.12 Letdx be a left invariant density on a Lie groupG: Then for everyg 2 G;

r�
g .dx/ D jdetAd.g/j�1 dx:
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Proof: Without loss of generality we may assume thatdx is non-zero. Forg; h 2 G we have that
lhrg D rg lh; hencer�

g l
�
h

D l�
h
r�
g and we see thatl�

h
.r�
g .dx// D r�

g .l
�
h
dx/ D r�

g .dx/: It follows
thatr�

g .dx/ is a left invariant positive density. This implies thatr�
g .dx/ D c dx for a non-zero

constantc: Applying l�
g�1 to both sides of this equation we findC�

g�1 dx D c dx: Evaluating
both sides of the latter identity ine we obtain

c dx.e/ D Te.Cg�1/�dx.e/ D Ad.g�1/�dx.e/ D jdetAd.g�1/j dx.e/:
It follows thatc D jdetAd.g/j�1: �

A Lie groupG with jdetAd.g/j D 1 for all g 2 G is said to beunimodular. The following
result is an immediate consequence of the lemma.

Corollary 19.13 Let G be a unimodular Lie group. Then every left invariant densityis also
right invariant.

Lemma 19.14 LetG be a compact Lie group. ThenG is unimodular.

Remark 19.15 It follows that the normalized Haar measure of a compact Lie group is bi-
invariant.

Proof: The mapx 7! jdetAd.x/j is a continuous group homomorphism fromG into the group
.RC; �/ of positive real numbers equipped with multiplication. ItsimageH is a compact sub-
group of.RC; �/: Now apply the lemma below to conclude thatH D f1g: �

Lemma 19.16 The only compact subgroup of.RC; �/ is f1g:
Proof: Let � be a compact subgroup of.RC; �/: Then1 2 �: Assume� contains an element
 > 0 different from1: Since� contains both and�1 we may as well assume that > 1: The
sequence.n/n�1 belongs to� and is unbounded from above, contradicting the compactnessof
�: It follows that� D f1g: �

We shall now investigate the existence of invariant densities on homogeneous spaces forG:

According to Proposition 15.5 such a space is of the formX D G=H; withH a closed subgroup
of G: HereG acts onX by left translation. Forg 2 G we writelg W X ! X; xH 7! gxH:

The tangent map ate of the canonical projection� W G ! G=H induces a linear isomor-
phismg=h ' TeH .G=H/ by which we identify. Ifh 2 H; thenCh W G ! G; g 7! hgh�1

leavesH invariant. Differentiation ate gives that Ad.h/ leaves the subspaceh of g invariant,
hence induces a linear automorphismA.h/ of the quotient spaceg=h: The following lemma will
be useful in the sequel.

Lemma 19.17 Let h 2 H: Then the tangent map oflh W G=H ! G=H; xH 7! hxH at e is
given by

TeH .lh/ D A.h/:

Proof: Let h 2 H: Recall thatCh W G ! G; x 7! hxh�1 has tangent map Ad.h/ at e: We
note that� ı Ch D lh ı�: Differentiating ate and applying the chain rule we findTe� ı Ad.h/ D
TeH .lh/ ıTe�: It follows from this thatTeH .lh/ is the endomorphism ofg=h induced by Ad.h/:
�
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The fiber of the bundleDT .G=H/ over eH is identified withD.g=h/: ThusA.h/� is an
automorphism of the associated space of densitiesD.g=h/: Note that for! 2 D.g=h/ we have:

A.h/�! D jdetA.h/j! D jdet Ad.h/jgj
jdet Ad.h/jhj

!: (21)

We writeD.g=h/H for the linear space of densities! on g=h satisfyingA.h/�! D !: Such
densities are calledH -invariant. SinceD.g=h/ is one dimensional, the space ofH -invariant
densities is either0 or 1 dimensional. In view of (21) the latter is the case if and onlyif
jdetAd.h/jgj D jdetAd.h/jhj for all h 2 H:

Lemma 19.18

(a) The evaluation map� W ! 7! !.eH/ defines a bijection from�.DT .G=H//G onto
D.g=h/H : This bijection maps positive densities onto positive densities.

(b) The space ofG-invariant densities onG=H is at most one dimensional. It is one dimen-
sional if and only if

jdet Ad.h/jgj D jdet Ad.h/jhj .h 2 H/:

Proof: Clearly � is a linear map. Assume that! is aG-invariant density onG=H: Then for
g 2 G we have:TeH .lg/�!.gH/ D l�g .!/.eH/ D �.!/; hence

!.gH/ D .TeH .lg/
�1/��.!/ D A.g/��1�.!/:

This shows that the map� has a trivial kernel, hence is injective, and that its image is contained
in D.g=h/H : To establish its surjectivity, let!0 2 D.g=h/H : Then for allh 2 H we have

.TeH .lh/
�1/�!0 D A.h/��1!0 D !0;

hence we may define a density onG=H by

!.gH/ D .TeH .lg/
�1/�!0:

Note that the right hand side of this equation stays the same if g is replaced bygh; h 2 H: Hence
the definition is unambiguous. One readily verifies that! thus defined is smooth,G-invariant,
and has image!0 under�: This proves (a); the statement about positivity is obvious from the
above.

From (a) it follows that the dimension of�.DT .G=H//G equals dimD.g=h/I hence, it is at
most one. The final assertion now follows from what was said inthe preceding text. �

Corollary 19.19 LetG be a Lie group,H a compact subgroup. ThenG=H has aG-invariant
positive density. Two such densities differ by a positive factor.
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Proof: Forh 2 H; we put

�.h/ D jdetAd.h/jgj
jdetAd.h/jhj

:

Clearly� is a Lie group homomorphism fromH to the groupRC consisting of the positive real
numbers, equipped with multiplication. Thus,�.H/ is a compact subgroup ofRC: In view of
Lemma 19.16 this implies that�.H/ D f1g: The result follows. �

Example 19.20 AsSn ' SO.nC 1/=SO.n/; see Example 15.6, it follows thatSn has a unique
SO.nC1/-invariant density of total volume1: Similarly,Pn.R/ has a unique SO.nC1/-invariant
density of total volume1I see Example 15.7. Real projective space is non-orientable,so it does
not have a volume form, i.e., a nowhere vanishing exterior differential form of top degree. This
problem of possible non-orientability of homogeneous spaces has been our motivation in using
densities rather than forms to define invariant integration.

20 Representations

In this sectionG will always be a Lie group.
In the following we will give some of the basic definitions of representation theory withV a

completelocally convex spaceoverC: EveryBanach spaceis an example of such a space. Natu-
ral spaces of importance for analysis, likeC.M/; Cc.M/; C1.M/; C1

c .M/; withM a smooth
manifold, and also the spacesD0.M/ andE 0.M/ of distributions and compactly supported distri-
butions, respectively, are complete locally convex, but ingeneral not Banach. Of courseHilbert
spacesare Banach spaces; thus, they are covered as well.

Definition 20.1 Let V be a locally convex space. Acontinuous representation� D .�; V / of
G in V is a continuous left action� W G � V ! V; such that�.x/ W v 7! �.x/v D �.x; v/ is
a linear endomorphism ofV; for everyx 2 G: The representation is calledfinite dimensionalif
dimV < 1:

Remark 20.2 If G is just a group, andV just a linear space, one defines a representation ofG

in V similarly, but without the requirement of continuity.

Example 20.3

(a) LetG � X ! X; .g; x/ 7! gx be a left action ofG on a setX; and letF.X/ denote the
space of functionsX ! C: Then the action naturally induces the representationL of G
onF.X/ given by

Lg'.x/ D '.g�1x/;

for ' 2 F.X/; g 2 G andx 2 X:
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(b) LetL be the action ofG onF.G/ induced by the left actionG � G ! G; .g; x/ 7! gx:

This is called theleft regular representationof G: It is given by the formulaLg'.x/ D
'.g�1x/; for x; g 2 G:
Similarly, the right multiplication ofG on itself induces theright regular representation
of G onF.G/ given by

Rg'.x/ D '.xg/;

for ' 2 F.G/; g; x 2 G: These representations leave the subspaceC.G/ � F.G/ in-
variant. Similarly, ifdx is a left or right invariant Haar measure onG; then the associated
spaceL2.G/ of square integrable functions is invariant under bothL andR:One can show
that the restrictions ofL andR toL2.G/ are continuous, see Proposition 20.10.

(c) The natural action of SU.2/ onC2 induces a representation� of SU.2/ onF.C2/ given
by

�.x/'.z/ D '.x�1z/ D '. N̨z1 C Ňz2;�ˇz1 C ˛z2/;

for ' 2 F.C2/; z 2 C2 and

x D
�
˛ � Ň
ˇ N̨

�
2 SU.2/;

i.e.,˛; ˇ 2 C; andj˛j2 C jˇj2 D 1:

Lemma 20.4 Let .�; V / be a finite dimensional representation ofG: If � is continuous, then�
is smooth.

Proof: By finite dimensionality ofV; the group GL.V / is a Lie group. The map� W x 7! �.x/ is
a homomorphism fromG to GL.V /: The hypothesis that the representation is continuous means
that the map.x; v/ 7! �.x/v is continuous. By finite dimensionality ofV this implies that
� W G ! GL.V / is continuous. By Corollary 9.3 it follows that� W G ! GL.V / is smooth.
This in turn implies that.g; v/ 7! �.g/v is smoothG � V ! V: �

In the setting of the above lemma, the tangent map of� W G ! GL.V / at e is a Lie algebra
homomorphism�� W g ! End.V /; where the latter space is equipped with the commutator
bracket. This motivates the following definition.

Definition 20.5 By a representationof l in V we mean a Lie algebra homomorphism� W l !
End.V /; i.e.,� is a linear map such that for allX; Y 2 l we have:

�.ŒX; Y �/ D �.X/�.Y / � �.Y /�.X/:

A representation ofl in V is also called a structure ofl-moduleon V: Accordingly,� is often
suppressed in the notation, by writing�.X/v D Xv; for X 2 l; v 2 V: With this notation, the
above rule becomes

ŒX; Y �v D XYv � YXv .X; Y 2 l; v 2 V /:
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Remark 20.6 Similarly, a complete locally convex spaceV; equipped with a continuous repre-
sentation of a Lie groupG; will sometimes be called aG-module

Example 20.7 Ad W G ! GL.g/ is a continuous representation ofG in g: The associated
infinitesimal representation ofg in End.g/ is given by.X; Y / 7! . adX/Y D ŒX; Y �:

Proposition 20.8 Let � be a representation ofG in a Banach spaceV: Then the following
conditions are equivalent:

(a) � W G � V ! V is continuous.

(b) For everyx 2 G the map�.x/ is continuous, and for everyv 2 V the mapG ! V; x 7!
�.x/v is continuous ate:

Proof: That (b) follows from (a) is obvious. We will establish the converse implication by
application of theBanach-Steinhaus(or uniform boundedness) theorem.

Assume (b). Fixx0 2 G: If v 2 V then�.x/v D �.x0/�.x
�1
0 x/vI using (b) we see that

x 7! �.x/v is continuous atx0:
Now fix v0 2 V: Select a compact neighborhoodN of x0 in G: Thenf�.x/ j x 2 N g is a

collection of continuous linear mapsV ! V:Moreover, for everyv 2 V; the mapx 7! k�.x/vk
is continuous, hence bounded onN: By the uniform boundedness theorem it follows that the
collection of operator normsk�.x/k; for x 2 N is bounded, say by a constantC > 0: It follows
that forx 2 N; v 2 V we have

k�.x/v � �.x0/v0k � k�.x/v � �.x/v0k C k�.x/v0 � �.x0/v0k
� Ckv � v0k C k�.x/v0 � �.x0/v0k:

The second term on the right-hand side tends to0 if x ! x0; by (b). Hence.x; v/ 7! �.x/v is
continuous in.x0; v0/: �

Remark 20.9 The above proof is based on the principle of uniform boundedness, and readily
generalizes to the category of complete locally convex spaces for which this principle holds, the
so called barrelled spaces.

The following result is in particular of interest ifX D G anddx a left invariant positive
density onX:

Proposition 20.10 LetX be a manifold equipped with a continuous leftG-action. Letdx be a
G-invariant positive continuous density onX: Then the natural representationL ofG in L2.X/
is continuous.

Proof: In view of the previous proposition it suffices to show that for every' 2 L2.X/ the
mapˆ W x 7! Lx'; G ! L2.X/ is continuous ate: Thus we must estimate theL2-norm of the
functionLx'�' asx ! e: Let � > 0: Then there exists a 2 Cc.X/ such thatk'� k2 < 1

3
�:
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Let g 2 Cc.G/ be a non-negative function such thatg D 1 on an open neigbourhood of supp :
Then forx sufficiently close toe we haveg D 1 on suppLx : Thus for suchx we have:

kLx' � 'k2 � 2

3
� C kLx �  k2

D 2

3
� C k.Lx �  /gk2

� 2

3
� C kLx �  k1kgk2:

Fix a compact neighborhoodN of supp : Forx sufficiently close toe one has suppLx � N:

By uniform continuity of onN; it now follows thatkLx �  k1kgk2 < �
3

for x sufficiently
close toe: �

Definition 20.11 Let � be a representation ofG in a (complex) linear spaceV: By an invariant
subspacewe mean a linear subspaceW � V such that�.x/W � W for everyx 2 G:

A continuous representation� of G in a complete locally convex spaceV is called irre-
ducible, if 0 andV are the only closed invariant subspaces ofV:

Remark 20.12 Note that for a finite dimensional representation.�; V / an invariant subspace is
automatically closed. Thus, such a representation is irreducible if the only invariant subspaces
are0 andV:

Definition 20.13 By aunitary representationof G we will always mean a continuous represen-
tation� of G in a (complex) Hilbert spaceH; such that�.x/ is unitary for everyx 2 G:

Remark 20.14 Let V be a complex linear space. Then by asesquilinear formonV we mean a
mapˇ W V � V ! C which is linear in the first variable, and conjugate linear inthe second, i.e.,
ˇ.v; �w C w0/ D N�ˇ.v; w/C ˇ.v; w0/ for all v; w;w0 2 V; � 2 C:

A Hermitian inner productonV is a sesquilinear formh� ; �i that is conjugate symmetric, i.e.
hv ; wi D hw ; vi; and positive definite, i.e.,hv ; vi � 0 andhv ; vi D 0 ) v D 0 for all v 2 V:

Finally, we recall that acomplex Hilbert spaceis a complex linear spaceH equipped with a
Hermitian inner producth� ; �i; whose associated norm is complete.

Remark 20.15 According to the above definition, a continuous representation of G in H is
unitary if and only if

h�.x/v ; wi D hv ; �.x�1/wi .v; w 2 H; x 2 G/:

Definition 20.16 A continuous finite dimensional representation.�; V / of G will be called
unitarizableif there exists a Hermitian inner product onV for which� is unitary.

Proposition 20.17 Let G be compact, and suppose that.�; V / is a continuous finite dimen-
sional representation ofG: Then� is unitarizable.
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Proof: Let dx denote right Haar measure onG; and fix any positive definite Hermitian inner
producth� ; �i1 onV: Then we define a new Hermitian pairing onV by

hv ; wi D
Z

G

h�.x/v ; �.x/wi1 dx .v; w 2 V /:

Notice that the integrand�v;w.x/ D h�.x/v ; �.x/wi1 in the above equation is a continuous
function of x: We claim that the pairing thus defined is positive definite. Indeed, ifv 2 V

then the function�v;v is continuous and positive onG: Hencehv ; vi D
R
G
�v;v.x/ dx � 0

by positivity of the measure. Also, ifhv ; vi D 0; then �v;v � 0 by Lemma 19.2, and hence
hv ; vi D �v;v.e/ D 0; and positive definiteness follows.

Finally we claim that� is unitary for the inner product thus defined. Indeed this follows from
the invariance of the measure. Ify 2 G; andv; w 2 V; then

h�.y/v ; �.y/wi D
Z

G

�v;w.xy/dx D
Z

G

�v;w.x/dx D hv ; wi:

�

Lemma 20.18 Let .�;H/ be a unitary representation ofG: If H1 is an invariant subspace for
�; then its orthocomplementH2 D H?

1 is a closed invariant subspace for�: If H1 is closed, then
we have the direct sumH D H1 ˚ H2 of closed invariant subspaces.

Proof: Let v 2 H2 and letx 2 G: We will show that�.x/v 2 H2: If w 2 H1; then�.x�1/w

belongs toH1 as well, so thath�.x/v ; wi D hv ; �.x�1/wi D 0: It follows that�.x/v 2 H?
1 :

�

Corollary 20.19 Let .�; V / be a continuous finite dimensional representation ofG: If � is
unitarizable, then it decomposes as a finite direct sum of irreducibles; i.e., there exists a direct
sum decompositionV D ˚1�j�nVj of V into invariant subspaces such that for everyj the
representation�j defined by�j .x/ D �.x/jVj

is irreducible.

Proof: Fix an inner product for which� is unitary, and apply the above lemma repeatedly.�

Corollary 20.20 Let .�; V / be a continuous finite dimensional representation of a compact Lie
group. Then every invariant subspace ofV has a complementary invariant subspace. Moreover,
� admits a decomposition as a finite direct sum of irreducible representations.

Proof: By Proposition 20.17� is unitarizable. Now apply Lemma 20.18 and Corollary 20.19.

Definition 20.21 Let .�; V / be a finite dimensional continuous representation ofG: Then by a
matrix coefficientof � we mean any functionm W G ! C of the form

m.x/ D mv;�.x/ WD h�.x/v ; �i

with v 2 V and� 2 V �:
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Remark 20.22 Note that the mapx 7! �.x/ is smooth, so that every matrix coefficient belongs
toC1.G/:

If h� ; �i is a Hermitian inner product onV; then a matrix coefficient of� may also be charac-
terized as a function of the form

m D mv;w W x 7! h�.x/v ; wi;

with v; w 2 V; sincew 7! h� ; wi is a conjugate linear bijection fromV ontoV �:

Let now .�; V / be a finite dimensional unitary representation ofG; and fix an orthonormal
basisu1; : : : ; un of V: Then for everyx 2 G we define the matrixM.x/ D Mu.x/ by

M.x/ij D mui ;uj
.x/:

This is just the matrix of�.x/ with respect to the basisu: Note that it is unitary. Note also
thatM.xy/ D M.x/M.y/: ThusM is a continuous group homomorphism fromG to the group
U.n/ of unitaryn � n matrices.

Definition 20.23 If .�j ; Vj /; for j D 1; 2; are continuous representations ofG in complete
locally convex spaces, then a continuous linear mapT W V1 ! V2 is said to beequivariant, or
intertwiningif the following diagram commutes for everyx 2 G W

V1
T�! V2

�1.x/ " " �2.x/

V1
T�! V2

The representations�1 and�2 are said to beequivalentif there exists a topological linear iso-
morphismT from V1 ontoV2 which is equivariant.

If the above representations are finite dimensional, then one does not need to requireT to be
continuous, since every linear mapV1 ! V2 has this property. In the case of finite dimensional
representations we shall write HomG.V1; V2/ for the linear space of interwining linear maps
V1 ! V2 and EndG.V1/ for the space of intertwining linear endomorphisms ofV1:

If V is a complex linear space, we write End.V / for the space of linear maps fromV to itself,
and GL.V / for the group of invertible elements in End.V /: If � is a representation ofG in V ,
then we may define a representationQ� of G in End.V / by

Q�.g/A D �.g/A�.g/�1:

Note that if� is finite dimensional and continuous, then so isQ�: Note also that the space

End.V /G D fA 2 End.V / j Q�.g/A D Ag

of G-invariants inV is just the space EndG.V / of G-equivariant linear mapsV ! V:
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Exercise 20.24 Let .�j ; Vj /; for j D 1; 2; be two finite dimensional representations ofG:
Show that�1 and�2 are equivalent if and only if there exist choices of bases forV1 andV2; such
that for the associated matrices one has:

mat�1.x/ D mat�2.x/:

Example 20.25 We recall that SU.2/ is the group of matrices of the form

g D
�
˛ � Ň
ˇ N̨

�

with ˛; ˇ 2 C andj˛j2 C jˇj2 D 1: The group SU.2/ acts onC2 in a natural way, and we have
the associated representation� on the spaceP.C/ of polynomial functionsp W C2 ! C: It is
given by the formula

�.g/p.z/ D p.g�1z/ D p. N̨z1 C Ňz2;�ˇz1 C ˛z2/

The subspacePn D Pn.C
2/ of homogeneous polynomials of degreen is an invariant subspace

for �: We write�n for the restriction of� toPn:

We will now discuss a result that will allow us to show that therepresentations�n of the
above example are irreducible. We first need the following lemma from linear algebra.

Lemma 20.26 LetV be a finite dimensional complex linear space, and letA;B 2 End.V / be
such thatAB D BA: ThenA leaveskerB; imB and all the eigenspaces ofB invariant.

Proof: Elementary, and left to the reader. �

From now on all representations ofG are assumed to be continuous.

Lemma 20.27 (Schur’s lemma)Let .�; V / be a finite dimensional representation ofG: Then
the following holds.

(a) If � is irreducible thenEndG.V / D C IV :

(b) Conversely, if� is unitarizable andEndG.V / D C IV ; then� is irreducible.

Proof: ‘(a)’ Suppose that� is irreducible, and letA 2 End.V /G : Let � 2 C be an eigenvalue
of A; and letE� D ker.A � �I/ be the associated eigenspace. Note that for non-trivialityof this
eigenspace we needV to be complex. For everyx 2 G we have that�.x/ commutes withA;
hence leavesE� invariant. In view of the irreducibility of� it now follows thatE� D V; hence
A D �I:

‘(b)’ By unitarizability of �; there exists a positive definite inner producth� ; �i for which�
is unitary.

Let 0 ¤ W � V be aG-invariant subspace. For the proof that� is irreducible it suffices
to show that we must haveW D V: Let P be the orthogonal projectionV ! W: SinceW
andW ? are bothG-invariant, we have, forg 2 G; that�.g/P D �.g/ D P�.g/ onW; and
�.g/P D 0 D P�.g/ onW ?: HenceP 2 EndG.V /; and it follows thatP D �I for some
� 2 C: Now P ¤ 0; hence� ¤ 0: Also, P 2 D P; hence�2 D �; and we see that� D 1:

ThereforeP D I; andW D V: �
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We will now apply the above lemma to prove the following.

Proposition 20.28 The representations.�n; Pn.C2// of SU.2/; for n 2 N; are irreducible.

For the proof we will need compactness of SU.2/: In fact we have the following more general
result.

Exercise 20.29 Forn � 1; let M.n;R/ and M.n;C/ denote the linear spaces ofn � n matrices
with entries inR andC respectively. Show that SU.n/ is a closed and bounded subset of M.n;C/:
Show that SO.n/ D SU.n/ \ M.n;R/: Finally show that the Lie groups SO.n/ and SU.n/ are
compact.

Proof of Proposition 20.28: Let n � 0 be fixed, and put� D �n andV D Pn.C
2/: Then�n is

unitarizable, since SU.2/ is compact. Suppose thatA 2 End.V / is equivariant. Then in view of
Lemma 20.27 (b) it suffices to show thatA is a scalar.

For0 � k � n we define the polynomialpk 2 V by

pk.z/ D zn�k
1 zk2 :

Thenfpk j 0 � k � ng is a basis forV: For' 2 R we put

t' D
�
ei' 0

0 e�i'

�
; r' D

�
cos' � sin'
sin' cos'

�
:

Then
T D ft' j ' 2 Rg and R D fr' j ' 2 Rg

are (closed) subgroups of SU.2/: One readily verifies that for0 � k � n and' 2 R we have:

�.t'/pk D ei.2k�n/'pk:

Thus everypk is a joint eigenvector forT: Fix a' such that the numbersei.2k�n/' are mutually
different. Then for every0 � k � n the spaceCpk is eigenspace for�.t'/ with eigenvalue
ei.2k�n/' : SinceA and�.t'/ commute it follows thatA leaves all the spacesCpk invariant.
Hence there exist�k 2 C such that

Apk D �kpk; 0 � k � n:

LetE0 be the eigenspace ofA with eigenvalue�0:We will show thatE0 D V; thereby complet-
ing the proof. The spaceE0 is SU.2/-invariant, and containsp0: Hence it contains�.r'/p0 for
every' 2 R: By a straightforward computation one sees that

�.r'/p0.z1; z2/ D .cos' z1 C sin' z2/
n D

nX

kD0

 
n

k

!
cosn�k ' sink ' pk:

From this one sees by application ofA and using the intertwining property, that
nX

kD0

 
n

k

!
cosn�k ' sink ' .�0 � �k/ pk D 0;

for all ' 2 R: By linear independence of thepk; it follows that�k D �0; for every0 � k � n:

HenceE0 D V: �
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We end this section with two useful consequences of Schur’s lemma.

Lemma 20.30 Let .�; V /, .� 0; V 0/ be two irreducible finite dimensional representations ofG:

If � and� 0 are not equivalent, then every intertwining linear mapT W V ! V 0 is trivial.

Proof: LetT be intertwining, and non-trivial. Then kerT � V is a properG-invariant subspace.
Hence kerT D 0; and it follows thatT is injective. Therefore its image imT is a non-trivialG-
invariant subspace ofV 0: It follows that imT D V 0; henceT is a bijection, contradicting the
inequivalence. �

If .�; V / is a representation for a groupG; then a sesquilinear form̌ onV is called equiv-
ariant ifˇ.�.g/v; �.g/w/ D ˇ.v; w/ for all v; w 2 V; g 2 G:

Lemma 20.31 Let .�; V / be an irreducible finite dimensional unitary representation of a lo-
cally compact groupG: Then the equivariant sesquilinear forms onV are precisely the maps
ˇ W V � V ! C of the formˇ D �h� ; �i; � 2 C: Here h� ; �i denotes the (equivariant) inner
product of the Hilbert spaceV:

Proof: Let ˇ W V � V ! C be sesquilinear. Then for everyw 2 V the mapv 7! ˇ.v; w/ is a
linear functional onV: Hence there exists a uniqueA.w/ 2 V such thať .v; w/ D hv; A.w/ ; :i
One readily verifies thatA W V ! V is a linear map. Moreover, the equivariance ofˇ andh� ; �i
imply thatA is equivariant. Since� is irreducible it follows by Schur’s lemma thatA D �I for
some� 2 C; whence the result. �

21 Schur orthogonality

Assumption In the rest of these notes every finite dimensional representation of a Lie group will
be assumed to be continuous, unless specified otherwise.

