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1 Groups

The purpose of this section is to collect some basic factstaipoups. We leave it to the reader
to prove the easy statements given in the text.

We recall that ayroupis a setG togetherwithamap : G x G — G, (x,y) — xy and an
element = eg, such that the following conditions are fulfilled

(@) (xy)z =x(yz)forall x,y,z € G;
(b) xe = ex =xforallx € G;
(c) for everyx € G there exists an element! € G such thatex™! = x~lx = e.
Remark 1.1 Property (a) is calledssociativityof the group operation. The elemenis called
theneutral elemenof the group.
The element~! is uniquely determined by the property (c); indeedx i€ G is given, and

y € G an element withvy = e, thenx™!(xy) = x7le = x7!, hencex ! = (x7x)y = ey =
y. The element ! is called theénverseof x.

Example 1.2 Let S be a set. Then Syy), the set of bijectionsS — S, equipped with
composition, is a group. The neutral elememtguals/s, the identity mapS — S, x — x.
If S ={1,...,n}, then SynmS) equalsS,, the group of permutations afelements.

A group G is said to becommutativeor abelianif xy = yx for all x, y € G. We recall that a
subgroupof G is a subseH C G such that

(@) ec € H;

(b) xy e Hforallx € Handy € H;

(c) x~! € H foreveryx € H.

We note that a subgroup is a group of its own rightGIfH are groups, then Bomomorphism
from G to H is defined to be amap : G — H such that

(@) ¢leg) = en;
(b) p(xy) = p(x)p(y) forallx, y € G.
We note that th@mageim(¢) := ¢(G) is a subgroup of. Thekernelof ¢, defined by

kerg :== ¢ '({en}) = {x € G | p(x) = eq}

is also readily seen to be a subgrouptfA surjective group homomorphism is called epi-
morphism An injective group homomorphism is calleagranomorphismWe recall that a group
homomorphisny : G — H is injective if and only if its kernel is trivial, i.e., ker = {eg}. A
bijective group homomorphism is called @omorphism The inverseyp~! of an isomorphism
¢ : G — H is a group homomorphism frolf to G. Two groupsG, andG, are calledsomor-
phicif there exists an isomorphism frot, ontoG,.

If G is a group, then by an automorphism@fwe mean an isomorphism &f onto itself.
The collection of such automorphisms, denoted(&Ut is a subgroup of Sy@ ).
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Example 1.3 If G is a group andk € G, thenthe mag, : G — G, y — xy, is calledleft
translationby x. We leave it to the reader to verify that— [, is a group homomorphism from
G to SymG).

Likewise, ifx € G, thenr, : G — G, y — yx, is calledright translationby x. We leave it
to the reader to verify that — (r,)~! is a group homomorphism frod to SymG).

If x € G,thenC, : G — G, y — xyx~!is calledconjugationby x. We note that’, is an
automorphism ofz, with inverseC,—1. The mapC : x — C, is a group homomorphism froiG
into Aut(G). Its kernel is the subgroup @ consisting of the elemenise G with the property
thatxyx~! = y forall y € G, or, equivalently, thaky = yx for all y € G. Thus, the kernel of
C equals theenterZ(G) of G.

We end this preparatory section with the isomorphism thradiog groups. To start with we recall
that arelation on a setS is a subseiR of the Cartesian produ& x S. We agree to also write
xRy in stead of(x, y) € R. Arelation~ on S is called arequivalence relatioif the following
conditions are fulfilled, for alk, y,z € S,

(@) x ~ x (reflexivity);
(b) x ~y = y ~ x (Symmetry);
() x ~y Ay ~z = x ~ z (transitivity).

If x € S, then the collectionix] := {y € S | y ~ x} is called theequivalence classf x. The
collection of all equivalence classes is denotedsiy~ .

A partition of a setS is a collectionP of non-empty subsets ¢f with the following proper-
ties

(@) ifA,BeP,thenANB =@orA=B;
(b) UsepA = S.

If ~ is an equivalence relation ok then S/ ~ is a partition ofS. Conversely, ifP is a
partition of S, we may define a relation» as follows: x ~» y if and only if there exists a
setA € P such thatx andy both belong tod. One readily verifies that-» is an equivalence
relation; moreovery/ ~p= P.

Equivalence relations naturally occur in the context of mdpf : S — T is a map between
sets, then the relation on S defined byx ~ y < f(x) = f(») is an equivalence relation.
If x € S and f(x) = c, then the clas$x] equals thdiber

[Ty =T he) ={y eS| f(y) =c}.

Let = denote the natural map ~ [x] from S onto S/ ~ . Then there exists a unique map
f S/ ~— T such that the following diagram commutes

s Lo
SN i
S/ ~



We say thaff factorsthrough amag’ : S/ ~ — T. Note thatf ([x]) = f(x) forall x € S. The
map f is injective, and has image equal f@S). Thus, if f is surjective, therf is a bijection
from S/ ~ontoT.

Partitions, hence equivalence relations, naturally ootthre context of subgroups. K is a
subgroup of a groug, then for everyx € G we define theight cosetof x by xK := [, (K).
The collection of these cosets, called the righset spaceis a partition ofG and denoted by
G/ K. The associated equivalence relation is giveixby y <= xK = yK, forall x,y € G.

The subgrouX is called anormal subgroupf xKx~! = K, for everyx € G. If K is a
normal subgroup theG/ K carries a unique group structure for which the natural mag: —
G/K, x — xK is a homomorphism. Accordingly,K - yK = n(x)x(y) = n(xy) = xyK.

Lemma 1.4 (The isomorphism theoremllet / : G — H be an epimorphism of groups. Then
K := ker f is a normal subgroup of;. There exists a unique map : G/K — H, such that
fom = f. The factor mapf is an isomorphism of groups.

Proof: Letx € G andk € K. Then f(xkx™') = f(x) f(k) f(x)"! = f(x)eg f(x)"! = eq,
hencexkx™! € ker f = K. It follows thatxK x~! c K. Similarly it follows thatx"'Kx C K,
henceK C xKx~! and we see thatKx~! = K. It follows that K is normal.
Letx € G and write f(x) = h. Then, for everyy € G, we haveyK = xK <— f(y) =

f(x) <= y e f~!(h). HenceG/K consists of the fibers of. In the above we saw that there
exists a unique map : G/K — H, such thatf om = f. The factor map is bijective, sincg is
surjective. It remains to be checked thais a homomorphism. Novf (eK) = f(eg) = en,
since f is a homomorphism. Moreover, if, y € G, then f (xKyK) = f(xyK) = f(xy) =
f(x) f(y). This completes the proof. O

2 Lie groups, definition and examples

Definition 2.1 (Lie group) A Lie group is a smooth (i.e(;*°) manifold G equipped with a
group structure so that the maps (x,y) = xy, G xG - Gandt: x — x~ !, G — G are
smooth.

Remark 2.2 For a Lie group, the group operation is usually denoted iplidatively as above.
The neutral element is denoted by = e;. Sometimes, if the group is commutative, i.e.,
u(x,y) = u(y,x) forall x,y € G, the group operation is denoted additivdly, y) — x + y;

in this case the neutral element is denoted by

Example 2.3 We begin with a few easy examples of Lie groups.

(a) R” together with addition+ and the neutral elemefitis a Lie group.

(b) C" ~ R2" together with addition+ and the neutral elemeftis a Lie group.

(c) R* := R\ {0} is an open subset d, hence a smooth manifold. Equipped with the
ordinary scalar multiplication and the neutral elemeénR* is a Lie group. SimilarlyR* :=
] 0, oo [ together with scalar multiplication aridis a Lie group.

(d) C* := C\ {0} is an open subset @@ ~ R?, hence a smooth manifold. Together with
complex scalar multiplication and C* is a Lie group.
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If G; andG, are Lie groups, we may equip the product manif6ld= G; x G, with the
product group structure, i.€x1, x2)(V1, y2) := (X1 1, X2)2), andeg = (eg,,eq,)-

Lemma 2.4 LetG,, G, be Lie groups. Ther := G; x G,, equipped with the above manifold
and group structure, is a Lie group.

Proof: The multiplication mage : G x G — G is given byu((x1, x2), (y1,¥2)) = [ X
p2]((x1, y1), (%2, y2). Hencew = (w1 X pa) o (Ig, X S x Ig,), whereS : Go x Gy — G1 X G
is the ‘switch’ map given bys (x,, y1) = (1, x»). It follows that . is the composition of smooth
maps, hence smooth.

The inversion map of G is given byt = (i1, t2), hence smooth. OJ

Lemma 2.5 LetG be a Lie group, and leH C G be both a subgroup and a smooth submani-
fold. ThenH is a Lie group.

Proof: Letu = ug : G x G — G be the multiplication map of;. Then the multiplication map
uyg of H isgiven byupy = u|lgxg. Sincep is smooth andd x H a smooth submanifold of
G xG,themapuy : Hx H — G is smooth. Sinceéd is a subgroupy g maps into the smooth
submanifoldH, hence is smooth as a m&p x H — H. Likewise,.y = tg|gy IS Smooth as a
mapH — H. O

Example 2.6

(&) The unitcircleT := {z € C | |z| = 1} is a smooth submanifold as well as a subgroup of
the Lie groupC*. Therefore it is a Lie group.

(b) Theg-dimensional toru§? is a Lie group.

So far, all of our examples of Lie groups were commutative. sl formulate a result that
asserts that interesting connected Lie groups are not towralfamong the commutative ones.
For this we need the concept of isomorphic Lie groups.

Definition 2.7 Let G and H be Lie groups.

() A Lie group homomorphisimtom G to H is a smooth map : G — H that is a homo-
morphism of groups.

(b) An Lie group isomorphisnfrom G onto H is a bijective Lie group homomorphism :
G — H whose inverse is also a Lie group homomorphism.

(c) Anautomorphisnof G is an isomorphism of; onto itself.

Remark 2.8 (a) If ¢ : G — H is a Lie group isomorphism, thenis smooth and bijective and
its inverse is smooth as well. Hengeis a diffeomorphism.

(b) The collection of Lie group automorphisms Gf equipped with composition, forms a
group, denoted AUG).



We recall that a topological spadéis said to beconnectedf @ and X are the only subsets
of X that are both open and closed. The sp&ds said to bearcwise connected for each pair
of pointsa, b € X there exists a continous curve: [0, 1] — X with initial point @ and end
pointb, i.e.,c(0) = a andc(1) = b. If X is a manifold thenX is connected if and only iX is
arcwise connected.

We can now formulate the promised results about connectadntdative Lie groups.

Theorem 2.9 Let G be a connected commutative Lie group. Then there existargegg > 0
such thatG is isomorphic tdl'? x R4.

The proof of this theorem will be given at a later stage, whenhave developed enough
technology. See Theorem 6.1.

A more interesting example is the following. In the sequeMiléoften discuss new general
concepts in the context of this important particular exampl

Example 2.10 Let n be a positive integer, and let (M, R) be the set of reat x n matrices.
Equipped with entry wise addition and scalar multiplicatid(n, R) is a linear space, which in
an obvious way may be identified witt”. For A € M(n, R) we denote byA4;; the entry of4
in thei-th row and thej-th column. The map$;; : A — A;; may be viewed as a system of
(linear) coordinate functions on (d, R).

In terms of these coordinate functions, the determinanttfan det: M(n, R) — R is given
by

det= Z Sgn(o-)é-la(l) te Sna(n),

gesS,

whereS,, denotes the group of permutations{af...,n}, and where sgn denotes the sign of a
permutation. It follows from this formula that det is smooth

The set Gl(n, R) of invertible matrices in Mz, R), equipped with the multiplication of ma-
trices, is a group. As a set it is given by

GL(n,R) = {4 € M(n,R) | detd # 0.

Thus, GlU(n, R) is the pre-image of the open sub&t = R \ {0} of R under detAs the latter
function is continuous, it follows that Gk, R) is an open subset of {1, R). As such, it may
be viewed as a smooth manifold of dimensioh In terms of the coordinate functiog, the
multiplication mapu : GL(n, R) x GL(n, R) — GL(n, R) is given by

E((A, B) =) &i(A)&u(B).

i=1

It follows that . is smooth. Givem € M(n, R) we denote by4T the transpose of. Moreover,
for 1 <i,j < n we denote byM;;(A) the matrix obtained fron¥ by deleting the/-th row
and j-th column. The co-matrix off is defined byA{? = (=1)*/detM;; (AT). Clearly, the



mapA — A is a polynomial, hence smooth map fron(iMR) to itself. By Cramer’s rule the
inversion: : GL(n,R) — GL(n,R), A — A~! is given by

1(A) = (detd)™! A%,
It follows that: is smooth, and we see that GL, R) is a Lie group.

Example 2.11 Let V be a real linear space of finite dimensienLetv = (vy,...,v,) be
an ordered basis df. Then there is a unique linear isomorphiggfrom R” onto V, mapping
the j-th standard basis vectey ontov;. If w is a second basis, thedn := ¢ 'e, is a linear
isomorphism ofR” onto itself, hence a diffeomorphism. It follows tHathas a unique structure
of smooth manifold such that the mapis a diffeomorphism, for any choice of basis

We denote by End’) the set of linear endomorphisms &f i.e., linear maps o/ into
itself. Equipped with pointwise addition and scalar muitigtion, End V') is a linear space. Let
v = (v1,...,v,) be an ordered basis &f Given4 € End V), we write maf4d) = mat,(A)
for the matrix of 4 with respect tov. The entries4;; of this matrix are determined byv; =
Yo Aijvi, foralll < j <n.Asin Example 2.10 we denote by(il, R) the set of all reat xn
matrices. Equipped with entry wise addition and scalar iplidation, M(, R) is a linear space.
Accordingly, matis a linear isomorphism from Eid) onto M(z, R). Via this map, composition
in End(V) corresponds with matrix multiplication in M, R). More precisely,

mat(A. B) = matA) mat B)

forall 4, B € EndV).

We note that the matrix mat4) equals the matrix of, ! - A - e, with respect to the standard
basis ofR”. Let noww = (wq,...,w,) be a second ordered basislofand letS be the matrix
of the linear endomorphisth = ¢, !.e, € EndR") with respect to the standard basis. Then
frome; ' Ae, = Loe,' Aeyo L™! it follows that

mat,(4) = S mat,(4) S~.
By conjugation invariance of determinant and trace, we firad t
detmaj(A4) = detmaj, 4 and trmaf(4) = trmat, A

for all A € EndV). It follows that determinant and trace are independent ofctin@ce of
basis. Hence, there exist unique maps et EndV) — R such that det = detma# and
trA = trmatd for any choice of basis.

We denote by GIV), or also AutV), the set of invertible elements of E(d). Then GL(1)
is a group. Moreover, fix a basis &f then the associated matrix map m&nd(V') — M(n, R)
is a diffeomorphism, mapping GL') onto GL(n, R). It follows that GL(V') is an open subset,
hence a submanifold of EQH). Moreover, as mat restricts to a group isomorphism frongiGL
onto GL(n, R), it follows from the discussion in the previous example tha{B) is a Lie group
and that mat is an isomorphism of Lie groups from(®l. onto GL(», R).



Remark 2.12 In the above example we have distinguished between lineps mad their ma-
trices with respect to a basis. In the particular situati@ ' = R”, we shall often use the map
mat = mat, defined relative to the standard basisf R” to identify the linear space ER")
with M (n, R) and to identify the Lie group GIR") with GL(n, R).

We shall now discuss an important criterion for a subgroup @fe groupG to be a Lie
group. In particular this criterion will have useful apg@iions forG = GL(V'). We start with a
result that illustrates the idea of homogeneity.

Let G be a Lie group. Ifx € G, then the left translatioh. : G — G, see Example 1.3, is
given byy — u(x, y), hence smooth. The mdp is bijective with inversé -1, which is also
smooth. Thereford,, is a diffeomorphism fronG onto itself. Likewise, the right multiplication
mapr, : y — yx is a diffeomorphism fromG onto itself. Thus, for every pair of points
a,b € G bothl,,-1 andr,-1, are diffeomorphisms o mappinga onto 5. This allows us
to compare structures afi at different points. As a first application of this idea we é&dke
following.

Lemma 2.13 Let G be a Lie group andd a subgroup. Leti € H be a given point (in the
applicationsh = e will be most important). Then the following assertions ageigalent.

(a) H is a submanifold o&; at the pointi;
(b) H is a submanifold of.

Proof: Obviously, (b) implies (a). Assume (a). Letbe the dimension ofr and letm be the
dimension ofH at . Thenm < n. Moreover, there exists an open neighborh@baef £ in
G and a diffeomorphismy of U onto an open subset &” such thaty(k) = 0 and such that
y(UNH)=y(U)N[R™ x{0}). Letk € H. Puta = kh~!. Thenl, is a diffeomorphism of>
onto itself, mapping: ontok. We shall use this to show th&f is a submanifold of dimension
m at the pointk. Sincea € H, the mapl, maps the subseil bijectively onto itself. The set
Uy := 1,(U) is an open neighborhood &fin G. Moreover,y; = yol; ! is a diffeomorphism
of U, onto the open subsgiU) of R”. Finally,

U N H) = xx(laU N IH) = yrolo,(UNH) = y(UNH) = x(U)N[R" x{0}).

This shows that{ is a submanifold of dimension at the point. Sincek was an arbitrary point
of H, assertion (b) follows. O

Example 2.14 Let V be a finite dimensional real linear space. We definesihecial linear
group
SL(V):={A € GL(V) | de4d = 1}.

Note that det is a group homomorphism from &1 to R*. Moreover, SI(V) is the kernel of
det In particular, SI(V) is a subgroup of GU/). We will show that SIV') is a submanifold of
GL(V) of codimensiorl. By Lemma 2.13 it suffices to do this at the elemént [y.

10



SinceG := GL(V) is an open subset of the linear space @nyits tangent spac&; G may
be identified with En@). The determinant function is smooth froéhto R hence its tangent
map is a linear map from E#) to R. In Lemma 2.15 below we show that this tangent map is
thetrace tr EndV) — R, A — tr(A). Clearly tr is a surjective linear map. This implies that det
is submersive at. By thesubmersion theorent,follows that SL(V) is a smooth codimension
submanifold at.

Lemma 2.15 The functiondet: GL(V) — R* has tangent map at given by7; det = tr :
EndV) > R, A trA.

Proof: PutG = GL(V). In the discussion in Example 2.14 we saw tlia&G = End(V) and,
similarly, T;R* = R. ThusT;det is a linear map Efd') — R. Let H € EndV'). Then by the
chain rule,

d

T;(dehy(H) = — det(/ +tH).

dt |,
Fix a basivy, ..., v, of V. We denote the matrix coefficients of a maps End(}') with respect
to this basis by4;;, for 1 <i, j < n. Using the definition of the determinant, we obtain

det(/ +tH) =1+ t(Hy1 + -+ Hpn) + 12R(t, H),

whereR is polynomial ins and the matrix coefficient®;;. Differentiating this expression with
respect ta and substituting = 0 we obtain

T](det)(H):H11++Hnn:trH 0

We shall now formulate a result that allows us to give manyngdas of Lie groups. The
complete proof of this result will be given at a later stagé.cQurse we will make sure not to
use the result in the development of the theory until then.

Theorem 2.16 Let G be a Lie group and leH be a subgroup of;. Then the following asser-
tions are equivalent.

(a) H is closed in the sense of topology.
(b) H is a submanifold.

Proof: For the moment we will only prove that (b) implies (a). Assufbe Then there exists
an open neighborhool of e in G suchthatU N H = U N H. Lety € H. Sincel, is a
diffeomorphism fromG onto itself,y U is an open neighborhood ofin G, henceyU N H # @.
Selecth € yU N H. Theny~'h € U. On the other hand, from € H, h € H it follows that
y~'h € H.Hencey 'h e UNH = UNH, and we see that € H. We conclude thaH C H.
Therefore,H is closed. O

11



By aclosed subgroupf a Lie groupG we mean a subgroup that is closed in the sense of
topology.

Corollary 2.17 LetG be a Lie group. Then every closed subgrougras a Lie group.

Proof: Let H be a closed subgroup &f. Then H is a smooth submanifold a, by Theorem
2.16. By Lemma 2.5 it follows thak/ is a Lie group. OJ

Corollary 2.18 Lety : G — H be a homomorphism of Lie groups. Then the kerngl fa
closed subgroup df. In particular, ker ¢ is a Lie group.

Proof: PutK = kerg. ThenK is a subgroup of;. Now ¢ is continuous andey } is a closed
subset ofl. Hence,K = ¢~ !({ex}) is a closed subset ¢¢. Now apply Corollary 2.17. [

Remark 2.19 We may apply the above corollary in Example 2.14 as followse Tap det
GL(V) — R* is a Lie group homomorphism. Therefore, its kerne(BLis a Lie group.

Example 2.20 Let now V' be a complex linear space of finite complex dimensioifhen by
End(V) we denote the complex linear space of complex linear maps #roto itself, and by
GL(V) the group of invertible maps. The discussion of Example® 2rid 2.11 goes through
with everywhereR replaced byC. In particular, the determinant det is a complex polynomiapm
EndV) — C, hence continuous. Sin@* = C \ {0} is open inC, the set GI(V) = def ' (C*)
isopen in EndV). As in Example 2.11 we now see that G0 is a Lie group.

The map det GL(V) — C* is a Lie group homomorphism. Hence, by Corollary 2.18 its
kernel, SV') := {A € GL(V) | det4d = 1}, is a Lie group.

Finally, letv = (vy,...,v,) be a basis oV (over C). Then the associated matrix map
mat = mat, is a complex linear isomorphism from Eid) onto the space kk, C) of complex
n x n matrices. It restricts to a Lie group isomorphism(@L ~ GL(n,C) and to a Lie group
isomorphism SIV) ~ SL(n, C).

Another very useful application of Corollary 2.17 is theléaling. Let V' be a finite dimen-
sional real linear space, and |et: V x V — W be a bilinear map into a finite dimensional
real linear spacéV. For g € GL(V) we define the bilinearmap - 8 : V xV — W by
g Bu,v) = B(g u,g7v). Fromg, - (g2 - B) = (g1g2) - B one readily deduces that the
stabilizer of8 in GL(V),

GL(V)p =1{g€GL(V) |g-B=p}
is a subgroup of GU/). Similarly SL(V')g := SL(V) N GL(V)g is a subgroup.

Lemma 2.21 The groupsGL(V)g andSL(V)g are closed subgroups @GL(V). In particular,
they are Lie groups.

12



Proof: DefineC,, = {g € GL(V) | B(g 'u, g 'v) = B(u,v)}, foru,v € V. Then GL(V)
is the intersection of the ses, ,, for all u,v € V. Thus, to establish closedness of this group,
it suffices to show that each of the sétg, is closed in GI(}'). For this, we consider the func-
tion f : GL(V) — W given by f(g) = B(g 'u,g v). Then f = Bo(i,1), hencef is
continuous. Sinc€B(u, v)} is a closed subset d¥/, it follows thatC,, = 1 ({B(u,v)}) is
closed in GI(V). This establishes that GL') is a closed subgroup of GL'). By application
of Corollary 2.17 it follows that GLV') is a Lie group.

Since SI(V) is a closed subgroup of GL') as well, it follows that SKV')g = SL(V) N
GL(V)p is a closed subgroup, hence a Lie group. O

By application of the above to particular bilinear forms, @l®ain interesting Lie groups.

Example 2.22 (a) TakeV = R” andp the standard inner product d@'. Then GL(V)g =
O(n), theorthogonal group Moreover, SI(V)g = SO(n), thespecial orthogonal group

Example 2.23 Letn = p + ¢, with p, g positive integers and put = R”". Let B be the
standard inner product of signatuie, ¢), i.e.,

Bx.y) = Zx,y, 3w

i=p+1

Then GL(V)pg = O(p, q) and SKV)g = SA(p, q). In particular, we see that tHevrentz group
O(3, 1) is a Lie group.

Example 2.24 Let V = R?” and letB be the standargymplectic forngiven by

B(x,y) = leyn—i—z an—i—zyz

Then GL(V)g is thereal symplectic groufsp(n, R).

Example 2.25 Let V' be a finite dimensional complex linear space, equipped witbraplex
inner productB. This inner product is not a complex bilinear form, since iskew linear in its
second component (this will always be our convention witmpkex inner products). However,
as amap/ x V — C itis bilinear overR; in particular, it is continuous. As in the proof of
Lemma 2.21 we infer that the associatedtary groupU(V) = GL(V)g is a closed subgroup
of GL(V'), hence a Lie group. Likewise, tlepecial unitary grousU(V) := U(V) N SL(V) is
a Lie group.

Via the standard basis & we identify EndC”) >~ M(n, C) and GL(C") ~ GL(n, C), see
also Remark 2.12. We equipy’ with the standard inner product given by

:iziu_)i (z,we@”).

The associated unitary group(@*) may be identified with the group (W) of unitaryn x n-
matrices. Similarly, SUC") corresponds with the special unitary matrix group(s)J
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Remark 2.26 It is possible to immediately apply Lemma 2.21 in the aboveneple, in order
to conclude that/(n) is closed. For this we observe that we may forget the comptagtsire of
V and view it as a real linear space. We wiliig, for ' viewed as a linear space.df= dim¢V
and ifvy,...,v, is a basis o, thenv,,ivy,...,v,,iv, is a basis of the real linear spakg,.
In particular we see that dig¥(z) = 2n. Any complex linear mag” € End(V') may be viewed
as a real linear map frorr to itself, hence as an element of Eigk)), which we denote by
T(®). We note that” — T is a real linear embedding of E(ld) into EndV(x)). Accordingly
we may view Endl) as a real linear subspace of Eig)). Let J denote multiplication by,
viewed as a real linear endomorphismi®f,. We leave it to the reader to verify that

En(XV) = {A € En(XV(R)) | AoJ =J oA}.

Accordingly,
GL(V) = {a S GL(V(R)) | aoJ =J OA}.

From this one readily deduces that G0 is a closed subgroup of GL(g)). In the situation
of Example 2.25H := GL(V(r))p is a closed subgroup of GL(z)), by Lemma 2.21. Hence
U(V) = GL(V)N H is a closed subgroup as well.

We end this section with useful descriptions of the orth@jamitary and symplectic groups.

Example 2.27 For a matrixA € M(n,R) we define its transposd’ € M(n, R) by (4%);; =
Aji. Let B = (-, -) be the standard inner product &f. Then (Ax, y) = (x, A'y). Let
a € GL(n,R). Then for allx, y € R”,

a”'-B(x,y) = {ax, ay) = (d'ax, y).
Since Qn) = GL(n, R)4, we infer that
O(n) ={a € GL(n,R) | a‘a = I}.

Example 2.28 If A € M(n, C) we denote its complex adjoint kiyd*);; = 4;;. Let (-, -) be
the complex standard inner product@h. Then(Ax, y) = (x, A*y) forall x, y € C". Asiin
the previous example we now deduce that

U(n) ={a € GL(n,C) | a*a = I}.

Example 2.29 Let 8 be the standard symplectic form @&¥”, see Example 2.24. Let ¢
M(2n, R) be defined by
7 _( 0 7 )
-1 0)°

where the indicated blocks are of sizex n.
Let (-, -) denote the standard inner product B#*. Then for allx,y € R?", we have
B(x,y) = (x, Jy). Leta € GL(n,R), then

a ' B(x,y) = (ax, Jay) = (x, a' Jay).
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From this we see that $p, R) = GL(2n,R)s consists of alu € GL(2n, R) with a’Ja = J,
or, equivalently, with
(@) =JaJ™! (1)

This description motivates the following definition. Thepnd — A’ uniquely extends to
a complex linear endomorphism of (®k, C). This extension is given by the usual formula
(A4");; = Aj;. We now define S, C) to be the collection of € GL(2n, C) satisfying condi-
tion (1). One readily verifies that $p, C) is a closed subgroup of GR#n, C) hence a Lie group.
We call it thecomplex symplectic group

Note that Gl(2n, R) is a closed subgroup of G&n, C) and that Sz, R) = GL(2n,R) N
Sp(n, C).

Finally, we define theompact symplectic groupy

Spn) :=UQ2n) N Sp(n, C).
Clearly, this is a closed subgroup of @z, C), hence a Lie group.

Remark 2.30 In this section we have frequently used the following pihei If G is a Lie
group, and ifH, K C G are closed subgroups, théh N K is a closed subgroup, hence a Lie

group.

3 Invariant vector fields and the exponential map

If M is a manifold, we denote by (M) the real linear space of smootkctor fieldson M. A
vector fieldv € V(G) is calledleft invariant if (/,)«v = v for all x € G, or, equivalently if

vxy) =Tyl v(y)  (x.y €G). 2)

The collection of smooth left invariant vector fields is aelam subspace of(G), which we
denote byV; (G). From the above equation with = ¢ we see that a left invariant vector field
is completely determined by its valuge) € T,G ate. Differently said,v — v(e) defines an
injective linear map from. (G) into T,G. The next result asserts that this map is surjective as
well. If X € T,G, we define the vector fieldy on G by

vx(x) = T(l)X,  (x €G). 3)

Lemma 3.1 The mapX — vy defines a linear isomorphism froMG ontoV; (G). Its inverse
is given byv — v(e).

Proof: From the fact thatx, y) — [,(y) is a smooth ma x G — G, it follows by differen-
tiation with respect toy at y = e in the direction ofX € 7,.G thatx — T,(l,)X is smooth as
amapG — TG. This implies thatvy is a smooth vector field o6. HenceX — vy defines a
real linear magf,G — V(G). We claim that it maps int®/. (G).

Fix X e T,.G. Differentiating the relatiori,, = I, -/, and applying the chain rule we see
that 7, (Ixy) = Ty(lx)Te(l,). Applying this to the definition oby we see thaby satisfies (2),
hence is left invariant. This establishes the claim.

Fromvy(e) = X we see that the map: v — v(e) from V. (G) to T,G is not only injective,
but also surjective. Thus,is a linear isomorphism, with inversé — vy. OJ
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If X € T.G, we definexy to be themaximal integral curvef vy with initial pointe.

Lemma 3.2 Let X € T.G. Then the integral curvecxy has domainR. Moreover, we have
ax(s +1) = ax(s)ax(z) forall s,z € R. Finally the map(z, X) — ax(t), Rx T,G — G is
smooth.

Proof: Letwa be any integral curve fory, let y € G, and puta,(¢) = ya(t). Differentiating
this relation with respect towe obtain:

Can(t) = Tl (1) = Tulyvx (@) = v (1),
t dt
by left invariance ofvy. Hencex; is an integral curve fovry as well.

Let now/ be the domain ofty, fix t; € I, and putx; = ax(¢;). Thena(¢) := xjax(¢)
is an integral curve fooy with starting pointc; and domain/. On the other hand, the maximal
integral curve fowy with starting pointy; is given bya, : ¢ — ax(t +1¢1). It has domain/ —¢,.
We infer that/ C I —t,. It follows thats + ¢, € I forall s,¢#; € 1. Hence,l = R.

Fix s € R, then by what we saw above: 1 — ax (s)ax (¢) is the maximal integral curve for
vy with initial pontay (s). On the other hand, the same holdsdorz — ax (s + t). Hence, by
uniqueness of the maximal integral curves= d.

The final assertion is a consequence of the fact that thenesltby y depends linearly, hence
smoothly on the parametéf. Let px denote the flow obbx. Then it is a well known (local)
result that the mapX, ¢, x) — ¢x (¢, x) is smooth. In particulaiz, X) — ax(t) = ¢x(t,e) is
asmoothmaR x 7,G — G. O

Definition 3.3 Let G be a Lie group. Thexponential magxp = exp; : .G — G is defined
by

exp(X) = ax(1)
whereay is defined as above; i.axy is the maximal integral curve with initial point of the
left invariant vector fieldhy on G determined byx (e) = X.

Example 3.4 We return to the example of the group G0, with V' a finite dimensional real
linear space. Its neutral elemaentquals/ = Iy. Since GLV) is open in Endl/), we have
T.GL(V) = EndV). If x € GL(V), thenl, is the restriction of the linear map, : 4 —
xA, EndV) — EndV), to GL(V), henceT,(l,) = L,, and we see that fok € EndV)
the invariant vectorfield x is given byvy (x) = xX. Hence, the integral curwey satisfies the
equation:

d
Zoz(l) =a(t)X.

Sincer — e'X is a solution to this equation with the same initial value, nvest have that
ax(t) = e'*. Thus in this case exp is the ordinary exponential ap> eX, EndV) —
GL(V).
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Remark 3.5 In the above example we have used the exponentialf an endomorphism e
End(1). One way to define this exponential is precisely by the metHatifierential equations
just described. Another way is to introduce it by its powerese

00 1 i
eA:ZaA .
n=0

From the theory of power series it follows that— e4 is a smooth map End’) — End(V).

Moreover,
d

_etA — AetA — etAA,
dt

by termwise differentiation of power series. By multiplican of power series we obtain
eXe¥ = XY if XY € EndV) commute,i.e., XY =YX. (4)

Applying this withX = s4 andY = tA, we obtaine¢+t94 = ¢54¢?4 for all A € EndV) and
s,t € R. This formula will be established in general in Lemma 3.6 (&lpl.

Lemma 3.6 Forall s, €e R, X € T,G we have
(@) expgsX) = ax(s).
(b) exp(s + 1) X = expsX exprX.
Moreover, the magxp: 7.G — G is smooth and a local diffeomorphism@tits tangent map

at the origin is given by, exp= I7,6.

Proof: Consider the curve(r) = ax(st). Thenc(0) = e, and

Do) = sicx(s1) = s vx(ax(s1) = vix(e(0).
Hencec is the maximal integral curve af;x with initial point e, and we conclude that(r) =
asx (1). Now evaluate at = 1 to obtain the equality.

Formula (b) is an immediate consequence of (a) and LemmaF&ally, from Lemma 3.2
we have tha(z, X) — ax(¢) is a smooth maR x 7,G — G. Substitutingg = 1 we obtain
smoothness of exgMoreover,

To(exp X = %GXF(ZXN;:O = ax(0) = vx(e) = X.

HenceTy(exp = Ir,x, and from theinverse function theorermt follows that exp is a local
diffeomorphism ab, i.e., there exists an open neighborhdoaf 0 in 7,G such that exp maps
U diffeomorphically onto an open neighborhoodeah G. O
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Definition 3.7 A smooth group homomorphism : (R, +) — G is called aone-parameter
subgroupof G.

Lemma3.8 If X € T.G, thent — exptX is a one-parameter subgroup 6f. Moreover, all
one-parameter subgroups are obtained in this way. Moreipedy, leta be a one-parameter
subgroup inG, and putX = «(0). Thena(t) = exp(tX) (t € R).

Proof: The first assertion follows from Lemma 3.2. Let: R — G be a one-parameter
subgroup. Ther(0) = e, and

Catt) = Tt +5)mo = -0 D060 = Tella)0) = vx(@(v)),

hencex is an integral curve fovx with initial point e. Hencea = ay by the uniqueness of
integral curves. Now apply Lemma 3.6. O

We now come to a very important application.

Lemma 3.9 Lety : G — H be a homomorphism of Lie groups. Then the following diagram
commutes:

G LN H

expg T 1 expy
Tep
T.G — T.H

Proof: Let X € T,G. Thena(t) = ¢(exp; (1X)) is a one-parameter subgroup Mf Differen-

tiating atr = 0 we obtaina(0) = T.(¢)To(exp;) X = T.(¢)X. Now apply the above lemma to
conclude that(r) = expy (tT.(¢) X ). The result follows by specializing to= 1. O

4 The Lie algebra of a Lie group

In this section we assume th@tis a Lie group. Ifx € G then the translation mapgg: y — xy
andr, : y — yx are diffeomorphisms fron& onto itself. Therefore, so is the conjugation map
Cx = lyor;!' : y > xyx~!. The latter map fixes the neutral elementherefore, its tangent
map ate is a linear automorphism &, G. Thus,T,C, € GL(T,G).

Definition 4.1 If x € G we define Adx) € GL(7.G) by Ad(x) := T.C,. The map Ad: G —
GL(T,G) is called theadjoint representationf G in 7,G.

Example 4.2 We return to the example of GI'), with V' a finite dimensional real linear
space. Since GIV) is an open subset of the linear space @hdwe may identify its tan-
gent space af with End V). If x € GL(V), thenC, is the restriction of the linear map
C, : A~ xAx~!, EndV) — EndV). Hence Adx) = T.(C,) = C, is conjugation by
X.
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The above example suggests that(Adshould be looked at as an action.ofon 7,G by
conjugation. The following result is consistent with thi@mt of view.

Lemma 4.3 Letx € G, then for everyX € T,G we have
x expX x7! = exp(Ad(x) X).

Proof: We note thatC, : G — G is a Lie group homomorphism. Hence we may apply
Lemma 3.9 withH = G and¢ = C,. SinceT.C, = Ad(x), we see that the following diagram

commutes:
Cx

G — G
exp T T exp
Ad(x)
T.G — T.G
The result follows. O

Lemma 4.4 The mapAd : G — GL(7.G) is a Lie group homomorphism.

Proof: From the fact thatx, y) — xyx~! is a smooth ma@ x G — G it follows by differen-
tiation with respect tgy aty = e thatx — Ad(x) is a smooth map fron& to End 7.G). Since
GL(V) is open in EndT,G) it follows that Ad: G — GL(7,G) is smooth.

FromC, = I it follows that Adle) = I7,g. Moreover, differentiating the relatiofy,, =
CxC, ate, we find, by application of the chain rule, that &d') = Ad(x)Ad(y) forall x, y € G.
O

Since Ade) = I = Ir,¢ andT;GL(T.G) = EndT,G), we see that the tangent map of Ad
ate is alinear maf,G — End7,.G).

Definition 4.5 The linear map ad7,G — End(7T.G) is defined by
ad:= T,Ad.
We note that, by the chain rule, for &l € T, G,

adX) = % Ad(exptX).
t=0

Lemma 4.6 Forall X € T.G we have:
Ad(expX) = e3X.

Proof: In view of Lemma 4.4, we may apply Lemma 3.9 with = GL(7,.G) and¢ = Ad.
SinceT,H = T;GL(T.G) = EndT,G), whereas exp is given byX — eX, we see that the
following diagram commutes:

G —  GL(T.G)
exp 1 T e®
T.G — EndT,G)

The result follows. O
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Example 4.7 Let VV be finite dimensional real linear space. Thenfoe GL(V) the linear
map Adx) : End(V) — EndV) is given by Adx)Y = xYx~!. Substitutingx = ¢’X and
differentiating the resulting expression with respeat &t = 0 we obtain:

i[etXYe_tX]tzo = XY -YX.

dt

Hence in this caseadX)Y is the commutator bracket of andY .

(adX)Y =

Motivated by the above example we introduce the followintation.
Definition 4.8 For X, Y e T,G we define the Lie brackék’, Y] € T,G by
[X,Y]:= (adX)Y

Lemma4.9 The map(X,Y) — [X,Y]is bilinear7,G x T,G — T,G. Moreover, it isanti-
symmetrigi.e.,
[X,Y] = —[Y, X] (X,Y € T,G).