In this sectionG will be a compact Lie group, unless stated otherwise. Letdx be the unique
left invariant density onG with

R
G
dx D 1I for its existence, see Lemma 19.10. Thendx is

positive. By Remark 19.15, the densitydx is right invariant as well.
If � is a finite dimensional irreducible unitary representationof G we write

C.G/� (22)

for the linear span of the space of matrix coefficients of�: Notice that the spaceC.G/� does not
depend on the chosen (unitary) inner product onV: Thus, by Proposition 20.17 we may define
C.G/� for any irreducible finite dimensional (continous) representation� of G:

There is a nice way to express sums of matrix coefficients of a finite dimensional unitary
representation.�; V / of G by means of the trace of a linear map. Letv; w 2 V: Then we shall
writeLv;w for the linear mapV ! V given by

Lv;w.u/ D hu ; wiv:
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One readily sees that
tr.Lv;w/ D hv ; wi; v; w 2 V: (23)

Indeed both sides of the above equation are sesquilinear forms in .v; w/; so it suffices to check
the equation forv; w members of an orthonormal basis, which is easily done.

It follows from the above equation that

mv;w.x/ D tr.�.x/Lv;w/:

Hence every summ of matrix coefficients is of the formm.x/ D tr.�.x/A/; with A 2 End.V /:
Conversely iffek j 1 � k � ng is an orthonormal basis forV; then one readily sees that any
endomorphismA 2 End.V / may be expressed as

A D
X

1�i;j�n

hAej ; eiiLei ;ej
:

Using this one may express every function of the formx 7! tr.�.x/A/ as a sum of matrix
coefficients.

We now define the linear mapT� W End.V / ! C.G/ by

T�.A/.x/ D tr.�.x/A/; x 2 G;

for everyA 2 End.V /: Let � be irreducible, then it follows from the above discussion thatT�
mapsV ontoC.G/� : Define the representation� ˝ �� of G �G on End.V / by

Œ� ˝ ���.x; y/A D �.x/A�.y/�1;

for A 2 End.V / andx; y 2 G:
We define the representationR � L of G �G onC.G/ by

.R � L/.x; y/ WD Rx ıLy D Ly ıRx:

Lemma 21.1 Let .�; V / be a finite dimensional irreducible representation ofG: ThenC.G/�
is invariant underR�L: The mapT� W V ! C.G/� is surjective, and intertwines the represen-
tations� ˝ �� andR � L ofG �G:

Proof: We first prove the equivariance ofT� W End.V / ! C.G/: LetA 2 End.V / andx; y 2 G;
then for allg 2 G;

T�.Œ� ˝ ���.x; y/A/.g/ D tr.�.g/�.x/A�.y�1// D tr.�.y�1gx/A/ D RxLy.T�.A//.g/:

Note that it follows from this equivariance that the image ofT� isR � L-invariant. In an earlier
discussion we showed already that im.T�/ D C.G/� : �

Corollary 21.2 If � and� 0 are equivalent finite dimensional irreducible representations ofG;
thenC.G/� D C.G/� 0 :
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Proof: Let V; V 0 be the associated representation spaces. Then by equivalence there exists a
linear isomorphismT W V ! V 0 such thatT ı�.x/ D � 0.x/ ıT for all x 2 G: Hence for
A 2 End.V / andx 2 G;

T� 0.TAT �1/.x/ D tr.� 0.x/TAT �1/ D tr.T �1� 0.x/TA/ D tr.�.x/A/ D T�.A/.x/:

Now use thatT� andT� 0 have imagesC.G/� andC.G/� 0 ; respectively, by Lemma 21.1. �

We now have the following.

Theorem 21.3 (Schur orthogonality).Let .�; V / and .� 0; V 0/ be two irreducible finite dimen-
sional representations ofG: Then the following holds.

(a) If � and� 0 are not equivalent, thenC.G/� ? C.G/� 0 (with respect to the Hilbert structure
ofL2.G/).

(b) LetV be equipped with an inner product for which� is unitary. Ifv; w; v0; w0 2 V; then
theL2-inner product of the matrix coefficientsmv;w andmv0;w0 is given by:

Z

G

mv;w.x/mv0;w0.x/ dx D dim.�/�1 hv ; v0ihw ; w0i (24)

Remark 21.4 The relations (24) are known as theSchur orthogonality relations. Of course the
assumption thatdx is normalized is a necessary assumption for (24) to hold.

Proof: For w 2 V andw0 2 V 0 we define the linear mapLw0;w W V ! V 0 by Lw0;wu D
hu ; wiw0: Consider the following linear mapV ! V 0; defined by averaging,

Iw0;w D
Z

G

� 0.x/�1 ıLw0;w ı�.x/ dx:

One readily verifies that
hIw0;wv ; v

0i D hmv;w ; mv0;w0iL2 : (25)

Moreover, by right invariance of the measuredx it readily follows thatIw0;w is an intertwining
map from.V; �/ to .V 0; � 0/:

(a): If � and� 0 are inequivalent then the intertwining mapIw0;w is trivial by Lemma 20.30.
Now apply (25) to prove (a).

(b): Now assumeV D V 0: Then for allw;w0 2 V we haveIw0;w 2 EndG.V /; henceIw0;w

is a scalar. It follows that there exists a sesquilinear formˇ onV such that

Iw0;w D ˇ.w0; w/ IV :

Applying the trace to both sides of the above equation we find that tr.Iw0;w/ D d�ˇ.w
0; w/:Here

we have abbreviatedd� D dim.�/: On the other hand, since tr is linear,

tr.Iw0;w/ D
Z

G

tr.�.x/�1Lw0;w�.x// dx D
Z

G

tr.Lw0;w/ dx D tr.Lw0;w/ D hw0 ; wi:

Hence
Iw0;w D ˇ.w0; w/ IV D d�1

� hw0 ; wi IV :

Now apply (25) to prove (b). �
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Another way to formulate the orthogonality relations is thefollowing (V is assumed to be
equipped with an inner product for which� is unitary). If A 2 End.V /, let A� denote the
Hermitian adjoint ofA: Then one readily verifies that

.A; B/ 7! hA ; Bi WD trB�A

defines a Hermitian inner product on End.V /: Moreover, the representation� ˝ �� is readily
seen to be unitary for this inner product.

Corollary 21.5 The mapıT� WD
p
d� T� is a unitaryG-equivariant isomorphism fromEnd.V /

ontoC.G/� :

Proof: We begin by establishing a few properties of the endomorphismsLv;w ; for v; w 2 V:

From the definition one readily sees that, forv0; w0 2 V the adjoint ofLv0;w0 is given by

L�
v0;w0 D Lw0;v0 :

Moreover, one also readily checks that

Lw0;v0 ıLv;w D hv ; v0iLw0;w :

From these two properties it follows in turn that

hLv;w ; Lv0;w0i D tr.Lw0;v0 ıLv;w/ D hv ; v0ihw ; w0i: (26)

Finally, we recall that

T�.Lv;w/.x/ D tr.�.x/Lv;w/ D mv;w.x/ .x 2 G/;

hence
hıT�.Lv;w/ ;

ıT�.Lv0;w0/iL2 D d�hmv;w ; mv0;w0iL2 : (27)

From (26) and (27) we see that the Schur orthogonality relations may be reformulated as

hıT�.Lv;w/ ;
ıT�.Lv0;w0/iL2 D hLv;w ; Lv0;w0i; (28)

for all v; v0; w; w0 2 V: The mapsLv;w ; for v; w 2 V; span the space End.V�/: Hence the Schur
orthogonality relations are equivalent to the assertion that ıT� is an isometry from End.V / into
C.G/� : We proved already thatıT� is surjective ontoC.G/� I henceıT� is a unitary isomor-
phism. The equivariance ofıT� has been established before. �

Definition 21.6 Let .V; �/ be a finite dimensional representation ofG: The function�� W G !
C defined by

��.x/ D tr�.x/; .x 2 G/;
is called thecharacterof �:

80



Remark 21.7 Since the representation� is continuous, it is also smooth, hence�� 2 C1.G/:

Note that�� is a sum of matrix coefficients of�: Thus, ifG is compact and� irreducible, then
�� 2 C.G/� :

Lemma 21.8 Let .�; V / be an irreducible finite dimensional representation ofG: Then�� is
the unique conjugation invariant function inC.G/� with ��.e/ D d� : Its L2-norm relative to
the normalized Haar measure isk��k2 D 1:

Proof: We equipV with an inner product for which� is unitary, and define the associated inner
product on End.V / as above. Let' 2 C.G/� : Then' D ıT�.A/ for a uniqueA 2 End.V /:
By equivariance ofT� ; the function' is conjugation invariant if and only ifA isG-intertwining,
which in turn is equivalent toA D cIV for a constantc 2 C: We observe thatc D '.e/=d

3=2
� :

This implies that there exists a unique conjugation invariant function' with '.e/ D d� : For this
function we havec D 1=

p
d� and

'.x/ D ıT�.cIV /.x/ D
p
d� tr.�.x/cIV / D tr�.x/ D ��.x/:

The assertion about theL2-norm follows from

k��k2 D trŒ.cI /�cI � D c2tr.I / D c2d� D 1:

�

22 Characters

In this section we assume thatG is a Lie group. We shall discuss properties of characters of finite
dimensional representations ofG:

If V is a finite dimensional complex linear space, we write End.V / for the space of complex
linear maps fromV to itself, and detD detV and trD trV for the complex determinant and trace
functions End.V / ! C:

Lemma 22.1 Let T W V ! W be a linear isomorphism of finite dimensional linear spaces.
Then for every linear mapA W V ! V;

detW .T ıA ıT �1/ D detVA and trW .T ıA ıT �1/ D trVA:

LetV be a finite dimensional linear space. Then for allA;B 2 End.V /;

tr.A ıB/ D tr.B ıA/:

Proof: Exercise for the reader. �
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The character�� of a finite dimensional representation.�; V�/ of G is defined as in Defini-
tion 21.6.

Lemma 22.2 Let �; � be finite dimensional representations ofG: If � and � are equivalent,
their characters are equal:�� D ��:

Proof: Let T W V� ! V� be an equivariant linear isomorphism. Then�.x/ D T ı�.x/ ıT �1

for everyx 2 G: The result now follows by application of Lemma 22.1. �

Lemma 22.3 Let .�; V / be a finite dimensional representation ofG: Then, for allx; y 2 G;

��.xyx
�1/ D ��.y/:

Proof: Exercise for the reader. �

Definition 22.4 Let � be a representation ofG in a finite dimensional complex linear spaceV:
We define thecontragredientor dual of � to be the representation�_ of G in the dual linear
spaceV � given by

�_.x/ D �.x�1/� W v� 7! v�
ı�.x�1/; .x 2 G/:

Lemma 22.5 Let .�; V / be a finite dimensional representation ofG:

(a) If � is continuous, then�_ is continuous as well.

(b) The character of�_ is given by

��_.x/ D ��.x
�1/ .x 2 G/:

Proof: Let v1; : : : ; vn be a basis forV and letv1; : : : ; vn be the dual basis forV �; i.e.,vi.vj / D
ıij : Then, forx 2 G; the matrix of�_.x/ with respect to the basisv1; : : : ; vn is given by

�_.x/ij D h�.x�1/�vj ; vii D hvj ; �.x�1/vii D �.x�1/j i :

If � is continuous, then its matrix coefficients are continuous functions. Therefore, so are the
matrix coefficients of�_; and (a) follows. Assertion (b) follows from the above identity as well.
�

Characters of unitarizable representations have the following special property.

Lemma 22.6 Let� be a finite dimensional representation ofG: If � is unitarizable, then

��.x
�1/ D ��.x/; .x 2 G/:

Proof: Exercise for the reader. �
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If .�1; V1/ and.�2; V2/ are two continuous representations ofG; then we define thedirect
sumrepresentation� D �1 ˚ �2 in the direct sumV D V1 ˚ V2 by

�.x/.v1; v2/ D .�1.x/v1; �2.x/v2/ .v1 2 V1; v2 2 V2; x 2 G/:

Lemma 22.7 Let�1; �2 be finite dimensional representations ofG: Then

��1˚�2
D ��1

C ��2
:

Proof: Exercise for the reader. �

If .�1; V1/ and.�2; V2/ are two finite dimensional representations ofG;we define theirtensor
product�1 ˝ �2 to be the representation ofG in the tensor product spaceV1 ˝ V2 given by
.�1 ˝ �2/.x/ D �1.x/ ˝ �2.x/: Thus, forx 2 G; the linear endomorphism.�1 ˝ �2/.x/ of
V1 ˝ V2 is determined by

.�1 ˝ �2/.x/.v1 ˝ v2/ D �1.x/v1 ˝ �2.x/v2;

for all v1 2 V1; v2 2 V2:

Lemma 22.8 Let .�1; V1/ and .�2; V2/ be finite dimensional representations ofG: Then the
character of their tensor product�1 ˝ �2 is given by

��1˝�2
D ��1

��2
:

Proof: Exercise for the reader. Establish, more generally, an identity of the form tr.A˝ B/ D
tr.A/tr.B/; by choosing suitable bases. �

Exercise 22.9 Recall the definition, forn 2 N; of the representation�n of SU.2/ in the finite
dimensional spacePn.C2/ of homogeneous polynomial functionsC2 ! C of degreen: Show
that the character�n of �n is completely determined by its restriction toT D ft' j ' 2 Rg: Hint:
use that every matrix in SU.2/ is conjugate to a matrix ofT:

Show that:

�n.t'/ D sin.nC 1/'

sin'
;

for ' 2 R: Heret' denotes the diagonal matrix with entriesei' ande�i' :

Assumption: In the rest of this section we assume that the Lie groupG is compact. We denote
by h � ; � i theL2-inner product with respect to the normalized Haar measuredx onG:

Lemma 22.10 Let�; � be finite dimensional irreducible representations ofG:

(a) If � � � thenh�� ; ��i D 1:

(b) If � 6� � thenh�� ; ��i D 0:

Proof: This follows easily from Theorem 21.3. �
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Let � be a finite dimensional representation of the compact groupG: Then� is unitarizable,
and therefore equivalent to a direct sum̊niD1�i of irreducible representations. It follows that
�� D

Pn
iD1 ��i

: Using the lemma above we see that for every irreducible representationı of G
we have

#fi j �i � ıg D h�� ; �ıi: (29)

In particular this number is independent of the particular decomposition of� into irreducibles.
For obvious reasons the number (29) is called themultiplicity of ı in �: We shall also denote it
bym.ı; �/:

Let bG denote the set of equivalence classes of finite dimensional irreducible representations
of G: Then by abuse of language we shall writeı 2 bG to indicate thatı is a representative for an
element ofbG: (A better notation would perhaps beŒı� 2 bG:/ If ı 2 bG andm 2 N; then we write
mı for (the equivalence class of) the direct sum ofm copies ofı:

We have proved the folllowing lemma.

Lemma 22.11 Let� be a finite dimensional representation of the compact groupG: Then

� �
M

ı2bG

m.ı; �/ı;

wherem.ı; �/ D h�� ; �ıi 2 N; for everyı 2 bG: Any decomposition of� into irreducibles is
equivalent to the above one.

Exercise 22.12 This exercise is meant to illustrate that a decomposition ofa representation
into irreducibles is not unique. Let�1; �2 be irreducible representations inV1; V2 respectively.
Assume that�1; �2 are equivalent, and letT W V1 ! V2 be an intertwining isomorphism.

EquipV D V1 ˚ V2 with the direct sum representation�, and show thatW1 D f.v; T v/ j
v 2 V1g is an invariant subspace ofV: Show that the restriction of� to W1 is irreducible, and
equivalent to�1: Find a complementary invariant subspaceW2 and show that the restriction of�
to this space is also equivalent to�1:

The following result expresses that the character is a powerful invariant.

Corollary 22.13 Let�; � be two finite dimensional continuous representations ofG: Then

� � � () �� D ��:

Proof: The implication ‘)’ follows from Lemma 22.2. For the converse implication, assume
that�� D ��: Then for everyı 2 bG we havem.ı; �/ D h�� ; �ıi D h�� ; �ıi D m.ı; �/: Now
use the previous lemma. �

Corollary 22.14 Let� be a finite dimensional representation ofG: Then� is irreducible if and
only if its character�� hasL2-norm one.

Proof: By Schur orthogonality, the characters�ı ; for ı 2 bG form an orthonormal set inL2.G/:
It follows thatk��k2 D

P
ı m.ı; �/

2: The result now easily follows. �
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23 The Peter-Weyl theorem

In this section we assume thatG is a compact Lie group. We denote bybG the set of (equivalence
classes of) irreducible continuous finite dimensional representations ofG:

Definition 23.1 We define the spaceR.G/ of representative functionsto be the space of func-
tionsf W G ! C that may be written as a finite sum of functionsfı 2 C.G/ı ; for ı 2 bG:

Note that the spaceR.G/ is contained inC1.G/: Moreover, it is invariant under both the
left- and the right regular representations ofG:

Exercise 23.2 Show thatR.G/ is the linear span of the set of all matrix coefficients of finite
dimensional continuous representations ofG: Hint: consider the decomposition of finite dimen-
sional representations into irreducibles.

Proposition 23.3 The space of representative functions decomposes according to the algebraic
direct sum

R.G/ D
M

ı2bG

C.G/ı :

The summands are mutually orthogonal with respect to theL2-inner product. Every summand
C.G/ı is invariant under the representationR�L ofG �G:Moreover, the restriction ofR�L
to that summand is an irreducible representation ofG �G:

Proof: The orthogonality of the summands follows from Schur orthogonality. It follows that the
above sum is direct.

The mapTı W End.Vı/ ! C.G/ı is bijective and intertwinesı ˝ ı� with R � L: Hence it
suffices to show thatı ˝ ı� is an irreducible representation ofG �G:

By a straightforward computation one checks that

�ı˝ı�.x; y/ D �ı.x/�ı.y/;

for .x; y/ 2 G � G: If dx anddy are normalized right Haar measure onG; then the product
measuredx dy is the normalized right Haar measure onG �G:Moreover, by Fubini’s theorem,

k�ı˝ı�k2
L2.G�G/

D
Z

G�G

j�ı.x/j2j�ı.y/j2 dx dy

D
Z

G

�Z

G

j�ı.x/j2j�ı.y/j2 dx
�
dy

D k�ık2L2.G/
k�ık2L2.G/

D 1;

sinceı is an irreducible representation ofG: It follows from Corollary 22.14 thatı ˝ ı� is an
irreducible representation ofG �G: �
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The proof of the following result is based on the spectral theorem for compact self-adjoint
operators in a Hilbert space. It will be given in the next section.

Proposition 23.4 The spaceR.G/ is dense inL2.G/:

Let H˛ be a collection of Hilbert spaces, indexed by a setA: Then the algebraic direct sum
M

˛2A

H˛

is a pre-Hilbert space when equipped with the direct sum inner product: h
P
˛ v˛ ;

P
˛ w˛i DP

˛hv˛ ; w˛i: Its completion is called the Hilbert direct sum of the spacesH˛; and denoted by

M̂

˛2A

H˛: (30)

This completion may be realized as the space of sequencesv D .v˛/˛2A with v˛ 2 H˛ and

kvk2 D
X

˛2A

kv˛k2 < 1:

Its inner product is given by
hv ; wi D

X

˛2A

hv˛ ; w˛i:

If �˛ is a unitary representation ofG in H˛; for every˛ 2 A; then the direct sum of the�˛
extends to a unitary representation ofG in (30). We call this representation the Hilbert sum of
the�˛:

Theorem 23.5 (The Peter-Weyl Theorem).The spaceL2.G/ decomposes as the Hilbert sum

L2.G/ D
M̂

ı2bG

C.G/ı ;

each of the summands being an irreducible invariant subspace for the representationR � L of
G �G:

Proof: This follows from Propositions 23.3 and 23.4. �

Exercise 23.6 Fix, for every (equivalence class of an) ireducible unitaryrepresentation.ı; Vı/
an orthonormal basiseı;1; : : : ; eı;dim.ı/: Denote the matrix coefficient associated toeı;i andeı;j
bymı;ij : Use Schur orthogonality and the Peter-Weyl theorem to show that the functions

p
dim.ı/mı;ij ı 2 bG; 1 � i; j � dim.ı/

constitute a complete orthonormal system forL2.G/:
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24 Appendix: compact self-adjoint operators

Definition 24.1 Let V;W be Banach spaces. A linear mapT W V ! W is said to becompactif
the imageT .B/ of the unit ballB D B.0I 1/ � V has compact closure inW:

A compact operatorT W V ! W is obviously bounded. The set of compact operators forms
a linear subspace of the spaceL.V;W / of bounded linear operatorsV ! W: The latter space is
a Banach space for the operator norm.

Lemma 24.2 Let V;W be Banach spaces, and letL.V;W / be the Banach space of bounded
linear operatorsV ! W; equipped with the operator norm. Then the subspace of compact
linear operatorsV ! W is closed inL.V;W /:

Proof: See a standard textbook on functional analysis. �

Remark 24.3 A linear mapT W V ! W is said to be of finite rank if its imageT .V / is finite
dimensional. Clearly an operator of finite rank is compact. Thus, ifTj is a sequence of operators
in L.V;W / all of which are of finite rank, and ifTj ! T with respect to the operator norm, then
it follows from the above result thatT is compact.

We recall that a bounded linear operatorT from a complex Hilbert spaceH to itself is said
to self-adjoint ifT � D T; or, equivalently, ifhT v ; wi D hv ; T wi for all v; w 2 H:

We now recall the importantspectral theoremfor compact self-adjoint operators in Hilbert
space. It will play a crucial role in the proof of the Peter-Weyl theorem in the next section. For a
proof of the spectral theorem, we refer to a standard text book on functional analysis.

Theorem 24.4 LetT be a compact self-adjoint operator in the (complex) HilbertspaceH: Then
there exists a discrete subsetƒ � R n f0g such that the following hold.

(a) For every� 2 ƒ the associated eigenspaceH� of T in H is finite dimensional.

(b) If �; � 2 ƒ; � ¤ � thenH� ? H�:

(c) For every� 2 ƒ; letP� denote the orthogonal projectionH ! H�: Then

T D
X

�2ƒ

�P�;

the convergence being absolute with respect to the operatornorm.

(d) The setƒ is bounded inR and has0 as its only limit point.

We will end this section by describing a nice class of compactself-adjoint operators in
L2.G/; for G a compact Lie group. First we examine the space of compactly supported con-
tinuous functions on product space.
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Let X; Y be locally compact topological Hausdorff spaces. If' 2 C.X/; and 2 C.Y /;

then we write' ˝  for the continuous function onX � Y defined by:

' ˝  W .x; y/ 7! '.x/ .y/:

The linear span of such functions inC.X � Y / is denoted byC.X/ ˝ C.Y /: If ' 2 Cc.X/

and 2 Cc.Y / then' ˝  is compactly supported. Hence the spanCc.X/ ˝ Cc.Y / of such
functions is a subspace ofCc.X � Y /:

Proposition 24.5 LetX; Y be locally compact Hausdorff spaces. Then for every open subset
U � X � Y with compact closure, everŷ 2 Cc.U / and every� > 0; there exists a function
' 2 Cc.X/ ˝ Cc.Y / with supp' � U andsupz2U jˆ.z/ � '.z/j < �: In particular, the space
Cc.X/˝ Cc.Y / is dense inCc.X � Y /:

Proof: UsingCc-partitions of unity forX andY; we see that we may reduce to the case that
U D UX � UY ; with UX andUY open neighborhoods with compact closures inX and Y
respectively.

Fix ˆ 2 Cc.X � Y /; with K D supp̂ � U: Then, by compactness,K � KX � KY for
compact subsetsKX � UX andKY � UY . Let � > 0: Then by compactness there exists a finite
open coveringfVj g of KX such that for everyj and allx1; x2 2 Vj ; y 2 KY one has

ˆ.x1; y/ �ˆ.x2; y/ < �:

Without loss of generality we may assume thatVj � UX for all j: Select a partition of unityf'j g
which is subordinate to the coveringfVj g; and fix for everyj a point�j 2 Vj : Let x 2 KX ; y 2
KY : If j is such thatx 2 Vj ; thenjˆ.xj ; y/ �ˆ.x; y/j < �: It follows from this that

jŒ
X

j

'j .x/ˆ.xj ; y/� �ˆ.x; y/j D j
X

j

Œ'j .x/ˆ.xj ; y/ � 'j .x/ˆ.x; y/�j

�
X

j

'j .x/jˆ.xj ; y/ �ˆ.x; y/j

<
X

j

'j .x/� D �:

Hence, if we put j .y/ D ˆ.xj ; y/; then

k
X

j

'j ˝  j �ˆk1 < �:

Moreover, supp'j ˝  j � UX � UY � UX �KY � U: �

Let nowG be a Lie group. We fix a left invariant densitydx onG and equipG � G with
the left invariant product ofdx with itself. Thisproduct density, denoteddxdy; is determined
by the formula

Z

G�G

f .x; y/ dxdy D
Z

G

�Z

G

f .x; y/dx

�
dy D

Z

G

�Z

G

f .x; y/dy

�
dx;
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for f 2 Cc.X � Y /:
If K 2 Cc.G �G/; then we define the linear operatorTK W Cc.G/ ! Cc.G/ by

TK.'/.x/ D
Z

G

K.x; y/'.y/dy:

For obvious reasons this is called anintegral operatorwith kernelK:

Lemma 24.6 Let K 2 Cc.G ˝ G/: Then the operatorTK extends uniquely to a bounded
linear endomorphism ofL2.G/ with operator normkTKkop � kKk2: Moreover, this extension
is compact.