Proof: The bilinearity is an immediate consequence of the fact #tht 7.G — End7,G) is
linear. LetZ € T,G. Then for alls,z € R we have

exptZ) = exp(sZ)exptZ)exp(—sZ) = exp(tAd(exp(sZ2)) Z),
by Lemmas 3.6 and 4.3. Differentiating this relation witepect tor atz = 0 we obtain:
Z = Ad(exp(sZ2)) Z (s € R).
Differentiating this with respect toats = 0 we obtain:
0= ad2Z)Ty(expZ = adZ2)Z = [Z, Z].

Now substituteZ = X + Y and use the bilinarity to arrive at the desired conclusion. [
Lemma4.10 Lety : G — H be a homomorphism of Lie groups. Then

Tep(X.Y]e) = [TeoX, TeoY]u,  (X,Y € T.G). (5)

Proof: One readily verifies that - CS = Cﬁx) o ¢. Taking the tangent map of both sides of this
eguation at, we obtain that the following diagram commutes:

Teo
T.G — T.H
Adg(x) 1 T Adu(p(x))
T,
T,.G % T,H

Differentiating once more at = ¢, in the direction ofX € 7,G, we obtain that the following
diagram commutes:

Tep

T.G — T.H
adg(x) 1 T ady (TopX)
T.G klad T.H
We now agree to writéX,Y] = adX)Y. Then by applyingl,¢p. adzg X toY € T,G the
commutativity of the above diagram yields (5). O
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Corollary 4.11 Forall X,Y,Z € T,G,
[X.Y].Z] = [X.[Y,. Z]] - [Y.[X, Z]]. (6)
Proof: Puty = AdandH = GL(T.G). Theney = [ andT;H = End7,G). Moreover,

[A, Bln = AB — BAforall A, B € EndT.G). Applying Lemma 4.10 and using thit, -]¢ =
[-,-]andT.¢ = ad we obtain

ad[X,Y]) = [adX, adY ]y = adX adY — adY adX.
Applying the latter relation t& € T,G, we obtain (6). O

Definition 4.12 A real Lie algebrais a real linear space equipped with a bilinear map, -] :
a X a — a, such that for allY, Y, Z € a we have:

@) [X,Y] =-[Y,X] (anti-symmetry);
(b) [X,[Y,Z]] +[Y,[Z,X]]+ [Z,[X,Y]] =0 (Jacobiidentity).

Remark 4.13 Note that condition (a) may be replaced by the equivalenditiam (a°): [X, X] =

0 for all X € a. In view of the anti-symmetry (a), condition (b) may be reglddy the equiva-
lent condition (6). We leave it to the reader to check thatlamoequivalent form of the Jacobi
identity is given by the Leibniz type rule

[X.[Y, Z]] = [[X,Y]. Z] + [V, [X, Z]]. (7)

Corollary 4.14 Let G be a Lie group. Thel,G equipped with the bilinear magQX,Y) —
[X,Y]:= (adX)Y is a Lie algebra.

Proof: The anti-linearity was established in Lemma 4.9. The Jaid#hitity follows from (6)
combined with the anti-linearity. O

Definition 4.15 Leta, b be Lie algebras. A.ie algebra homomorphisifinom a to b is a linear
mapg : a — b such that

(X, Y]o) = [p(X). (Y )]s,
forall X,Y € a.

From now on we will adopt the convention that Roman capitaisote Lie groups. The
corresponding Gothic lower case letters will denote the@ased Lie algebras. b : G — H
is a Lie group homomorphism then the associated tangentfinawill be denoted byp... We
now have the following.

Lemma4.16 Letyp : G — H be a homomorphism of Lie groups. Then the associated tan-
gent mapy, : g — b is a homomorphism of Lie algebras. Moreover, the followirggchm

commutes:
¢

G — H
expg T T expy
P
g — )
Proof: The first assertion follows from Lemma 4.10, the second framina 3.9. O
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Example 4.17 We consider the Lie grou¢ = R”. Its Lie algebrag = T,R” may be identified
with R”. From the fact thatG is commutative, it follows thaf, = I4, for all x € G. Hence,
Ad(x) = I, forall x € G. It follows that adX) = 0 for all X € g. Hence[X, Y] = 0 for all
X,Y €g.

Let X € g ~ R”. Then the associated one-parameter subgoequfs given byax () = tX.
Hence expX) = X, forall X € g.

We consider the Lie group homomorphigm= (¢1,...,¢,) : R — T" given byg;(x) =
e?™*;  One readily verifies thap is a local diffeomorphism. Its kernel equdig. Hence, by
the isomorphism theorem for groups, the mafactors through an isomorphism of groups
R"/7" — T". Via this isomorphism we transfer the manifold structurel8fto a manifold
structure omR” /Z". Thus,R" /Z" becomes a Lie group, andan isomorphism of Lie groups.
Note that the manifold structure dif := R" /7" is the unique manifold structure for which the
canonical projectionr : R* — R"/Z" is a local diffeomorphism. The projectionis a Lie
group homomorphism. The associated homomorphism of Lieba#gr. : g — b is bijective,
sincer is a local diffeomorphism. Hencez, is an isomorphism of Lie algebras. We adopt
the convention to identifyy with g ~ R” via .. It then follows from Lemma 4.16 that the
exponential map exp : R” — H = R"/7Z" is given by exp; (X) = n(X) = X + Z".

5 Commuting elements

In the following we assume thét is a Lie group with Lie algebrg. Two elementsX, Y € g are
said tocommutef [X, Y] = 0. The Lie algebrg is calledcommutativef every pair of elements
X,Y € g commutes.

Example 5.1 If G = GL(V), with V a finite dimensional real or complex linear space, then
g = End V). In this case the Lie bracket of two elementsB € End(}') equals the commutator
bracket{A, B] = AB — BA. Hence, the assertion thdtand B commute means thatB = BA,

as we are used to. In this case we know that the associatedexjise? ande® commute as
linear maps, hence as elementgoimoreoverg4e? = e4+8. The following lemma generalizes
this fact to arbitrary Lie algebras.

Lemmab.2 LetX,Y € g be commuting elements. Then the elemerpsX andexpY of G
commute. Moreover,
exp(X + Y) = expX expY.

Proof: We will first show thatt = expX andy = expY commute. For this we observe that, by
Lemma4.3xyx~! = exp(Ad(x)Y). Now Ad(x)Y = e3¥XY, by Lemma 4.6. Since a&)Y =
[X,Y] = 0, it follows that adX)"Y = 0 for all n > 1. Hence, Adx)Y = e®Xy =Y.
Thereforexyx™! = y and we see that andy commute.

For everys,t € Rwe have thalsX,tY] = st[X, Y] = 0. Hence by the first part of this proof
the elements eXpX) and exgr Y ) commute for alls, z € R. Define the maj : R — G by

a(t) = exptX)exptY) (t € R).
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Thena(0) = e. Moreover, fors, ¢ € R we have

a(s +1) = expls+r)Xexps+1)Y
= expsX exprX expsY exptY
= expsX expsY exptX exptY = a(s)a(t).

It follows thatw is a one-parameter subgroup®@fHencex = az with Z = «’(0), by Lemma
3.8. Now, by Lemma 5.3 below,

a'(0) = (i) exp(tX) exp(0) + (i) exp0)exptY) = X + Y.
t=0 t=0

dt dt
From this it follows thaix (1) = az(t) = exptZ) = exp(t(X + Y)), fort € R. The desired
equality follows by substituting = 1. O

The following lemma gives a form of the chain rule for diffetiation that has been used in
the above, and will often be useful to us.

Lemma 5.3 Let M be a smooth manifold/ a neighborhood of0, 0) in R? andg : U — M
a map that is differentiable gb, 0). Then

d d J
(E)mo@(“) = (E)tzosv(t,O) + (E)t=0g0(0,t).

Proof: Let D;¢(0,0) denote the tangent map of— ¢(s,0) at zero. Similarly, letD,¢(0, 0)
denote the tangent map of— ¢(0, s) at zero. Then the tangeffity 0)¢ : R* — Ty0,00M 0f ¢
at the origin is given byl 0)¢(X,Y) = D19(0,0)X + D,¢(0,0)Y, for (X,Y) € R2.

Letd : R — R? be defined by/(r) = (¢,¢). Then the tangent map af at 0 is given by
Tod : R — R?, X — (X, X). By application of the chain rule, it follows that

(d/dt),—op(t,t) = (d/dt),—o(d(t)) = To(p-d)1

= [To.ne o Tod] 1 = [Te,0el(1,1)
D1¢(0,0)1 4+ D»¢(0,0)1
= (d/dt),—oe(t,0) + (d/dt),— ¢(0,1).

O

Definition 5.4 The subgroupG, generated by the elements eXpfor X € g, is called the
component of the identityf G.

Remark 5.5 From this definition it follows that
G, = {exp(Xy1)---expXg) | k> 1, Xq,..., Xk € g}.

In general it is not true thatr, = exp(g). Nevertheless, many properties @tan be lifted to
analogous properties 6f,. As we will see in this section, this is in particular true foetproperty
of commutativity.
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By anopen subgroupf a Lie groupG we mean a subgroufl of G that is an open subset
of G in the sense of topology.

Lemmab5.6 G, is an open subgroup .

Proof: Leta € G.. Then there exists a positive integer 1 and element¥, ..., X; € gsuch
thata = exp(X;)...exp(Xx). The map exp g — G is a local diffeomorphism dt hence there
exists an open neighborho&lof 0 in g such that exp is a diffeomorphism &f onto an open
subset ofG. Sincel, is a diffeomorphism, it follows that, (exp(€2)) is an open neighborhood of
a. We now observe thdf, (exp(2)) = {exp(X1)...exp(Xx) exp(X) | X € @} C G.. Hencea

is an interior point oiG,. It follows thatG, is open inG. O

Lemma 5.7 Let H be an open subgroup &f. ThenH is closed as well.

Proof: Forallx,y € G we havexH = yH orxH N yH = (. Hence there exists a subset
S C G such that is the disjoint union of the setdd, s € S. The complement off in G is the
disjoint union of the setsH with s € S,s ¢ H. Being the union of open sets, this complement
is open. Hencé is closed. O

Lemma 5.8 G, equals the connected componenttbttontaininge. In particular, G is con-
nected if and only itz, = G.

Proof: The setG, is open and closed ir, hence a (disjoint) union of connected compo-
nents. On the other hand, is arcwise connected. For let € G., then we may write

a = exp(Xy)...exp(Xr) withk > 1 andX,..., Xy € g. Itfollows thatc : [0,1] — G, t —
exp(tXy)...exp(tXy) is a continuous curve with initial poirt(0) = ¢ and end point (1) = a.
This establishes thdt, is arcwise connected, hence connected. TherafQres a connected
component; it obviously contairs O

Lemmab5.9 LetG be aLie groupx € G. Then the following assertions are equivalent.
(a) x commutes witl@,;

(b) Ad(x) = 1.
Proof: Assume (a). Then for every € g andr € R we have exprY) € G., hence
exptAd(x)Y) = xexptYx~ ! = exptY

Differentiating this expression at= 0 we see that A@x)Y = Y. This holds for anyY € g,
hence (b).
For the converse implication, assume (b)Yl g, then

xexpYx~! = expAdx)Y = expY.

Hencex commutes with ex(). Since the latter set generates the subg@pt follows that x
commutes withG,. O
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Remark 5.10 Note that the point of the above proof is that one does not egpd g — G
to be surjective in order to derive properties of a connetiedyroup G from properties of its
Lie algebra. It is often enough thatis generatedy expg. Another instance of this principle is
given by the following theorem.

Theorem 5.11 Let G be a Lie group. The following conditions are equivalent.

(a) The Lie algebrgy is commutative.

(b) The groupG. is commutative.

In particular, if G is connected theg is commutative if and only @& is commutative.

Proof: Assume (a). ThefX,Y] = Oforall X,Y € g. Hence expX and expl’ commute for
all X,Y e gand it follows thatG, is commutative.

Conversely, assume (b). Lete G.. Then it follows by the previous lemma that &9 = 1.
In particular this holds fox = exp(tX), with X € g ands € R. It follows that e 2%X) =
Ad(exp(zX)) = I. Differentiating atzr = 0 we obtain adX) = 0. Hence[X, Y] = 0 for all
X,Y € gand (a) follows.

Finally, if G is connected, the6, = G and the last assertion follows. O

6 Commutative Lie groups

From Example 4.17, we recall that the grdRf/Z? (p € N) has a unique structure of manifold
which turns the natural projectiom : R? — R?/Z? into a local diffeomorphism. With this
structure of manifold, the grouR?/7Z? is a commutative Lie group. It is isomorphic with the
p-dimensional toru§'”.

In this section we will prove the following classification @@mmutative Lie groups.

Theorem 6.1 LetG be a commutative connected Lie group. Then there gxiste N such that
G >~ T? xRY.

Before we give the proof, we need to collect some results serelie subgroups of a Lie group. A
subgroupH of a Lie group is called discrete if it is discrete as a topadabspace for the restric-
tion topology. Equivalently, this means that for evérg H there exists an open neighborhood
U in G suchthat/ N H = {h}.

Proposition 6.2 Let G be a Lie group andd a subgroup. Then the following statements are
equivalent.

(a) There exists an open neighborhoddof e such thatU N H = {e}.
(b) The groupH is discrete.

(c) For every compact subsét C G, the intersectiorC N H is finite.
(d) The groupH is a closed Lie subgroup with Lie algeb{@y}.
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Proof: ‘(a) = (b): Leth € H. ThenU, = hU is an open neighborhood 6fin G. Moreover,
UNH=hUNH=hUNhh'H)Y=hUNH) = {h}.

‘(b) = (c): We first prove thatH is closed inG. Let U be an open neighborhood &fin
G such thaty N H = {e}. Let g € G be a point in the closure df. Then it suffices to show
thatg € H. There exists a sequenég;} in H converging tog. It follows that}z,-Jrlhj—.1 —
gg ! =e,asj — co. Hence forj sufficiently large we havbjﬂhj‘.l e U N H = {e}, hence
h; = hj4,. It follows that the sequenck; becomes stationary after a certain index; hence
h; = g for j sufficiently large and we conclude thate H.

It follows from the above that the séf N C is closed inC, hence compact. Fére H N C
we select an open subset@f of G such thaty, " H = {h}. Then{U, | h € H N C}is an
open cover off N C which does not contain a proper subcover. By compactne&soiC this
cover must therefore be finite, and we conclude #ian C is finite.

‘(c) = (d)' Let g € G be apointinthe closure df. The pointg has a compact neighborhood
C. Now g lies in the closure oH N C; the latter set is finite, hence closed. Hegce H NC C
H and we conclude that the closureMfis contained inH. Therefore,H is closed.

It follows that H is a closed Lie subgroup. Its Lie algelyaconsists of theX € g with
exp(RX) C H. Since exp. g — G is a local diffeomorphism &1, there exists an open neigh-
borhoodS2 of 0 if g such that exp is injective of2. Let X € g\ {0}. Then there exists an> 0
such thaf—e, €] X C Q. The curvec : [—€,¢] — G, t — exptX has compact image; this
image has a finite intersection with. Hence{r € [—¢,¢] | exptX € H} is finite, and we see
thatX ¢ b. It follows thath = {0}.

‘(d) = (a) Assume (d). Therfd is a closed smooth submanifold &f of dimension0. By
definition this implies that there exists an open neighbodid of e in G suchthay N H = {e}.
Hence (a). O

Proof of Theorem 6.1: Assume thatG is a connected Lie group that is commutative. Then
its Lie algebrag is commutative, i.e.[X,Y] = 0 for all X,Y e g. From this it follows that
expX expY = exp(X + Y) forall X,Y e g. Therefore, the map expg — G is a homomor-
phism of the Lie grougg, +, 0) to G. It follows that exfg) is already a subgroup @, hence
equals the subgrou@. generated by it. Sinc€& is connected(G, = G, and it follows that
exp has imagé&, hence is a surjective Lie group homomorphism. Ldie the closed subgroup
ker(exp) of g. By the isomorphism theorem for groups we h&ve- g/ I" as groups.

Since exp is a local diffeomorphism @tthere exists an open neighborha@dof 0 in g on
which exp is injective. In particular this implies th@tn I' = {0}. By Proposition 6.2 it follows
thatI" is a discrete subgroup of In view of Lemma 6.4 below there exists a collectian. . ., y,
of linear independent elementsgrsuch thall’ = Zy, & --- & Zy,. We may extend the above
set to a basigy, ..., y, of g; heren = dimg = p + ¢ for someg € N. Via the basig/, ..., v,
we obtain a linear isomorphisg : g — R?” x RY. Lete = expo¢~!, thene : R" — G is
a surjective Lie group homomorphism, and a local diffeorh@m everywhere. Moreover, its
kernel equalg(I") = Z? x{0}. It follows thate factors through a bijective group homomorphism
€ : (R/Z)P x R? ~ R"/(ZP x {0}) — G. The canonical map : R” — (R/Z)? xR? is a
local diffeomorphism. Moreovee, = € - r is a local diffeomorphism as well. Henées a local
diffeomorphism. Since is a bijective as well, we conclude thais a diffeomorphism, hence an
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isomorphism of Lie groups. O

Lemma 6.3 Lety : G — H be a homomorphism of Lie groupsglfis a local diffeomorphism
ate, theng is a local diffeomorphism at every point 6f

Proof: We prove this by homogeneity. Lete G. Then fromg(ax) = ¢(a)p(x) we see that
@oly = lpwyop, hencep = I,y op ol . Nowl, andl,) are diffeomorphisms. Sindg!
mapsa to e, whereasy is a local diffeomorphism a¢ it follows that/,) - ¢ I, is a local
diffeomorphism at:; hencey is a local diffeomorphism at. O

Lemma 6.4 Let VV be a finite dimensional real linear space. LEtbe a discrete subgroup
of V. Then there exists a collection of linearly independent elesy,, ..., y, of IV such that
T =Zy @ &Ly,

Proof: We prove the lemma by induction on the dimensiorvof

First assume that dilh = 1. Via a choice of basis we may identi# with R; thenI” becomes
a discrete subgroup @&. Supposd” # {0}. Then there exists an elemante I" \ {0}. Passing
to —a is necessary, we may assume that 0. Now I N [0, 4] is finite (cf. Prop. 6.2), hence
contains a smallest elementWe note thal"'N]0,1[y = @. Now I" D Zy. On the other hand,
if g € T',theng ¢ Zy would imply thatg €]m,m + 1[y for a suitablen € Z. This would
imply thatg — my € I'N]0,1[y = @, contradiction. It follows thal” C Zy. Hencel' = Zy.
This completes the proof of the result for diim= 1.

Now assume that diim > 1 and that the result has been established for spaces ofystrict
smaller dimension. If" = {0} we may takep = 0 and we are done. Thus, assume that
y € '\ {0}. Then the intersection &y with I" is discrete inRy and non-trivial, hence of the
form Zy, by the first part of the proof. Select a linear subspldcef 1V such thalRy, & W = V.
Let = denote the corresponding projectibn— W. Let C be a compact subset &f. Then

7 (C)=Ry; + C = ([0, 1]y1 + C) + Zy1.
From this it follows that

CNna@) cra@YC)NT) = 7((C +1[0,1]y)) NT + Zy,)
= 7 ((C +[0,1]y1) N T);

the latter set is finite by compactness@f+ [0, 1]y;. Thus we see that(I") N C is finite for
every compact subset &f. By Prop. 6.2 this implies that(I") is a discrete subgroup &f. By
the induction hypothesis there exist linearly independtgmentsy,, ..., y, of = (I") such that
a(l) =Zy,®---Zy,. FiX ya,...,yp, € I' such thatr(y;) = y;. Thenthe elementg,, ..., y,
are readily seen to be linear independent; moredvet, Zy, @ --- ® Zy,. O
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7 Lie subgroups

Definition 7.1 A Lie subgroupof a Lie groupG is a subgroupd, equipped with the structure
of a Lie group, such that the inclusion mapH — G is a Lie group homomorphism.

The above definition allows examples of Lie subgroups thatnat submanifolds. This is
already so if we restrict ourselves to one-parameter suipgro

Lemma 7.2 LetG be a Lie group, and lek € g. The image of the one-parameter subgroup
ay is a Lie subgroup of.

Proof: The resultis trivial forX = 0. Thus, assume th&f # 0. The mapxy : R — G is a Lie
group homorphism. Its imag# is a subgroup o&.

Assume first thatvy is injective. ThenH has a unique structure of smooth manifold for
which the bijectionvy : R — H is a diffeomorphism. Clearly, this structure turAsinto a Lie
group and the inclusion map: H — G is a Lie group homomorphism.

Next, assume thaty is not injective. Asx (0) = X # 0, the map — ax () = exptX is
injective on a suitable open intervalcontaining0. It follows that kerxy is a discrete subgroup
of R. Hence ketry = Zy for somey € R. This implies that there exists a unique group
homomorphisnw : R/Zy — R such thatxy = a.pr. Since pr is a local diffeomorphism, the
map« is smooth, hence a Lie group homomorphism. Thereféfe= im @ is compact. By
homogeneityg is an injective immersion. This implies thatis an embedding dR/Zy onto a
smooth submanifold ofr. We conclude thati = im« is a smooth submanifold d¥, hence a
Lie subgroup. O

We will give an example of a one-parameter subgrouffdfvhose image is everywhere
dense. The following lemma is needed as a preliminary.

Lemma 7.3 LetS be an infinite subgroup df'. ThenS is everywhere dense.

Proof: If the subgroupS were discrete at, it would be finite, by compactness @f It follows
that there exists a sequenggin S \ {1} such that,, — 1. We consider the surjective Lie group
homomorphisnp : R — T given by p(t) = ¢?*'*. Sincep : R — T is a local diffeomorphism
at0, there exists a sequenggin R \ {0} such thatp(s,) = o, ands, — 0.

Leté € T. Fix x € R with p(x) = &. For eachn there exists a uniquk, € Z such that
x € [kySp, (kn + 1)s,). Thus,|k,s, — x| < |s,| and it follows thatk, s, — x. Therefore, ifl we
haveo*" = p(k,s,) — &. Sincea’ € S for everyn, we conclude that belongs to the closure
of S. Hence,S is dense. O

Corollary 7.4 Leta : R — T? be an injective one-parameter subgroup®f. Then the image
of « is dense ifl2.
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Proof: Let H denote the image af. For j = 1,2, let p; : T> — T denote the projection onto
the j-th component and consider the one-parameter subgrpup p; oo : R — T. Its kernel
['; is an additive subgroup d&, hence either trivial or infinite. 1&’(0) = 0 thenl’; = R.
If o’;(0) # 0 thene; is immersive a0, hence everywhere by homogeneity. It follows that the
image ofa; is an open subgroup df, hence equal td', by connectedness of the latter group.
It follows thatc; is a local diffeomorphism fronR onto T. On the other handy; cannot be a
diffeomorphism, adl' is compact and is not. It follows thatl"; is not trivial, hence infinite.
Thus, in all case§'; andI', are infinite additive subgroups &f.

As « is injective, we observe that; N I, = kera = {0}. Hence,« mapsI’; injectively to
H N (T x {1}). Sincel'; is infinite, it follows thatH N (T x {1}) must be infinite. By Lemma
7.3 it follows thatH N (T x {1}) is dense ifl x {1}.

Likewise,H N ({1} xT) isdense i1} xT. Letz = (s,¢) € T. Then there exists a sequence
x, in H N (T x {1}) with limit (s, 1). Similarly, there exists a sequenegin H N ({1} x T)
converging ta(1, ¢). It follows thatx, y, is a sequence i/ with limit z. Hence,H is dense.[]

We finally come to our example.

Example 7.5 We consider the groug = R?/Z2. The canonical projection : R> — R2/Z? is
a homomorphism of Lie groups. We recall from Example 4.17 #hes a local diffeomorphism.
Accordingly, we use its tangent map to identify R? = T,R? with g. Let X € R?; then the
associated one-parameter subgraup ax in G is given by

a(t) =tX + 72, (t € R).

From Lemma 7.2 it follows that the imad# of ax is a Lie subgroup o;. If X = 0, thenay is
constant, and its image is the trivial group. We now assumiexh# 0. If X, X, have a rational
ratio, andX; # 0, thenX, = pX;/q,with p,q € Z, g > 0. HencegX; ' X € Z?, and it follows
thatay is not injective. In the proof of Lemma 7.2 we saw tltatis a compact submanifold of
G, diffeomorphic to the circle. A similar assertion holds irse&’;/ X, € Q.

If X, X, have an irrational ratio, therX ¢ Z? for all € R, so thatay is injective. From
Corollary 7.4 it follows thatH is dense inG in this case.

Lemma 7.6 Lety : H — G be an injective homomorphism of Lie groups. Thda immersive
everywhere. In particular, the tangent map = T,¢ : h — g is injective.

Proof: We will first establish the last assertion. There exists anapeighborhoo of 0 in b
such that exg mapsS2 diffeomorphically onto an open neighborhoodeah H. The following
diagram commutes:

H — G
expg T T expg
P
) — g

Since exp; is injective on<2, it follows thatg o expy is injective on$2; hence so is exp o ¢sx.
It follows thatg. is injective on2. Hence kefyp.) N Q = {0}. But ken(g,) is a linear subspace
of b; it must be trivial, since its intersection with an open néigthood of0 is a point.
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We have shown that is immersive akt. We may complete the proof by homogeneity. Let
h € H be arbitrary. Therd,n) -9 ol,—1 = ¢. Hence, by taking tangent maps/ait follows that
Ty is injective. O

In the following we assume tha{ is a Lie subgroup o&. The inclusion map is denoted by
1 : H — G. As usual we denote the Lie algebras of these Lie groups déyd g, respectively.
The following result is an immediate consequence of the alb@vima.

Corollary 7.6’ The tangent map,. := T, : h — g is injective.

We recall that, is a homomorphism of Lie algebras. Thus, via the embedditige Lie algebra

h may be identified with &ie subalgebraof g, i.e., a linear subspace that is closed under the Lie
bracket. We will make this identification from now on. Notatlfter this identification the map

L« of the above diagram becomes the inclusion map.

Lemma 7.7 As a subalgebra af, the Lie algebra offf is given by:
h={Xeg|VteR: exp(tX)c H}.

Proof: We denote the set on the right-hand side of the above equatidn
Let X € h. Then exp,(tX) = t(expy tX) by commutativity of the above diagram with
¢ = . Hence, exp(tX) € «(H) = H forall t € R. This shows thaly C V.
To prove the converse inclusion, I&t € g, and assume that ¢ h. We consider the map
¢ : R x h — G defined by
o(t,Y) =exptX)expY).

The tangent map af at (0, 0) is the linear maf@(p,0)¢ : R x h — g given by
Toony: (t.Y)—1X +Y.

SinceX ¢ b, its kernel is trivial. By the immersion theorem there exstsonstant > 0 and
an open neighbourhodd of 0 in b, such thaip maps| — €, € [x2 injectively intoG. Shrinking
Q if necessary, we may in addition assume that;expapsS2 diffeomorphically onto an open
neighborhood/ of e in H.

The mapm : (x,y) — x~ 'y, H x H — H is continuous, and mas, ¢) to e. SinceU
is an open neighborhood efin H, there exists an open neighborhobigl of ¢ in H such that
m(Uy x Uy) C U, or, written differently,

Uy 'Up C U

SinceH is a union of countably many compact sets, there exists aablecollection{s; | j €
N} C H such that the open seiisU, coverH. For every; € N we define

Tj = {l eR | exth € hjU()}.

Let now j € N be fixed for the moment, and assume that € 7;, |s —t| < €. Then it
follows from the definition of7; that exg(z — s)X] = exp(—sX)exp(tX) € U, 'U, C U.
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Hence exf(r — s)X] = expY for a uniqueY € 2, and we see that(r — s,0) = ¢(0,Y). By
injectivity of ¢ on] — €, € [xQ it follows thatY = 0 ands = ¢. From the above we conclude
that different elements ¢ € T; satify |s — | > €. HenceT; is countable.

The union of countably many countable sets is countable céléme union of the sef; is
properly contained ifR and we see that there exists a R such that ¢ 7; forall j € N. This
implies that expX ¢ U enh Uy = H. HenceX ¢ V. Thus we see thag\ h C g\ VV and it
follows thatV C b. O

Example 7.8 Let VV be a finite dimensional linear space (wth= R or C). In Example
2.14 we saw that SIV) is a submanifold of GLV'), hence a Lie subgroup. The Lie algebra of
GL(V) is equal togl(V) = EndV), equipped with the commutator brackets. We recall from
Example 2.14 that det GL(V) — k is a submersion at. Hence the tangent spas&V) of
SL(V) = det’!(1) at I is equal to kefT; det) = kertr. We conclude that the Lie algebra of
SL(V) is given by

sl(V)={X e EndV) | trX = 0}; (8)

in particular, it is a subalgebra @f(1"). The validity of (8) may also be derived by using the
methods of this section, as follows.
If X €sl(V),thenby Lemma 7.7, exXpX) € SL(V) for allt € R, hence

rx = & dete’®) = ) 2 0.
dt |, dt|i=o
It follows thats((1) is contained in the set on the right-hand side of (8).
For the converse inclusion, l&t € End(V'), and assume thatXr = 0. Then for every € R
we have detX = ¢"¢X) = 1 hence expX = ¢'¥ e SL(V). Using Lemma 7.7 we conclude
thatX e sl(V).

Example 7.9 We consider the subgroup(® of GL(n, R) consisting of reah x n matricesx
with x’x = I. Being a closed subgroup,(®) is a Lie subgroup. We claim that its Lie algebra is
given by

on) ={X e Mn,R) | X' = —X}, 9)

the space of anti-symmetnicx n matrices. Indeed, leY € o(n). Then by Lemma 7.7, exyX €
O(n), for all s € R. Hence,

I = (esX)tesX — esX’esX'
Differentiating with respect te ats = 0 we obtainX’ + X = 0, henceX belongs to the set on

the right-ghand side of (9).
For the converse inclusion, assume thiae M(n, R) and X’ = —X. Then, for every € R,

(esX)tesX — esX’esX — e—sXesX — .
Hence expX € O(n) for all s € R, and it follows thatX € o(n).
If X € o(n) then its diagonal elements are zero. Hencé & 0 and we conclude that
X € sl(n,R). Thereforep(n) C sl(n, R). It follows that exgo(n)) C SL(n, R), hence Qn), C
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SL(n, R). We conclude that @), € SO(n) C O(n). Since SQ@n) is connected, see exercises,
it follows that

O(n). = SO(n).

The determinant detO(rn) — R* has imag€g—1, 1} and kernel SQ@:), hence induces a group
isomorphism @n)/O(n). >~ {—1, 1}. It follows that Qn) consists of two connected compo-
nents, Qn), andxO(n)., wherex is any orthogonal matrix with determinantl. Of course,
one may taker to be the diagonal matrix with-1 in the bottom diagonal entry, andin the
remaining diagonal entries, i.ex,is the reflection in the hyperplang = 0.

Lemma 7.10 Let G be a Lie group andd C G a subgroup. TherH allows at most one
structure of Lie subgroup.

Proof: See exercises. O

We now come to a result that is the main motivation for allgyie subgroups that are not
closed.

Theorem 7.11 Let G be a Lie group with Lie algebrg. If h C g is a Lie subalgebra, then
the subgrougexph) generated byexph has a unique structure of Lie subgroup. Moreover, the
maph — (exph) is a bijection from the collection of Lie subalgebragyainto the collection of
connected Lie subgroups 6f

Proof: See next section. O

Remark 7.12 In the literature, the grougexph) is usually called the analytic subgroup Gf
with Lie algebrah.
8 Proof of the analytic subgroup theorem

The proof of Theorem 7.11 will be based on the following restihroughout this section we
assume thafr is a Lie group and thdf is a subalgebra of its Lie algebga

Lemma 8.1 There exists an open neighborhofdof 0 in g such thatM = exp(h N Q) is a
submanifold ofz with tangent space equal to

TaM = Te(Im)bh, (10)
for everym € M. If Q is any such neighborhood, then alsgM = T,(r,,)h forall m € M.

In the literature one usually proves this result by usingRhabenius integrability theorem
for subbundles of the tangent bundle. We will first recals frioof, and then give an independent
proof based on a calculation of the derivative of the exptiakmap.
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Proof: We consider the subbundke of TG given by S, = T,(l,). Then for allX € b the
left invariant vector fieldvx is a section ofS. We note thafvy, vy] = *vx,y (See one of the
exercises). Hence for al, Y € h the Lie bracket obx andvy defines a section o as well.
LetnowX,,..., X, and putv; = vy, .

Let nowé, n be any pair of smooth sections 8f thené = Zf;l gv; andn = Z’J;l n/v;
for uniquely defined smooth functio§é andn’ on G. Since

[E.n] =) &0/ [vi.v;] + Evi(n))v; + 0 v (EDvi,

it follows that|[£, ] is a section ofS. By the Frobenius integrability theorem it follows that the
bundleS is integrable. In particular, there exist&-aimensional submanifol®y of G containing
e,suchthatr,N = S, forall x € N.

For X e b, the vector fieldvy is everywhere tangent t§¥, hence restricts to a smooth vector
field v¥ on N. By smooth parameter dependence of this vector fieldahere exists an open
neighborhood’ of 0 in h and a positive constait> 0 such that for everX € U the integral
curveyy of v¥ with initial point e is defined on/s :=] — §,8[. This integral curve is also an
integral curve forvy, hence equalay : t — exptX on [s. It follows that exppU C N. We
may now select an open neighborha@dof 0 in g such that exp is a diffeomorphism frof
onto an open subset 6f and such thaf2 N h is contained iISU. Then M := exp(2 N h) is
a k-dimensional hence open submanifoldéflt follows that7, M = T, N = T,(l)b for all
xeM.

For the last assertion, we note that = rp/ 1, so thatr,, = [,C,—1 and T,(r,) =
T.(l,)Ad(m™'), and it suffices to show that Ad: ') leaves) invariant. Writem = expX with
X € 2Np. Then

Ad(m™") = Ad(exp(—X)) = e 32X

and the result follows, since @i) leaves the closed subspdgavariant. O
We shall now give a different proof of Lemma 8.1. The follogiresult plays a crucial role.

Lemma 8.2 LetX € g. Then
1
Ty exp = Te(lepr)O/ e adx ds
0

1
= Te(repr)O / €s ady dS.
0

Proof: ForX,Y € g, we define
F(X,Y) = [Te(lepr)]_1 o Tx(expY € g

and note that, by the chain rule,

exp(—X) exp(X +tY).

t=0

0
F(X,Y) = Texpx (lexp(-x)) Tx (EXPY = ot
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From this it follows by interchanging partial derivativéisat

0 0 0
a—F(sX, sY)= — —exp(—sX)exp(sX +tsY).
s

0t |,—¢ 0s
Now,
%exp(—sX) expisX +1sY) = % exp(—(—s + o) X)exp((s + o)(X +tY))
o=0
= 3 exp(—sX)exp(—oX)explo(X +tY))exp(sX + tsY)
o=0

exp(—oX)exploX + otY)

o=0

0
= T, (lexp(—sX)rexp(sX—i—st Y)) %

= T, (lexp(—sX)rexp(sX—i—stY))(t Y),
and we conclude that

0 0
—F(sX,sY) = — Te (lexp(—sx) Fexp(sx +s:7)) (1Y)
s 0t |,—o
0 d
= 8_ Te(lexp(—sX)rexp(sX—i—stY))(O) + = Te(lexp(—sX)rexp(sX))(lY)
t t=0 at t=0
= Ad(exp(—sX))Y = e *3Xy,
It follows that - .
F(X.,Y) :/ —F(sX,sY) ds :/ e 53Xy g,
o 0s 0

whence the first identity. The second identity may be obthine similar manner. It can also be
derived from the first as follows. We ha¥@(lexpx) = Te(rexpx) o Ad(eXpX), hence

1 1
Te(lepr)Of e gy = Te(repr)oeadX/ s adX ¢
0 0

1
= Te("epr)O/ =) adlX g¢
0

1
= Te(repr)"/ e* 2 ds.
0
O]

Remark 8.3 The integral in the above expression may be expressed asa pexies as follows.
Let V' be a finite dimensional linear space, adde End(V). Then using the power series
expansion foe*4, we obtain

lA oo 11
s _  oqnn
/Oe ds = E/on!Asds




For obvious reasons, the sum of the latter series is alsaeéby (e — 1)/ A.

Alternative proof of Lemma 8.11 et Q2 be an open neighborhood 0fin g such that exfx, is
a diffeomorphism onto an open subsetafThenM = exp(h N 2) is a smooth submanifold
of G of dimension dind/ = dimf. For (10), we puin = expX, with X € h N Q. Sinceh is a
subalgebrae=2% — J)/adX leaves) invariant. Hence

I — e—adX

TuM = Tx(exph = Te(Im) (W

)b € Tuttain
Equality follows for dimensional reasons. The identitytwit.r,, is proved in a similar manner.
0]

We shall now proceed with the proof of Theorem 7.11, stanith the the result of Lemma
8.1, with2 and M as given there.

Lemma 8.4 LetC be a compact subset 8. Then there exists an open neighborhddaf 0
in g such thatn exp(h N U) is open inM for all m € C. In particular, C exp(h N U) is an open
neighborhood of” in M.

Proof: For everyX € B, we denote bydy : R x G — G the flow of the left invariant
vectorfieldvy. We recall thatbx (1, x) = xexptX, forall X € h,t € R andx € G. For fixed
X e b, x € G, the mapy — dx(x,1) is the maximal integral curve afy with initial point x.
Since the vector field y is everywhere tangent t#f, it follows thatvy|,s is a vector field
on M. For everyX € b, andm € M, we denote by — ¢x (z, m) the maximal integral curve of
vx|am In M, with initial pointm. By the theory of systems of ordinary differential equatiouith
parameter dependence, it follows thiat, ¢, m) — ¢x (¢, m) is smooth on its domain, which is
an open subsdd C h xR x M containingh x {0} x M. Clearly, — ¢x (¢, m) is also an integral
curve ofvy in G with initial pointm. Thereforegpx (t, m) = ®x(¢t,m) forall (X, ¢, m) € D. We
conclude thatby (r,m) € M for all (X,t,m) € D. Using that®,x (z, m) = ®x(st, m) and that
C is compact, we now readily deduce that there exists an opighlm@arhoodlU, of 0 in § such
thatmexp(tX) = &x(¢t,m) € M, forall X € Uy, t € [0, 1] andm € C. We may now select an
open neighborhootf of 0 in g such that exfy; is a diffeomorphism. Moreover, replaciigby a
smaller subset if necessary, we may in addition assumé thét C U,. Then, for everyn € C,
the mapX — mexpX is an injective immersion of N U into M. Since dim\/ = dimb, the
map is a diffeomorphism onto an open subsetofThe final assertion follows as exp(h N U)
is the union of the open setsexp(h N U), form € C. O

Corollary 8.5 LetM C G be as in Lemma 8.1. Then for every, x, € G, the intersection
x1M N x, M is open in bothy; M andx, M.