Proof: Let ' 2 Cc.G/: Then

hTK.'/ ;  i D
Z

G

TK.'/.x/ .x/ dx

D
Z

G

�Z

G

K.x; y/'.y/ dy

�
 .x/ dx

D hK ; ' ˝ N iL2.G�G/

� kKkL2.G�G/k' ˝ N kL2.G�G/ D kKk2k'k2k k2:

HencekTK'k2 � kKk2k'k2: This implies the first assertion, sinceCc.G/ is dense inL2.G/:
For the second assertion, note that by Proposition 24.5 there exists a sequenceKj in Cc.G/˝

Cc.G/ which converges toK with respect to theL2-norm onG �G: It follows that

kTKj
� TKkop � kKj �Kk2 ! 0:

Every operatorTKj
has a finite dimensional image hence is compact. The subspaceof compact

endomorphisms ofL2.G/ is closed for the operator norm, by Lemma 24.2. Therefore,TK is
compact. �

Let G be a Lie group, equipped with a left invariant densitydx: If .�; V / is a continuous
finite dimensional representation ofG, then forf 2 Cc.G/ we define the linear operator�.f / W
V ! V by

�.f /v D
Z

G

f .x/�.x/v dx:

Referring to integration with values in a Banach space, thisdefinition actually makes sense if�
is a continuous representation in a Banach space; it is readily seen that then�.f / is a continuous
linear operator. In particular, the definition may be applied to the regular representationsL and
R of G in L2.G/: Thus, forf 2 Cc.G/ and' 2 L2.G/;

ŒR.f /'�.x/ D
Z

G

f .y/'.xy/ dy D
Z

G

f .x�1y/'.y/ dy .x 2 G/: (31)

Of course, this formula can also be used as the defining formula, without reference to Banach-
valued integration.
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Corollary 24.7 Assume thatG is compact, and letf 2 C.G/: Then the operatorR.f / W
L2.G/ ! L2.G/ is compact.

Proof: If ' 2 C.G/; then from (31) we see thatR.f / D TK ; with K.x; y/ D f .x�1y/: The
result now follows by application of Lemma 24.6. �

Remark 24.8 Note that for this argument it is crucial thatG is compact. For if not, andf 2
Cc.G/; then the associated integral kernelK need not be compactly supported.

The following lemmas will in particular be needed for the right regular representationR:

Lemma 24.9 Let .�;H/ be a unitary representation ofG in a Hilbert space. Letf 2 Cc.G/;

then
�.f /� D �.f �/;

wheref �.x/ D f .x�1/:

Proof: Straightforward and left to the reader. �

Lemma 24.10 Let� be a continuous representation ofG in a Banach spaceV: If f 2 Cc.G/

is conjugation invariant, then�.f / is intertwining.

Proof: Straightforward and left to the reader. �

Corollary 24.11 Assume thatG is compact, and letf 2 C.G/ be such thatf � D f: Then
R.f / (andL.f / as well) is a compact self-adjoint operator. If, in addition, f is conjugation
invariant thenR.f / isG-equivariant.

Proof: This follows by combining Corollary 24.11 and Lemmas 24.9 and 24.10. �

25 Proof of the Peter-Weyl Theorem

In the beginning of this section we assume thatG is any Lie group. At a later stage we will
restrict our attention to compactG: We assume thatG is equipped with a positive left invariant
densitydx:

Lemma 25.1 Let' 2 Cc.G/: ThenR.'/ mapsL2.G/ intoC.G/:
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Proof: Let x0 2 G and let� > 0: Since' has compact supportC WD supp'; it follows by the
principle of uniform continuity that there exists a compactneighborhoodU of e in G such that
j'.u/ � '.v/j < �.2k1Ck2 C 1/�1 for all u; v 2 G with vu�1 2 U:

Let nowf 2 L2.G/: For x; y 2 G with x 2 x0U we have.x�1
0 y/.x�1y/�1 D x�1

0 x 2 U;

hence

jR.'/f .x/ �R.'/f .x0/j D j
Z

G

Œ'.x�1y/ � '.x�1
0 y/�f .y/ dyj

�
Z

xC[x0C

� jf .y/j dy D �

Z

G

1xC[x0C jf .y/j dy

� � k1xC[yCk2 kf k2 � 2� k1Ck2 kf k2 � �kf k2:

From this we deduce thatR.'/f is continuous inx0: �

Lemma 25.2 Let f 2 L2.G/ and let� > 0: There exists an open neighborhoodU of e in G
such that for allx 2 U we havekRxf �f k2 < �:Moreover, ifU is any neighborhood with this
property and if' 2 Cc.U / satisfies' � 0 and

R
G
'.x/ dx D 1; then

kR.'/f � f k2 < �: (32)

Proof: The first assertion follows from the continuity of the mapx 7! Rxf; see Proposition
20.10. LetU; ' be as stated. Then, for allx 2 G;

R.'/f .x/ � f .x/ D
Z

G

'.y/Œf .xy/ � f .x/� dy:

Hence, for everyg 2 L2.G/ we have

jhR.'/f � f ; gij �
Z

G

Z

G

'.y/ jf .xy/ � f .x/jg.x/ dy dx

D
Z

G

Z

G

'.y/ jf .xy/ � f .x/jg.x/ dx dy

�
Z

G

'.y/ kRyf � f k2kgk2 dy

� � kgk2:

From this the estimate (32) follows. �

From now on we assume that the groupG is compact.

Lemma 25.3 Let V be a finite dimensional rightG-invariant subspace ofL2.G/: ThenV �
R.G/:
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Proof: DecomposingV into a direct sum of irreducible subspaces, we see that we mayreduce
the case thatV is irreducible. We claim thatV consists of continuous functions. For this we
observe thatC.G/ \ V is an invariant subspace. Hence it suffices to show thatV contains a
non-trivial continuous function. Fixf 2 V n f0g and fix0 < � < 1=2kf k2: ChooseU and'
as in Lemma 25.2. ThenkR.'/f k > 1=2�; henceR.'/f ¤ 0: From Lemma 25.1 it follows
thatR.'/f 2 C.G/: Moreover, sinceV is right invariant, it follows thatR.'/f 2 V: This
establishes the claim thatV � C.G/:

Choose an orthonormal basis. i/ of V: Then forf 2 V we have

Rxf D
X

i

hRxf ;  i i i ;

hence by evaluation ine;
f .x/ D

X

i

hRxf ;  i i i.e/:

By definition ofR.G/ it now follows thatf 2 R.G/: �

Lemma 25.4 LetU be an open neighborhood ofe in G: Then there exists a' 2 Cc.U / such
that:

(a) ' � 0 and
R
G
'.x/ dx D 1I

(b) '� D 'I
(c) ' is conjugation invariant.

Proof: From the continuity of the mapx 7! x�1 one sees that there exists a compact neighbor-
hoodV of e such thatV � U andV �1 � U: For everyx 2 G there exist an open neighborhood
Nx of x and a compact neighborhoodVx of e in V such thatzyz�1 2 V for all z 2 Nx; y 2 Vx:
By compactness ofG finitely many of theNx coverG: Let � be the intersection of the corre-
spondingVx: Then� is a compact neighborhood ofe and for allx 2 G andy 2 � we have
xyx�1 2 V:

Now select 0 2 Cc.�/ such that 0 � 0 and
R
G
 0.x/ dx D 1: Define

 .x/ D
Z

G

 0.yxy
�1/ dy:

Since.x; y/ 7!  .yxy�1/ is a continuous function, it follows that is a continuous function.
Clearly � 0: Moreover, by interchanging the order of integration, and using the fact thatdx
is bi-invariant and normalized, we deduce that

R
G
 .x/ dx D 1: If  .x/ ¤ 0; thenyxy�1 2

supp 0 for somey 2 G; hencex 2 [y2Gy
�1�y � V: It follows that supp � V: One now

readily verifies that the function' D 1
2
. C  �/ satisfies all our requirements. �

Corollary 25.5 Let f 2 L2.G/; f ¤ 0: Then there exists a left and rightG-equivariant
bounded linear operatorT W L2.G/ ! L2.G/ with:
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(a) Tf ¤ 0:

(b) T is self-adjoint and compact;

(c) T maps every rightG-invariant closed subspace ofL2.G/ into itself.

Proof: Let � D 1
2
kf k2; and fix an open neighborhoodU of e in G that satisfies the assertion

of Lemma 25.2 Let' 2 Cc.U / be as in Lemma 25.4, and defineT D R.'/: ThenkTf �
f k < �; hence (a). Moreover, every closed right invariant subspaceV of L2.G/ equipped
with the restriction ofR is a continuous representation in a Banach space, hence invariant under
T D R.'/: This implies (c).

The operatorT is left G-equivariant, sinceL andR commute. It is rightG-equivariant
because' is conjugation invariant, cf. Lemma 24.10. Finally (b) follows from Corollary 24.11.
�

Proof of Propostion 23.4.The spaceR.G/ is left and rightG-invariant, and by unitarity so is its
orthocomplementV: Suppose thatV contains a non-trivial elementf: Let T be as in Corollary
25.5. ThenT jV W V ! V is a non-trivial compact self-adjoint operator which is both left and
rightG-equivariant. By the spectral theorem for compact self-adjoint operators, Theorem 24.4,
there exists a� 2 R, � ¤ 0; such that the eigenspaceV� D ker.T � �IV / is non-trivial. By
compactness ofT the eigenspaceV� is finite dimensional, and by equivariance ofT it is both left
and rightG-invariant. By Lemma 25.3 it now follows thatV� � R.G/; contradiction. Therefore,
V must be trivial. �

26 Class functions

By aclass functionon a compact Lie groupG we mean a functionf W G ! C that is conjugation
invariant, i.e.,LxRxf D f for all x 2 G: The name class function comes from the fact that a
conjugation invariant function is constant on the conjugacy classes, hence may be viewed as a
function on the set of conjugacy classes.

The spaceC.G; class/ of continuous class functions is a closed subspace ofC.G/ (with
respect to the sup norm). Its closure inL2.G/ equalsL2.G; class/; the space of square integrable
class functions onG:

If ı 2 bG; we denote the orthogonal projection fromL2.G/ onto the finite dimensional sub-
spaceC.G/ı by

Pı W L2.G/ ! C.G/ı

Note thatPı is equivariant for both the representationsR andL of G: In particular, this implies
thatPı mapsC.G; class/ into its intersection withC.G/ı : Hence, by Lemma 21.8

Pı.C.G; class// D C.G/ı \ C.G; class/ D C�ı :

It follows from this that the spaceR.G; class/ D C.G; class/ \ R.G/ of representative class
functions is the linear span of the characters�ı ; ı 2 bG:
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Lemma 26.1 LetG be a compact Lie group. Then the characters�ı ; ı 2 bG; form a complete
orthonormal system forL2.G; class/:

Proof: By Schur orthogonality, the characters form an orthonormalsystem. To establish its
completeness, letf 2 L2.G; class/ and assume thatf ? �ı for all ı 2 bG:

FromPıf 2 C.G/ı D C�ı ; we see that

Pıf D hPıf ; �ıi�ı D hf ; �ıi�ı D 0:

Hencef ? R.G/: By the Peter-Weyl theorem, the latter implies thatf D 0: �

Corollary 26.2 Letf 2 L2.G; class/: Then

f D
X

ı2bG

hf ; �ıi�ı ;

with convergence in theL2-norm.

27 Abelian groups and Fourier series

In this section we consider the special case that the compactLie groupG is commutative. If, in
addition,G is connected, thenG ' Rn=Zn for somen 2 N; and we will see that the Peter-Weyl
theorem specializes to the theory of Fourier series.

By a multiplicative characterof G we mean a continuous (hence smooth) group homomor-
phism� W G ! C�;whereC� D Cnf0g is equipped with complex multiplication. By the lemma
below, if � is a multiplicative character, thenj�.x/j D 1; x 2 G:

Lemma 27.1 LetH be a compact subgroup ofC�: ThenH � T:

Proof: By compactness, there exists a constantr > 0 such thatr�1 < jzj < r for all z 2 H:

Let w 2 H; then applying the estimate toz D wn we obtain thatr�1=n � jwj � r1=n: Taking
the limit for n ! 1 we see thatjwj D 1: �

Lemma 27.2 Let G be a commutative compact Lie group. If.ı; Vı/ is a finite dimensional
irreducible representation ofG; thendimVı D 1:Moreover,ı.x/ D �ı.x/IVı

: The mapı 7! �ı

induces a bijection frombG onto the set of multiplicative characters ofG:

Proof: If x 2 G; thenı.y/ı.x/ D ı.yx/ D ı.xy/ D ı.x/ı.y/ for all y 2 G; henceı.x/ is
equivariant, and it follows that

ı.x/ D �.x/I; (33)

for some�.x/ 2 C; by Schur’s lemma. It follows from this that every linear subspace ofVı is
invariant. By irreducibility ofı this implies that the dimension ofVı must be one. From the fact
thatı is a representation it follows immediately thatx 7! �.x/ is a character. Applying the trace
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to (33) we see that� D �ı ; the character ofı: Thusı 7! �ı induces a map from the spacebG of
equivalence classes of finite dimensional irreducible representations to the set of multiplicative
characters ofG: This map is injective by Corollary 22.13. If� is a multiplicative character then
(33) defines an irreducible representationı ofG in C; and� D �ı : Therefore the mapı ! �ı is
surjective onto the set of multiplicative characters. �

Corollary 27.3 Assume thatG is a commutative compact Lie group. Then the set of multiplica-
tive characters�ı ; ı 2 bG; is a complete orthonormal system forL2.G/:

Proof: This follows immediately from the previous lemma combined with the theorem of Peter
and Weyl (Theorem 23.5). �

In the present setting we define the Fourier transformOf W bG ! C of a functionf 2 L2.G/
by

Of .ı/ D hf ; �ıi:
Let bG be equipped with the counting measure. Then the associatedL2-space isl2.bG/; the space
of functions' W bG ! C such that

P
ı2bG j'.ı/j2 < 1; equipped with the inner product:

h' ;  i WD
X

ı2bG

'.ı/  .ı/:

Corollary 27.4 (The Plancherel theorem).LetG be a commutative compact Lie group. Then
the Fourier transformf 7! Of is an isometry fromL2.G/ ontol2.bG/: Moreover, iff 2 L2.G/;
then

f D
X

ı2bG

Of .ı/ �ı ;

with convergence in theL2-sense.

Proof: Exercise for the reader. �

If in addition it is assumed that the groupG is connected, thenG ' .R=Z/n for somen 2 N;

see Theorem 6.1. The purpose of the following exercise is to accordingly view the classical
theory of Fourier series as a special case of the Peter-Weyl theory.

Exercise 27.5 LetG D Rn=2�Zn: If m 2 Zn; show that

�m W x 7! ei.m�x/

defines a multiplicative character ofG: (Herem � x D m1x1 C � � � C mnxn:) Show that every
multiplicative character is of this form. ThusbG ' Zn: Accordingly forf 2 L2.G/ we view the
Fourier transform Of as a mapZn ! C:

Show that the normalized Haar integral ofG is given by

I.f / D 1

.2�/n

Z 2�

0

: : :

Z 2�

0

f .x1; : : : ; xn/ dx1 : : : dxn:
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Show that forf 2 L2.G/; m 2 Zn we have:

Of .m/ D 1

.2�/n

Z 2�

0

: : :

Z 2�

0

f .x1; : : : ; xn/ e
�i.m1x1C���Cmnxn/ dx1 : : : dxn:

Moreover, show that we have the inversion formula

f .x/ D
X

m2Zn

Of .m/ ei.m�x/ .x 2 Rn=2�Zn/

in theL2-sense.

28 The group SU(2)

In this section we assume thatG is the compact Lie group SU.2/:
Recall the definition of the representation�n of SU.2/ in the spaceVn D Pn.C

2/ of homo-
geneous polynomials of degreen from Section 20. In Proposition 20.28 it was shown that�n is
irreducible. Moreover, the associated character is determined by the formula:

�n.t'/ D sin.nC 1/'

sin'
.' 2 R/ (34)

(see Exercise 22.9). The purpose of this section is to prove the following result:

Proposition 28.1 Every finite dimensional irreducible representation ofSU.2/ is equivalent to
�n; for somen 2 N:

We recall that every element of SU.2/ is conjugate to an element ofT D ft' j ' 2 Rg: Therefore
a class functionf on SU.2/ is completely determined by its restrictionf jT to T: For every
' 2 R the diagonal matricest' and t�1' D t�' are conjugate. Therefore, the restrictionf jT
is invariant under the substitutiont 7! t�1: Thus, if C.T /ev denotes the space of continuous
functionsg W T ! C satisfyingg.t�1/ D g.t/ for all t 2 T; then restriction toT defines an
injective linear mapr W C.G; class/ ! C.T /ev:

Lemma 28.2 The mapr W C.G; class/ ! C.T /ev is bijective. Moreover,r is isometric, i.e., it
preserves the sup-norms.

Proof: That r is isometric follows from the observation that the set of values of a function
f 2 C.G; class/ is equal to the set of values of its restrictionr.f /: Thus it remains to establish
the surjectivity ofr: Let g 2 C.T /ev: Theng.t'/ D Qg.ei'/ for a unique continuous function
Qg W T ! C satisfying Qg.z/ D Qg.z�1/: Now Qg.z/ D G.Rez/ for a unique continuous function
G W Œ�1; 1� ! C: It follows thatg.t'/ D G.cos'/; for ' 2 R:

An elementx 2 SU.2/ has two eigenvaluesz.x/ and z.x/�1; with jz.x/j D 1: Clearly
x 7! Rez.x/ is a well defined continous function on SU.2/:

Definef .x/ D G.Rez.x//: Thenf is a well defined continuous class function. Moreover,
f .t'/ D G.Reei'/ D g.t'/; hencer.f / D g: �
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Corollary 28.3 The linear span of the characters�n; for n 2 N; is dense inC.G; class/:

Proof: By Lemma 28.2 it suffices to show that the linear spanS of the functions�njT is dense
in C.T /ev: From formula (34) we see that�n.t'/ D

Pn
kD0 e

i.n�2k/' : HenceS equals the linear
span of the functionsn W t' 7! ein' C e�in' D 2 cosn', .n 2 N/: The latter span is dense in
C.T /ev; by the classical theory of Fourier series. �

Corollary 28.4 Letf 2 C.G; class/: If f ? �n for all n 2 N; thenf D 0:

Remark 28.5 Once we know that the�n exhaustbG this follows from the Peter-Weyl theorem.

Proof: We first note that, forg 2 C.G/;

kgk2
L2 D

Z

G

jg.x/j2 dx � kgk21;

wherek � k1 denotes the sup norm. Using this estimate we see that the linear span of the
characters�n is dense inC.G; class/ with respect to theL2-norm. Thus, iff 2 C.G; class/ is
perpendicular to all�n; then it follows thatf ? C.G; class/: In particular,kf k22 D hf ; f i D 0;

which implies thatf D 0: �

Corollary 28.6 Every finite dimensional irreducible representation ofSU.2/ is equivalent to
one of the�n; n 2 N:

Proof: Suppose not. Then there exists aı 2 bG such thatı is not equivalent to�n; for every
n 2 N: Hence the class function�ı is perpendicular to�n for everyn 2 N: This implies that
�ı D 0: This is impossible, since�ı.e/ D dim.ı/ � 1: �

From the fact that every element of SU.2/ is conjugate to an element ofT one might expect
that there should exist a JacobianJ W T ! Œ0;1Œ such that for every continuous class function
f on SU.2/ we have Z

SU.2/
f .x/ dx D

Z 2�

0

f .t'/ J.t'/ d':

It is indeed possible to compute this Jacobian by a substitution of variables. However, we shall
obtain the above integration formula by other means.

Lemma 28.7 For every continuous class functionf W SU.2/ ! C we have:

Z

SU.2/
f .x/ dx D

Z 2�

0

f .t'/
sin2 '

�
d': (35)
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Proof: Consider the linear mapL which assigns tof 2 C.G; class/ the expression on the left-
hand side minus the expression on the right-hand side of the above equation. Then we must show
thatL is zero.

Obviously the linear functionalL W C.G; class/ ! C is continuous with respect to the sup
norm. Hence by density of the span of the characters it suffices to show thatL.�n/ D 0 for every
n 2 N: The function�0 is identically one; therefore left- and right-hand side of (35) both equal
1 if one substitutesf D �0: HenceL.�0/ D 0: On the other hand, ifn � 1; andf D �n; then
the left hand side of (35) equalsh�n ; �0i D 0: The right hand side of (35) also equals0; hence
L.�n/ D 0 for all n: �

Corollary 28.8 Letf 2 C.G/: Then

Z

G

f .x/ dx D
Z 2�

0

Z

G

f .xt'x
�1/ dx

sin2 '

�
d'

Remark 28.9 The interpretation of the above formula is that the integration overG D SU.2/
may be split into an integration over conjugacy classes, followed by an integration over the circle
groupT:

Proof: Put

F.y/ D
Z

G

f .xyx�1/ dx:

Then by bi-invariance of the Haar measure,F is a continuous class function. Hence by the
previous result Z

G

F.y/ dy D
Z 2�

0

Z

G

f .xt'x
�1/ dx

sin2 '

�
d':

On the other hand,
Z

G

F.y/ dy D
Z

G

Z

G

f .xyx�1/ dx dy

D
Z

G

Z

G

f .xyx�1/ dy dx;

by Fubini’s theorem. By bi-invariance of the Haar measure, the inner integral is independent of
x: Therefore,

Z

G

F.y/ dy D
Z

G

Z

G

f .y/ dy dx

D
Z

G

f .y/ dy:

This completes the proof. �
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We end this section with a description of all irreducible representations of SO.3/: From Sec-
tion 10 we recall that there exists a surjective Lie group homomorphism' W SU.2/ ! SO.3/
with kernel ker' D f�I; I g: Accordingly, SO.3/ ' SU.2/=f˙I g (Thm. 17.4).

Proposition 28.10 For k 2 N the representation�2k of SU.2/ factors through a representation
N�2k of SO.3/ ' SU.2/=f˙I g: The representationsN�2k are mutually inequivalent and exhaust

ŜO.3/:

Proof: One readily verifies that�2k.x/ D I for x 2 f˙I g: Hence�2k factors through a
representationN�2k of SO.3/: Every invariant subspace of the representation spaceV2k of �2k is
�2k.SU.2// invariant if and only if it is N�2k.SO.3// invariant. A non-trivial SO.3/-equivariant
mapV2k ! V2l would also be SU.2/-equivariant. Hence theN�2k are mutually inequivalent.
Finally, to see that the representationsN�2k exhaust̂SO.3/; assume that.�; V / is an irreducible
representation of SO.3/: Then'�� WD � ı' is an irreducible representation of SU.2/; hence
equivalent to some�n; n 2 N: From'�� D I on ker' it follows that�n D I on f˙I g; hence
n is even. �

29 Lie algebra representations

Let V be a finite dimensional complex linear space. If� is a continuous representation ofG
in V; then� is a (smooth) Lie group homomorphismG ! GL.V /; in view of Corollary 9.3.
Accordingly, the tangent map�� W g ! End.V / at e is a homomorphism of Lie algebras.
Thus,�� is a representation ofg in V: In other words, we see that a finite dimensionalG-
moduleV automatically is ag-module (see Remark 20.6 and the text preceding the remark for
the terminology used here).

By the chain rule one readily sees that

��.X/v D d

dt

ˇ̌
ˇ̌
tD0

�.exptX/v; (36)

for v 2 V andX 2 g: On the other hand, it follows from Lemma 4.16 that for allX 2 g we
have:

�.expX/ D e��.X/: (37)

WhenG is connected this equation allows us to compare theG- and theg-module structures on
V:When there is no chance of confusion, we will omit the star in the notation of the representation
of g in V:

Lemma 29.1 Assume thatG is connected, and letV; V 0 be two finite dimensionalG-modules.

(a) LetW be a linear subspace ofV: ThenW isG-invariant if and only ifW is g-invariant.

(b) TheG-moduleV is irreducible if and onlyV is irreducible as ag-module.

(c) LetT W V ! V 0 be a linear map. ThenT isG-equivariant if and only ifT isg-equivariant.
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(d) V andV 0 are isomorphic asG-modules if and only if they are isomorphic asg-modules.

Proof: Write � and� 0 for the representations ofG in V andV 0 respectively. As agreed, we
denote the associated representations ofg in V andV 0 by the same symbols, i.e., we omit the
stars in the notation.

(a): If W is g-invariant, then it follows from (37) thatW is invariant under the groupGe
which is generated by expg: But Ge D G; sinceG is connected. The converse implication is
proved by differentiating�.exp.tX// at t D 0:

(b): This is now an immediate consequence of (a).
(c): Suppose thatT is g-equivariant. Then for allX 2 g we have:� 0.X/ ıT D T ı�.X/;

hence� 0.X/n ıT D T ı�.X/n for all n 2 N; and sinceT is continuous linear it follows that

e�
0.X/

ıT D T ı e�.X/:

From this it follows that� 0.x/ ı T D T ı�.x/ for all x 2 expg; and hence forx 2 Ge D G:

The reverse implication follows by a straightforward differentiation argument as in part (a) of
this proof.

(d): This follows immediately from (c). �

Lemma 29.2 LetG be a connected compact Lie group, and let� be a representation ofG in a
finite dimensional Hilbert spaceV: Then� is unitary if and only if

�.X/� D ��.X/ (38)

for all X 2 g:

Proof: We recall that� W G ! GL.V / is a Lie group homomorphism. Hence for allX 2 g; t 2
R we have:

�.exptX/ D et�.X/:

If � is unitary, then�.exptX/� D �.exp.�tX//; hence

et�.X/
� D e�t�.X/: (39)

Differentiating this relation att D 0 we find (38). Conversely, if (38) holds, then (39) holds for
all X; t and it follows that�.x/ is unitary forx 2 expg: This implies that�.x/ is unitary for
x 2 Ge D G: �

It will turn out to be convenient to extend representations of g to its complexificationgC:
If E is a real linear space, its complexificationEC is defined as the real linear spaceE ˝R C;

equipped with the complex scalar multiplication�.v ˝ z/ D v ˝ �z: We embedE as a real
linear subspace ofEC by the mapv 7! v˝1: ThenEC D E˚ iE as a real linear space. In terms
of this decomposition, the complex scalar multiplication is given in the obvious fashion. Ifg is a
real Lie algebra, then its complexificationgC is equipped with the complex bilinear extension of
the Lie bracket. Thus,gC is a complex Lie algebra.
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Any representation� of g in a complex vector spaceV has a unique extension to a (complex)
representation ofgC in V I this extension, denoted�C; is given by

�C.X C iY / D �.X/C i�.Y /;

for X; Y 2 g:

Lemma 29.3 Let V; V 0 beg-modules, and letW � V a (complex) linear subspace, andT W
V ! V 0 a (complex) linear map.