Proof: Lety € x;M N x, M. Then by Lemma 8.4, there exists an open neighborlioad 0 in
g, such that the setxs;ly exp(U N bh) are open inM, for j = 1,2. It follows thaty exp(U N b)
is open in bothe; M andx, M. O
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Proof of Theorem 7.11Let H be the group generated by expWNVe will first equip H with the
structure of a manifold.

We fix 2 andM as in Lemma 8.1. Replacin@ by a smaller neighborhood if necessary, we
may assume that exg is a diffeomorphism of2 onto an open subset 6i. Then exp restricts
to a diffeomorphism of2, := ©Q N h onto the submanifoldf of G. Accordingly, its inverse
X M — Qg is a diffeomorphism of manifolds as well.

SinceM C H, it follows that H is covered by the submanifolds\f of G, whereh € H.
We equipH with the finest topology that makes the inclusign® — H continuous. Then
by definition a subsel/ C H is open if and only ifU N A M is open inhM for everyh € H.
We note that by Corollary 8.5, each eV, for h € H, is open inH. For each open subset
O C G and eachh € H, the setO N hM is open inkM; henceO N H is open inH. It follows
that the inclusion mag{ < G is continuous. Sinc& is Hausdorff, it now follows thatd,
with the defined topology, is Hausdorff. For edcte H, the mapy, = yol; ' : kM — Qg
is a diffeomorphism. This automatically implies that thanisition maps are smooth. Hence
{xn| h € H}is an atlas.

Fix a compact neighborhodad, of 0 in @ Nh. ThenC = expC, is a compact neighborhood
of e in M. It follows that C is compact inH. Sinceb is the union of the setsC, for n € N, it
follows that exph is the union of the set&” | ¢ € C}, for n € N. One now readily sees that
H is the union of the set6€”, for n € N. Each of the set€'” is compact, being the image of
the compact Cartesian productx --- x C (n factors) under the continuous multiplication map.
Hence the manifoldd is a countable union of compact subsets, which in turn irsghat its
topology has a countable basis.

We will finish the proof by showing thal? with the manifold structure just defined is a Lie
group. Ifh € H then the mag, : H — H is a diffeomorphism by definition of the atlas. We
will first show that right multiplication, : H — H is a diffeomorphism as well.

If X e b then the linear endomorphism fgkpX) : g — g equalse®X hence leave$
invariant. SinceH is generated by elements of the form ekwith X € b, it follows that
for everyh € H the linear endomorphism Ad) of g leavesh invariant. Fixh € H. Then
there exists an open neighborho®dof 0 in Q C g such that Adx~!)(O) C Q hence also
Ad(Z~H(HhNO) CchnN Q. FromexpXh = hexpAdh~1)X we now see that

norn =Ad(h) oy, on exghn O).

This implies thatr, : exp(h N O) — M is smooth. Hence;, : H — H is smooth ak. By
left homogeneity it follows that, : H — H is smooth everywhere. Sineg is bijective with
inverser,-1, it follows thatry, is a diffeomorphism fron to itself.

We will finish by showing that the multiplication mapy : H x H — H,(h,h') — hh'
and the inversion mag; : H — H,h — h~! are both smooth. Ik, 7, € H thenugy o (I, x
Thy) = lp,Th, o g . Sincely,, andry, are diffeomorphisms, smoothnessgf at (%, i,) follows
from smoothness oy at (e, e). Thus, it suffices to show smoothnessiof at (e, e¢). From
Lol = rh_l oLy, We see that it also suffices to prove smoothness of the ilrensap.y ate.

Fix an open neighborhoolN, of e in M such thatVN, is a compact subset @d. Then by
Lemma 8.4, there exists an open neighborhébdf 0 in g such thatN,explh N U) C M.
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ReplacingU by its intersection witlf2, we see thatV, = exp(h N U) is an open neighborhood
of e in M and thatV, N, C M. It follows that the smooth maps mapsN, x N, into M, hence
its restriction g |n,xn,, Which equalsu g |, xn,. MapsN, x Ny smoothly into the smooth
submanifoldM of G. This implies thatuy is smooth in an open neighborhood @f ¢) in
H x H.

For the inversion, we note th&t; := Q N (—) is an open neighborhood 6fin g that
is stable under reflection in the origin. It follows that maps the open neighborhodd :=
exp(2; N h) of e in M into itself. Hence its restriction t&/;, which equals g|n,, mapsin;
smoothly into the smooth manifoldt. It follows thatty is smooth in an open neighborhood of
e. [

9 Closed subgroups

Theorem 9.1 Let H be a subgroup of a Lie grou@. Then the following assertions are equiv-
alent:

(a) H is aC®-submanifold of5 at the pointe;
(b) H is aC-submanifold of7;

(c) H is aclosed subset @f.

Note that condition (b) implies thai is a Lie subgroup of;. Indeed, the mapy : H —
H,h — h~!is the restriction of the smooth mag to the smooth manifoldZ, hence smooth.
Similarly u g is the restriction ofig to the smooth submanifold x H of G x G, hence smooth.

In the proof of the theorem we will need the following resuft.G is a Lie group we shall
use the notation log for the map >— g, defined on a sufficiently small neighborhobdof e,
that inverts the exponential map, i.e., exjpg = 7 on U.

Lemma9.2 LetX,Y € g. Then

X +Y = lim nlogexpn™'X)expn~'Y)).

Proof: Being the local inverse to exphe map log is a local diffeomorphism at Its tangent
map ate is given by7, log = (To exp ' = I,.

The mapy : gxg — G, (X,Y) — expX expY has tangent map 40, 0) given by
ToonV : (X,Y) — X + Y. The composition log v is well defined on a sufficiently small
neighborhood of0, 0) in g x g. Moreover, by the chain rule its derivative @, 0) is given by
(X,Y)— X + 7.

It follows that, for(X, Y) € g x g sufficiently close tq0, 0),

log(expX expY) =X +Y + p(X,Y), (11)
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wherep(X.Y) = o(| X|| + ||Y|]) as(X,Y) — (0,0) (here| - || is any choice of norm og).
Hence

nloglexpn ' X)expn™'Y)) = na ' X +n7'Y + p(n X, n7Y)]
X+Y+non™H) - X+Y (n — o0).

O

Proof of Theorem 9.1Letn = dimG. We first show thata) = (b). Let k be the dimension of
H ate. By the assumption there exists an open neighborlibofie in G and a diffeomorphism
k onto an open subset &, such thatc(U N H) = «(U) N R* x {0}. Let nowh € H. Then
Un := hU = [,(U) is an open neighborhood éfin G, andk;, := k[, ! is a diffeomorphism
from U, ontokx(U). Moreover, sincehU N H = h(U N H), it follows that«, (U, N H) =
k(U N H) =«U)NRF x {0}. It follows that H is aC *°-submanifold at any of its points.

Next we show thatb) = (c). Assume (b). Then there exists an open neighbortioad e
in G suchthal/ N H = U N H. Lety € H. ThenyU is an open neighborhood ofe H in G,
hence there existsl/ac yU N H. Hencey~'h € U. On the other hand, from € H,h € H it
follows thaty='h € H. Hencey™'h e U N H = U N H, and we see that € H. We conclude
thatH C H, henceH is closed.

Finally, we show thatc) = (a). We call an elemenX e g tangential toH if there exist
sequences, € g, & € Rsuchthatlim_. X, = 0, expX, € H, and lim,_.» £, X, = X.
Let T be the set ofX € g that are tangential té/. From the definition it is obvious that for all
X € T we haveRX C T.

We claim that for everyX € T we have expgX € H. Indeed, letX € T, and letX,, &, be
sequences as above. Xf = 0 then obviously exlX € H. If X # 0, then|§,| — oo. Choose
m, € Z such that, € [m,,m, + 1]. Thenm,, — oo hence

and it follows thatn, /&, — 1. Thus,m, X,, = (m,/&,)€, X, — X. Hence

expX = lim (expX,)™ € H C H.
n—0o0

We also claim thaf is a linear subspace gf Let X, Y € T. PutX, = %X andY, € %Y.
ThenX,,Y, — 0andX,,Y, € T, hence exX,,expY, € H. Forn € N sufficiently large we
may defineZ, = log(expX, expY,). ThenexpZ, = exp(X,) exp(Y,) € H. Moreover, by (11)
we haveZ, — 0andnZ, — X + Y. It follows from thisthatX +Y € T.

We will finish the proof by showing thall is aC* submanifold at the poird. Fix a linear
subspace C g such that

g=S5ST.

Theng : (X,Y) — expX expY is smooth as amap x T — G and has tangent map @t, 0)
given byT,0¢ : (§.n) — & +1n,S x T — g. This tangent map is bijective, and it follows that
¢ is a local diffeomorphism &, 0). Hence, there exist open neighborhoéis andQ2 of the
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origins in S and T respectively such that is a diffeomorphism fronf2s x Q7 onto an open
neighborhood/ of e in G.
We will finish the proof by establishing the claim that fag and2 sufficiently small, we
have
({0} x Qr) =U N H.

Assume the latter claim to be false. Fix decreasing seqlsanfaeaeighborhoodsz’g and Q¥ of
the origins inQ s andQ 7, respectively, Witm’g X Q’; — {0}. By the latter assertion we mean
that for every open neighborhod@ of (0,0) in S x T, there exists & such thaﬂ’g X Q’; CS.
By the assumed falseness of the claim, we may séleet p(Q% x Q%) N H such thaty, ¢
@({0} x Q%), for all k.

There exist uniqueX, € QK andY, € Q% such thathy = @(Xi, Yi) = expXy expYs.
From the above it follows thak is a sequence i \ {0} converging to0. Moreover, from
expXr = hiexp(—Yx) we see that exf, € H for all k. Fix a norm|| - || on S. Then the
sequenceX, /|| Xk || is contained in the closed unit ball i$i, which is compact. Passing to a
suitable subsequence we may arrange [fat| ! X, converges to an elemeit € S of norm
1. Applying the definition ofl" with &, = || Xk ||, we see that als& € T. This contradicts the
assumption thas N 7" = {0}. O

Corollary 9.3 LetG, H be Lie groups, and lep : G — H be a continuous homomorphism of
groups. Therp is a C*°-map (hence a homomorphism of Lie groups).

Proof: LetT" = {(x,¢(x)) | x € G} be the graph op. Then obviousy" is a subgroup of the
Lie groupG x H. From the continuity ob it follows thatI" is closed. Indeed, Idig, /) belong
to the closure of" in G x H. Lety, = (g., h,) be a sequence ihi converging ta(g, ). Then
gn — g andh, — h asn — oo. Note thath,, = ¢(g,). By the continuity ofy it follows that
h, = ¢(gn) = ¢(g). Hencep(g) = h and we see thdlg, #) € I'. Hencel is closed.

It follows thatI" is aC *°-submanifold oiG x H. Let p; : GxH — G andp, : GxH — H
the natural projection maps. Then= p,|I" is a smooth map from the Lie grodpontoG. Note
that p is a bijective Lie group homomorphism with inverge! : g — (g,¢(g)). Thusp~!is
continuous. By the lemma belowis a diffeomorphism, hencg™ : G — T is C®. It follows
thaty = p, 0. p~!isaC>®-map. O

Lemma 9.4 LetG, H be Lie groups, angp : G — H a bijective Lie homomorphism. jfis a
homeomorphism (i.ep™! is continuous), thep is a diffeomorphism (i.ep™! is C ™).

Proof: Consider the commutative diagram

p

G — H
expg T T expy
Dx
g — )

wherep, = T, p. Fix open neighborhood?¢;, 2 7 of the origins ing, b, respectively, such that
exp; o, €XPy |, are diffeomorphisms onto open subsEtsof G andUy of H respectively.
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Replacing2 by a smaller neigborhood if necessary we may assumepttiat) C Uy (use
continuity of p). Sincep is a homeomorphisny(Ug) is an open subset dfg, containinge.
ThusQ’; := (expy) ' (p(Ug)) N2 g is an open neighborhood 6fin b, contained ir2 . Note
that exyy is a diffeomorphism fronf2’, ontoU;, = p(Ug) C Ug. From the commutativity of
the diagram and the bijectivity of eyp: Q¢ — Ug.expy : @ — Uy andp : Ug — Uy
it follows that p. is a bijection ofQ2g onto Q. It follows from this thatp, is a bijective linear
map. Its inverse, ! is linear, hence& *°. Lifting via the exponential maps we see that! maps
U}, smoothly ontd/g; it follows that p~! is C* ate. By homogeneity it follows thap—" is C >
everywhere. Indeed, lét € H. Thenp™ = [0 p~' o1, !, sincep™ is a homomorphism.
But/,"! mapshU}, smoothly ontaU,; hencep™' is C* onhUy,. O

10 The groups SU(2) and SO(3)

We recall that SI2) is the closed subgroup of matricess SL(2, C) satisfyingx*x = I. Here
x* denotes the Hermitian adjoint of By a simple calculation we find that $2) consists of all

matrices _
a —p
( B G ) ’ (12)
with (a, B) € C?, |a]®> + |B|*> = 1.

Let j : C2 — M(2,C) be the map assigning to any poi@t, 8) the matrix given in (12).
Then is an injective real linear map fro@d? ~ R* into M(2,C) ~ C* ~ R3. In particular,
it follows that j is an embedding. Hence, the restrictionjofo the unit spheres ¢ C? ~ R*
is an embedding of onto a compact submanifold of (2, C) ~ R3. On the other hand, it
follows from the above that(S) = SU(2). Hence, as a manifold, SU) is diffeomorphic to the
3-dimensional sphere. In particular, 8) is a compact and connected Lie group.

By a calculation which is completely analogous to the catah in Example 7.9 we find
that the Lie algebrauw(2) of SU(2) is the algebra ok € M(2, C) with

X*=-X, trX =0.

From this one sees that as a real linear space) is generated by the elements

i 0 01 0 i
(o ) m=(G0) m=()

Note thatr; = io;, whereoy, 0,, 03 are the famous Pauli spin matrices. One readily verifies
thatr? =r3 =r% =—7 andrir, = —rr; =r3,andrarz = —rsrp =ry.

Remark 10.1 One often sees the notation= rq,j] = r,,k = r3. Indeed, the real linear span
H = RI @& Ri & Rj ® Rk is a realization of the quaternion algebra. The latter isitigue (up to
isomorphism) associative algebra with unit, on the generatars$, k, subject to the above well
known quaternionic relations.
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It follows from the above product rules that the commutatackets are given by
[ri,r2] =2r3, [ra,r3] =2ry, [ra,rq] =2r,.

From this it follows that the endomorphismsrade End(su(2)) have the following matrices
with respect to the basig, r,,r3 :

00 O 00 2 0 -2 0
matad, =| 0 0 —2 |, matad, = 0 0 0], matadz;=| 2 0 O
02 0 -2 00 0 00

The above elements belong to
503) ={X e MB3,R)| X* = —X},

the Lie algebra of the group 9.
If a € R3, then the exterior product map — a x X, R3> — R3 has matrix

0 —das as
Ra = as O —da
—dy ay 0
with respect to the standard basjse,, e; of R3. Clearly R, € s50(3).
Lemma 10.2 Letr € R. ThenexpzR, is the rotation with axig: and angler|a|.
Proof: Letr € SO(3). Then one readily verifies th&, = r - R,—1,-r~!, and hence

exptR, = ro exptR,—1,]or L.

Selectingr such that—'a = |ale;, we see that we may reduce to the casedhat|a|e,. In that
case one readily computes that:

1 0 0

exptR, = | 0 cost|la| —sint|a|
0 sint|la] cost|a|

Write R; = R, for j = 1,2, 3. Then by the above formulas for mat(ag) we have
matadr ;) = 2R, (j =1,2,3). (13)

We now define the map : SU(2) — GL(3,R) by ¢(x) = matAd(x), the matrix being taken
with respect to the basig, r,, r3. Theng is a homomorphism of Lie groups.
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Proposition 10.3 The mapy : SU2) — GL(3,R), x — matAdx) is a surjective group
homomorphism ont8(Q(3), and induces an isomorphism:

SUQ) /{1 ~ SOQ3).

Proof: From
p(expX) = mag ¥ = ematak

we see thap maps SW2). into SQ(3). Since SU2) is obviously connected, we have 8) =
SU(2)., so thaty is a Lie group homomorphism from ) to SQ3). The tangent map of
@ is given by, : X — matadX. It maps the basigr;} of su(2) onto the basi§2R;} of
50(3), hence is a linear isomorphism. It follows thatis a local diffeomorphism af, hence
its image inp contains an open neighborhood bin SO(3). By homogeneity, inp is an open
connected subgroup of 8, and we see that im= SO(3).. As SQ(3) is connected, it follows
that imp = SO(3). From this we conclude thgt : SU(2) — SO(3) is a surjective group
homomorphism. Hence S®) ~ SU(2)/ kerg. The kernel ofp may be computed as follows.
If x e kerg, then Adx) = I. Hencexr; = r;x for j = 1,2,3. From this one sees that
x €{=1,1}.Hencekep ={-1,1}. 0J

It is of particular interest to understand the restrictidripdo one-parameter subgroups of
SU(2). We first consider the one-parameter graup ¢ +— exp(tr). Its imageT in SU(2)

consists of the matrices .
e’ 0
Uy = ( 0 e_it ) 5 (t € R)

Obviously,T is the circle group. The image af undery is given by
Plur) = gle™) = e#1) = 2R,
By a simple calculation, we deduce that, tbe R,

1 0 0
Ry:=e®® = 0 cost sinb |,
0 —sinf cosf

the rotation with anglé around thex;-axis. LetD be the group consisting of these rotations.
Theng mapsT’ onto D. Moreover, fromp(u;) = R,, we see thap restricts to a double covering
from T onto D.

More generally, ifX is any element ofu(2), different from0, there exists a € SU(2) such
that Adx~1)X = x ' Xx = tr,, for somer > 0. It follows that the one-parameter subgroup
ax has image exRX = expAd(x)Rr;] = xTx~! in SU2). The image ofx7Tx~! underg
equalsrDr~!, with r = ¢(x). Moreover, the following diagram commutes:

T i>xT)c

Lo 1o
D N rDr=1.

-1

The horizontal arrows being diffeomorphisms, it followsatt| 7.1 is a double covering from
xTx~ ! ontorDr=!.
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11 Group actions and orbit spaces

Definition 11.1 Let M be a set and a group. A(left) actionof G onM isamapy : G XM —
M such that

(@) a(g1,a(g2,m)) = a(g1g2,m) (meM, g1,.82€G),
(b) a(e,m) =m (meM).

Instead of the cumbersome notatwnve usually exploit the notatiog - m or gm for a(g, m).
Then the above rules (a) and (b) becomg: (g, - m) = (g1g>) - m, ande - m = m.

If g € G, then we sometimes use the notationfor the mapm — (g, m) = gm, M —
M. From (a) and (b) we see tha} is a bijection with inverse map equal&g-:. Let SymM)
denote the set of bijections froM onto itself. Then SyrfW), equipped with the composition
of maps, is a group. According to (a) and (b) the mapg — «, is a group homomorphism of
G into Sym M). Conversely, any group homomorphigsin— Sym(M) comes from a unique
left action of G on M in the above fashion.

Let M, M, be two sets equipped with (leff-actions. A mapp : M; — M, is said to
intertwinethe G -actions, or to bequivariant,if ¢(gm) = ge(m) forallm € M; andg € G.

Remark 11.2 Similarly, aright action of a groupG on a setM is defined to be a map :

M xG — M, (m,g) — mg, such thatneg = m and(mg,)g, = m(g,g») forallm € M and

g1, &2 € G. Notice that these requirements erare equivalent to the requirement that the map
av : G xM — M defined byxV (g, m) = mg~! is a left action. Thus, all results for left actions
have natural counterparts for right actions.

Our goal is to study smooth actions of a Lie group on a manifakla first step we concen-
trate on continuous actions. This is most naturally donédpological groups.

Definition 11.3 A topological groups a groupG equipped with a topology such that the mul-
tiplication mapu : G x G — G, (x, y) — xy and the inversion map: G — G, x — x~ ! are
continuous.

Note that a Lie group is in particular a topological group.

Definition 11.4 Let G be a topological group. By eontinuous right actiorof G on a topo-
logical spaceM we mean an actionr : M x G — M that is continuous as a map between
topological spaces. A (righty-space is a topological space equipped with a continuogistfri
G-action.

We assume thal/ is a topological group and thaff is a topological space equipped with
a continuous right action of H. Givenh € H we denote byy, the mapM — M given by
m +— mh. Thenga;, is continuous and so is its inverag-1. Thereforey, is a homeomorphism
of M onto itself.
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Sets of the formmH (m € M) are calledorbits for the actione. Note that for two orbits
miH, myH eithermiH = m,H ormH NmyH = (. Thus, the orbits constitue a partition
of M. The set of all orbits, called tharbit space is denoted by /H. The canonical projection
M — M/H, m — mH is denoted byx.

The orbit spac&k’ = M/H is equipped with the quotient topology. This is the finesbtogy
for which the mapr : M — M/H is continuous. Thus, a subg@tof X is open if and only if
its preimager ~!(O) is open inM.

In general this topology need not be Hausdorff eveM ifs Hausdorff. We will return to this
issue later.

The following result is useful, but particular for group iacts. It is not true for quotient
topologies in general.

Lemma 11.5 The natural mapr : M — M/H is open.

Proof: LetU C M be open and pubd = = (U). Then the preimage ~!(0) equals the union
of the setd/h = «;(U), which are open inM. It follows thatz~1(O) is open, henc® is open
by definition of the quotient topology. 0J

We denote byF (M) the complex linear space of functions — C. Let (M) denote the
subspace of (M) consisting of functiong : M — C that areH -invariant, i.e.g(mh) = g(m)
forallme M, h € H.

If f:M/H — Cis a function, then the pull-back gf by =, defined byz*(f) := fom,is
a function onM that is H -invariant, i.e., it belongs t& (M) . One readily verifies that* is a
linear isomorphism frond=(M/H) onto F(M)H .

Let C(M)H be the spac&€ (M) N F(M)H of continuous functiong/ — C which are
H -invariant.

Lemma 11.6 The pull-back map* : f — f o7 mapsC(M/H) bijectively ontoC (M )%

Proof: Obviouslyr* mapsC(M/H) injectively intoC(M)H . It remains to establish surjectiv-
ity. Let f € C(M)H. Then f = n*(g) for a unique functiorg : M/H — C. We must show
thatg is continuous. Lef2 be an open subset 6f. ThenU = f~!1(Q) is open inM. From the
H -invariance off it follows thatU is right H -invariant. Hencd/ = =~ !(z(U)) and it follows
thatm (U) is open inM/H. But 7 (U) = g~ (). Thus,g is continuous. O

Remark 11.7 With exactly the same proof it follows: X is an arbitrary topological space, then
7* mapsC(M/H, X) (bijectively) ontoC (M, X)H . In fact, the quotient topology oh/H is
uniquely characterized by this property for Al

In what follows we shall mainly be interested in actions arallty compact Hausdorff spaces.
Recall that the topological spadd is said to be Hausdorff if for each pair of distinct points
my,my Of M there exist open neighborhoods of m; such thatU; N U, = 9. The space
M is said to be locally compact if each point M has a compact neighborhood. Note that
in a Hausdorff spacé/ each compact subset is closed. Moreoveiifis locally compact
Hausdorff, then for every poini € M and every open neighborhodd of m there exists a
compact neighborhool of m contained inU.
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Lemma 11.8 Let M be a locally compact Hausdorff space, equipped with a caotiis right
action of a topological groug. Then the following assertions are equivalent.

(&) The orbit spaceéV/H is Hausdorff.
(b) For each compact subsét C M the setCH is closed.

Proof: Assume (a) and lef C M be compact. Then(C) is compact. AsM/H is Hausdorff,
it follows thatz (C) is closed. ACH = =~ (x(C)), it follows thatCH is closed.

Next, assume (b). From the fact tHat} is compact, forn € M, it follows that the orbit
mH is closed. Letx;,x, € X = M/H be distinct points. Seleet:; € 7~ !(x;). Then
x; = mjH, with miH N myH = @. The complemenV of myH in M is open, rightH -
invariant, and contains:; H. Select an open neighborhod# of m; in M such thatU; is
compact and contained ii. Then by (a), the set/; H is closed and still contained iW. Its
complement;, is open and containes, H. Hence,z(1,) is open inX and contains,.

On the other hand/; = U, H is the union of the open set§ 4, hence open id/. Moreover,
V1 containsny, so thatr (V;) is an open neighborhood of in X. Clearly, the set¥; andV, are
right H-invariant and disjoint. It follows that the setg1;) andn (1) are disjoint open subsets
of X containing the points; andx,, respectively. This establishes the Hausdorff propertyl

12 Smooth actions and principal fiber bundles

Definition 12.1 Let M be a smooth manifold anH a Lie group. An action off on M is said
to besmoothf the action mapx : M x H — M, (m, h) — mh is aC> map of manifolds.

In the rest of this section we will always assume thatis a smooth manifold on whicl/
has a smooth right action. We will first study smooth actimrswfhich the quotiend//H allows
a natural structure of smooth manifold.

If Q is a smooth manifold, the#/ has a right action on the manifold x H, given by
(x,g)-h = (x, gh). We will say that such an action is of trivial principal fiberrle (or trivial
PFB) type!

More generally, the right action d on a manifoldM is called of trivial PFB type if there
exist a smooth manifold@ and a diffeomorphism : M — Q x H that intertwines theH -
actions. Such a mapis called a trivialization of the action. Note that diin= dimM — dimH.

Definition 12.2 The right action ofH on M is called of principal fiber bundle (PFB) type if the
following two conditions are fulfilled.

(a) Every pointm of M possesses an opéh-invariant neighborhood’ such that the right
H -action onU is of trivial PFB type.

(b) If C is a compact subset @ff, thenCH is closed.

The terminology ‘principal fiber bundle type’ is not standabut used here for purposes of exposition.
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In view of Lemma 11.8, the second condition is equivalenth® ¢ondition that the quotient
spaceM/H is Hausdorff.

We call the painU, ) of condition (a) a local trivialization of the right/ -spaceM at the
pointm. Clearly, if the rightH -spaceM is of PFB type, then there exists a collectigt/,, 7,) |
a € A} of local trivializations such that the open séfg cover M. Such a covering is called a
trivializing covering.

Remark 12.3 If H is a closed subgroup of a Lie grotf then the magh, g) — gh, H xG —
G defines a smooth right action &f on G. At a later stage we will see that this action is of PFB-

type.

If the right H -action onM is of PFB type, then the quotieM /H admits a unique natural
structure of smooth manifolds. In order to understand thgueness, the following preliminary
result about submersions will prove to be very useful.

Lemma 12.4 LetX,Y, Z be smooth manifolds,and let: X — Y, ¢ : X - Zandy : Y —
Z be maps such that the following diagram commutes

@

— Z
S v

9
N« X

If ¢ is smooth andr a submersion, thetr is smooth oz (X).

Proof: The mapr, being a submersion, is open. In particula¢X) is an open subset df. Let

Yo € w(X). FiX xo € X such thatr(xg) = yo. Sincer is a submersion, there exists an open
neighborhood/ of xy and a diffeomorphismp : U — #(U) x F, with F a smooth manifold of
dimension dink’ —dimY, such thatr = pr, - ¢. Here pt denotes the projection(U) x F — F
onto the second component. Let= pr,¢(xy). Then the smooth map : #(U) — X defined
byo(y) = ¢~ (y,b) satisfiest oo = I onn(U) ando(yy) = xo. In other words;r admits a
smooth locally defined sectian with o(yg) = xo. From this it follows that) = Yo oo =
poo onn(U). Hencey is smooth onz (U). O

Theorem 12.5 Let the right H action onM be of PFB type. TheM/H carries a unique
structure ofC*°-manifold (compatible with the topology) such that the g@nal projection
7 : M — M/H is a smooth submersion.

If m € M, then the tangent maf,, = : T,,M — T,wm(M/H) has kernelT,,(nH),
the tangent space of the orbitH at m. Accordingly, it induces a linear isomorphism from
TuM/ Tp(mH) onto Ty (M/H).

Finally, 7* : f — f o restricts to a bijective linear map fro@>(M/H) ontoC > (M) .

Remark 12.6 It follows from the assertion on the tangent maps that theedsion of M/H
equals dimi/ — dimH.
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Proof: We will first show that the manifold structure, if it exists, unique. LetX; denote
M/H, equipped with a manifold structure labeled py {1, 2} and assume that the projection
maprx : M — M/H is submersive for both manifold structures. We will showithentity map

I : X; — X, is smooth for the given manifold structures. The followinggtam commutes

M
A N
1
X1—>X2

Sincer : M — X; is a submersion and : M — X, smooth, it follows by Lemma 12.4
that/ : X; — X, is smooth. By symmetry of the argument it follows that theenrse to/ is
smooth as well. HenceX; and X, are diffeomorphic manifolds. This establishes uniqueonéss
the manifold structure.

We defer the treatment of existence until the end of the praad will first derive the other
assertions as consequences.

We first address the assertion about the tangent maploét m € M. Sincern is a submer-
sion, T, : T,M — T, (M/H) is a surjective linear map, with kernel equal to the tangent
space of the fibetr ~! (7 (m)). This fiber equals: H. Hence kefl},m = T,,(mH).

Finally, it is obvious thatr* restricts to a linear injection fror@ (M /H) into C®° (M) .
Letg € C®(M)H. Theng = f ox for a unique functionf : M — C. Sinceg is smooth
ands a smooth submersion, it follows by application of Lemma 1Bak f is smooth. This
establishes the surjectivity, and hence the bijectivity bf

We end the proof by establishing the existence of a maniflccgire onX = M/H for
which sz becomes a smooth submersion. First of #lis a topological space, which is Hausdorff
because of Lemma 11.8.

Let {(Uy, o) }aca be atrivializing covering oM as above. Thus, is a diffeomorphism of
U, onto 2, x H which intertwines the righH -actions. Writing the manifold®, as unions of
charts, we see that we may replace the trivializing covdingne for which eacl, equals an
open subset oR”. We write i, for the injectionx — (x,e), 2, — Q4 x H and p, for the
projectionQ2, x H — 2, onto the first coordinate.

We will use the trivializing covering to define a smooth attdsX. The mapz, : U, —
Q, x H is a diffeomorphism intertwining th& -actions, hence induces a homeomorphjsm
7(Uy) — (¢ x H)/H. The projection map, induces a homeomorphism of the latter space
onto 2., by which we shall identify. Puk, = 7(U,). Then the following diagram commutes:

Ud —5 QuxH
T \L \L Pa (14)
v, 2% Q,
The setsl,, for @ € A, constitute an open covering &f, and the mapg, : Vo, — Q, are
homeomorphisms. We will show that the pa(#s,, x.), for « € A, constitute a smooth atlas.
PutQg = xg(Voa N Vp). Then the transition map

XBa = XBoXa
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is a homeomorphism frorﬂg ontoQ%. We must show it is smooth.

The transition mapg, = 15 - 7, ' is a diffeomorphism fronR2f x H ontoS2% x H. Moreover,
the diagram
QfxH % QaxH
Da l« \L pPs
of ™ o
commutes. As the vertical arrow represent smooth submessiofollows by application of
Lemma 12.4 thay g, is smooth.

Let X be equipped with the structure 6P°-manifold determined by the atlas defined above.
The mapr mapsU,, ontoV,. Moreover, from the commutativity of the diagram (14) we des t
7|y, corresponds via the horizontal diffeomorphispsandz, with the smooth projectiop, .
Hencer is smooth and submersive on eddjx it follows thatz is a smooth submersion. O

The following terminology is standard in the literaturedaxplains the terminology ‘PFB
type’ used so far. We assume thiats a smooth manifold.

Definition 12.7 A principal fiber bundleover X with structure groupH is a pair(P, =) consist-
ing of a smooth righ#/ -manifold P and a smooth map : P — X with the following property.
For every pointx € X there exists an open neighborhoBBdof x in X and a diffeomorphism
r:7 Y(V) — V x H such that

(@) = = pry o7 onz~1(V), where py, denotes the projectiori x H — V;

(b) 7 intertwines the right{ -actions.

The manifoldP is called thetotal space X is called thebase spacef the bundle. A map as
above is called #ocal trivialization of the bundle.

The terminology ‘action of PFB type’ is finally justified byeHollowing result.

Lemma 12.8 Let H be a Lie group.
(@) If # : P — X is a principal bundle with structure groufl, then the right action of{

on P is of PFB-type. Moreover; factors through a diffeomorphisid/ H — X.
(b) Conversely, itM is a smooth manifold equipped with a smooth right-actio#/athat is
of PFB type, themr : M — M/H is a principal fiber bundle with structure groufd.

Proof: Assertion (a) is a straightforward consequence of Defimitid.7. Assertion (b) is easily
seen from the proof of Theorem 12.5. O

Example 12.9 (Frame bundle of a vector bundle) LUétbe a finite dimensional real vector space
of dimensionk. Let Hom(R*, ) denote the linear space of linear maps — V. A frame in

V is defined to be an injective linear mgp: R¥ — V. The set of frames, denotdé(V), is

a dense open subset of HARY, V). Letey, . .., ex be the standard basis Bf. Then the map
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f = (f(e1),..., f(ex)) is a bijection fromF (V') onto the set of ordered baseslafThus, a
frame may be specified by giving an ordered basig.of

The groupH := GL(k,R) ~ GL(R¥) acts onF (V) from the right; indeed the action is
given by(f,a) — f oa. This action is free and transitive; see the text precedingpfém 13.5
and Proposition 15.5 for the definitions of these notionsuslHor eachf € F (V') the map
a — fais a diffeomorphism front{ onto F (V).

Letnowp : E — M be a vector bundle of rank over a smooth manifold/. For an open
subsetl/ ¢ M we write Eyy := p~'(U). Thenp : Ey — U is a vector bundle ovel, called
the restriction ofE to U. A trivialization of E over an open subsé&t C M is defined to be an
isomorphisnt : Ey — U x R* of vector bundles. Fat € U we define the linear isomorphism
7, : Ex > RF byt = (x,1,) on E,. Let R% . denote the trivial vector bundi® x R* over M.
Then the vector bundle HofRX,, E) has fiber HoniR*, E.) at the pointr € M. A trivialization
(U, ) of E induces a trivializationr’ of Hom(R¥, E) given by t/(Ty) = 7,0 T, for T, €
Hom(RX, E,).

We defineF (E) to be the subset ¢y F(E,) of Hom(RX . E). This subset is readily seen
to be open; the natural ma(E) — M mappingF(E), to x defines a sub fiber bundle of
Hom(RX . E). A trivialization = of E overU induces a trivialization” of F(E) overU given
by ©/(f) = ©co f for f € F(E,). The groupH acts from the right on each fibét(E,). By
looking at trivializations we see that these actions togetionstitute a smooth right action &f
on F(E) which turnsF(E) into a principal fiber bundle with structure grouh

13 Proper free actions

In this section we discuss a useful criterion for smoothoadtito be of PFB type.

We recall that a continuous map : X — Y between locally compact Hausdorff (topo-
logical) spacesy andY is said to beproperif for every compact subsét C Y the preimage
f~1(C) is compact.

For the moment we assume thet is a locally compact Hausdorff space equipped with a
continuous right action of a locally compact Hausdorff tmggical groupH.

Definition 13.1 The action ofH on M is calledproperif (m,h) — (m,mh) is a proper map
MxH —> MxM.

Remark 13.2 Note that a continuous action of a compact (in particular éihiaee) group is
always proper.
Lemma 13.3 The following conditions are equivalent.

(&) The action is proper.

(b) Forevery pair of compact subsefs, C, C M thesetH¢, ¢, :={h € H | C;hNC, # 0}
is compact.
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Proof: Letgp : M x H - M x M, (m,h) — (m,mh). Assume (a) and lef;, C, C M be
compact sets. The@i; x C, is compact, hence™!(C; x C,) is a compact subset dff x H.
Now

¢~ H(C1 x Cy) = {(m,h) | m € C,mh € Gy},

henceHc, ¢, = p2(¢~'(Cy x C5)), with p, denoting the projectiod x H — H. It follows
that H¢, ¢, is compact. Hence (b).

Now assume that (b) holds, and (&tbe a compact subset 8f x M. Then there exist compact
subset<";, C, C M such thatC c C; x C,. Now ¢~ (C) is a closed subset ¢of ! (C; x C,),
hence it suffices to show that the latter set is compact. Titer Iset is clearly closed; moreover,
itis contained inC; x H¢, .c,, hence compact. O

Remark 13.4 We leave it to the reader to verify that condition (b) is e@léwt to the condition
that{h € H | Ch N C # @} be compact, for any compact setc M.

The action ofH on M is calledfreeif forall m € M,h € H we havemh = m = h = e.
From now on we assume that is a Lie group.

Theorem 13.5 Let M be a smooth manifold equipped with a smooth rightiction. Then the
following statements are equivalent.
(a) the action ofH on M is proper and free;

(b) the action ofH on M is of PFB type.

As a preparation for the proof we need the following lemma.

Lemma 13.6 Let M be a smooth right/ -manifold. IfC C H is compact, anad: € M a point
such thatn ¢ mC, then there exists an open neighborhdoafm in M suchthatU hNU = @
forall h € C.

Proof: SincemC is compact, there exist disjoint open neighborho@ds<2, of m andmC in
M. By continuity of the action and compactnesgbthere exists an open neighborhdddf m
in Q; suchtha/C C Q,. It follows thatUC N U = @. O

The following lemma is the key to the proof of Theorem 13.5.

Lemma 13.7 (Slice Lemma). Let M be a smooth manifold equipped with a smooth right
action which is proper and free. Then for eaehe M there exists a smooth submanifddf
M containingm such that the mays, #) — sh mapsS x H diffeomorphically onto an open
H -invariant neighborhood o#: in M.

Remark 13.8 The manifoldS is called aslicefor the H-action at the point:.
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Proof: Fixm € M and define the map,, : H — M by h — mh. By freeness of the action,
this map is injective. We claim that its tangent maj & an injective linear map — 7,, M.
Given X € h we define the smooth vector fielgqd on M by

d
vy(m) = — mexptX.
dt |,—

By application of the chain rule we see that
UX(m) = Te(am)(X)-

One readily sees that the integral curvevgfwith initial point m is given byc : t — m exptX.
Fromvy (m) = 0 it follows thatc is constant; by freeness of the action this implies that &xp-

e forallr € R, henceX = 0. Thusvy(m) = 0 = X = 0 and it follows that the linear map
T.(a,,) has trivial kernel, hence is injective.

We now select a linear spaeeC T,,M such thats & T,(«,,)(h) = T,,M. Moreover, we
select a submanifold’ of M of dimension dim/ — dimH which has tangent spacematequal
to s. Consider the magp : S’ x H — M, (s,h) — sh. ThenTp 0 : s xbh — T,,M is
given by(X,Y) —» X + T.(an)Y, hence bijective. Replacing’ by a neighborhood (ir$”) of
its pointm we may as well assume th&t has compact closure and that there exists an open
neighborhood? of e in H such thatp mapsS’ x O diffeomorphically onto an open subset of
M. In particular it follows that the tangent md; )¢ is injective for everys € S’. Using the
homogeneityr, oo (I x r; ') = ¢ forall h € H we see thap has bijective tangent map at
every point ofS’ x H.