(a) The spaceW is g-invariant if and only if it isgC-invariant.

(b) V is irreducible as ag-module if and only if it is so as agC-module.

(c) T is g-equivariant if and only if it isgC-equivariant.

(d) V andV 0 are isomorphic asg-modules if and only if they are isomorphic asgC-modules.

Proof: Left to the reader. �

Example 29.4 The Lie algebrasu.2/ of SU.2/ consists of complex2�2matricesA 2 M.2;C/;
satisfying trA D 0 andA� D �A: It follows from this thatisu.2/ is the real linear subspace
of M.2;C/ consisting of matricesA with trA D 0 andA� D A: In particular, we see that
su.2/ \ isu.2/ D f0g: Therefore, the embeddingsu.2/ ,! M.2;C/ extends to a complex linear
embedding

j W su.2/C ,! M.2;C/:

Clearly, the image ofj is contained in the Lie algebra of SL.2;C/; which is given by

sl.2;C/ D fA 2 M.2;C/ j trA D 0g:

On the other hand, ifA 2 sl.2;C/; then 1
2
.A � A�/ belongs tosu.2/ and 1

2
.A C A�/ belongs

to isu.2/I summing these elements, we see thatA 2 j.su.2/C/: Therefore,j is an isomorphism
from su.2/C ontosl.2;C/; via which we shall identify from now on.

30 Representations of sl(2,C)

It follows from the discussion in the previous section that the SU.2/-modulePn.C2/; for n 2
N; carries a natural structure ofsl.2;C/-module. The associated representation ofsl.2;C/ in
Pn.C

2/ equals.�n�/C; the complexification of�n�: We shall now compute this structure in
terms of the basisp0; : : : ; pn of Pn.C2/ given by

pj .z/ D z
j
1z
n�j
2 ; .z 2 C2/:

Let p 2 Pn.C
2/: Then we recall that, forx 2 SU.2/; Œ�n.x/p�.z/ D p.x�1z/; z 2 C2: It

follows from this that, for� 2 su.2/;

Œ�n�.�/p�.z/ D d

dt
p.e�t�z/

ˇ̌
ˇ̌
tD0

;
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hence, by the chain rule

Œ�n�.�/p�.z/ D @p

@z1
.z/.��z/1 C @p

@z2
.z/.��z/2:

The expression on the right-hand side is complex linear in�I hence it also gives�p D .�n�/C.�/p

for � 2 sl.2;C/: Thus, we obtain, for� 2 sl.2; C/ andp 2 Pn.C2/;

�p D �Œ.�z/1
@

@z1
C .�z/2

@

@z2
�p: (40)

We shall now compute the action of the basisH;X; Y of sl.2;C/ given by

H D
�
1 0

0 �1

�
; X D

�
0 1

0 0

�
; Y D

�
0 0

1 0

�
:

By a straightforward computation we see that

ŒH;X� D 2X; ŒH; Y � D �2Y; ŒX; Y � D H: (41)

Definition 30.1 Let l be a Lie algebra. By astandardsl.2/-triple in l we mean a collection of
linear independent elementsH;X; Y 2 l satisfying the relations (41).

Remark 30.2 Let l be a complex Lie algebra. Then the complex linear span of ansl.2/-triple
in l is a Lie subalgebra isomorphic tosl.2;C/:

SubstitutingH;X andY for � in (40), we obtain, forp 2 Pn.C2/;

H p D Œ�z1
@

@z1
C z2

@

@z2
�p; X p D �z2

@

@z1
p; Y p D �z1

@

@z2
p: (42)

By a straightforward computation we now see that the action of the tripleH;X; Y on the basis
elementpj is given by

Hpj D .n � 2j /pj ; Xpj D �jpj�1; Ypj D .j � n/pjC1:

For the matrices of the action ofH;X; Y onPn.C2/ relative to the basisp0; : : : ; pn we thus find

mat.H/ D

0
BBB@

n 0 : : : 0

0 n � 2
:::

:::
: : :

:::

0 : : : : : : �n

1
CCCA ;

and

mat.X/ D

0
BBBBB@

0 �1 0 : : : 0

0 0 �2 : : : 0
:::

: : :
: : :

:::

0 �n
0 : : : : : : 0

1
CCCCCA

mat.Y / D

0
BBBBB@

0 : : : : : : 0

�n 0
:::

0 1 � n 0
:::

: : :
: : :

:::

0 : : : 0 �1 0

1
CCCCCA
:

These matrices will guide us through the proof of the following theorem.
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Theorem 30.3 Every irreducible finite dimensionalsl.2;C/-module is isomorphic toPn.C2/;
for somen 2 N:

Remark 30.4 From the above theorem we deduce again, using Lemmas 29.1 and29.3, that
every irreducible continuous finite dimensional representation of SU.2/ is equivalent to�n; for
somen 2 N:

The proof of the the above theorem will be given in the rest of this section. LetV be an
irreducible finite dimensionalsl.2;C/-module.

Given� 2 C; we shall writeV� WD ker.H � �I/: This space is non-trivial if and only if� is
an eigenvalue for the action ofH onV:

Lemma 30.5 Let� 2 C: Then

XV� � V�C2; Y V� � V��2:

Proof: Let v 2 V�: ThenHXv D XHv C ŒH;X�v D �Xv C 2Xv D .� C 2/Xv; hence
Xv 2 V�C2: This proves the first inclusion. The second inclusion is proved in a similar manner.
�

By aprimitive vectorof V we mean a vectorv 2 V n f0g with the property thatXv D 0: The
idea behind this definition is to get hold of the analogue ofp0 2 Pn.C2/:

Lemma 30.6 V contains a primitive vector that is an eigenvector forH:

Proof: Let � be an eigenvalue of the action ofH on V: Fix an eigenvectorw 2 V�; w ¤ 0

and consider the sequence of vectorswk; k � 0; defined byw0 D w andwkC1 D Xwk:

Thenwk 2 V�C2k: If all vectorswk were non-zero, then they would be eigenvectors for different
eigenvalues ofH; hence they would be linear independent, contradicting the finite dimensionality
of V: It follows that there exists a largestk such thatwk ¤ 0: The vectorwk is primitive. �

In the following we assume thatv 2 V is a fixed primitive vector that is an eigenvector forH:
The associated eigenvalue is denoted by�: We now consider the vectorsvk defined byv0 D v

andvkC1 D Yvk: By a similar reasoning as in the above proof it follows that there exists a largest
numbern such thatvn ¤ 0:

Lemma 30.7

(a) The vectorsvk D Y kv; 0 � k � n; form a basis forV:

(b) The eigenvalue� equalsn D dimV � 1:
(c) For every0 � k � n;

Hvk D .� � 2k/vk; Xvk D k.� � k C 1/vk�1:
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(d) The primitive vectors inV are the non-zero multiples ofv0:

Proof: We first prove (c) for allk 2 N (but note thatvk D 0 for k > n). It follows from repeated
application of Lemma 30.5 thatvk 2 V��2k; henceHvk D .� � 2k/vk: We prove the second
assertion of (c) by induction. Sincev0 D v is primitive, the second assertion of (c) holds for
k D 0: Let nowk > 0 and assume that the assertion has been established for strictly smaller
values ofk: Then

Xvk D XYvk�1

D YXvk�1 C ŒX; Y �vk�1

D YXvk�1 CHvk�1

D .k � 1/.� � .k � 2//Y vk�2 C .� � 2.k � 1//vk�1

D k.� � k C 1/vk�1

and (c) follows.
LetW be the linear span of the vectorsvk; for 0 � k � n: Then by definition of the vectors

vk; Y vk D vkC1: Therefore,Y leavesW invariant. By (c),H andX leaveW invariant as well.
It follows thatW is a non-trivial invariant subspace ofV; henceV D W by irreducibility. The
vectorsvk; for 0 � k � n; must be linear independent since they are eigenvectors forH for
distinct eigenvalues; hence (a).

Finally, we have established the second assertion of (c) forall k � 0; in particular fork D
nC1: Now vnC1 D 0; hence0 D .nC1/.��n/vn and sincevn ¤ 0 it follows that� D n: This
establishes (b).

It follows from (a) and (c) that the only primitive vectors inV are non-zero multiples ofv0:
�

Corollary 30.8 Let V and V 0 be two irreducible finite dimensionalsl.2;C/-modules. Then
V ' V 0 if and only ifdimV D dimV 0: Moreover, ifv andv0 are primitive vectors ofV andV 0;

respectively, then there is a unique isomorphismT W V ! V 0 mappingv ontov0:

Proof: Clearly if V ' V 0 thenV andV 0 have equal dimension. Conversely, assume that
dimV D dimV 0 D n and thatv andv0 are primitive vectors ofV andV 0 respectively. Then by
the above lemma, the vectorsvk D Y kv; 0 � k � n form a basis ofV: Similarly the vectors
v0
k

D Y kv0; 0 � k � n form a basis ofV 0: Any intertwining operatorT W V ! V 0 that mapsv
ontov0 must map the basisvk onto the basisv0

k
; hence is uniquely determined. LetT W V ! V 0

be the linear map determined byT vk D v0
k
; for 0 � k � n: ThenT is a linear bijection.

Moreover, by the above lemma we see thatT intertwines the actions ofH;X; Y onV andV 0: It
follows thatT is equivariant, henceV ' V 0: �

Completion of the proof of Theorem 30.3: The spacePn.C2/ is an irreduciblesl.2;C/-
module, of dimensionnC 1: Hence ifV is an irreduciblesl.2;C/-module of dimensionm � 1;

thenV ' Pn.C
2/; with n D m � 1: �
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31 Roots and weights

Let t be a finite dimensional commutative real Lie algebra, and let.�; V / be a finite dimensional
representation oft in V:

Let t�C denote the space of complex linear functionals ontC: Note thatt�; the space of real
linear functionals ont may be identified with the space of� 2 t�C that are real valued ont: Thus,
t� is viewed as a real linear subspace oft�C: Accordinglyi t� equals the space of� 2 t�C such that
�jt has values iniR:

If � 2 t�C; then we define the following subspace ofV W

V� D
\

H2t

ker.�.H/ � �.H/I /: (43)

In other words,V� consists of the space ofv 2 V such that�.H/v D �.H/v for all H 2 t: If
V� ¤ 0; then� is called aweightof t in V; andV� is called the associatedweight space.The set
of weights oft in V is denoted byƒ.�/:

Lemma 31.1 Let T 2 End.V / be a�-intertwining linear endomorphism, thenT leavesV�
invariant, for every� 2 ƒ.�/:

Proof: Let � 2 ƒ.�/: The endomorphismT commutes with�.H/ hence leaves the eigenspace
ker.�.H/ � �.H// invariant, for everyH 2 t: HenceT leaves the intersectionV� of all these
spaces invariant. �

Lemma 31.2 The setƒ.�/ is a non-empty finite subset oft�C: Assume that�.X/ is diagonaliz-
able for everyX 2 t: Then

V D
M

�2ƒ.�/

V�: (44)

Moreover, ifW is a t-invariant subspace ofV; thenW is the direct sum of the spacesW \ V�;

for � 2 ƒ.�/:

Proof: Fix a basisX1; : : : ; Xn of t: The endomorphism�.X1/ has at least one eigenvalue, say
�1; with corresponding eigenspaceE1 � V: Sincet is commutative, this eigenspace is invariant
under the action oft: Proceeding by induction on dimt; we obtain a sequence of non-trivial
subspacesEn � En�1 � � � � � E1 such thatXj acts by a scalar�j onEj ; for each1 � j � n:

Define� 2 t�C by �.Xj / D �j ; thenEn � V�; hence� 2 ƒ.�/: This establishes the first
assertion.

If �.X/ diagonalizes, for everyX 2 t; then, in particular,V admits a decomposition of
eigenspaces for the endomorphism�.X1/: Each of these eigenspaces is invariant undert: There-
fore, by induction on dimt there exists a direct sum decompositionV D V1˚ � � � ˚ VN such that
Xj acts by a scalar�ij on Vi ; for all 1 � i � N and1 � j � n: Let �i 2 t�C be defined by
�i.Xj / D �ij ; for 1 � i � N: Thenƒ.�/ D f�1; : : : ; �N g: Moreover, one readily verifies that,
for � 2 �.�/; V� D ˚j W�D�j

Vj : Hence, (44) follows.

105



For the final assertion, we observe that by finite dimensionality of V the setƒ.�/ is finite.
Hence, there exists aX0 2 t such that.� � �/.X0/ ¤ 0 for all �; � 2 ƒ.�/ with � ¤ �: For
� 2 ƒ.�/; let P� W V ! V� be the projection along the remaining summands in (44). We claim
that

P� D
Y

�2ƒ.�/nf�g

.�.X0/ � �.X0//
�1.�.X0/ � �.X0//:

Indeed this is readily checked on each of the summandsV� of the decomposition in (44), for
� 2 ƒ.�/:

It follows from the above formula forP� thatP�.W / � W: Hence,P�.W / � W \ V�; and
the final assertion follows. �

Assumption: In the rest of this section we assume thatG is a compact Lie group, with Lie
algebrag:

Definition 31.3 A torus in g is by definition a commutative subalgebra ofg: A torus t � g is
calledmaximalif there exists no torus ofg that properly containst:

From now on we assume thatt is a fixed maximal torus ing:

Lemma 31.4 The centralizer oft in g equalst:

Proof: Sincet is abelian, it is contained in its centralizer. Conversely,assume thatX 2 g

centralizest: Thent0 D t C RX is a torus which containst: Hencet0 D t by maximality, and we
see thatX 2 t: �

Let .�; V / be a finite dimensional representation ofgC; the complexification of the Lie alge-
bragI i.e.,� is a complex Lie algebra homomorphism fromgC into End.V / (the latter is the space
of complex linear endomorphisms equipped with the commutator Lie bracket). Alternatively we
will also say thatV is a finite dimensionalgC-module. We denote byƒ.��/ D ƒ.��; t/ the set
of weights of the representation� D �jt of t in V: If � 2 t�C; then as before,V� is defined as in
(43), with�jt in place of�: Thus

V� D fv 2 V j �.H/v D �.H/v for all H 2 tg:

From Lemma 31.2 we see thatƒ.��/ is a non-empty finite subset oft�C:
Let .�; V / be a finite dimensional continuous representation ofG: Then the map� W G !

GL.V / is a homomorphism of Lie groups. Let�� D Te�: Then�� W g ! End.V / is a Lie
algebra homomorphism, or, differently said, a representation of g in V: The homomorphism
�� has a unique extension to a complex Lie algebra homomorphismfrom gC into End.V / (we
recall thatV is a complex linear space by assumption). This extension is called theinduced
infinitesimal representationof gC in V:

Lemma 31.5 Let � be a finite dimensional continuous representation ofG: Thenƒ.��/ is a
finite subset ofi t�: Moreover,

V D
M

�2ƒ.��/

V�:
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If V is equipped with aG-invariant inner product, then for all�; � 2 ƒ.��/ with � ¤ � we
haveV� ? V�:

Proof: There exists aG-invariant inner product onV I assume such an inner producth� ; �i to be
fixed. Then� mapsG into U.V /; the associated group of unitary transformations. It follows
that�� mapsg into the Lie algebrau.V / of U.V /; which is the subalgebra of anti-Hermitian
endomorphisms in End.V /: It follows that forX 2 g the endomorphism��.X/ is anti-Hermitian,
hence diagonalizable with imaginary eigenvalues. The proof is now completed by application of
Lemma 31.2. �

If A 2 End.g/; then we denote byAC the complex linear extension ofA to gC:Obviously the
mapA 7! AC induces a real linear embedding of End.g/ into End.gC/ WD EndC.gC/: Accord-
ingly we shall view End.g/ as a real linear subspace of the complex linear space End.gC/ from
now on. Thus, we may view Ad as a representation ofG in the complexificationgC of g: The
associated infinitesimal representation is the adjoint representation ad ofgC in gC: The associ-
ated collectionƒ. ad/ of weights contains the weight0: Indeed the associated weight spacegC0
equals the centralizer oft in gC; which in turn equalstC; by Lemma 31.4. Hence:

gC0 D tC:

Definition 31.6 The weights of ad ingC different from0 are called therootsof t in gCI the set
of these is denoted byR D R.gC; t/: Given˛ 2 R; the associated weight spacegC˛ is called a
root space.

It follows from the definitions that

gC˛ D fX 2 gC j ŒH;X� D ˛.H/X for all H 2 tg:

From Lemma 31.5 we now obtain the so calledroot space decompositionof gC; relative to the
torust:

Corollary 31.7 The collectionR D R.gC; t/ of roots is a finite subset ofi t�:Moreover, we have
the following direct sum of vector spaces:

gC D tC ˚
M

˛2R

gC˛: (45)

Example 31.8 The Lie algebrag D su.2/ has complexificationsl.2; C/; consisting of all com-
plex2 � 2 matrices with trace zero. LetH;X; Y be the standard basis ofsl.2; C/I i.e.

H D
�
1 0

0 �1

�
; X D

�
0 1

0 0

�
; Y D

�
0 0

1 0

�
:

Now t D iRH is a maximal torus insu.2/: We recall thatŒH;X� D 2X; ŒH; Y � D �2Y;
ŒX; Y � D H: Thus, if we definę 2 t�C by ˛.H/ D 2; thenR D R.gC; t/ equalsf˛;�˛g:
Moreover,gC˛ D CX andgC.�˛/ D CY:
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We recall that, by definition, the centerz D zg of g is the ideal ker adI i.e., it is the space of
X 2 g that commute with allY 2 g:

Lemma 31.9 The center ofg is contained int and equals the intersection of the root hyper-
planes:

zg D
\

˛2R

ker˛:

In particular, if zg D 0; thenR spans the real linear spacei t�:

Proof: The center ofg centralizest in particular, hence is contained int; by Lemma 31.4. Let
H 2 t and assume thatH centralizesgI thenH centralizesgC; hence every root space ofgC: This
implies that̨ .H/ D 0 for all ˛ 2 R: Conversely, ifH 2 t is in the intersection of all the root
hyperplanes, thenH centralizestC and every root spacegC˛: By the root space decomposition it
then follows thatH 2 z: This establishes the characterization of the center.

If z D 0; then the root hyperplanes ker˛ .˛ 2 R/ have a zero intersection int: This implies
that the setR � i t� spans the real linear spacei t�: �

Lemma 31.10 Let .�; V / be a finite dimensional representation ofgC: Then for all� 2 ƒ.�/

and all˛ 2 R [ f0g we have:
�.gC˛/V� � V�C˛:

In particular, if �C ˛ … ƒ.�/; then�.gC˛/ anihilatesV�:

Proof: LetX 2 gC˛ andv 2 V�: Then, forH 2 t;

�.H/�.X/v D �.X/�.H/v C Œ�.H/; �.X/�v

D �.H/�.X/v C �.ŒH;X�/v D Œ�.H/C ˛.H/��.X/v:

Hence�.X/v 2 V�C˛: If � C ˛ is not a weight of�; thenV�C˛ D 0 and it follows that
�.X/v D 0: �

Corollary 31.11 If ˛; ˇ 2 R [ f0g; then

ŒgC˛; gCˇ � � gC.˛Cˇ/:

In particular, if ˛ C ˇ … R [ f0g; thengC˛ andgCˇ commute.

Proof: This follows from the previous lemma applied to the adjoint representation. �

We shall writeZR for theZ-linear span ofR; i.e., theZ-module of elements of the formP
˛2R n˛˛; with n˛ 2 Z:

In the following corollary we do not assume that� comes from a representation ofG:
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Corollary 31.12 Let .�; V / be a finite dimensional representation ofgC: Then

W WD
M

�2ƒ.�/

V� (46)

is a non-trivialgC-submodule. If� is irreducible, thenW D V: Moreover, if�; � 2 ƒ.�/; then
� � � 2 ZR:

Proof: By Lemma 31.2 the setƒ.�/ is non-empty and finite, and thereforeW is a non-trivial
subspace ofV: From Lemma 31.10 we see thatW is gC-invariant. If � is irreducible, then
W D V: To establish the last assertion we define an equivalence relation onƒ.�/ by � �
� () � � � 2 ZR: If S is a class for�; thenVS D ˚�2SV� is a non-trivialgC-invariant
subspace ofV; by Lemma 31.10. HenceVS D V and it follows thatS D ƒ.�/: �

Remark 31.13 If g has trivial center, then the above result actually holds forevery finite dimen-
sionalV -module. To see that a condition like this is necessary, considerg D R; the Lie algebra
of the circle. Define a representation ofg in V D C2 by

�.x/ D
�
0 x

0 0

�
:

Thenƒ.�/ D f0g; butV0 D C � f0g is not all ofV:
Note that this does not contradict the conclusion of Lemma 31.5, since� is not associated

with a continuous representation of the circle group inC2:

Lemma 31.14 Let t be a maximal torus ing; andR the associated collection of roots. If˛ 2 R
then�˛ 2 R:

Proof: Let � be the conjugation ofgC with respect to the real formg: That is: �.X C iY / D
X � iY for all X; Y 2 g: One readily checks that� is an automorphism ofgC; considered as a
real Lie algebra (by forgetting the complex linear structure). Let˛ 2 R; and letX 2 gC˛: Then
for everyH 2 t;

ŒH; �.X/� D �ŒH;X� D �.˛.H/X/ D ˛.H/�.X/ D �˛.H/�.X/:

For the latter equation we used that˛ has imaginary values ont: It follows that�˛ 2 R and that
� mapsgC˛ into gC�˛ (in fact is a bijection between these root spaces; why?). �

We recall that we identifyi t� with the real linear subspace oft�C consisting of� such that�jt
has values iniRI the latter condition is equivalent to saying that�jit is real valued. One readily
verifies that the restriction map� 7! �jit defines a real linear isomorphism fromi t� onto the
real linear dual.i t/�: In the following we shall use this isomorphism to identifyi t� with .i t/�:
Now R is a finite subset of.i t/� n f0g: Hence the complement of the hyperplanes ker˛ � i t;

for ˛ 2 R is a finite union of connected components, which are all convex. These components
are called theWeyl chambersassociated withR: Let C be a fixed chamber. By definition every
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root is either positive or negative onC: We define thesystem of positive rootsRC WD RC.C/

associated withC by
RC D f˛ 2 R j ˛ > 0 on Cg:

By what we said above, for every̨ 2 R; we have that either̨ or �˛ belongs toRC; but not
both. It follows that

R D RC [ .�RC/ (disjoint union). (47)

We writeNRC for the subset ofZR consisting of the elements that can be written as a sum
of the form

P
˛2RC n˛˛; with n˛ 2 N:

Lemma 31.15 NRC \ .�NRC/ D 0:

Proof: Let� 2 NRC: Then� � 0 onC; the chamber corresponding toRC: If also�� 2 NRC;

then� � 0 on C as well. Hence� D 0 on C: SinceC is a non-empty open subset ofi t�; this
implies that� D 0: �

Lemma 31.16 The spaces

gC
C WD

X

˛2RC

gC˛; g�
C WD

X

ˇ2�RC

gCˇ

are ad.t/-stable subalgebras ofgC: Moreover,

gC D gC
C ˚ tC ˚ g�

C :

Proof: Let ˛; ˇ 2 RC and assume thatŒgC˛; gCˇ � ¤ 0: Then˛ C ˇ 2 R [ f0g; and˛ C ˇ > 0

onC: This implies that̨ Cˇ 2 RC; hencegC.˛Cˇ/ � gC
C : It follows thatgC

C is a subalgebra. For
similar reasonsg�

C is a subalgebra. Both subalgebras are ad.t/ stable, since root spaces are. The
direct sum decomposition is an immediate consequence of (45) and (47). �

We are now able to define the notion of a highest weight vector for a finite dimensionalgC-
module, relative to the system of positive rootsRC: This is the appropriate generalization of the
notion of a primitive vector forsl.2;C/:

Definition 31.17 Let V be a finite dimensionalgC-module. Then ahighest weight vectorof V
is by definition a non-trivial vectorv 2 V such that

(a) tCv � CvI
(b) Xv D 0 for all X 2 gC

C :

Lemma 31.18 LetV be a finite dimensionalgC-module. ThenV has a highest weight vector.

Proof: We define thegC-submoduleW of V as the sum of thetC-weight spaces, see Corollary
31.12.

Let C be the positive chamber determiningRC: Fix X 2 C: Then˛.X/ > 0 for all ˛ 2 RC:

We may select�0 2 ƒ.�/ such that the real part of�.X/ is maximal. Then�0 C ˛ … ƒ.�/ for
all ˛ 2 RC: By Lemma 31.10 this implies that��.gC˛/V� � V�0C˛ D 0 for all ˛ 2 RC: Hence
gC
C annihilatesV�0

: Thus, every non-zero vector ofV�0
is a highest weight vector. �
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Definition 31.19 Let V be a finite dimensionalgC-module. A vectorv 2 V is calledcyclic if it
generates thegC-moduleV; i.e.,V is the smallestgC-submodule containingv:

Obviously, ifV is irreducible, then every non-trivial vector is cyclic.

Proposition 31.20 LetV be a finite dimensionalgC-module and letv 2 V be a cyclic highest
weight vector.

(a) There exists a (unique)� 2 ƒ.V / such thatv 2 V�: Moreover,V� D Cv:

(b) The spaceV is equal to the span of the vectorsv and�.X1/ � � ��.Xn/v; with n 2 N and
Xj 2 g�

C ; for 1 � j � n:

(c) Every weight� 2 ƒ.V / is of the form� � �; with � 2 NRC:

(d) The moduleV has a unique maximal proper submoduleW:

(e) The moduleV has a unique non-trivial irreducible quotient.

Proof: The first assertion of (a) follows from the definition of highest weight vector. We define
an increasing sequence of linear subspaces ofV inductively byV0 D Cv andVnC1 D Vn C
�.g�

C/Vn: Let W be the union of the spacesVn: We claim thatW is an invariant subspace of
V: To establish the claim, we note that by definition we have�.g�

C/Vn � VnC1I henceW is g�
C

invariant. The spaceV0 is t- andgC
C -invariant; by induction we will show that the same holds for

Vn: Assume thatVn is t- andgC
C -invariant, and letv 2 Vn; Y 2 g�

C : Then forH in t we have
HYv D YHvC ŒH; Y �v: Now v 2 Vn and by the inductive hypothesis it follows thatHv 2 Vn:
HenceYHv 2 VnC1: Also ŒH; Y � 2 g�

C and it follows thatŒH; Y �v 2 VnC1: We conclude that
HYv 2 VnC1: It follows from this that

�.t/�.g�
C/Vn � VnC1:

HenceVnC1 is t-invariant.
Let now v 2 Vn; Y 2 g�

C andX 2 gC
C : ThenXYv D YXv C ŒX; Y �v: Now Xv 2 Vn

by the induction hypothesis and we see thatYXv 2 VnC1: Also, ŒX; Y � 2 gC: By the induction
hypothesis it follows thatgCVn � VnC1:HenceŒX; Y �v 2 VnC1:We conclude thatXYv 2 VnC1:

It follows from this that
�.gC

C /�.g
�
C/Vn � VnC1:

HenceVnC1 is gC
C -invariant. This establishes the claim thatW is agC-invariant subspace ofV:

SinceW contains the cyclic vectorv; it follows thatW D V: Hence, (b) follows. Let
w D �.Y1/ � � ��.Yn/v; with n 2 N; Yj 2 gC.�˛j /; ˛j 2 RC: Thenw belongs to the weight
spaceV���; where� D ˛1 C � � � C ˛n 2 NRC: Sincev and such elementsw spanW D V;

we conclude that every weight� in ƒ.V / is of the form� � � with � 2 NRC: This establishes
(c). Moreover, it follows from the above description thatV equals the vector sum ofCv and
V�; whereV� denotes the sum of the weight spacesV� with � 2 ƒ.V / n f�g: This implies that
V� D Cv; whence the second assertion of (a).
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We now turn to assertion (d). LetU be a submodule ofV: In particular,U is a tC-invariant
subspace. Letƒ.U / be the collection of� 2 ƒ.V / for whichU� WD U \ V� ¤ 0: In view of
Lemma 31.2,U is the direct sum of the spacesU�; for � 2 ƒ.U /: If U is a proper submodule,
thenU� D 0; henceƒ.U / � ƒ.V / n f�g: It follows that the vector sumW of all proper
submodules satisfiesƒ.W / � ƒ.V / n f�g hence is still proper. Therefore,V hasW as unique
maximal submodule.

The final assertion (e) is equivalent to (d). To see this, letp W V ! V 0 be a surjectivegC-
module homomorphism onto a non-trivialgC-module. ThenU 7! p�1.U / defines a bijection
from the collection of proper submodules ofV 0 onto the collection of proper submodules of
V containing kerp: It follows that V 0 is irreducible if and only if kerp is a proper maximal
submodule ofV: The equivalence of (d) and (e) now readily follows. �

Corollary 31.21 Let V be a finite dimensional irreduciblegC-module. ThenV has a highest
weight vectorv, which is unique up to a scalar factor. Let� be the weight ofv: Then assertions
(a) - (c) of Proposition 31.20 are valid.

Proof: It follows from Lemma 31.18 thatV has a highest weight vector. Letv be any highest
weight vector inV and let� be its weight. By irreducibility ofV; the vectorv is cyclic. Hence
all assertions of Proposition 31.20 are valid.

Let w be a second highest weight vector and let� be its weight. Then all assertions of
Proposition 31.20 are valid. Hence� 2 � � NRC and� 2 � � NRC; from which� � � 2
NRC \ .�NRC/ D f0g: It follows that� D �I hencew 2 V� D Cv: �

Remark 31.22 For obvious reasons the above weight� is called thehighest weightof the
irreduciblegC-moduleV; relative to the choiceRC of positive roots.

The following theorem is the first step towards the classification of all finite dimensional
irreducible representations ofgC:

Theorem 31.23 Let V andV 0 be irreduciblegC-modules. IfV andV 0 have the same highest
weight (relative toRC), thenV andV 0 are isomorphic (i.e., the associatedgC-representations
are equivalent).

Proof: We denote the highest weight by� and fix associated highest weight vectorsv 2 V� nf0g
andv0 2 V 0

�
n f0g: We consider the direct sumgC-moduleV ˚ V 0 and denote byW the smallest

gC-submodule containing the vectorw WD .v; v0/: Thenw is a cyclic weight vector ofW; of
weight�:

Let p W V ˚ V 0 ! V be the projection onto the first component, andp0 W V ˚ V 0 ! V 0 the
projection onto the second. Thenp andp0 aregC-module homomorphisms. Sincep.w/ D v; it
follows thatpjW is surjective ontoV: Similarly,p0jW is surjective ontoV 0: It follows thatV; V 0

are both irreducible quotients ofW; hence isomorphic by Proposition 31.20 (e). �

Remark 31.24 In the above proof it is easy to deduce that in factW is irreducible, andpjW and
p0jW are isomorphisms fromW ontoV andV 0; respectively.
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32 Conjugacy of maximal tori

We retain the notation of the previous section. In this section we shall investigate to what extent
the collectionR D R.gC/ depends on the choice of the maximal torust: An elementX 2 tC
will be calledregular if ˛.X/ ¤ 0 for all ˛ 2 R: The set of regular elements int andtC will be
denoted bytreg andtreg

C ; respectively. SinceR is finite, treg is an open dense subset oftI similarly
t
reg
C is an open dense subset oftC:

Lemma 32.1 Let t be a maximal torus ing; and letX 2 t: Then the following statements are
equivalent.

(a) X 2 tregI
(b) ker. ad.X// D tI
(c) with respect to anyG-invariant inner product ong we havet D im. ad.X//?I
(d) with respect to someG-invariant inner product ong we havet D im. ad.X//?I

Proof: Assume (a), and letY 2 g commute withX: In the complexification ofg we may
decomposeY D Y0 C

P
˛2R Y˛; with Y0 2 tC andY˛ 2 gC˛ for ˛ 2 R: Then

0 D ŒX; Y � D
X

˛2R

˛.X/Y˛:

SinceX is regular,˛.X/ ¤ 0 for all ˛; and it follows thatY˛ D 0 for all ˛ 2 R: Hence
Y 2 g \ t�C D t: This implies ker. ad.X// � tI the converse inclusion is obvious, hence (b)
follows.

Next, we assume that (b) holds. Since ad.X/ is anti-symmetric with respect to any invariant
inner product, it follows that im. ad.X//? D ker. ad.X//: The latter space equalst by (b). Hence
(c) follows.

That (c) implies (d) is obvious. Now assume that (d) holds. Then it follows that ad.X/
induces a linear automorphism ofg=t: All eigenvalues of a linear automorphism must be different
from zero, hencę .X/ ¤ 0 for all ˛ 2 R: �

If g 2 G; then Ad.g/ is an automorphism of the Lie algebragI hence Ad.g/t is a maximal
torus ing: The following result asserts that all maximal tori ofg arise in this way.

Lemma 32.2 Let t; t0 be two maximal tori ing: Then there exists ag 2 G such that

t0 D Ad.g/t:

Proof: By the method of averaging overG we see that there exists aG-invariant positive definite
inner product ongI select such an inner producth� ; �i: Moreover, select regular elementsX 2 t

andY 2 t0: Then by Lemma 32.1 we see thatt equals the centralizer ofX in g: We consider the
smooth functionf W G ! R given by

f .x/ D hAd.x/X ; Y i:
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By compactness ofG; the continuous functionf attains a minimal value at a pointx0 2 G: It
follows that for everyZ 2 g the functiont 7! f .x0 exptZ/ has a minimum att D 0; hence

0 D d

dt

ˇ̌
ˇ̌
tD0

f .x0 exptZ/ D hAd.x0/ŒZ;X� ; Y i D �h ad.X/.Z/ ; Ad.x0/
�1Y i:

By Lemma 32.1 we see that ad.X/ mapsg ontot?: Hence Ad.x0/�1Y 2 .t?/? D t: It follows
from this that the maximal torust00 D Ad.x0/t containsY I obviously t00 is contained in the
centralizer ofY; which equalst0; by Lemma 32.1. By maximality oft00 it follows thatt0 D t00 D
Ad.x0/t: �

If g 2 G; then Ad.g/ is an automorphism of the Lie algebrag: More generally we now
consider an automorphism' of the Lie algebragI its complex linear extension, also denoted by
' is an automorphism of the complex Lie algebragC: If t is a maximal torus, thent0 D '.t/ is a
maximal torus as well. The mapt�C ! t0

�
C given by� 7! � ı'�1 is a linear isomorphism, which

we again denote by': With this notation we have:

Lemma 32.3 Let' be an automorphism of the Lie algebrag: If t is a maximal torus ing; then
t0 D '.t/ is a maximal torus ing as well. Moreover, the induced linear isomorphism' W t�C ! t0

�
C

mapsR D R.gC; t/ bijectively ontoR0 D R.gC; t
0/: Finally, if ˛ 2 R; then

'.gC˛/ D gC'.˛/:

Proof: Let ˛ 2 R and letX 2 gC˛: Then, for everyH 0 2 t0;

ŒH 0; '.X/� D '.Œ'�1.H 0/; X�/ D '.˛.'�1.H 0/X/ D Œ'.˛/�.H 0/'.X/:

From this we see that'.˛/ 2 R0 and'.gC˛/ � gC'.˛/: The proof is completed by applying the
same reasoning to the inverse of': �

Corollary 32.4 LetR;R0 be the collections of roots associated with two maximal torit; t0 of g:
Then there exists a bijective linear map fromi t� ontoi t0� which mapsR ontoR0:

Proof: By Lemma 32.2 there exists ag 2 G such that Ad.g/t D t0: The map' D Ad.g/ is
an automorphism ofg: By Lemma 32.3 the induced isomorphism fromt�C onto t0�C satisfies all
requirements. �

33 Automorphisms of a Lie algebra

In this section we assume thatg is a finite dimensional real or complex Lie algebra. We denote
by Aut.g/ thegroup of automorphismsof the Lie algebrag: This is clearly a subgroup of GL.g/:
In fact, Aut.g/ is the intersection, forX; Y 2 g; of the subsetsAX;Y consisting of' 2 GL.g/
with '.ŒX; Y �/ � Œ'.X/; '.Y /� D 0: All of these subsets are closed, hence Aut.g/ is a closed
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subgroup of GL.g/: Its Lie algebra is a sub Lie algebra of End.g/; equipped with the commutator
bracket.

A derivationof g is by definition a linear mapD 2 End.g/ such that

D.ŒX; Y �/ D ŒD.X/; Y �C ŒX;D.Y /� .X; Y 2 g/:

One readily sees that the space Der.g/ of all derivations ofg is a Lie subalgebra of End.g/:

Proposition 33.1 Der.g/ is the Lie algebra ofAut.g/:

Proof: LetD be an element in the Lie algebra of Aut.g/: Then exp.tD/ 2 Aut.g/ for all t 2 R:

LetX; Y 2 g; then it follows that

etDŒX; Y � D ŒetDX; etDY �:

Differentiating this expression with respect tot at t D 0 we obtain thatDŒX; Y � D ŒDX; Y � C
ŒX;DY �I henceD is a derivation. It follows that the Lie algebra of Aut.g/ is contained in Der.g/:

To prove the converse inclusion, letD 2 Der.g/; and letX; Y 2 g: Consider the function
c W R ! g defined by

c.t/ D e�tDŒetDX; etDY �:

Thenc is differentiable, and its derivative is given by

c0.t/ D .@t e
�tD/ŒetDX; etDY �C e�tDŒ.@t e

tDX/; etDY �C e�tDŒetDX; .@t e
tDY /�

D �e�tDD.ŒetDX; etDY �/C e�tDŒDetDX; etDY �C e�tDŒetDX;DetDY �

D 0:

Hencec is constantly equal toc.0/ D ŒX; Y �: It follows from this thatetD 2 Aut.g/ for all
t 2 R; henceD belongs to the Lie algebra of Aut.g/: �

Corollary 33.2 The homomorphismadmapsg into Der.g/: If X 2 g; thene adX is an automor-
phism of the Lie algebrag:

Proof: The first assertion follows from the Jacobi identity. The last statement is now a conse-
quence of the above lemma; indeedeD 2 Aut.g/; for D 2 Der.g/: �

The subgroup of Aut.g/ generated bye ad.X/; X 2 g is called the group ofinterior automor-
phismsof g; notation: Int.g/: Its Lie algebra equals ad.g/; see Section 7.

34 The Killing form

Let g be a finite dimensional Lie algebra overK D R;C: Its Killing form is by definition the
bilinear formg � g ! K defined by

B.X; Y / D tr. ad.X/ ı ad.Y //; .X; Y 2 g/:
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Lemma 34.1 The Killing form is symmetric. Morever, if' 2 Aut.g/; then

B.'.X/; '.Y // D B.X; Y / .X; Y 2 g/: (48)

Finally,
B.ŒZ;X�; Y / D �B.X; ŒZ; Y �/ .X; Y;Z 2 g/: (49)

Proof: If A;B are endomorphisms of a linear space, it is well known thatAB �BA has trace0:
Hence tr. ad.X/ ı ad.Y // D tr. ad.Y / ı ad.X//; for X; Y 2 g; and the symmetry ofB follows.

If ' is a Lie algebra automorphism ofg; then it follows that' ı adX D ad.'.X// ı ': Hence
ad.'.X// D ' ı ad.X/ ı'�1: Using this and conjugation invariance of the trace (48) follows.

Let t 2 R; thenet adZ 2 Aut.g/I thus (48) holds withet adZ inserted for': Differentiation of
the resulting identity with respect tot at t D 0 yields (49).

The latter identity can also be derived algebraically, as follows. We note that ad.ŒZ;X�/ D
ad.Z/ ad.X/ � ad.X/ ad.Z/; hence

B.ŒZ;X�; Y / D tr. ad.Z/ ad.X/ ad.Y // � tr. ad.X/ ad.Z/ ad.Y //

D tr. ad.X/ ad.Y / ad.Z// � tr. ad.Y / ad.Z/ ad.X//

D tr . ad.X/ ad.ŒY; Z�// D �B.X; ŒZ; Y �/:

�

The identity (49) is known asinvariance of the Killing form. If v is a linear subspace ofg;
then byv? we shall denote its orthocomplement with respect toB; i.e., the collection ofY 2 g

such thatB.X; Y / D 0 for all X 2 v: Note that from the invariance ofB the following lemma is
an immediate consequence.

Lemma 34.2 Letv � g: If v is an ideal, then so isv?:

35 Compact and reductive Lie algebras

Throughout this sectiong will be a real finite dimensional Lie algebra.
The algebrag is calledcompactif it is isomorphic to the Lie algebra of a compact Lie group.

The purpose of this section is to derive useful criteria for aLie algebra to be compact. Our
starting point is the following result.

LetB denote the Killing form ofg:We recall from Lemma 34.1 thatB is a symmetric bilinear
form. Since ad is a Lie algebra homomorphism, its kernelz WD ker ad is an ideal ing: This ideal
is called thecenterof g:

Lemma 35.1 Let g be compact. Then the Killing formB is negative semi-definite. Moreover,
g? D z:
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Proof: We may assume thatg is the Lie algebra of the compact groupG: The representation
Ad of G in gC is unitarizable, hence there exists a positive definite inner product ongC that is
Ad.G/-invariant. With respect to this inner product we have Ad.G/ � U.gC/:

Since ad is the infinitesimal representation ofg in gC associated with Ad; it follows that
ad.g/ � u.gC/: Hence, ad.X/ is an anti-symmetric Hermitian endomorphism ofgC; for X 2 g:

This implies that adX has a an orthonormal basis of eigenvectors and imaginary eigenvalues.
Hence ad.X/2 has the same orthonormal basis of eigenvectors with eigenvalues� 0: It follows
thatB.X;X/ D tr ad.X/2 � 0: Hence,B is negative semi-definite. Moreover, ifB.X;X/ D 0

then tr ad.X/2 D 0 and it follows that all eigenvalues of ad.X/2; hence of ad.X/ are zero.
Hence, ad.X/ D 0: This shows thatg? � z: The converse inclusion is obvious. �

If v;w are subspaces ofg; then byŒv;w�we denote the subspace ofg spanned by the elements
ŒX; Y �; whereX 2 v; Y 2 w: If v;w are ideals, thenŒv;w� is an ideal ofg: Indeed, this follows
by a straightforward application of the Jacobi identity. Inparticular

Dg WD Œg; g�

is an ideal ofg; called thecommutator ideal.
If a; b are ideals ofg; thena C b is an ideal ofg as well. Two idealsa andb of g are said to

be complementary if
g D a ˚ b (50)

as linear spaces.

Lemma 35.2 If a; b are ideals ofg; then Œa; b� � a \ b: If a and b are complementary, then
Œa; b� D 0: In that case, (50) is a direct sum of Lie algebras.

Proof: Sincea is an ideal,Œa; b� D Œb; a� � a: Similarly, Œa; b� � b: HenceŒa; b� � a \ b: The
last two assertions now readily follow. �

Lemma 35.3 Letg be a compact Lie algebra. Then every ideal ofg has a complementary ideal.

Proof: As in the proof of Lemma 35.1 there exists a positive definite inner producth � ; � i on
g with respect to which Ad.G/ � O.g/: It follows that ad.g/ � o.g/; or, equivalently, that
hŒX; U � ; V i D �hU ; ŒX; V �i; for all X;U; V 2 g: By this property, ifa � g is an ideal, then
a? is an ideal; moreover,g D a ˚ a?: �

Lemma 35.4 Let g have the property that every ideal has a complementary ideal. Then

g D z ˚ Dg:

Proof: The idealDg has a complementary ideal, saya: Since obviouslyŒg; a� � Dg; we have
Œg; a� � a \ Dg D 0; from which we conclude thata � z: It follows thatg D z C Dg:

The idealz has a complementary ideal, sayb: Thus, g D z ˚ b: Now Dg D Œg; g� �
Œg; z�C Œg; b� � b; from which we conclude thatz \ Dg D 0: �
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Theorem 35.5 The following assertions are equivalent.

(a) g is compact

(b) g D z ˚ Dg andB is negative definite onDg:

(c) There exists a subalgebrag0 � g such thatg D z C g0 and such thatB is negative definite
ong0:

Finally, if g0 is as in (c) theng0 D Dg:

Proof: First, assume that (a) is valid. Theng D z ˚ Dg by Lemma 35.4. By Lemma 35.1 it
follows thatB < 0 onDg: Hence (b). The implication (b)) (c) is obvious. The implication (c)
) (a) and the final assertion will be established in the following lemma. �

Lemma 35.6 Let the Killing form ofg be negative definite. ThenAut.g/ is compact. Moreover,
ad is a Lie algebra isomorphism fromg ontoDer.g/: In particular it follows thatg is compact
and has trivial center.

Proof: Let O.g/ denote the group of invertible transformations ofg that are orthogonal relative
to the positive definite inner product�B: Then O.g/ is compact. From (48) it follows that the
closed subgroup Aut.g/ of GL.g/ is contained in the compact group O.g/; hence is compact.

By definition of the Killing form, ker ad� g?I sinceB is non-degenerate, it follows that ad
is an injective Lie algebra homomorphism. It follows from the Jacobi identity that ad mapsg
into Der.g/:

If D 2 Der.g/; then forX 2 g we have thatŒD ı ad.X/�.Y / D ad.DX/Y C Œ ad.X/ ıD�.Y /

for Y 2 g: Hence
ŒD; ad.X/� D ad.DX/: (51)

It follows that ad.g/ is an ideal in Der.g/:
Now Der.g/ is the Lie algebra of the compact group Aut.g/; see Proposition 33.1. It follows

that Der.g/ is compact. By application of Lemma 35.3 it follows that ad.g/ has a complementary
ideal b in Der.g/: Let D 2 b: ThenD commutes with ad.g/; hence from (51) we see that
ad.DX/ D 0; whenceDX D 0 for all X 2 g: HenceD D 0: We conclude thatb D 0; hence
ad.g/ D Der.g/:

It follows that ad is an isomorphism fromg onto Der.g/I the latter is the Lie algebra of the
compact group Aut.g/: Henceg is compact. �

Completion of the proof of Theorem 35.5: Assume that (c) holds. Theng0 has negative
definite Killing form, hence is compact. Sincez D ker ad � g? it follows that z \ g0 D 0:

Hence,g D z ˚ g0 as linear spaces. Since obviouslyŒz; g0� D 0; the mentioned direct sum is a
direct sum of Lie algebras.

Let G 0 be a compact Lie group with algebra isomorphic tog0: Let n D dimz: Thenz ' Rn

as abelian Lie algebras. Hence, the compact torusT WD Rn=Zn has Lie algebra isomorphicz:
It follows that the compact groupG WD T � G 0 has Lie algebra isomorphic toz ˚ g0 D g: (a)
follows.

Finally, letg0 be as in (c). Then by the above reasoning,g D z˚g0 as Lie algebras. It follows
thatDg � Œg0; g0� � g0: Now apply (b) to conclude thatDg D g0: �
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The Lie algebrag is calledsimpleif it is not abelian and has no ideals besides0 andg: It is
calledsemisimpleif it is a direct sum of simple ideals.

Lemma 35.7 Let g be semisimple, thenz D 0 andDg D g:

Proof: Letg D g1˚� � �˚gn be a decomposition into simple ideals. We observe that each idealgj
is non-abelian, henceŒgj ; gj � is a non-trivial ideal ingj : Since the latter is simple, we conclude
thatDgj D gj : Since thegj mutually commute, it follows thatDg D Dg1 C � � � C Dgn D g: If
X belongs to the center ofg; write X D X1 C � � � C Xn; according to the decomposition (52).
ThenX commutes withgi and eachXj ; for j ¤ i; commutes withgi : Hence,Xi commutes
with gi as well. HenceX belongs to the centerzi of gi : This center is an ideal different fromgi ;
sincegi is not abelian. Sincegi is simple,zi D 0: We conclude thatX D 0: Hence,z D 0: �

Proposition 35.8 The following assertions are equivalent.

(a) The algebrag is compact and has trivial center;

(b) The Killing form ofg is negative definite;

(c) The algebrag is compact and semisimple.

Proof: Assume (a). Then by Theorem 35.5,g D Dg and (b) follows. Since the implication (c)
) (a) follows from Lemma 35.7, it remains to establish the implication (b)) (c). Assume (b).
If a; b are ad.g/-invariant subspaces ofg with a � b; thena1 WD a? \ b is an ad.g/-invariant
subspace ofg andb D a ˚ a1 is a direct sum decomposition ofb: Applying this observation
repeatedly, we obtain a direct sum decomposition

g D g1 ˚ � � � ˚ gn (52)

of non-trivial ad.g/-invariant subspaces, such thatgj has no ad.g/-invariant subspaces besides0
andgj ; for eachj 2 g: The assertion thatgj is ad.g/-invariant is equivalent to the assertion that
gj is an ideal ing: Hence, (52) is a direct sum of ideals. It follows thatŒgi ; gj � D 0 for i ¤ j:

Hence every ideala of gi is also an ideal ofg: We see that each algebragi has no ideals besides
0 and itself. Ifgi were abelian, it would centralizegi andgj for all j ¤ i; henceg: This would
imply thatgi � g? D 0; contradiction. Thus, each idealgi is simple, and it follows thatg is
semisimple. �

Lemma 35.9 Let g be a finite dimensional Lie algebra, and leta be a simple ideal ofg: If
g D g1 ˚ : : : ˚ gn is a direct sum of ideals, then there exists a unique1 � j � n such that
gj � a:

Proof: We note thatŒg; a� � a sincea is an ideal, andŒg; a� � Œa; a� D a sincea is simple.
HenceŒg; a� D a: From the direct sum decomposition it now follows that

a D Œg1; a�C � � � C Œgn; a�:

Hence there exists aj such thatŒgj ; a� ¤ 0: Sincea is simple andŒgj ; a� is an ideal ina we must
haveŒgj ; a� D a: This implies thata D Œa; gj � � gj : Of coursej is uniquely determined by the
latter property. �
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Lemma 35.10 Letg be semisimple, and letS be the collection of simple ideals ing: Every ideal
a � g is the direct sum of the ideals fromS that are contained ina: In particular, g is the direct
sum of the ideals fromS:

Proof: We may expressg as a direct sum of simple ideals of the form (52). Ifa 2 S then, by
the previous lemma,a � gj for somej: Sincegj is simple, it follows thata D gj : We conclude
thatS D fg1; : : : ; gng:

Let nowb � g be any ideal. We will show thatb is the direct sum of the simple ideals from
S.b/ WD fa 2 S j a � bg by induction on #S: First, assume that #S D 1: Theng is simple,
henceb D 0 or b D g and the result follows. Now assume that #S > 1 and that the result has
been established forg with S of strictly smaller cardinality. Ifb D 0 there is nothing to prove. If
b ¤ 0; thenŒg; b� ¤ 0 sincez D 0: It follows that Œgj ; b� ¤ 0 for somej: But Œgj ; b� is an ideal
in the simple algebragj ; hencegj D Œgj ; b� � b: Let g0 be the direct sum of the ideals from the
non-empty setS.b/; and letg00 be the direct sum of the ideals fromS n S.b/: Theng0 � b and
g D g0 ˚ g00; henceb D g0 ˚ .b \ g00/: Now b \ g00 is an ideal in the semisimple algebrag00: By
the induction hypothesis,b \ g00 is the direct sum of the ideals fromS contained in bothb and
g00: This set is empty, henceb \ g00 D 0 and the result follows. �

36 Root systems for compact algebras

In this section we assume thatg is a compact Lie algebra with trivial center. ThenB; the Killing
form of g; is symmetric and negative definite, see Lemma 34.1 and Proposition 35.8. The exten-
sion ofB to a complex bilinear form ongC equals the Killing form ofgC and is also denoted by
B: We fix a maximal torust in g: LetR be the associated root system and letRC be a choice of
positive roots.