LetC = Hy, 5. ThenC is a compact subset @f. HenceCy = C \ O is a compact subset
of H, not containing:. Note thatn ¢ mC, by freeness of the action. Hence there exists an open
subsetS of S’ containingn such thatS N Sh = @ forall h € Cy (use Lemma 13.6).

We claim that the mapp is injective onS x H. Indeed, assume(sy, ;) = ¢(s2, hs),
for s1,s2 € S, hy,h, € H. Thens, = s1(h1h3'), henceh,h;! belongs to the compact set
C = Hyg, g . From the definition of5' it follows thati hy' € C \ Coy C O. From the injectivity
of ¢ onS” x O it now follows thats; = s, andh;h;! = e. Hencey is injective onS x H.

Since we established already tipatas a bijective tangent map at every poinsof H it now
follows thatg is a diffeomorphism frons x H onto an open subsét of M. As ¢(m,e) = m,
it follows thatm € U. Moreover,p intertwines theH -action onS x H with the H-action onU.
ThereforeU is H -invariant. O

Proof of Theorem 13.5:(a) = (b): Assume (a). We shall first prove that the first conditain
Definition 12.2 holds. Lein € M and letS be a slice througln as in the above lemma. Then
the mapp : S x H — M given in the lemma is aif/ -equivariant diffeomorphism onto aH -
invariant open neighborhodd of m in M. It follows that the inverse map= ¢! : U — SxH
is a trivialization of theH -action onU.

We now turn to the second condition of Definition 12.2. (etC M be compact and let
be a point in the closure af H. Fix a compact neighborhoad’ of x in M. Then there exists a
sequencéx,),>; in C' N CH such thatx, — x asn — oo. Write x, = c¢,h,, with ¢, € C
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andh, € H. Thenh, is contained inHc¢ ¢/; the latter set is compact by condition (a). By
passing to subsequences if necessary, we arrive in théieitubat the sequences,, ) and(%,,)
are convergent, say with limitse C andh € H, respectively. Nowx = limc,h, = ch € CH.
It follows CH contains its closure, hence is closed. This establishesdbend condition of
Definition 12.2. Thus, (b) follows.

‘(b) = (a)": Assume (b) holds. To see that the actionfbbn M is free, letx e M, h € H
and assume thath = x. There exists arf -invariant open neighborhodd of x on which the
H -action is of trivial PFB-type. Let : U — Q x H be atrivialization of the action. Then from
7(xh) = t(x) andt(xh) = t(x)h it follows thatt(x)h = 7(x). Henceh = e. This establishes
freeness of the action.

To see that the action o on M is proper, letC,C’ C M be compact subsets. Then
it suffices to show thaticcr = {h € H | Ch N C' # @} is compact. For every € C
there exists arf{ -invariant open neighborhoad, of x on which the action is of trivial type.
Moreover, there exists a compact neighborhéqdof x contained inU,. The interiors of the
setsC, form an open cover of', hence contain a finite subcover, parametrized by finitelyyman
elementsy,,...,x, € M. PutC; = Cy,, thenC C U?_,C; whereC; is contained inU,,. One
easily verifies that{y,¢,,cr = U; Hc, c’. Therefore it suffices to prove th&¢ ¢/ is compact
under the assumption th@tis contained in arff -invariant open set/ on which the action is of
trivial type. NowCH is closed, hencé€” = CH NC’ is compact and contained lh Moreover,
Hc ¢ = Hc cr. Thus, we may as well assume tl@dt C U. Using a trivializing diffeomorphism
we see that we may as well assume thais of the formQ x H. Let D andD’ be the projections
of C andC’ onto H, respectively. TherD and D’ are compact. Moreovef ¢ ¢ is a closed
subset offh € H | Dh N D’ # @} = D~'D’. The latter set is the image of the compact set
D x D' under the continuous maig x H — H, (hy, h,) — hi'h,, hence compact. It follows
that Hc ¢/ is compact as well. This establishes (a). O

Example 13.9 We return to the setting of Example 12.9, with: £ — M a rankk-vector
bundle. The frame bundle : F(E) — M is a principal fiber bundle with structure groép =
GL(k,R). Thus, the action off on F(E) is proper and free, with quotient spaE¢E)/H ~ M.

We observe that the bundle can be retrieved frond'(E) as follows. The map : F(E) x
R* — E defined by(f,v) — f(v) on F(E), x R* for x € M, is a surjective smooth map.
Using trivializations ofE one sees that is a submersion. Two elementg;, v;) and( 1>, v)
have the same image if and only if they belong to the same filgé&), x R¥ and there exists
ah e H such that( >, v,) = (fioh, h~'v;). Define the right action off on F(E) x R¥ by
(fiv)a = (fh,h~'v). Then it follows that the fibers af are precisely the orbits for the right
action of H on F(E) x R*.

Via the projectiory : F(E) x R¥ — F(E) we view F(E) x R¥ as a trivial vector bundle
over F(E). The mapy intertwines the given right actions @&f. As the action ofH on F(E) is
proper and free, so is the action Hf on F(E) x R* (argument left to the reader). It follows
that the induced map : (F(E) x R¥)/H — F(E)/H = M is smooth (show this). Using
trivializations of £, hence ofF (E), one readily checks that the projectigrdefines a smooth
rankk vector bundle oveM.
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The mapy : F(E)xR*¥ — E defined above induces a smooth ngap(F (E)xR¥)/H — E
(give the argument). Again using trivializations éf one checks thap is an isomorphism
of vector bundles. Thus, the vector bundle: (F(E) x R¥)/GL(k,R) — M is naturally
isomorphic toE.

14 Coset spaces

We now consider a type of proper and free action that najucaiturs in many situations. Let
G be a Lie group and/ a closed subgroup. The mégp, ) — gh defines a smooth right action
of H on G. The associated orbit space is the coset sgatd, consisting of the right cosets
gH, g €G.

Lemma 14.1 Let H be a closed subgroup of the Lie groGp Then the right action o on G
is proper and free.

Proof: Itis clear that the action is free. To prove it is proper,dgt C, be compact subsets of
G.ThenHc, c, = C;'C, N H. Now C[ ! C; is the image of”; x C, under the continuous map
(x,y) = x~ 1y, hence compact. MoreoveH is closed, hencélc, ¢, is compact. O

Corollary 14.2 LetG be a Lie group and? a closed subgroup. Then the coset spag¢él has
a unique structure of smooth manifold such that the candmgectionr : G — G/H is a
smooth submersion. Relative to this manifold structueféiowing hold.

(@) The mapr : G — G/H is a principal fiber bundle with structure grouf.
(b) The left action of; on G/H given by(g, xH) — gxH is smooth.

Proof: From Lemma 14.1 and Theorem 13.5 it follows that the rightoacof H on G is of
PFB type. Hence, the first assertion is an immediate consegquef Theorem 12.5. Moreover,
assertion (a) follows from Lemma 12.8 (b). Finally, put= G/H and lete denote the action
mapG x X — X. Then the following diagram commutes:

nw

GxG — G
i,Ixn i,n
GxX 5 X

Since the vertical map on the left side of the diagram is a subion, whereag and n are
smooth, it follows thatr is smooth (see Lemma 12.4). 0J

Corollary 14.3 Let G be a Lie group andH a closed subgroup. The tangent mapr of
7 : G — G/H is surjective and has kernel equalfjo

Proof: Thisis animmediate consequence of the factthiata submersion with fibet~! (e H) =
H. [

Remark 14.4 It follows from the above that the tangent mApr induces a linear isomorphism
from g/h onto T, (G/H); we agree to identify the two spaces via this isomorphism fnanv
on. With this identification7, 7 becomes identified with the canonical projectpr> g/b.
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15 Orbits of smooth actions

In this section we assume th@&tis a Lie group and tha¥/ is a smooth manifold equipped with
a smooth lefiG-actiona.
Given X € g, we denote by y the smooth vector field o defined by

d
ay(m) = — (exptX)m
dt t=0
We leave it to the reader to verify that for everye M, the curve +— (expzX) m is the maximal
integral curve ofxx with initial point m.

Lemma 15.1 The mapX +— «ayx is a Lie algebra anti-homomorphism frominto the Lie
algebraV (M) of smooth vector fields oM.

Proof: Fixm € M, and letw,,, : G - M, g — gm. Thenay(m) = T,(a,)X. It follows that
X — ax(m)isalinear mag — T,, M. This shows thaX +— «ay is a linear mag — V(M).
It remains to be shown thity, ay| = oy.x), forall X, Y € g. Since(t, m) — (exptX)m =
aexpex (M) is the flow ofay, the Lie bracket of the vector fieldsy anday is given by
d
lax, ay](m) = dt a:xthaY (m)
t=0
d
= ar Texptx) m (Clexp—rx )ty ((€XPIX) m)
t=0
d
dt 1= a8 |4—
d
a|_, ds
= % — ae—zade(m).
By linearity of Z — «az(m) it follows from this that[ay,ay](m) = az(m), whereZ =
(d/dt)e " 3XY |,—g = —[X, Y]. O

(exp—tX)(expsY)(exptX)m

(expse "2 XY)m
s=0

Remark 15.2 Right multiplicationx + r, defines a right action af on itself. The associated
mapg — V(G) is given by the magX — vy of Lemma 3.1 and defines a linear isomorphism of
g onto the spac® (G) of left invariant vector fields og. It follows from the above tha¥; (G)

is a Lie subalgebra of(G) and thatX — vy is an isomorphism of Lie algebras frognonto
VL(G).

If x € M, then thestabilizerG, of x in G is defined by
G, ={g€G|gx=x}.

Being the pre-image of under the continuous map— gx, the stabilizer is a closed subgroup
of G.
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Lemma 15.3 Letx € M. The Lie algebray, of G, is given by
gx ={X eglax(x) =0} (15)

Proof: Let g, denote the Lie algebra @ ,. Then for allz € R we have expX € G,, hence
(expt X )x = x. Differentiating this expression with respectitatz = 0 we see thattx (x) = 0.
It follows thatg, is contained in the set on the right-hand side of (15).

To establish the converse inclusion, assume déhgtc) = 0. Thenc(zr) = (exptX) x is
the maximal integral curve of the vector fialg. with initial point x. On the other hand, since
ay(x) = 0, the constant curvé(z) = x is also an integral curve. It follows that ex}g x =
c(t) = d(t) = x, hence expX € G, forall ¢t € R. In view of Lemma 7.7 it now follows that
X € gx. U

As G, is a closed subgroup @, it follows from Corollary 14.2 that the coset spaG¢ G,
has the structure of a smooth manifold. Moreoverdet G — G/G, denote the canonical
projection. Thenr is a submersion, and the tangent spac&pé . ate := n(e) is given by
TE(G/Gx) = g/ kerT,m = g/gx-

The mapx, : g — gx factors through a bijectioa, of G/ G, onto the orbitG x.

Lemma 15.4 The mapx, : G/Gx — M is a smooth immersion.

Proof: It follows from Corollary 14.2 that the natural projectian: G — G/G, is a smooth
submersion. Since, = &, o 7, it follows by application of Lemma 12.4 that, is smooth.
Froma, = a,on it follows by taking tangent maps atand application of the chain rule
that
Toay = Ts(0x) o T,m. (16)

Now T,x is identified with the canonical projection — g/g.. Moreover, if X € g, then
T,(ax)(X) = d/dt a(exptX)|;=o = ax(x). Hence kefl,(a,) = g = kerT,z. Combining
this with (16) we conclude that:a, is injectiveg/g, — T M. Hencea, is immersive ae.

We finish the proof by applying homogeneity. Foe G, let/, denote the left action of on
G/ Gy, and let, denote the left action ¢f on M. Then the mapg, andw, are diffeomorphisms
of G/ G, andM respectively, and

Qg o0y Olg—l = Oy.

By taking the tangent map of both sidesrdlg) and applying the chain rule we may now con-
clude thatx,, is immersive atr(g). O

The action ofG on M is calledtransitiveif it has only one orbit, namely the full manifold
M. In this case th& -manifold M is said to be daomogeneous spabéar G. The following result
asserts that all homogeneous spaces;fare of the formG/H with H a closed subgroup .

Proposition 15.5 Let the smooth action @ on M be transitive, and let € M. Then the map
oy : G — M, g — gx induces a diffeomorphisi/ G, ~ M.
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Proof: The mapx, : G/G, — M is a smooth immersion and a bijection. By Corollary 16.6
(see intermezzo on the Baire theorem) it must be a submeasisome point oiG/G,. By
homogeneity it must be a submersion everywhere. Hands a local diffeomorphism. Since
a, is a bijection, we conclude that it is a diffeomorphism. O

Example 15.6 Letn > 0. The special orthogonal group $+ 1) acts smoothly and naturally
onR"*! Lete; be the first standard basis vector®i™!. Then the orbit SQ: + 1)e; equals
the n-dimensional unit spher§ = S” in R**!. SinceS is a smooth submanifold d&”*1, it
follows that the action of S@ + 1) on S is smooth and transitive. The stabilizer &GOt 1),,
equals the subgroup consisting(@f+ 1) x (n 4+ 1) matrices of the form

1 0 :
( 0 B ) with B € SQ(n).
It follows thatS™ is diffeomorphic to S@: + 1)/SO(n + 1),, >~ SOn + 1)/SQO(n).

Example 15.7 Letn > 0. We recall that:-dimensional real projective spate:= P"(R) is
defined to be the space dfdimensional linear subspacesRf*!. It has a structure of smooth
manifold, characterized by the requirement that the namegp 7 : R"*! \ {0} — P, v — Ruv

is a smooth submersion.

We consider the natural smooth action®f:= GL(n + 1,R) on R"*! \ {0} given by
(g.x) — gx. ThenG maps fibers ofr onto fibers, hence the given action induces an action
G x P — P. Sincern is a submersion, it follows by application of Lemma 12.4 tihataction of
G onP is smooth. Letn € P be the line spanned by the first standard basis vegtof R"*!.
ThenG,, equals the group of invertiblg: + 1) x (n + 1) matrices with first column a multiple
of e;. One readily sees that the action is transitive. Therefoeejinduced magw/G,, — Pisa
diffeomorphism of manifolds.

We now consider the subgroup = O(n + 1) of G. One readily sees thd already acts
transitively onP. Hence the action induces a diffeomorphism fr&k,, ontoP. Here we note
thatK,, = K N G,, consists of the matrices

a 0
0 B )’
witha = +1 andB € O(n). Thus,K,, >~ O(1) x O(n), and we see that

P*(R) 2~ O(n + 1)/(O(1) x O(n)).

16 Intermezzo: the Baire category theorem

Let X be a topological space. A subsétC X whose closure equal¥ is said to be dense.
Equivalently this means that N U # @ for every non-empty open subdétof X.
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If ©O;, O, are two open dense subsetsiothen®; NO, is still open dense. Indeed,if C X
is open non-empty, theti N O, is open non-empty by density 61,. Hence,U N O; N O, is
open non-empty by density @1,.

It follows that the intersection of finitely many open densbsets ofX is still open and
dense.

Definition 16.1 The topological spac# is called a Baire space if evecpuntableintersection
of open dense subsets is dense.

Remark 16.2 Let X be a topological space. A subseiC X is said to be nowhere densein
if its closureS has empty interior. We leave it to the reader to verify thiais Baire if and only
if every countable union of nowhere dense subsefs bfas empty interior.

We recall that a topological spacé is said to be locally compact if every poiptof X is
contained in a compact neighborho@dIf X is assumed to be locally compact and Hausdorff,
then it is known that for every poing € X and every neighborhoo®¥ of p there exists a
compact neighborhood of p contained inV.

Theorem 16.3 (Baire category theoreml.et X be a Hausdorff topological space. Thanis a
Baire space as soon as one of the following two conditionsfifléd.

(&) X is locally compact.

(b) There exists a complete metric anthat induces the topology of.

Proof: Let{Ox | k € N} be a countable collection of open dense subsefs. dfet x, € X be
any point and letU, be an open neighborhood &f. In case (a) we assume that is compact,
in case (b) assume théat, is contained in a ball of radiuk It now suffices to show thdt, has
a non-empty intersection with,,cnO,,.

We will show inductively that we may select a sequence of ampty open subset$, of X,
for k € N, with the property that/ .1 C Ox N Uy for all k € N. In case (b) we will show that
this can be done with the additional assumption thais contained in a ball of radiuly/ (k + 1).

Suppose thal, ..., U, have been selected. Sin€g is open densa), N U, # @. Select
a pointx,,; of the latter set, then in either of the cases (a) and (b) we se#gct an open
neighborhood/, ;. of x,,+1 whose closure is contained ™, N U, . In case (b) we may select
U,+1 with the additional property that it is contained in the lmdlfadius1/(n +2) aroundx,, ;.

The sequencél,) is a descending sequence of non-empty closed subsets aftibets,.
At the end of the proof we will show that its intersection isysempty. Since obviouslg, > U,
is contained iJy N N,enO,, it then follows that the latter intersection is non-empty.

Thus, it remains to show that the intersection of the §gtds non-empty. In case (b) this
follows from the lemma below. In case (a), the sequditg) is a decreasing sequence of closed
subsets of the compact 9ét,. Since each finite intersection contains algt it is non-empty.
Hence, by compactness, the intersection is non-empty. O
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Lemma 16.4 Let (X, d) be a complete metric space and (&t be a decreasing sequence of
non-empty closed subsetsXfwhose diametergd(Cy) tend to zero. ThemynCi consists of
precisely one point.

Proof: The condition about the diameter means that we may seledt@af badiusr; containing
the setCy, for k € N, such that, — 0 ask — oo. For eachk we may seleck; € Cx. Then
d(xm,x,) < 2r; forall m,n > k, hence(x,) is a Cauchy sequence. By completeness of the
metric, the sequendg;,,) has a limitx.

Fix k € N. Let§ > 0, then there exists8 > k such thatx, € B(x;d). HenceB(x;§) N
Cr # 0. It follows that x belongs to the closure @y, hence toCy, for everyk € N. Hence
x € NkgenCk. If y is a second point in the intersection, then for everpothx, y belong toCy,
henced(x, y) < 2r. It follows thatd (x, y) = 0, hencex = y. O

A useful application of the above is the following result.

Proposition 16.5 Let X be a manifold of dimension. Let {Y; | k € N} be a countable
collection of submanifolds df of dimension strictly smaller than Then the uniotJcyY; has
empty interior.

Proof: Since X is locally compact, it is a Baire space. Fixe N. If y € Yi, then by the
definition of submanifold, there exists an open neighbothbg of y in Y; such thatU, is
nowhere dense iX. By the second countability assumption for manifolds, itdais thatY;
can be covered with countably many neighborholgs that are nowhere dense ; Thus, the
unionUgen Yk Is the countable union of the sdts ;. Since all of them are nowhere dense, their
union has empty interior. O

Corollary 16.6 Let X andY be smooth manifolds witimX < dimY. Lety : X — Y be a
smooth immersion. Them( X) has empty interior.

Proof: Putd = dimX. For everyx € X there exists an open neighborhadd of x in X such
thate(U,) is a smooth submanifold af of dimensiord. By the second countability assumption
there exists a countable covering X¥fby open subset&) of X such thatp(Uy) is a smooth
submanifold ofY’ of dimensiord. It follows thate(X) = Ugene(Ux) has empty interior. [

17 Normal subgroups and ideals

If G is a Lie group and? a closed subgroup, then the coset spa¢#l is a smooth manifold in
a natural way. IfH is a normal subgroup, i.egHg™! = H forall g € G, thenG/H is a group
as well. The following result asserts that these structarescompatible and tur6/H into a

Lie group.