If ˛ 2 R; then˛ 2 i t�: Therefore, ker̨ is a hyperplane intC; which is the complexification
of the hyperplane kera \ i t in i t: The Killing form B is negative definite ont; hence positive
definite oni t: It follows that there exists a unique elementH˛ 2 i t with the properties

H˛ ? ker˛ and ˛.H˛/ D 2: (53)

Lemma 36.1 Let�; � 2 t�C:

(a) If �C � ¤ 0; thenB D 0 ongC� � gC�:

(b) If ˛ 2 R andX 2 gC˛; Y 2 gC�˛; thenŒX; Y � 2 tC and

B.ŒX; Y �;H/ D B.X; Y / ˛.H/ .H 2 tC/: (54)

(c) ŒgC˛; gC�˛� � CH˛:
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Proof: Let X 2 gC� andY 2 gC�: Then by invariance of the Killing form we have, for all
H 2 tC;

Œ�.H/C �.H/� B.X; Y / D B.ŒH;X�; Y /C B.X; ŒH; Y �/ D 0:

From this, (a) follows.
Let now˛;X; Y be as in (b). ThenŒX; Y � 2 gC0 D tC; by Corollary 31.11 and Lemma 31.4.

Moreover, for allH 2 tC we have

B.ŒX; Y �;H/ D �B.Y; ŒX;H�/ D B.Y; ŒH;X�/ D B.Y; ˛.H/X/ D B.X; Y /˛.H/:

Hence, (b).
Finally, for (c) we note that (b) implies thatŒX; Y � ? ker˛; relative toB; for X 2 gC˛ and

Y 2 gC�˛: In view of (53) this implies thatŒgC˛; gC�˛� � CH˛:

�

Let � W gC ! gC be the conjugation with respect to the real formg of gC: Thus,� D I on
g and� D �I on ig: We recall that�.gC˛/ D gC�˛; for all ˛ 2 R; see proof of Lemma 31.14.
We denote the positive definite inner product�B. � ; � /jg by h � ; � i and extend it to a Hermitian
positive definite inner product ongC: Then

hX ; Y i D �B.X; �Y /; .X; Y 2 gC/:

The following result is now immediate.

Corollary 36.2 The root space decomposition

gC D tC ˚
M

˛2R

gC˛

is orthogonal with respect to the inner producth � ; � i:

Lemma 36.3 Let˛ 2 R: Then there exists aX˛ 2 gC˛ such thatH˛; X˛ andY˛ WD ��X˛ form
a standardsl.2;C/-triple.

Proof: We observe thath � ; � i is positive definite ongC˛ ˚ gC�˛: LetX be a non-zero element
in gC˛: ThenX C �X ¤ 0; hence0 < hX C �X ; X C �Xi D �B.X C �X;X C �X/ D
�2B.X; �X/; since�X belongs to the spacegC�˛ which is perpendicular togC�˛ with respect
to the Killing form. PutY D ��X; then

B.X; Y / > 0:

Moreover,�ŒX; �X� D Œ�X;X� D �ŒX; �X�; henceŒX; Y � D �ŒX; �X� 2 ig \ tC D i t: It now
follows from Lemma 36.1 (c) that

ŒX; Y � D cH˛;

for somec 2 R: Substituting this in (54) withH D H˛; we obtainB.cH˛; H˛/ D 2B.X; Y /:

SinceB is positive definite oni t; we haveB.H˛; H˛/ > 0: Hencec > 0: TakeX˛ D p
c

�1
X:

ThenŒX˛;��X˛� D c�1 ŒX;��X� D H˛: Hence,X˛ satisfies the requirements. �
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Example 36.4 Let g D su.2/: ThengC D sl.2;C/ and the conjugation� is given by�A D
�A�; where the star indicates that the Hermitian adjoint is taken. Let H;X; Y be the usual
standard triple insl.2;C/: Thus,H is diagonal with entriesC1;�1 andX is upper triangular
with 1 in the upper right corner,Y is lower triangular with1 in the lower left corner. Then
t D iRH is a maximal torus ing: Moreover,R D f˛;�˛g; where˛ 2 i t� is determined by
˛.H/ D 2: Finally, �X D �Y; and we see that the above lemma withX˛ D X gives us the
usual standard triple.

If l is a Lie subalgebra ofg; then via the adjoint representation,gC may be viewed as a
l-module.

Lemma 36.5 Let l be a Lie subalgebra ofg and letV � gC be a ad.l/-invariant subspace.
ThenV decomposes as a direct sum of irreduciblel-modules.

Proof: We observe that, for everyX 2 l; the endomorphism ad.X/ of gC is anti-symmetric with
respect toh � ; � i: Indeed, this follows from invariance of the Killing form. Thus, ifW � V is a
ad.l/-invariant subspace, then so isW ? \ V: The lemma follows by repeated application of this
observation. �

Proposition 36.6 Let˛ 2 R: ThendimC gC˛ D 1: Moreover,R \ R˛ D f�˛; ˛g: The algebra

s˛ WD gC�˛ ˚ CH˛ ˚ gC˛

is isomorphic withsl.2;C/: Its intersection withg is isomorphic withsu.2/: Finally, t˛ WD iRH˛

is a maximal torus ins˛ \ g and the associated root system is equal tof˛jt˛ ;�˛jt˛g:

Proof: We fix X˛ 2 gC˛ as in Lemma 36.3 and puts D CH˛ ˚ CX˛ ˚ CY˛: Then s is
isomorphic withsl.2;C/: Moreover,s is invariant under� and g \ s D ker.� � I / \ s D
iRH˛ C R.X˛ � Y˛/C iR.X˛ C Y˛/ ' su.2/: The two last assertions of the proposition hold
with s in place ofs˛:

We consider the subspace

V D V.˛/ WD
X

ˇ2R\R˛

gCˇ ˚ CH˛:

and leave it to the reader to verify thatV is invariant under the adjoint action ofs: It follows
thatV splits as a direct sum of irreducibles-modules. The decomposition of each irreducible
s-submodule inCH˛-weight spaces is compatible with the given weight space decomposition of
V: All weights of the irreducible representations ofs belong to1

2
Z˛0; with ˛0 D ˛jCH˛

: Thus,
if ˇ 2 R \ R˛; thenˇjCH˛

2 1
2
˛0; from which we conclude thať 2 R \ 1

2
Z˛: It follows that

R \ R˛ D R \ 1
2
Z˛: Put

Vev D
X

ˇ2R\Z˛

gCˇ ˚ CH˛:
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and letVodd be the sum of the remaining root spaces inV: Then bothVev andVodd are s˛-
invariant. The first of these spaces splits as a direct sum of irreducibles-modules all of whose
weights belong toZ˛0: By the classification of irreduciblesl.2;C/-modules it follows that each
of the irreducible summands has a zero weight space, which must be contained inCH˛: It follows
thatVev has only one irreducible summand, hence is irreducible. Sinces � Vev is an invariant
subspace, it follows thats D Vev: This implies thatR \ Z˛ D f˛;�˛g ands D s˛:

It remains to be shown thatVodd is the zero space. Assume not. ThenV has aCH˛-
weight of the form.2n C 1/=2˛0; with n 2 Z: This weight occurs in an irreducible summand
of thes˛-moduleVodd : From the classification of the irreduciblesl.2;C/-modules, we see that
1
2
˛0 then also occurs as a weight in the irreducible summand, hence in V: Put˛0 D 1

2
˛: Then

it follows that gC˛0 ¤ 0; hence˛0 2 R: Define s˛0 as above, with̨ 0 in place of˛: Then
V.˛/ D V.˛0/ D V.˛0/even: By the first part of the proof, applied with̨0 in place of˛; it
follows thatV.˛/ D V.˛0/ev D s˛0 : This contradicts the fact thatgC˛ � V.˛/:

We conclude thatVodd D 0: Hence,V D Vev D s˛ D s and all assertions follow. �

Let ˛ 2 R: Then bys˛ we denote theB-orthogonal reflection in the hyperplane ker˛ in i t:
Thus,s˛.H˛/ D �H˛ ands˛ D I on ker̨ ; from which one readily deduces that

s˛.H/ D H � ˛.H/H˛ .H 2 i t/:

The complex linear extension ofs˛ to tC; also denoteds˛; is given by the same formula, for
H 2 tC:

If V is a finite dimensional real linear space, equipped with a positive definite inner product
h � ; � i; then the mapv 7! hv ; � i defines a linear isomorphismj W V ! V �: We equipV �

with the so called dual inner product. This is defined to be theunique inner product that makes
j orthogonal. Thus, if�; � 2 V � then

h� ; �i D hj�1� ; j�1�i D �.j�1�/ D �.j�1�/:

If A W V ! V is orthogonal, then so isj ıA ı j�1 W V � ! V �: Using the definitions one
readily verifies thatj ıA ı j�1 D A�1�: In this case we agree to writeA for the orthogonal map
A�1� W V � ! V �: Thus, for� 2 V � we writeA� D � ıA�1:

Following the above convention forV D i t equipped with the positive definite inner product
B; we obtain an orthogonal maps˛ W i t� ! i t� defined bys˛� D � ı s�1

˛ D � ı s˛; for � 2
i t�: Let H 2 i tI then it follows by application of the above formula for the reflection s˛ that
s˛.�/.H/ D �.H � ˛.H/H˛/ D �.H/ � �.H˛/˛.H/: From this we see that

s˛� D � � �.H˛/˛; .� 2 i t�/:

Thus,s˛ maps̨ to �˛ and is the identity on the hyperplaneH 0
˛ WD f� j �.H˛/ D 0g: Sinces˛

is orthogonal it follows thatH 0
˛ D ˛? and thats˛ is the orthogonal reflection in the hyperplane

˛?: The reflections˛ 2 End.i t�/ is therefore also given by the formula

s˛� D � � 2h� ; ˛i
h˛ ; ˛i˛; .� 2 i t�/:

Comparing this formula with the previous one we see thatj.H˛/ D 2˛=h˛ ; ˛i:
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Lemma 36.7 Let ˛ 2 R: There exists an automorphism' of gC; which leavestC invariant
and has restrictions˛ to this space. The induced endomorphisms˛ of t�C leavesR invariant.
Moreover, if˛ 2 R thenˇ � s˛.ˇ/ 2 Z˛:

Proof: We fixX˛; Y˛ 2 s˛ such thatH˛; X˛; Y˛ is a standard triple. Moreover, we put

U˛ D �

2
.X˛ � Y˛/

and' WD e adU˛ : Then' is an automorphism ofgC: Since adU˛ annihilates every element of the
subset ker̨ it follows that' D I on ker̨ : On the other hand, we claim that'.H˛/ D �H˛:

To establish the claim, we observe that the identity is entirely formulated in terms of the
structure of the Lie algebras˛: By isomorphism it suffices to show the similar identity in case
H˛; X˛; Y˛ is the usual standard triple insl.2;C/: The advantage in that situation is that we can
use computations in the group SL.2;C/: In fact, we have

U˛ D �

2

�
0 1

�1 0

�
;

hence

expU˛ D
�

cos�
2

sin �
2

� sin �
2

cos�
2

�
D
�

0 1

�1 0

�
;

from which we see thate adU˛H˛ D Ad.exp.U˛//H˛ D exp.U˛/H˛ exp.U˛/�1 D �H˛: This
establishes the claim.

We conclude that' 2 Aut.gC/; '.tC/ D tC and'jtC D s˛: It follows from Lemma 32.3 that
the induced maps˛ 2 GL.t�C/ mapsR to itself.

Finally, letˇ 2 R: Then
V D

X

k2Z

gC.ˇCk˛/

is readily seen to be an ad.s˛/-invariant subspace. SinceU˛ 2 s˛ it follows thatV is ad.U˛/-
invariant, and sinceV is closed, it follows that' leavesV invariant. Therefore,

gCs˛.ˇ/ D gC'.ˇ/ D '.gCˇ / � V

and we conclude thats˛.ˇ/ 2 ˇ C Z˛: �

Definition 36.8 The subgroupW D W.g; t/ of GL.i t�/ generated by the reflectionss˛; for
˛ 2 R; is called theWeyl groupof .g; t/:

Lemma 36.9 The Weyl groupW is finite.

Proof: By Lemma 36.7, each reflections˛ leavesR invariant. Hencew.R/ � R for each
w 2 W: Sincew is injective andR finite, it follows thatwjR belongs to the group Sym.R/ of
bijections fromR onto itself. Clearly the restriction mapr W w 7! wjR; W ! Sym.R/; is
a group homomorphism. Moreover, sinceR spanst�; by Lemma 31.9, it follows that kerr is
trivial. Hence #W � #Sym.R/ < 1: �
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LetE be a finite dimensional linear space. If˛ 2 E n f0g then by areflectionin ˛ we mean
a linear maps W E ! E with s.˛/ D �˛ and

E D R˛ ˚ ker.s � I /:

Note that any reflection satisfiess2 D I: Hences 2 GL.E/ ands�1 D s:

Lemma 36.10 LetE be a finite dimensional real linear space, andR � E a finite subset that
spansE: Then for every̨ 2 R there is at most one reflections in ˛ such thats.R/ D R:

Proof: LetK be the group ofA 2 GL.E/ with A.R/ D R: The restriction mapr W A 7! AjR is
a group homomorphism fromK to the group of bijections ofR: Moreover,r has trivial kernel,
sinceR spansE: It follows thatK is a finite group. Hence, there exists an inner product onE

for whichK acts by orthogonal transformations (use averaging). Ifs is any reflection in a non-
zero element̨ of E which preservesR; then it must be an orthogonal transformation, hence the
orthogonal reflection in the hyperplane˛?: In particular, there exists at most one such reflection.
�

Definition 36.11 A (general)root systemis a pair.E;R/ consisting of a finite dimensional real
linear spaceE and a finite subsetR � E n f0g such that the following conditions are fulfilled.

(a) R spansE:

(b) If ˛ 2 R; thenR \ R˛ D f�˛; ˛g:
(c) If ˛ 2 R then there exists a (necessarily unique) reflections˛ in ˛ that mapsR to itself.

(d) If ˛; ˇ 2 R thens˛.ˇ/ 2 ˇ C Z˛:

According to the results of this section, the pair consisting ofE D i t� andR D R.g; t/ is a
root system in the sense of the above definition.

For a general root system, the subgroupW of GL.E/; generated by the reflectionss˛; for
˛ 2 R; is called theWeyl groupof the root system.E;R/: By the same proof as that of Lemma
36.9, it follows thatW is finite. By averaging we see thatE may be equipped with a positive
definite inner producth � ; � i that isW -invariant. It follows that each reflections˛; for ˛ 2 R is
orthogonal relative toh � ; � i: Hence, it is given by the formula

s˛.�/ D �� 2
h� ; ˛i
h˛ ; ˛i ˛; .� 2 E/: (55)

In terms of the inner product the condition (d) in the definition of root system may therefore be
rephrased as

2
hˇ ; ˛i
h˛ ; ˛i 2 Z .˛; ˇ 2 R/:

Two root systems.E;R/ and.E 0; R0/ are calledisomorphicif there exists a linear isomor-
phismT W E ! E 0 with T .R/ D R0: If g is a compact semisimple Lie algebra, then it follows
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from Lemmas 32.2 and 32.3 that the isomorphism class of the root systemR.g; t/ is independent
of the choice of the maximal torust:

We now have the following result, which we state without proof. It reduces the classification
of all compact semisimple Lie algebras to the classificationof all root systems.

Theorem 36.12 The mapg ! R.gC; tC/ induces a map from (a) the isomorphism classes of real
Lie algebras with negative definite Killing form to (b) the isomorphism classes of root systems.
This map is a bijection.

37 Weyl’s formulas

We retain the notation of the previous section. In this section we will describe the classification of
of all irreducible representations of the compact semisimple Lie algebrag:Moreover, in terms of
this classification we will state the beautiful character and dimension formulas due to Hermann
Weyl.

Theweight latticeƒ D ƒ.g; t/ of the pair.g; t/ is defined as the set

ƒ D f� 2 i t� j 8˛ 2 R W s˛� 2 �C Z˛g:

Equip i t� with anyW -invariant positive definite inner producth � ; � i: Then from (55) we see
that, alternatively,ƒ.g; t/ may be defined as the set of elements� 2 i t� such that

2
h� ; ˛i
h˛ ; ˛i 2 Z for all ˛ 2 R:

It follows from the definition of root system that theZ-lattice spanned byR is contained inƒ:
The collection ofdominant weights(relative toRC) is defined by

ƒC D f� 2 i t� j 8˛ 2 RC W s˛� 2 �C N.�˛/g:

Thus,ƒC consists of the collection of weights inƒ that are contained in the convex cone

CC D f� 2 i t� j h� ; ˛i � 0 for all ˛ 2 RCg:

The following results amount to the classification of all irreducible representations ofg:

Theorem 37.1 For every� 2 ƒC there exists a unique (up to equivalence) irreducible repre-
sentation�� of g with highest weight�:

From this result combined with Theorem 31.23 we obtain the following.

Corollary 37.2 The map� 7! �� induces a bijection fromƒC onto the collection of equiva-
lence classes of irreducible representations ofg:
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Let nowG be a compact connected Lie group with algebrag: Let� be a finite dimensional ir-
reducible representation ofG: Then the associated representation of the Lie algebra is equivalent
to�� for a unique� 2 ƒC: It turns out that in terms of this parametrization, there exist beautiful
formulas for the character and dimension of�: The character�� of � is conjugation invariant.
In view of the following result, which we state without proof, it is completely determined by its
restriction toT WD exp.t/:

Proposition 37.3 The groupT D exp.t/ is a compact torus inG:Moreover, each element ofG
is conjugate to an element ofT:

If w 2 W we write �.w/ D det.w/ for the determinant ofwI sincew is orthogonal with
respect to a suitable inner product, we have�.w/ D ˙1: We define the elementı 2 i t� by

ı D 1

2

X

˛2RC

˛:

Theorem 37.4 (Weyl’s formulas). Let� be an irreducible representation ofG of highest weight
�: Then the character�� is given by

��.expX/ D
P
w2W �.w/e

w.�Cı/.X/

P
w2W �.w/e

wı.X/
;

for all X 2 t for which the denominator is non-zero; theseX form an open dense subset (Weyl’s
character formula). Moreover, the dimension of� is given by

dim� D
Y

˛2RC

h�C ı ; ˛i
hı ; ˛i

(Weyl’s dimension formula).

Example 37.5 We consider the example ofg D su.2/; with the associated standard triple
H;X; Y in gC D sl.2;C/: We recall thatt D iRH is a maximal torus ing: Moreover,R D
f�˛; ˛g; where˛ 2 i t� is determined by̨ .H/ D 2: Also, RC D f˛g is a choice of positive
roots. The associated Weyl group consists of two elements,1 ands˛:Moreover,ı D 1

2
˛: Hence,

ƒC D fnı j n 2 Ng:
The representation with highest weightnı was earlier denoted by�n:We note that.nıCı/.H/ D
nC 1 andŒs˛.nı C ı/�.H/ D �.nC 1/: According to the above formula the character of�n is
therefore given by the formula

�n.expi tH/ D ei.nC1/t � e�i.nC1/t

eit � e�it

which is consistent with what we computed earlier. The dimension of�n is given by

dim.�n/ D hnı C ı ; ˛i
hı ; ˛i D nC 1;

consistent with what we discussed before.
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38 The classification of root systems

38.1 Cartan integers

In this section we shall study some aspects of the theory of root systems. In particular we shall
describe the first step towards their classification. The starting point of the theory is the definition
of a root system as given in Definition 36.11. In the rest of this section we assume that.E;R/ is
such a root system. The dimension ofE is called therankof the root system.

By the process of averaging over the Weyl groupW of the given root system, we select a
W -invariant positive definite inner producth � ; � i omE: Then, for every̨ 2 R the reflection
s˛ is given by the following formula, for� 2 E;

s˛.�/ D � � 2h� ; ˛i
h˛ ; ˛i˛:

For two roots̨ ; ˇ 2 R we definen˛ˇ to be the integer determined by

s˛.ˇ/ D ˇ � n˛ˇ˛; (56)

see Definition 36.11 (d). These integers are called theCartan integersfor the root system. It
follows from the above representation of the reflection in terms of the inner product that the
Cartan integers are alternatively given by

n˛ˇ D 2
hˇ ; ˛i
h˛ ; ˛i : (57)

Lemma 38.1 Let ' be an isomorphism from.E;R/ onto a second root system.E 0; R0/: Then,
for all ˛; ˇ 2 R;

(a) ' ı s˛ D s'.˛/ ı'I
(b) n'.˛/'.ˇ/ D n˛ˇ :

Proof: It is readily seen thats WD ' ı s˛ ı'�1 W E 0 ! E is a reflection in'.˛/: Sinces.R0/ D
's˛'

�1.'R/ D R0; (a) follows. Assertion (b) follows by application of (56). �

We shall now discuss the possible values of the Cartan integers. If ˛; ˇ 2 E n f0g; then by
the Cauchy-Schwarz inequality there is a unique'˛ˇ 2 Œ0; �� such that

h˛ ; ˇi D j˛jjˇj cos'˛ˇ :

The number'˛ˇ is called theanglebetween̨ andˇ (with respect to the given inner product).
Assume that̨ ; ˇ 2 R and˛ ¤ ˙ˇ: Then

2
jˇj
j˛j cos'˛ˇ D 2

hˇ ; ˛i
h˛ ; ˛i D n˛ˇ 2 Z:
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It follows that
n˛ˇnˇ˛ D 4 cos2 '˛ˇ 2 Z:

From this formula we see that the value of'˛ˇ is independent of the particular choice ofW -
invariant inner product onE: By Definition 36.11(b) the roots̨; ˇ are not proportional, hence
j cos'˛ˇ j < 1: It follows that

n˛ˇnˇ˛ 2 f0; 1; 2; 3g:
After renaming we may assume thatj˛j � jˇj: It then follows from (57) thatjn˛ˇ j � jnˇ˛j:
By integrality of the Cartan integers we find that either˛ ? ˇ or nˇ˛ D ˙1: This leads to the
following table of possibilities forn˛ˇ and'˛ˇ :

Lemma 38.2 Let˛; ˇ 2 R be non-proportional roots withj˛j � jˇj: Then the following table
contains all possible combinations of values ofn˛ˇ ; nˇ˛ and'˛ˇ : The question mark indicates
that the value involved is undetermined.

n˛ˇnˇ˛ n˛ˇ nˇ˛ cos'˛ˇ '˛ˇ
jˇ j2

j˛j2
D n˛ˇ

nˇ˛

0 0 0 0 �
2

‹

1 1 1 1
2

�
3

1

1 �1 �1 �1
2

2�
3

1

2 2 1 1
2

p
2 �

4
2

2 �2 �1 �1
2

p
2 3�

4
2

3 3 1 1
2

p
3 �

6
3

3 �3 �1 �1
2

p
3 5�

6
3

Example 38.3 Let E D R2; equipped with the standard inner product. Let˛ be the first
standard basis vector.1; 0/; andˇ D .�1

2
; 1
2

p
3/: Then jˇj D j˛j D 1 and'˛ˇ D 2�=3:

Moreover,˛ C ˇ D .1
2
; 1
2

p
3/ has angle�=3 with both˛ andˇ: It is easily verified thatR D

f˙˛;˙ˇ;˙.˛C ˇ/g is a root system. Note thatn˛ˇ D nˇ˛ D �1: This root system, calledA2;
is depicted in the illustration following Lemma 38.16. Letr D s˛Cˇ s˛: Thenr is the rotation
over angle2�=3: The reflections D s˛ is the reflection in the linę ? D R.0; 1/: The Weyl
groupW equalsf1; r; r�1; s; sr; sr�1g:

The following lemma will be extremely useful in the further development of the theory.

Lemma 38.4 Let˛; ˇ 2 R be non-proportional roots.

(a) If h˛ ; ˇi > 0 then˛ � ˇ 2 R:
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(b) If h˛ ; ˇi < 0 then˛ C ˇ 2 R:

Proof: It suffices to establish (a). Then (b) follows by replacingˇ with �ˇ: Since˛ � ˇ 2 R is
equivalent tǒ � ˛ 2 R we may as well assume thatj˛j � jˇj: Then it follows that0 < nˇ˛ �
n˛ˇ ; hencenˇ˛ D 1: In view of (56) this implies thatsˇ .˛/ D ˛ � ˇ: Now use Definition 36.11
to conclude that̨ � ˇ 2 R: �

Given non-proportional roots̨; ˇ 2 R we define thę -string througȟ to be the set

L˛.ˇ/ WD .ˇ C Z˛/ \R:

The following lemma expresses that root strings have no interruptions and have at most 4 ele-
ments.

Lemma 38.5 Let˛; ˇ 2 R be non-proportional.

(a) There exist uniquep; q 2 Z with p � q such thatL˛.ˇ/ D fˇ C k˛ j p � k � qg:
(b) p � 0 � q andp C q D �n˛ˇ :
(c) #L˛.ˇ/ � 4:

Proof: We first establish (a). Write�j WD ˇ � j˛; for j 2 Z: Assume (a) does not hold. Then
there exist integersk < l such that�k; �l 2 R but�kC1; �l�1 … R: It follows by application of
Lemma 38.4 that

h�k ; ˛i � 0 and h�l ; ˛i � 0:

On the other hand,

h�k ; ˛i D hˇ ; ˛i C kj˛j2 < hˇ ; ˛i C l j˛j2 D h�l ; ˛i;

contradiction. We conclude that (a) holds. Sinceˇ 2 L˛.ˇ/; the first assertion of (b) follows.
For the other assertion, we note thats˛ mapsL˛.ˇ/ bijectively onto itself. Hences˛.ˇCp˛/ D
ˇ C q˛; from which it follows that�n˛ˇ˛ � p˛ D q˛: This establishes (b).

For (c) we note that D ˇ C p˛ is a root. Clearly,L˛.ˇ/ D L˛./ D f C j˛ j 0 �
j � q � pg; so that #L˛./ D q � p C 1: It now follows from (b) applied to the pair̨;  that
q � p D �n˛ ; hencen˛ � 0 andq � p 2 f0; 1; 2; 3g: �

38.2 Fundamental and positive systems

If F is a finite subset ofE we write

NF D f
X

f 2F

nf f j nf 2 Ng:

HereN D f0; 1; 2; : : :g:
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Definition 38.6 A fundamental systemor basisfor .E;R/ is a subsetS � R such that

(a) S is a basis forEI
(b) R � NS [ N.�S/:

Conditions (a) and (b) of the above definition may be restatedas follows. Every rooť 2 R
admits a unique expression of the form

ˇ D
X

˛2S

k˛˛;

with k˛ 2 R: Moreover, eitherk˛ 2 N for all ˛ 2 S or k˛ 2 �N for all ˛ 2 S: Theheightof ˇ
relative toS is defined by

ht.ˇ/ D
X

˛2S

k˛

Lemma 38.7 LetS be a fundamental system for the root systemR: Then for all roots̨ ; ˇ 2 S
with ˛ ¤ ˇ one hash˛ ; ˇi � 0 (or, equivalently,'˛ˇ � �=2).

Proof: Since˛�ˇ is a linear combination of the elements ofS with both plus and minus signs,
it cannot be a root. It follows from Lemma 38.4 thath˛ ; ˇi � 0: �

To ensure the existence of fundamental systems, we introduce the notion of a positive system.
By anopen half spaceof E we mean a set of the formEC.�/ D fx 2 E j �.x/ > 0g; where
� is a non-zero element of the dual spaceE� WD HomR.E;R/: Via the given inner product, we
sometimes identifyE with E�: Accordingly, if  2 E n f0g; we write

EC./ D fx 2 E j hx ; i > 0g:

Definition 38.8 A positive systemor choice of positive rootsfor R is a subsetP � R with the
following properties.

(a) There exists an open half space containingP:

(b) R � P [ .�P /:

Let P be a positive system forR: An indecomposableor simple rootin P is defined to be
a root that cannot be written as the sum of two roots fromP: The set of these simple roots is
denoted byS.P /:

Lemma 38.9 LetP be a positive system forR. ThenS.P / is a fundamental system forR and
P D NS.P / \ R: The mapP 7! S.P / is a bijective map from the collectionP of positive
systems forR onto the collectionS of fundamental systems forR:
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Proof: PutS D S.P /: Let ˛ 2 P: Then either̨ 2 S; or ˛ can be written as a sum̌C  with
ˇ;  2 P: Proceeding in this way we see thatP � NS; hence condition (b) of Definition 38.6
holds. In particular, it follows thatS spansE: It remains to be shown that the elements ofS are
linearly independent. Let̨; ˇ be distinct roots inS: By definition ofS; neither˛ � ˇ norˇ � ˛
does belong toP: Hence,̨ � ˇ … R: It follows by application of Lemma 38.4 thath˛ ; ˇi � 0:

From the lemma below it now follows that the elements ofS are linearly independent. HenceS
is a fundamental system. In the above we establishedP � NS; whence�P � N.�S/ and since
R D P [ .�P / it follows thatP D NS \R:

We have shown that the mapP 7! S.P / is injectiveP ! S and will finish the proof
by establishing its surjectivity. ForS a fundamental system ofR we defineRC D RC.S/ D
NS \ R: SinceS is a basis forE; the linear functionalsh˛ ; � i; for ˛ 2 S; form a basis for
the dual spaceE�: It follows that there exists a 2 E such thath˛ ; i > 0 for all ˛ 2 S: We
conclude thatS; henceRC; is contained in a half space. FromR � NS [ .�NS/ it follows that
R � RC [ .�RC/: HenceRC.S/ is a positive system. FromS � RC.S/ � NS it follows that
S.RC.S// � S: Both sets of of this inclusion are bases forEI hence, they must be equal. We
conclude that the mapR 7! S.P /; P ! S is bijective with inverseS 7! RC.S/: �

Lemma 38.10 LetE be a finite dimensional real linear space, equipped with a positive definite
inner product. LetS � E be a finite subset contained in a fixed open half space and such that
h˛ ; ˇi � 0 for all distinct˛; ˇ 2 S: Then the elements ofS are linearly independent.

Proof: There exists a� 2 E such thath� ; ˛i > 0 for all ˛ 2 S: Let �˛ 2 R; for ˛ 2 S; be such
that

P
˛2S �˛˛ D 0: We defineS˙ WD f˛ 2 S j ˙�˛ > 0g: ThenSC andS� are disjoint. We

define�˙ WD
P
˛2S˙

j�˛j˛: If one of the sets of summation is empty, the sum is understoodto
be zero. The linear relation between the elements ofS may now be expressed as�C � �� D 0 or

�C D ��:

From the fact thath˛ ; ˇi � 0 for all ˛ 2 SC and allˇ 2 S� it now follows thath�C ; �Ci D
h�C ; ��i � 0: Hence,h�C ; �Ci D 0 and we conclude that�C D �� D 0: We now observe that
0 D h� ; �Ci D

P
˛2SC

j�˛jh� ; ˛i: Since each of the inner productsh� ; ˛i is strictly positive,
it follows thatSC D ;: Similarly, S� D ; and we conclude that�˛ D 0 for all ˛ 2 S: This
establishes the linear independence. �

For each̨ 2 R; the setP˛ WD ker.I � s˛/ is called the root hyperplane associated with˛:
Relative to the givenW -invariant inner product,P˛ D ˛?:We define the set of regular points in
E by

E reg WD E n [˛2RP˛: (58)

SinceR is a finite set, it is easy to show thatE reg is an open dense subset ofEI in particular, the
set of regular points is non-empty.

We can now establish the existence of positive systems, hence also of fundamental systems.
For 2 E reg we define

RC./ D R \EC./ D f˛ 2 R j h ; ˛i > 0g:
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Lemma 38.11 For every 2 E reg the setRC./ is a positive system forR: Moreover, every
positive system arises in this way.

Proof: ThatRC./ is a positive system is immediate from the definitions. Conversely, letP be
a positive system forR; and letS D S.P / be the associated fundamental system. The linear
functionalsh � ; ˛i; for ˛ 2 S; form a basis for the dual spaceE�: Hence there exists a 2 E

such thath ; ˛i > 0 for all ˛ 2 S: FromP � NS it now follows thatP � RC./; hence also
Œ�P � \ RC./ D ;: SinceP is a positive system,RC./ � P [ .�P /; so we must have that
P D RC./: �

Definition 38.12 Let S be a fundamental system forR: The integersn˛ˇ ; for ˛; ˇ 2 S; are
called theCartan integersassociated withS: The square matrixn W S � S ! Z; .˛; ˇ/ 7! n˛ˇ
is called theCartan matrixfor S:

We will end this section with a result that asserts that everyroot system is completely de-
termined by the Cartan matrix of a fundamental system. It depends crucially on the following
lemma and Lemma 38.5.

Lemma 38.13 LetS be a fundamental system forR andRC D R\NS the associated positive
system. If̌ 2 RC n S; then there exists an̨ 2 S such thať � ˛ 2 RC:

Proof: Sinceˇ is not simple, it is of the form
P
2S k; k 2 N; with at least two coefficients

non-zero. Thus, if̨ 2 S andˇ � ˛ 2 R; then at least one of the coefficients ofˇ � ˛ is still
positive, and it follows thať � ˛ 2 RC:

Assume thať � ˛ … RC for all ˛ 2 S: Then it follows thať � ˛ … R for all ˛ 2 S:

By Lemma 38.4 this implies thathˇ ; ˛i � 0 for all ˛ 2 S; hencehˇ ; ˇi � 0; hencě D 0;

contradiction. �

Given any finite setS we writeES for the real linear space with basisS: As a concrete
model we may take the spaceRS of functionsS ! RI hereS is embedded inRS by identifying
an element̨ 2 S with the functionı˛ W S ! R given byˇ 7! ı˛ˇ : If v 2 ES ; we put
v D

P
˛2S v˛˛: With the above identification, as an element ofRS ; the vectorv is given by

˛ 7! v˛:

LetE be a real linear space andf W S ! E a map, thenf has a unique extension to a linear
mapES ! E; again denoted byf: Moreover, iff W S ! S 0 is a map, thenf may be viewed
as a mapS ! ES 0 which in turn has a unique linear extension to a mapf W ES ! ES 0:

Theorem 38.14 There exists a mapR assigning to every pair consisting of a finite setS and a
functionn W S � S ! Z a finite subsetR.S; n/ � ES with the following properties.

(a) If ' W S 0 ! S is a bijection of finite sets, andn W S � S ! Z a function, then the induced
map' W ES 0 ! ES mapsR.S 0; '�n/ bijectively ontoR.S; n/:

(b) If .E;R/ is a root system with fundamental systemS and Cartan matrixn W S � S ! Z;

then the natural mapES ! E mapsR.S; n/ bijectively ontoR: In particular,.RS ;R.S; n//
is a root system isomorphic to.E;R/:
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Remark 38.15 The above result guarantees that the isomorphism class of a root system can be
retrieved from the Cartan matrix of a fundamental system. Later we will see that all fundamental
systems are conjugate under the Weyl group, so that all Cartan matrices of a given root system
are essentially equal, cf. Lemma 38.1.

In the proof of the above result the setR will be defined by means of a recursive algorithm
with input dataS; n: This algorithm will provide us with a finite procedure for finding all root
systems of a given rank. Let such a rankr be fixed. LetS be a given set withr elements. Each
root systemR of rank r can be realized in the linear spaceES ; having the standard basis as
fundamental system.

The possible Cartan matrices run over the finite set of mapsS � S ! f0;˙1;˙2;˙3g:
For each such mapn it can be checked whether or not.ES ;R.S; n// is a root system with
fundamental systemS: Condition (b) guarantees that all root systems of rankr are obtained in
this way.

Proof: We shall describe the mapR and then show that it satisfies the requirements. Require-
ment (b) is motivational for the definition.

For each̨ 2 S we define the mapn˛ W S ! Z by n˛.ˇ/ D n.˛; ˇ/: As said above this map
induces a linear mapn˛ W ES ! R: If the linear mapsn˛; for ˛ 2 S; are linearly dependent, we
defineR.S; n/ D ; (we need not proceed, sincen can impossibly be a Cartan matrix of a root
system). Thus, assume that then˛ are linearly independent linear functionals.

We consider the semi-latticeƒ D NS � ES : Then for each̨ 2 S the mapn˛ has integral
values onƒ: We define a height function onƒ in an obvious manner,

ht.�/ D
X

˛2S

�˛:

Letƒk be the finite set of� 2 ƒ with ht.�/ D k:We putP1 D S and more generally will define
setsPk � ƒk by induction onk:

Let P1; : : : ; Pk be given, thenPkC1 is defined as the subset ofƒkC1 consisting of elements
that can be expressed in the form̌C˛ with .˛; ˇ/ 2 S�Pk satisfying the following conditions.

(i) ˛ andˇ are not proportional.

(ii) jn˛.ˇ C ˛/j � 3:

(iii) Let p be the smallest integer such thatˇ C p˛ 2 P1 [ � � � [ PkI thenp � n˛.ˇ/ > 0:

We defineP.S; n/ to be the union of the setsPk; for k � 1 and putR.S; n/ D P.S; n/ [
.�P.S; n//:

The setF of ˇ 2 ES with n˛.ˇ/ 2 f0;˙1;˙2;˙3g for all ˛ 2 S is finite, because then˛ are
linearly independent functionals. In fact, #F � .#S/7: From the above construction it follows
thatR.S; n/ � F; hence is finite. In particular, we see that the above inductive definition starts
producing empty sets at some level. In fact, letN be an upper bound for the height function on
F; thenP.S; n/ D P1 [ � � � [ PN :
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From the definition it is readily seen that the mapR defined above satisfies condition (a)
of the theorem. We will finish the proof by showing that condition (b) holds. Sssume that
S is a fundamental system for a root system.E;R/: Let RC D R \ NS be the associated
positive system andn W S � S ! Z the associated Cartan matrix. The inclusion mapS � E

induces a linear isomorphismES ! E via which we shall identify. Then it suffices to show that
R.S; n/ D R: Sincen is a genuine Cartan matrix, the functionalsn˛; for ˛ 2 S are linearly
independent. Thus it suffices to show thatPk D R \ ƒk; for everyk 2 N: We will do this by
induction onk: Fork D 1 we haveR \ƒk D S D P1; and the statement holds. Letk � 1 and
assume thatPj D R \ƒj for all j � k: We will show thatPkC1 D R \ƒkC1:

First, consider an element ofPkC1: It may be written aš C˛ with .˛; ˇ/ 2 S�Pk satisfying
the conditions (i)-(iii). By the inductive hypothesis,ˇ 2 RC: Moreover, there exists a smallest
integerp0 � 0 such thať C p0˛ 2 RC: By the inductive hypothesis it follows thatp0 D p:

The˛-string througȟ now takes the formL˛.ˇ/ D fˇ C k˛ j p � k � qg with q the non-
negative integer determined byp C q D �n˛.ˇ/: From condition (iii) it follows thatq > 0;

hencě C ˛ 2 RC: It follows thatPkC1 � R \ ƒkC1: For the converse inclusion, consider an
elemenť 1 2 RC of weightkC1: SincekC1 � 2; the rooť 1 does not belong toS: By Lemma
38.13 there exists ą 2 S such thať WD ˇ1 � ˛ 2 RC: Clearly, ht.ˇ/ D k; soˇ 2 Pk by the
inductive hypothesis. We will proceed to show that the pair.˛; ˇ/ satisfies conditions (i)-(iii).
This will imply thatˇ1 2 PkC1; completing the proof.

Sinceˇ1 is a root,˛ ¤ ˇ; hence (i). Sincen˛.ˇ1/ D n˛ˇ1
; condition (ii) holds by Lemma

38.2. Thę -root string througȟ has the formL˛.ˇ/ D fˇ C k˛ j p � k � qg; with p the
smallest integer such thaťC p˛ is a root and withq the largest integer such thatˇ C q˛ is a
root. We note thatp � 0 andq � 1: By the inductive hypothesis,p is the smallest integer such
thatˇ 2 P1 [ � � � [Pk:Moreover, by Lemma 38.5,n˛.ˇ/ D n˛ˇ D �.p C q/ and (iii) follows.
�

38.3 The rank two root systems

We can use the method of the proof of Theorem 38.14 to classifythe (isomorphism classes
of) rank two root systems. Let.E;R/ be a rank two root system. ThenR has a fundamental
systemS consisting of two elements,̨ andˇ: Without loss of generality we may assume that
j˛j � jˇj: Moreover, changing the inner product onE by a positive scalar we may as well
assume thatj˛j D 1: From Lemma 38.7 it follows that there are 4 possible values for n˛ˇ ; namely
0;�1;�2;�3; with corresponding angles'˛ˇ equal to�=2; 2�=3; 3�=4; 5�=6: If n˛ˇ D 0 then
the length of̌ is undetermined. In the remaining cases, the length ofˇ equals1;

p
2 and

p
3;

respectively. It follows from Theorem 38.14 that for each ofthese cases there exists at most one
isomorphism class of root spaces. We shall discuss these cases separately.

Casen˛ˇ D 0: In the notation of the proof of Theorem 38.14,P1 D f˛; ˇg It follows that
P2 can only contain the elementˇ C ˛: In the notation of condition (iii) of the mentioned proof,
we havep D 0 andn˛.ˇ/ D 0; hencě C ˛ … P2: It follows thatPj D ; for j � 2: Therefore,
R D f˙˛;˙ˇg is the only possible root system with the given Cartan matrix. We leave it to the
reader to check that this is indeed a root system. It is calledA1 � A1:
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Casen˛ˇ D �1. In this caseP1 D f˛; ˇg: There is only one possible element inP2; namely
ˇ C ˛: Herep D 0 andn˛.ˇ/ D �1 whence�p � n˛.ˇ/ > 0 and it follows thať C ˛ 2 P2:
The possible elements inP3 are.˛Cˇ/C˛ or .˛Cˇ/Cˇ: For the first element, Nowp D �1
andn˛.˛C ˇ/ D 1; whence2˛C ˇ … P3: Similarly, .˛C ˇ/C ˇ … P3: It follows thatPj D ;
for j � 3: Hence,R D f˙˛;˙ˇ;˙.˛C ˇ/g is the only possible root system. We leave it to the
reader to check that it is indeed a root system. It is calledA2:

Casen˛ˇ D �2: We haveP1 D f˛; ˇg andP2 D f˛Cˇg: The only possible elements inP3
are.˛Cˇ/C˛ and.˛Cˇ/Cˇ: For the first of these we have Fromp D �1 andn˛.˛Cˇ/ D 0;

so that�p � n˛.˛Cg/ > 0 andˇ C 2˛ 2 P3: For the second element we have Fromp D �1
andnˇ .˛Cˇ/ D 1; whence�p � nˇ .˛Cˇ/ D 0; from which we infer that2ˇC ˛ … P3: Thus,
P3 D fˇ C 2˛g:

The possible elements ofP4 are.ˇC2˛/C˛ and.ˇC2˛/Cˇ: For the first element,p D �2
andn˛.ˇC 2˛/ D 2; hencě C 3˛ … P4: For the second element,p D 0 andnˇ .ˇC 2˛/ D 0;

hence2ˇ C 2˛ … P4: We conclude thatPj D ; for j � 4:

Thus, in the present case the only possible root system isR D f˙˛;˙ˇ;˙.˛ C ˇ/;˙.ˇ C
2˛/g: Again we leave it to the reader to check that this is a root system. It is calledB2:

Casen˛ˇ D �3: We haveP1 D f˛; ˇg andP2 D f˛C ˇg: The possible elements ofP3 are
ˇ C 2˛ and2ˇ C ˛: For the first element we havep˛;˛Cˇ D �1 andn˛.˛ C ˇ/ D �1; hence
ˇ C 2˛ 2 P3: For the second we havepˇ;˛Cˇ D �1 andnˇ .˛ C ˇ/ D 1; hence2ˇ C ˛ … P3:
Thus,P3 D fˇ C 2˛g:

The possible elements ofP4 areˇC3˛ and2ˇC2˛: For the first element we havep˛;2˛Cˇ D
�2 andn˛.2˛Cˇ/ D 1; hencě C3˛ 2 P3: For the second,pˇ;2˛Cˇ D 0 andnˇ .2˛Cˇ/ D 0;

hence2ˇ C 2˛ … P4: Thus,P4 D fˇ C 3˛g:
The possible elements ofP5 areˇ C 3˛ C ˛ andˇ C 3˛ C ˇ: For the first element we have

p D �3 andn˛.ˇ C 3˛/ D 3; whencě C 4˛ … P5: For the second element we havep D �1
andnˇ .ˇ C 3˛/ D �1; whence2ˇ C 3˛ 2 P5; and we conclude thatP5 D f2ˇ C 3˛g:

The possible elements ofP6 are2ˇ C 3˛ C ˛ and2ˇ C 3˛ C ˇ: For the first element we
havep D 0 andn˛.2ˇ C 3˛/ D 0; and for the secondp D �1 andnˇ .2ˇ C 3˛/ D 1: Hence
Pj D ; for j � 6:

We conclude that the only possible root system isR D ˙f˛; ˇ; ˛Cˇ; 2˛Cˇ; 3˛Cˇ; 3˛C
2ˇg: We leave it to the reader to check that this is indeed a root system, calledG2:

Lemma 38.16 Up to isomorphism, the rank two root systems are completely classified by the
integern˛ˇnˇ˛; for f˛; ˇg a fundamental system. The integer takes the valuesf0; 1; 2; 3g; giving
the root systemsA1 � A1; A2; B2 andG2; respectively.

Proof: This has been established above. �

The rank 2 root systems are depicted below.
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˛

ˇ

A1 � A1

˛

ˇ ˛ C ˇ

A2

˛

ˇ ˇ C ˛ ˇ C 2˛

B2

˛

ˇ ˇ C ˛ ˇ C 2˛ ˇ C 3˛

2ˇ C 3˛

G2

38.4 Weyl chambers

We proceed to investigate the collection of fundamental systems of the root system.E;R/: An
important role is played by the connected components ofE reg; see (58), called theWeyl chambers
of R:

For every̨ 2 R; the complementE nP˛ is the disjoint union of the open half spacesEC.˛/

andEC.�˛/: SinceE reg is the intersection of the complementsE nP˛; each Weyl chamber can
be written in the form\˛2F EC.˛/; with ˛ 2 F; F � R: It follows that each Weyl chamber
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is an open polyhedral cone. We denote the set of Weyl chambersby C: If C 2 C then for
every˛ 2 R the functionalh˛ ; � i is nowhere zero onC; hence either everywhere positive or
everywhere negative. We define

RC.C / D f˛ 2 R j h˛ ; � i > 0 on C g:

Note that for every 2 C we haveRC.C / D RC./: Thus, by Lemma 38.11 the setRC.C / is
a positive system forR and every positive system arises in this way.

If C is a Weyl chamber, then byS.C/ we denote the collection of simple roots in the positive
systemRC.C /: According to Lemma 38.9 this is a fundamental system forR:

Proposition 38.17

(a) The mapC 7! RC.C / defines a bijection between the collection of Weyl chambers and
the collection of positive systems forR:

(b) The mapC 7! S.C/ defines a bijection between the collection of Weyl chambers and the
collection of fundamental systems forR:

(c) IsC is a Weyl chamber, then

C D fx 2 E j 8˛ 2 RC.C / W hx ; ˛i > 0g D fx 2 E j 8˛ 2 S.C/ W hx ; ˛i > 0g:

Proof: Recall that we denote the collections of Weyl chambers, positive systems and fundamen-
tal systems byC; P andS; respectively.

If P 2 P we defineC.P / WD fx 2 E j 8˛ 2 P W hx ; ˛i > 0g; and if S 2 S we
put C.S/ WD fx 2 E j 8˛ 2 S W hx ; ˛i > 0g: With this notation, assertion (c) becomes
C D C.RC.C // D C.S.C// for everyC 2 C:

Let S 2 S: Then the setC.S/ is non-empty and convex, hence connected. SinceR �
NS [ Œ�NS�; it follows thatC.S/ � E reg:We conclude that there exists a connected component
C 2 C such thatC.S/ � C: Every root fromR has the same sign onC as onC.S/I hence,
C � C.S/: We conclude thatC.S/ D C: In particular,S 7! C.S/ mapsS into C:

Let P 2 P and letS be the collection of simple roots inP: FromS � P � NS it readily
follows thatC.S/ D C.P /: In particular,C.P / 2 C:

From Lemma 38.11 it follows that the mapC 7! RC.C / is surjective. IfC 2 C then from
the definitions it is obvious thatC � C.RC.C // � C.S.C//: The extreme members in this
chain of inclusions are Weyl chambers, i.e., connected components ofE reg; hence equal. Thus
(c) follows. Moreover,C.RC.C // D C; from which it follows thatC 7! RC.C / is injective,
whence (a). Finally, (b) follows from (a) and (c) combined with Lemma 38.9. �

The following result gives a useful characterization of thesimple roots in terms of the asso-
ciated Weyl chamber.

Lemma 38.18 Let C be an open Weyl chamber. A root˛ 2 R belongs to the associated
fundamental systemS.C/ if and only if the following two conditions are fulfilled.

(a) h˛ ; � i > 0 onC I
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(b) C \ ˛? has non-empty interior in̨ ?:

Proof: PutS D S.C/ and assume that̨ 2 S: Then (a) follows by definition. From Proposition
38.17 we know thatC consists of the pointsx 2 E with hx ; ˇi > 0 for all ˇ 2 S: Since
S is a basis of the linear spaceE; it is readily seen thatC consists of the pointsx 2 E with
hx ; ˇi � 0 for all ˇ 2 S: The functionalshˇ ; � ij˛?; for ˇ 2 S n f˛g; form a basis of̨ ?; hence
the set NC \ ˛? contains the non-empty open subset of˛? consisting of the pointsx 2 ˛? with
hx ; ˇi > 0 for all ˇ 2 S n f˛g: This implies (b).

Conversely, assume that˛ is a root and that (a) and (b) are fulfilled. From (a) it followsthat
˛ 2 RC.C /: It remains to be shown that̨ is indecomposable. Assume the latter were not true.
Then˛ D ˇ C ; for ˇ;  2 RC.C /: From (b) it follows thathˇ ; � i � 0 andh ; � i � 0 on an
open subsetU of ˛? On the other hand,hˇC  ; � i D 0 onU: It follows thathˇ ; � i andh ; � i
are zero onU; hence on̨ ? by linearity. From this it follows in turn thať ? D ˛? D ?: Hence
ˇ and are proportional tǫ ; contradiction. �

The Weyl group leavesR; henceE reg; invariant. It follows thatW acts on the set of connected
components onE reg; i.e., on the setC of Weyl chambers. Clearly,W acts on the set of positive
systems and on the set of fundamental systems, and the actions are compatible with the maps
of Proposition 38.17. More precisely, ifw 2 W andC 2 C; thenRC.wC/ D wRC.C / and
S.wC/ D wS.C/:

Lemma 38.19 LetRC be a positive system forR and let˛ be an associated simple root. Then
s˛ mapsRC n f˛g onto itself.

Proof: Let S be the set of simple roots inRC and letˇ 2 RC; ˇ ¤ ˛: Thenˇ D
P
2S k;

with k 2 N andk0
> 0 for at least one0 different from˛: Now s˛.ˇ/ D

P
2Snf˛g kC l˛˛

for somel˛ 2 Z: Sinces˛ˇ is a root, it either belongs toNS or to �NS: The latter possibility is
excluded byk0

> 0: Hences˛ˇ 2 NS \ R D RC: �

If RC is a positive system forR; we defineı.RC/ D ı to be half the sum of the positive
roots, i.e.,

ı D 1

2

X

2RC

:

Corollary 38.20 If ˛ is simple inRC; thens˛ı D ı � ˛:

Proof: Write ı D 1
2

P
2RCnf˛g  C 1

2
˛: The sum in the first term is fixed bys˛; whereas the

term 1
2
˛ is mapped onto�1

2
˛: �

Two Weyl chambersC;C 0 are said to be separated by the root hyperplane˛? if the linear
functionalh˛ ; � i has different signs onC andC 0:We will write d.C; C 0/ for the number of root
hyperplanes separatingC andC 0: If P is any positive system forR thend.C; C 0/ is the number
of ˛ 2 P such thath˛ ; � i has different signs onC andC 0 (use thatR is the disjoint union of
P and�P and that roots define the same hyperplane if and only if they are proportional). In
particular,

d.C; C 0/ D #Œ RC.C / nRC.C 0/ �:

139



Definition 38.21 Two Weyl chambersC andC 0 are calledadjacentif d.C; C 0/ D 1; i.e., the
chambers are separated by precisely one root hyperplane.

Lemma 38.22 LetC;C 0 be Weyl chambers. ThenC;C 0 are adjacent if and only ifC 0 D s˛.C /

for somę 2 S.C/: If the latter holds, then�˛ 2 S.C 0/:

Proof: Let C andC 0 be adjacent. ThenRC.C / n RC.C 0/ D f˛g for a unique root̨ : From
S.C/ n RC.C 0/ D ; it would follow thatS.C/ � RC.C 0/; whenceRC.C / � RC.C 0/: Since
both members of this inclusion have half the cardinality ofR; they must be equal, contradiction.
HenceS.C/ n RC.C 0/ contains a root, which must bę: Similarly, S.C 0/ contains the root
�˛: SinceRC.C 0/ andRC.C / have the same cardinality, we infer thatRC.C 0/ D ŒRC.C / n
f˛g� [ f�˛g D s˛.R

C.C //; by Lemma 38.19. It follows thatRC.C 0/ D RC.s˛.C //; hence
C 0 D s˛.C /:

Conversely, assume that˛ 2 S.C/ ands˛.C / D C 0: ThenRC.C 0/ D s˛R
C.C / D ŒRC.C /n

f˛g� [ f�˛g from which one sees that #RC.C / n RC.C 0/ D 1: Hence,C andC 0 are adjacent.
�

Lemma 38.23 Let C;C 0 be distinct Weyl chambers. Then there exists a chamberC 00 that is
adjacent toC 0 and such thatd.C; C 00/ D d.C; C 0/ � 1:

Proof: There must be a root̨ 2 S.C 0/ n RC.C /; for otherwiseS.C 0/ � RC.C /; hence
RC.C 0/ � RC.C /; contradiction. LetC 00 D s˛.C

0/: ThenC 0 andC 00 are adjacent by the
previous lemma. Also, by Lemma 38.19,RC.C 00/ D s˛R

C.C 0/ D ŒRC.C 0/ n f˛g� [ f�˛g:
From this we see thatRC.C 0/ n RC.C / is the disjoint union ofRC.C 00/ n RC.C / andf˛g: It
follows thatd.C; C 00/ D d.C; C 0/ � 1: �

Lemma 38.24 Let C be a Weyl chamber andS D S.C/ the associated fundamental system.
Then for every Weyl chamberC 0 ¤ C there exists a sequences1; : : : sn of reflections in roots
fromS such thatC 0 D s1 � � � sn.C /:

Proof: We give the proof by induction ond D d.C; C 0/: If d D 1; then the result follows
from Lemma 38.22. Thus, letd > 1 and assume the result has been established forC 0 with
d.C; C 0/ < d: By the previous lemma, there exists a chamberC 00; adjacent toC 0 and such that
d.C; C 00/ D d.C; C 0/ � 1: By Lemma 38.22,C 00 D s˛.C

0/ for a simple root̨ 2 S.C 0/:

By the induction hypothesis there exists aw 2 W that can be expressed as a product of
reflections in roots fromS.C/ such thatw.C/ D C 00: Thus,s˛w.C/ D s˛.C

00/ D C 0:Moreover,
s˛w D wsw�1˛ D ws�w�1˛; and since�˛ 2 S.C 00/; it follows thatˇ WD �w�1˛ belongs to
S.C/ D w�1S.C 00/: We conclude thatC 0 D ws.C/ with w a product of reflections from roots
in S.C/ and withs D sˇ ; reflection in a root fromS.C/: �

Lemma 38.25 Let S be a fundamental system forR: Then every root fromR is conjugate to
a root fromS by an element ofW that can be written as a product of simple reflections, i.e.,
reflections in roots fromS:
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Proof: Let ˛ 2 R: There exists a Weyl chamberC such that̨ ? \ C has non-empty interior in
˛?: By Lemma 38.18 it follows that either̨ or �˛ belongs toS.C/: ReplacingC by s˛.C / if
necessary, we may assume that˛ 2 S.C/: Let CC be the unique Weyl chamber withS.CC/ D
S: Then there exists a Weyl group element of the form stated suchthatw�1.C / D CC: It follows
thatw˛ 2 S.CC/ D S: �

Corollary 38.26 Let S be a fundamental system forR: ThenW is already generated by the
associated collection of simple reflections.

Proof: LetW0 be the subgroup ofW generated by reflections in roots fromS: Let ˛ 2 R: Then
by the previous lemma there exists aw 2 W0 such that̨ D wˇ; with ˇ 2 S: It follows that
s˛ D wsˇw

�1 2 W0: SinceW is generated by thes˛; for ˛ 2 R; it follows thatW D W0: �

Definition 38.27 Let S be a fundamental system forR: If w 2 W then an expressionw D
s1 � � � sn of w in terms of simple reflections is called areduced expressionif it is not possible to
extract a non-empty collection of factors without changingthe product.

Lemma 38.28 Let˛1; : : : ; ˛n 2 S be simple roots (possibly with repetitions), and letsj D s˛j

be the associated simple reflections. Assume thats1 � � � sn.˛n/ is positive relative toS: Then
s1 � � � sn is not a reduced expression. More precisely, there exists a1 � k < n such that

s1 � � � sn D s1 � � � sk�1skC1 � � � sn�1:

Proof: Write ˇj D sjC1 : : : sn�1.˛n/; for 0 � j < n: Let P be the positive system determined
by S: Thenˇ0 2 �P andˇn�1 D ˛n 2 P; hence there exists a smallest index1 � k � n � 1

such thať k 2 P: We have thatsk.ˇk/ D ˇk�1 2 �P; hence, by Lemma 38.19,̌k D ˛k: We
now observe that for everyw 2 W we havewsn D sw˛n

w: Applying this withw D skC1 : : : sn�1

we obtainskC1 � � � sn�1sn D sˇk
skC1 � � � sn�1 D sk � � � sn�1: This implies that

s1 � � � sn D s1 � � � sksk � � � sn�1 D s1 � � � sk�1skC1 � � � sn�1:

�

Lemma 38.29 The Weyl group acts simply transitively on the set of Weyl chambers.

Proof: Let C denote the collection of Weyl chambers. The transitivity ofthe action ofW on
C follows from Lemma 38.24. To establish that the action is simple, we must show that for all
C 2 C andw 2 W; wC D C ) w D 1:

Fix C 2 C and letS D S.C/ be the associated fundamental system forR: Letw 2 W n f1g:
Thenw�1 has a reduced expression of the formw�1 D s1 � � � sn; with n � 1; sj D s˛j

; ˛j 2
S.C/: From Lemma 38.28 it follows thatw�1˛n < 0 onC; hencę n < 0 onw.C/: It follows
thatw.C/ ¤ C: �
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Remark 38.30 It follows from the above result, combined with Proposition38.17, that the Weyl
group acts simply transitively on the collection of fundamental systems forR as well as on the
collection of positive systems.

LetS; S 0 be two fundamental systems, and letw be the unique Weyl group element such that
w.S/ D S 0: Let n W S � S ! Z andn0 W S 0 � S 0 ! Z be the associated Cartan matrices.
Then it follows from Lemma 38.1 thatn0.w˛;wˇ/ D n.˛; ˇ/ for all ˛; ˇ 2 S; or more briefly,
w�n0 D n: Thus, the Cartan matrices are essentially equal.

Let S be a fixed fundamental system forR: From now on we denote the associated positive
system byRC: The elements ofS are called the simple roots, those ofRC are called the positive
roots. The associated Weyl chamber

EC D fx 2 E j 8˛ 2 RC W h˛ ; xi > 0g

is called the associated positive chamber. Given a root˛; we will use the notation̨ > 0 to
indicate that̨ 2 RCI this is equivalent toh˛ ; � i > 0 onEC:

We define numberslS.w/ D l.w/ andnS.w/ D n.w/ for a Weyl group elementw 2 W:

Firstly, l.w/; the length ofw; is by definition the shortest length of a reduced expression for
w: Secondly,n.W / is the number of positive roots̨ 2 RC such thatw˛ is negative, i.e.,
w˛ 2 �RC:

Remark 38.31 In general, the numberslS.w/ andnS.w/ do depend on the particular choice of
fundamental system. This can already be verified for the rootsystemA2:

Lemma 38.32 For everyw 2 W;

n.w/ D l.w/ D d.EC; w�1.EC// D d.EC; w.EC//:

Moreover, any reduced expression forw; relative toS; has lengthl.w/:

Proof: d.EC; w�1.EC// equals the number of positive roots̨2 RC such that̨ < 0 on
w�1.EC/: The latter condition is equivalent withw˛ < 0 onEC orw˛ 2 �RC: Thus,n.w/ D
d.EC; w�1.EC//: On the other hand, clearly

d.EC; w�1.EC// D d.wEC; ww�1EC/ D d.EC; wEC/:

It follows from the proof of Lemma 38.24 that any reduced expression has length at most
d.E;wEC/: In particular,l.w/ � d.EC; wEC/:

We will finish the proof by showing thatn.w/ � l.w/; by induction onl.w/: If l.w/ D 1;

thenw is a simple reflection, and the inequality is obvious. Thus, let n > 1 and assume the
estimate has been established for allw with l.w/ < n: Let w 2 W with l.w/ D n: Thenw
has a reduced expression of the formw D s1 � � � sn�1s˛; with ˛ 2 S.C/: Putv D s1 : : : sn�1I
this expression must be reduced, hencel.v/ < n and it follows thatn.v/ � n � 1 by the
inductive hypothesis. On the other hand, from Lemma 38.28 itfollows thatw˛ 2 �RC; hence
ˇ WD v˛ > 0: The rooť belongs toS.vEC/; henceRC.wEC/ D RC.sˇvE

C/ D ŒRC.vEC/ n
fˇg� [ f�ˇg: It follows thatRC n RC.wEC/ is the disjoint union ofRC n RC.vEC/ andfˇg:
Hencen.w/ D d.EC; wEC/ D d.EC; vEC/C 1 D n.v/C 1 � l.v/C 1 � l.w/: �
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38.5 Dynkin diagrams

Let .E;R/ be a root system,S a fundamental system forR: TheCoxeter graphattached toS is
defined as follows. The vertices of the graph are in bijectivecorrespondence with the roots ofS I
two vertices̨ ; ˇ are connected byn˛ˇ � nˇ˛ edges. Thus, every pair is connected by0; 1; 2 or 3
edges, see the table in Lemma 38.2.

The Dynkin diagramof S consists of the Coxeter graph together with the symbol> or <
attached to each multiple edge, pointing towards the shorter root. From Lemma 38.16 it fol-
lows that (up to isomorphism) the Dynkin diagrams of the rank-2 root systems are given by the
following list:

ˇ ˛

A1 � A1

ˇ ˛

A2

ˇ ˛

B2

ˇ ˛

G2

It follows from Remark 38.30 that the Dynkin diagrams for twodifferent choices of fundamental
systems forR are isomorphic (in an obvious sense). We may thus speak of theDynkin diagram
of a root system. The following result expresses that the classification of root systems amounts
to describing the list of all possible Dynkin diagrams.

Theorem 38.33 Let R1; R2 be two root systems. If the Dynkin diagrams associated withR1
andR2 are isomorphic, thenR1 andR2 are isomorphic as well.

Proof: Let S1 andS2 be fundamental systems forR1 andR2; respectively. It follows from
Lemma 38.2 that the Cartan matricesn1 andn2 of S1 andS2 are completely determined by their
Dynkin diagrams. An isomorphism between these Dynkin diagrams gives rise to a bijection
' W S1 ! S2 such that,n1 D '�n2: By Theorem 38.14 it follows thatR1 andR2 are isomorphic.
�

Remark 38.34 It follows from the above result combined with Theorem 36.12that the (isomor-
phism classes of) Dynkin diagrams are in bijective correspondence with the isomorphism classes
of semisimple compact Lie algebras.

Let S be a fundamental system. The decomposition of its Dynkin diagramD into connected
componentsDj ; .1 � j � p/; determines a decomposition ofS into a disjoint union of subsets
Sj ; .1 � j � p/: HereSj consists of the roots labelling the vertices inDj : The decomposition
of S is uniquely determined by the conditions thatSi ? Sj if i ¤ j; and that everySj cannot be
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written as a disjoint union of proper subsetsSj1; Sj2 with Sj1 ? Sj2: We will investigate what
this means for the root systemR:

If .Ej ; Rj /; with j D 1; 2; are two root systems, we define their direct sum.E;R/ as
follows. First,E WD E1 ˚E2: Via the natural embeddingsEj ! E; the setsR1 andR2 may be
viewed as subsets ofEI accordingly we defineR to be their union. If̨ 2 R1; the maps˛ ˚ I

is a reflection in.˛; 0/ preservingR: By a similar remark forR2; we see thatR is a root system.
Moreover, for all˛ 2 R1 andˇ 2 R2; n˛ˇ D 0: From this we see thatE1 ? E2 for every
W -invariant inner product onE: Every reflection preserves bothR1 andR2; henceE1 andE2
are invariant subspaces for the Weyl group. Moreover, the mapsv 7! v ˝ I andw 7! I ˝ w

define embeddingsW1 ,! W andW2 ,! W via which we shall identify. Accordingly we have
W D W1 �W2: Similar remarks hold for the direct sum of finitely many root systems.

Definition 38.35 A root system.E;R/ is calledreducibleif R is the union of two non-empty
subsetsR1 andR2 such thatE D span.R1/ ˚ span.R2/: It is called irreducible if it is not
reducible.

The following result expresses that every root system allows a decomposition as a direct sum
of irreducibles, which is essentially unique.

Proposition 38.36 Let .E;R/ be a root system. Then there exist finitely many linear subspaces
Ej ; 1 � j � n; such thatRj WD Ej \R is an irreducible root system for everyj; and such that
R D [jRj : TheEj are uniquely determined up to order.

If Sj is a fundamental system ofRj ; for j D 1 � � �n; thenS D S1[� � �[Sn is a fundamental
system forR: Every fundamental system forR arises in this way.

If Pj is a positive system ofPj ; for j D 1 � � �n; thenP D P1 [ � � � [Pn is a positive system
for R: Every positive system ofR arises in this way.

Proof: From the definition of irreducibility, it follows that.E;R/ has a decomposition as stated.
We will establish its uniqueness at the end of the proof.

If theSj are fundamental systems as stated, then it is readily checked from the definition that
their unionS is a fundamental system forR: Let Pj be positive systems as stated, then again
from the definition it is readily verified that their unionP is a positive system forR:

Conversely, letP be a positive system forR: Then it is readily verified that every setPj WD
P \ Rj is a positive system forRj : Moreover, letS be a fundamental system forR: SinceR is
the disjoint union of the setsRj ; it follows thatS is the disjoint union of the setsSj WD S \Rj :
EachSj is linearly independent, hence for dimensional reasons a basis ofEj : NowRj � .NS [
.�NS// andRj � RSj : By linear independence this implies thatRj � NSj [.�NSj / for every
j: Hence everySj is a fundamental system.

We now turn to uniqueness of the decomposition as stated. LetE D ˚1�j�mE
0
j be a de-

composition with similar properties. Fix a fundamental systemS 0
j for R0

j D R \ E 0
j ; for every

j: The unionS 0 is a fundamental system forR hence of the formS D S1 [ � � � [ Sn; with Sj a
fundamental system forRj ; for eachj: It follows thatS 0

1 is the disjoint union of the setsS 0
1\Sj ;

1 � j � n: HenceE 0
1 is the direct sum of the spacesE 0

1 \ Ej andR0
1 is the union of the sets

R0
1 \ Rj D R0

1 \ Ej : From the irreducibility ofE 0
1 it follows that there exists a uniquej such

thatE 0
1 D Ej : The other components may be treated similarly. �
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In view of the above result we may now call the uniquely determined.Ej ; Rj / the irreducible
components of the root system.E;R/:

Lemma 38.37

(a) LetR be a root system. Then the Dynkin diagram ofR is the disjoint union of the Dynkin
diagrams of the irreducible components ofR:

(b) A root system is irreducible if and only if the associated Dynkin diagram is connected.

Proof: Let .E;R/ be an root system, with irreducible components.Ej ; Rj /: Select a fundamen-
tal systemSj for eachRj and letS be their union. The inclusionSj � S induces an inclusion of
Dj ,! D via which we may identify. For distinct indicesi; j we haven˛ˇ D 0 for all ˛ 2 Si ;
ˇ 2 Sj : Hence no vertex ofDi is connected with any vertex ofDj : It follows thatD is the
disjoint union of theDj ; and (a) follows.

We turn to (b). IfR is reducible, then by (a), the associated Dynkin diagram is not connected.
Conversely, assume that the Dynkin diagram ofR is not connected. Then it may be written as the
disjoint union of two non-empty diagramsD1 andD2: Fix a fundamental systemS of R: Then
S decomposes into a disjoint union of two non-empty subsetsS1 andS2 such that the elements
of Sj label the vertices ofDj : It follows that for all ˛ 2 S1 and allˇ 2 S2; n˛ˇ D 0: Put
Ej D span.Sj /; then it follows that for each̨ 2 S the reflections˛ leaves the decomposition
E D E1 ˚E2 invariant. Hence, the Weyl groupW of R leaves the decomposition invariant. Let
ˇ 2 R; then there exists aw 2 W such thatwˇ 2 S D S1 [ S2: It follows thatˇ lies either in
E1 or inE2: HenceR D R1 [R2 with Rj D Ej \R; and we see thatR is reducible. �

The following result relates the notion of irreducibiliy ofa root system with decomposability
of a semisimple Lie algebra.

Proposition 38.38 Let g be a compact semisimple Lie algebra with Dynkin diagramD: Let
D D D1 [ : : : [Dn be the decomposition ofD into its connected components. Then everyDj

is the Dynkin diagram of a compact simple Lie algebragj : Moreover,

g ' g1 ˚ � � � ˚ gn:

In particular,g is simple if and only ifD is connected.

Remark 38.39 Note that in view of Lemma 35.10 the above result implies thatthe connected
components ofD are in bijective correspondence with the simple ideals ofg:

Proof: Let g D ˚jhj be the decomposition ofg into its simple ideals. For eachj we fix a
maximal torustj � hj : Thent WD t1 ˚ � � � ˚ tn is a maximal torus ing (use thathi commutes
with hj for every i ¤ j ). Via the direct sum decomposition oft; we view t�j as the linear
subspace of elements oft� that vanish ontk for everyk ¤ j: Accordingly,t� D t�1 ˚ � � � ˚ t�n;

and a similar decomposition of the complexification. LetRj be the root system oftj in hj : Since
gC is the direct sum oftC and the root spacesgC˛; for ˛ 2 R1 [ � � � [ Rn; it follows that the
root systemR of t in g equals the disjoint union of theRj : Hence,R is the direct sum of theRj :
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The Dynkin diagram ofR is the disjoint union of the Dynkin diagrams of theRj : The proof will
be finished if we can show that the Dynkin diagram ofRj ; is connected, for eachj: By Lemma
38.37 this is equivalent to the assertion that eachRj is irreducible.

Thus, we may assumeg is simple,t a maximal torus ing; and then we must show that
R D R.g; t/ is irreducible. Assume not. Then we may decomposeR as the disjoint union of
two non-empty subsetsR1 andR2 whose spans have zero intersection. PutE D i t�; and for
j D 1; 2; defineEj D span.Rj /: ThenE D E1 ˚ E2: Let

t1 WD \˛2R2
ker˛ and t2 WD \ˇ2R1

kerˇ:

Thent D t1 ˚ t2 and, accordingly,Ej ' i t�j : Forj D 1; 2; let

gj D tj ˚ . g \
X

˛2Rj

gC˛ /:

Theng D g1˚g2 as a vector space. Moreover, adt normalizes this decomposition,t1 centralizes
g2 andt2 centralizesg1: If ˛; ˇ 2 R and˛ C ˇ 2 R; then we must have thatf˛; ˇg is a subset
of eitherR1 or R2: From this we readily see thatg1 andg2 are subalgebras ofg: Moreover,
if ˛ 2 R1 andˇ 2 R2; then˛ C ˇ … R; hencegC.˛Cˇ/ D 0: It follows that Œg1; g2� D 0: We
conclude thatg D g1˚g2 as a direct sum of ideals, contradicting the assumption thatg is simple.
�

In view of the above the following result amounts to the classification of all simple compact
Lie algebras.

Theorem 38.40 The following is a list of all connected Dynkin diagrams of root systems. These
diagrams are in bijective correspondence with the (isomorphism classes of) the simple compact
Lie algebras.
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An W n � 1 SU.nC 1/: : :

Bn W n � 2 SO.2nC 1/: : :

Cn W n � 3 Sp.n/: : :

Dn W n � 4 SO.2n/: : :

G2 W

F4 W

E6 W

E7 W

E8 W

Acknowledgement: I warmly thank Lotte Hollands for providing me with LATEX files for these
and all other pictures in the lecture notes.
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abelian group, 4
action of a group, 43
adjacent Weyl chambers, 140
adjoint representation, ofG, 18
angle, between roots, 128
anti-symmetry, of Lie bracket, 20
arcwise connected, 8
associativity, 4
automorphism, of a Lie group, 7

Banach space, 69
Banach-Steinhaus theorem, 71
barrelled space, 71
base space, of principal bundle, 48
basis, of root system, 131

Cartan integer, 128
Cartan integers, 133
Cartan matrix, 133
center of a group, 5
center, of a Lie algebra, 116
character of a representation, 80
character, multiplicative, 94
choice of positive roots, 131
class function, 93
closed subgroup, 12
commutative group, 4
commutative Lie algebra, 22
commuting elements, of the Lie algebra, 22
compact Lie algebra, 116
complex Hilbert space, 72
complexification, of a Lie algebra, 100
component of the identity, 23
conjugation, 5
connected, 8
continuous action, 43
continuous representation, 69
contragredient representation, 82
coset space, 6
coset, left, 6

Coxeter graph, 143
cyclic vector, 111

densities, bundle of, 63
density, invariant, 64
density, on a linear space, 62
density, on a manifold, 63
derivation, 115
direct sum of representations, 83
dominant, 126
dual of a representation, 82
Dynkin diagram, 143

equivalence class, 5
equivalence relation, 5
equivalent representations, 74
equivariant map, 43, 74
exponential map, 16

fiber, of a map, 5
finite dimensional representation, 69
frame bundle, 48
free action, 50
fundamental system, 131

G-space, 43
group, 4
group of automorphisms, 114
group of interior automorphisms, 115

Haar measure, 66
Haar measure, normalized, 66
half space, 131
height of a root, 131
Hermitian inner product, 72
highest weight, 112
highest weight vector, 110
Hilbert space, 69
homogeneous, 55
homomorphism, of groups, 4
homomorphism, of Lie groups, 7
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ideal, 60
image, of a homomorphism, 4
indecomposable root, 131
induced infinitesimal representation, 106
integral curve, 16
integral operator, 89
integral, of a density, 64
intertwining map, 43, 74
invariance, of Killing form, 116
invariant density, 64
invariant subspace, 72
inverse function theorem, 17
irreducible representation, 72
isomorphic, 4
isomorphism, 4
isomorphism of Lie groups, 7
isomorphism of root systems, 125

Jacobi identity, 21

kernel, of a group homomorphism, 4
kernel, of an integral operator, 89
killing form, 115

Lebesgue measure, 63
left action, 43
left invariant vector field, 15
left regular representation, 70
left translation, 5
Lie algebra, 21
Lie algebra homomorphism, 21
Lie subgroup, 28
local trivialization, of principal bundle, 48
locally convex space, 69
Lorentz group, 13

matrix coefficient, of representation, 73
maximal torus, 106
module, for a Lie algebra, 70
module, of a Lie group, 71
monomorphism, 4
multiplicative character, 94
multiplicity, of an irreducible representation, 84

neutral element, 4

normal subgroup, 6
normalized Haar measure, 66

one parameter subgroup, 18
open half space, 131
open subgoup, 24
orbit space, 44
orbits, for group action, 44
orthogonal group, 13

partition, 5
Peter-Weyl theorem, 86
positive density, 63
positive density, on a manifold, 63
positive root, 110
positive system, 131
primitive vector of an sl(2)-module, 103
principal fiber bundle, 48
product density, 88
proper action, 49
proper map between topological spaces, 49

Radon measure, 65
rank, of a root system, 128
real symplectic group, 13
reducible root system, 144
reflection, 125
regular element, 113
relation, 5
representation, of a Lie algebra, 70
representative functions, 85
right action, 43
right regular representation, 70
right translation, 5
root space, 107
root space decompostion, 107
root system, general, 125
roots, 107

Schur orthogonality, 79
Schur orthogonality relations, 79
Schur’s lemma, 75
semisimple Lie algebra, 119
sesquilinear form, 72

149



simple ideal, 119
simple Lie algebra, 119
simple root, 131
slice, 50
smooth action, 45
special linear group, 10
special orthogonal group, 13
special unitary group, 13
spectral theorem, 87
standard sl(2)-triple, 102
structure group, of principal bundle, 48
subalgebra of a Lie algebra, 30
subgroup, 4
submersion theorem, 11
substitution of variables, for density, 64
symplectic form, 13
symplectic group, compact form, 15
symplectic group, complex form, 15
system of positive roots, 110

tensor product, of representations, 83
topological group, 43, 66
torus, 106
total space, of principal bundle, 48

uniform boundedness theorem, 71
unimodular group, 67
unitarizable representation, 72
unitary group, 13
unitary representation, 72

vector field, 15

weight, 105
weight lattice, 126
weight space, 105
Weyl chamber, 109, 137
Weyl group, of a compact algebra, 124
Weyl group, of root system, 125
Weyl’s character formula, 127
Weyl’s dimension formula, 127
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