Proposition 17.1 Let G be a Lie group andd a closed normal subgroup. Th&¥/H has a
unique structure of Lie group such that the canonical mapG — G/H is a homomorphism
of Lie groups.
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Proof: We equipG/H with the unique manifold structure for whichis a submersion. Since
H is normal,G/H has a unique group structure such thas a group homomorphism. Leét
denote the multiplication map of the quotient gratpH . Then the following diagram commutes

GxG 26

i/T[XT[ i/T[

G/H xG/H % G/H

Sincep andsr are smooth, so ig - . Since the left vertical map is a submersion, it follows from
Lemma 12.4 thafi is smooth. In a similar fashion it follows that the inversimap ofG/H is
smooth. Hencé& /H is a Lie group, andr is a Lie group homomorphism.

Suppose thatr/H is equipped with a second structure of Lie group suchthaG — G/H
is a Lie group homomorphism. We shall den6teH, equipped with this structure of Lie group,
by (G/H)'. The identity map/ : G/H — (G/H)' clearly is an injective homomorphism of
groups. Sincer is a submersion, it follows by application of Lemma 12.4 tlhas smooth,
hence a Lie group homomorphism. Sintés injective, it follows by Lemma 7.6 thak is
immersive everywhere. Hence, by Lemma 17.2 below we sedl tieaa submersion. Thug,
is a bijective local diffeomorphism, hence a diffeomorphisTherefore/ is an isomorphism of
Lie groups, establishing the uniqueness. OJ

Lemmal7.2 Letg : G — G’ be an immersive homomorphism of Lie groups. Thes a
submersion if and only ip(G) is an open subgroup @¥’'.

Remark 17.3 In Proposition 17.7 we will see that the assumption thbe immersive is super-
fluous.

Proof: If ¢ is a submersion, thep(G) is open inG’. Conversely, assume tha{G) is open in
G'. Then it follows by Corollary 16.6 that dich = dimG’. HenceT,.¢ : T.G — T.G' is an
injective linear map between spaces of equal dimensionrefdre, it is surjective as well. By
homogeneity it follows thap is a submersion everywhere. O

Theorem 17.4 (The isomorphism theorem for Lie groupskety : G — G’ be a homomor-
phism of Lie groups. TheH := kerg is a closed normal subgroup 6f. Moreover, the induced
homomorphisng : G/H — G’ is a smooth injective immersion. ¢fis surjective, therp is an
isomorphism of Lie groups.

Proof: The following diagram is a commutative diagram of group hamgohisms
2

G — G
V= /%
G/H

Moreover, sincer is a submersion, whereass smooth, it follows thap is smooth. Hence is

an injective homomorphism of Lie groups. It follows by Lemihé thaty is an immersion. Now
assume thap is surjective. Therp is surjective, and it follows by application of Lemma 17.2
thatg is a submersion. We conclude thats a local diffeomorphism, hence a diffeomorphism,
hence an isomorphism of Lie groups. O

59



Example 17.5 The isomorphism of Proposition 10.3 is an isomorphism ofdrigups.

Example 17.6 Let G be a Lie group. Then Ad is a Lie group homomorphism fréirinto
GL(g). It induces an injective Lie group homomorphissy ker Ad — GL(g), realizing the
image AdG) as a Lie subgroup of Glg). If G is connected, then ker Ad is the cenf&(G) of
G, see exercises. Consequently,(&d ~ G/Z(G) in this case.

Proposition 17.7 Letgy : G — G’ be a homomorphism of Lie groups. ThefG) is an open
subgroup ofG’ if and only if¢ is submersive.

Proof: If ¢ is submersive, thep(G) is open. Thus, it remains to prove the ‘only if’ statement.
Let H be the kernel of. Then by Theorem 17.4 it follows that the induced ngapG/H — G’

is an injective homomorphism of Lie groups. By applicatidr,emma 17.2 it follows thap is

a submersion. Sinag = ¢ - 7, whereasr is surjective, we now deduce thatis a submersion
everywhere. O

We end this section with a discussion of the Lie algebra of @tigaot of a Lie group by a
closed normal subgroup.

Definition 17.8 Let[be a Lie algebra. Ardealof [ is by definition a linear subspaaef [ such
that[l,a] C a,i.e.[X,Y] eaforal X e,Y € a.

Remark 17.9 Note that an ideal is always a Lie subalgebra.

Lemma 17.10 (a) Let[ be a Lie algebrag C [ an ideal. Then the quotient (linear) space
[/a has a unique structure of Lie algebra such that the canompeajectionz : | — [/ais a
homomorphism of Lie algebras.

(b) Lety : [ — I be a homomorphism of Lie algebras, with kerael'hena is an ideal inl
andg factors through an injective homomorphism of Lie algelgad/a — 1.

Proof: Left as an exercise for the reader. O

Lemma 17.11 LetG be a Lie group and lefy be a subalgebra of its Lie algebga

(a) his anideal if and only i is invariant underAd(G,).

Let H be a Lie subgroup ofr with Lie algebrah.
(b) If H is normal inG, thenb is an ideal ing.

(c) If pis anideal ing, thenH, is normal inG,.

Proof: Left to the reader. Use Lemmas 4.3 and 4.6. O
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Lemma 17.12 Let H be a closed subgroup of the Lie groap If H is normal, then its Lie
algebraj is an ideal ing. Moreover, the tangent map atof the canonical projection : G —
G/H induces an isomorphism from the quotient Lie algeffh onto the Lie algebra of the Lie
groupG/H.

Proof: Let! = T, (G/H) be equipped with the Lie algebra structure induced by the Lie
group structure of;/H. The tangent map, of the canonical projection : G — G/H is a

Lie algebra homomorphism frognonto (. On the other hand, its kernel is Hence, by Lemma
17.10,n, factors through a Lie algebra isomorphism frgyh ontol. O

Remark 17.13 Accordingly, if G is a Lie group and? a closed normal subgroup, then we shall
identify the Lie algebra o&/H with g/b via the isomorphism described above. In this fashion,
7« becomes the canonical projectigr> g/h.

Corollary 17.14 Lety : G — G’ be a homomorphism of Lie groups, with keri&l
(@) The induced map : G/H — G’ is a homomorphism of Lie groups.

(b) Putg, = T.p. Thenkerg, equals the Lie algebra of H.
(c) The tangent map. = Tz(¢) is the linear mag/h — ¢’ induced byp..
(d) If ¢ is surjective, thep and ¢, are isomorphisms.

Proof: Assertion (a) follows by application of Theorem 17.4. let: G — G/H be the
canonical projection. Then is a homomorphism and a smooth submersion. By the preceding
remark, its tangent map, is identified with the natural projectiop — g/h. Fromgon = ¢

it follows by differentiation aie and application of the chain rule th@t o 7. = ¢.. Sinceg is

a smooth immersion by Theorem 17.4, it follows that&er= kerz, = h. Hence, (b). From

@« o T« = @, We also deduce (c). b is surjective, therp is an isomorphism of Lie groups by
Theorem 17.4. Hence, is an isomorphism of Lie algebras. O

18 Detour: actions of discrete groups

Let H be a group (without additional structure) acting on a topaal spaceV from the right
by continuous transformations. Equivalently, this mednad the action maps x H — M is
continuous relative to the discrete topology An(the topology for which all subsets @f are
open).

The action ofH on M is said to beroperly discontinuou# for eachm € M there exists an
open neighborhool of m suchthat/hNU = @forall h € H \ {e}. This condition amounts
to saying that the action dff is locally of trivial PFB type relative to the discrete topgl on
H. A third equivalent way of phrasing the condition is that tloéi@n of H is free and that the
canonical projectiom : M — M/H is a covering map.

Now assume that/ is locally compact and Hausdorff. Then in the setting of atmadyy
diffeomorphisms on a smooth manifal the following result may be viewed as a consequence
of Theorem 13.5. We will give a direct proof to cover the taygptal setting.
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Lemma 18.1 Let M be a locally compact Hausdorff space equipped with a rifhaction by
continuous transformations. Then the following assegiare equivalent.

(a) The action ofH on M is continuous, proper and free for the discrete topologyn

(b) The action ofH on M is properly discontinuous and the associated quotientspé¢cH
is Hausdorff.

Proof: Assume (a), and fix: € M. Then there exists a compact neighborhdddf m. The set
Hyy of h € H with Nh N N # @ is compact inH, hence finite. PuC = Hy y \ {e}. For
everyh € C we may select an open neighborhddgl > m such thatU,h N U, = @ (observe
thatmh # m by freeness and use continuity of the action). Udbe the intersection of the finite
collection of open set¥;, (h € C) with the interior of N. ThenU is openand/h N U = @ for

all h € H \ {e}. It follows that the action of{ is properly discontinuous. By the same argument
as in the proof of Theorem 13.5 it follows th@iH is closed for every compact subgetc M.

By Lemma 11.8 we conclude that/ H is Hausdorff.

Next assume (b), and I be equipped with the discrete topology. We will first showt tha
the action majx : M x H — M is continuous. Let/ € M be open. Then for eadhe H the
setUh™! is openinM. HenceUh™! x {h} is openinM x H. The preimage:—'(U) equals the
union of these sets fdr € H, hence is open.

Now suppose that', C, are compact subsets 8f. We will show that the set

Heyc, =the H | CihN Cy # 0}

is finite hence compact; from this (a) will follow.

For everym € M there exists an open neighborhobg of m such thatU,, N U, h = @
forh € H,h # e. It follows thatU,,h, N U,h, = @ for distincth,,h, € H. Let N, be a
compact neighborhood @t contained inlU,,. By compactness there exists a finite collection
of points fromC, such thatC; C U,,ecrU,. Itfollows that H¢, ¢, is contained in the finite union
Umer Hy,, c,. Therefore, it suffices to show that the $éf, := Hy,, ¢, is finite.

It follows from Lemma 11.8 thaw,,, H is closed. The complemeby, := M \ N,, H is open
in M. The setdJ, andU,,h, h € H,,, form an open cover of’,. Hence, there exists a finite
subsetS C H,, such that’, is contained in the union df, andU,csN,,h. Leth € H,,. Then
Nnh N C, is non-empty; let be one of its points. As ¢ U, there exists & € S such that
c e U,h'.Fromc € N,,hNnU,,h’" C U,h N U,h it follows that the intersectiot,,h N U,,h’ is
non-empty. Hencé = /4’ and we see thdt € S. We conclude that/,, is contained inS hence
is finite. O

19 Densities and integration

If V' is ann-dimensional real linear space, thedemsityonV isamapw : V" — C transforming
according to the rule:

T*w = woT" = |detl|w (T € End(V)).

62



In these notes the (complex linear) space of densitidg mdenoted byDV. A densityw € DV
is calledpositiveif it is non-zero and has values [, oco[. The set of such densities is denoted
by D, V. It is obviously non-empty.

Example 19.1 If w is an element oh” V' *, the space of alternating multilinear mapé — R,
then|w| is a positive density oi.

If ¢ is alinearisomorphism frorif onto a real linear spadé&, then the map™ : w > w - ¢"
is a linear isomorphis®W — DV of the associated spaces of densities. Indeed,& DW,
T € EndV), then

[0 0] T" =wolpoT]" = (wolpeTop ") op"
= |det(<poTo<p_1)|<p*a) = |defl| ¢* w.

Note thatp* mapsD. W ontoD, V.

The spaceDV is one dimensional; in fact, if,, ..., v, is a basis of then the map —
w(vy,...,v,) is alinear isomorphism frorV ontoC, mappingD. V' onto]0, ool.

If X is a smooth manifold, then b/, X we denote the tangent spaceXofat a pointx. By
a well known procedure we may define tendleDT X of densitieon X; it is a complex line
bundle with fiber(DTX), ~ D(T,X). The space of continuous sectionsT X is denoted
by I'(DTX); this space is called the spaceanintinuous densitiesn X. The space of smooth
densities onX is denoted byl'>**(DTX). We also have the fiber bundl®, TX of positive
densities onX. Its fiber abover equalsD T, X. Its continuous sections are called thasitive
continuous densitiesn X.

If ¢ is a diffeomorphism ofY onto a manifoldY, then we define the (pull-back) map :
['(DTY) — ['(DTX) by

(¢ w)(x) = Dp(x) o (p(x)).

Note thatyp* maps positive densities to positive densities.

Letey,...,e, be the standard basis&f. The densityA € DR” given byA(ey,...,e,) =1
is called the standard density &%. Let U C R” be an open subset. Then by triviality of the
tangent bundlg’U ~ U x R”, the mapf — fA defines a linear isomorphism fro@*>(U)
ontoI’*(DTU). If f belongs to the spadg.(U) of compactly supported continuous functions
U — C, we define the integral

[ fri= | fx)dx,
U R

wheredx denotes normalized Lebesgue measure.i¢fa diffeomorphism front/ onto a second
open subsel’ C R”, then, forg € C.(V'), we havep*(gA)(x) = g(e(x)) |[detDp(x)| A(¢(x)).
Thus, by the substitution of variables theorem:

/ *w = / ) (w € T.(DTV)). (17)
U v
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Let now (€2, y) be a coordinate chart of. If w is a continuous density oX with compact
support supp C €2, then we define

/Xw - /x(sz)(x_l)*w'

This definition is unambiguous, becausé&¥, ') is a second chart such that supg- 2/, then

[ () o = / o™ () e = / o
x' () x(2) x(Q)

by the substitution of variables theorem.

We can now define thimtegral of a compactly supported density the manifoldX as fol-
lows. Let{Q, | « € A} be an open cover of the manifolkd with coordinate neighborhoods.
Then there exists a partition of unify, | « € A} subordinate to this cover. We recall that the
Y, are functions inC>°(X) with 0 < vy, < 1. Moreover, the collection of suppor{supp/e}
is locally finite and)_,. , ¥ = 1 on X (note that the sum is finite at every point®f by the
local finiteness of the collection of supports). ket I'.(DTX) be a continuous density oxi
with compact support. Then we define

/ w = Z Y.
X a€A Qo

Just as in the theory of integration of differential formsahows that this definition is inde-
pendent of the particular choice of partition of unity. Nthat integration of forms is oriented,
whereas the present integration of densities is non-@tknt

We note that — [ w is a linear mag’.DTX — C. Moreover, the following lemma is an
easy consequence of the definitions (reduction to chareteta).

Lemma 19.2 Letw be a positive density oX. Then for everyf € C.(X) with f > 0 every-
where we havg, fo > 0. Moreover,[, fo =0= f =0.

Also, by a straightforward reduction to charts we can prdwe following substitution of
variables theorem

Proposition 19.3 Lety : X — Y be a diffeomorphism of *°-manifolds. Then for every
w € I'.(DTY) we have:

/ga*coz/a).

X Y

We now turn to the situation thé&t is a Lie group acting smoothly from the left on a smooth
manifold M. If g € G, we writel, for the diffeomorphismM — M, m — gm.

Definition 19.4 A densityw € I'(DTM) is said to beG-invariantif [;o = w forall g € G.
The space o6 -invariant continuous densities dd is denoted by (DTM)C.
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The following result will be very important for applicatien

Lemma 19.5 Letw be aG-invariant continuous density ai. Then for everyf € C.(M) and

all g € G we have:
| o= ro (18)
Herel; f := folg.

Proof: We note that by invariance afwe havel; (f)w = I (f)l; (@) = I;(fw). Now observe
that/, is a diffeomorphism of\/ and apply the substitution of variables theorem (Propmsiti
19.3) withg = [,. O

Lemma 19.6 LetG be a Lie group and leF (DT G)¢ denote the space of left invariant contin-
uous densities o6.

(@) The evaluation map : w — w(e) defines a linear isomorphisf(DT G )¢ = Dg.

(b) A densityw € T'(DTG)C is positive if and only itv(e) is positive.

Proof: The mape is linear. If w is a left invariant continuous density di, thenw(g) =
((I;)*0)(g) = T.(lg) " w(e) for all g € G. Hence e has trivial kernel. On the other hand, if
wy IS a density inDg then the formula

w(g) 1= To(lg) wy (19)

defines a continuous density 6hwhose value a¢ is w,. By application of the chain rule for
tangent maps it follows that this density is I€ftinvariant. Thus, (a) follows. Assertion (b)
follows from (19). O

The following result is an immediate consequence of the atevima.

Corollary 19.7 Every Lie groupG has a left (resp. right) invariant positive density. Twolsuc
densities differ by a positive factor.

If w is a density orG, then the maf’.(G) — R, f +— I(f) = [; fw is continuous linear,
hence &Radon measuren G. For this reason we shall often writee for an invariant density on
G,and/; f(x) dx for the associated invariant integral of a functifre C.(G). Note that in the
example ofG = R” with addition,dx is a (complex) multiple of Lebesgue measure. Positivity
then means that the multiple is positive, and invarianceesponds with translation invariance
of the Lebesge measure.

We now recollect some of the above results in the presentioptd.etdx be a left invariant
positive density orz. (Analogous statements will be valid for right invariant plive densities.)

Proposition 19.8 The mapf — I(f) = [, f(x) dx is a complex linear functional 0@, (G).
It satisfies the following, for every € C.(G).
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(@) If fisrealthensoid(f);if f > 0thenlI(f) > 0.
(b) If f>0andI(f)=0thenf =0.
(c) Foreveryy € G :
/Gf(yx) dx=/Gf(x) dx. (20)

Proof: Assertion (a) follows from the positivity ab. Assertion (b) is immediate from Lemma
19.2. Finally (c) is a reformulation of Lemma 19.5. O

Remark 19.9 One can show that up to a positive factor the linear functidn& uniquely
determined by the requiremeht# 0 and the properties (a) and (c). In particular property (b) is
a consequence. For details we refer the reader to the bookduwk®& and tom Dieck.

It follows from the proposition that the Radon measure assed with a left invariant density
is left invariant, non-trivial and positive.

In the literature a leftG-invariant positive Radon measure 6nis called a leftHaar mea-
sureof G. The above statement about the uniquenesk isfreferred to as ‘uniqueness of the
Haar measure. More generally a left (resp. right) Haar measxists (and is unique up to a
positive factor) for any locally compact topological gro@f course one cannot use the present
differential geometric method of proof to establish thestetice and uniqueness result in that
generality.

Lemma 19.10 Let G be a compact Lie group. Then there exists a unique left ianadensity

dx on G with
/ dx = 1.
G

Proof: Fix a positive densityt on G. Then it follows from assertions (a) and (b) of Proposition
19.8 for f = 1, that [, A equals a positive constant> 0. The densititydx = ¢~'1 satifies
the above. This proves existencewliis a density with the same property, then= Cdx for a
constantC € C. Integration ovelG shows thatC = 1. This establishes uniqueness. O

This density is positive.

Remark 19.11 The density of the above lemma is called the normalized hefiriant density
of G. The associated Haar measure is caflednalized Haar measure.

The following result expresses how left invariant densibehave under right translation.
Lemma 19.12 Letdx be a left invariant density on a Lie group. Then for every € G,

rg(dx) = |detAd(g)|™! dx.
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Proof: Without loss of generality we may assume ttiatis non-zero. Fop, h € G we have that
Iprg = rglp, henceryly = I;r; and we see thdf (r; (dx)) = ry(l;dx) = rj(dx). It follows
thatr;(dx) is a left invariant positive density. This implies thgdt(dx) = ¢ dx for a non-zero
constantc. Applying l;_l to both sides of this equation we ﬁrliftét_1 dx = cdx. Evaluating
both sides of the latter identity ;mwe obtain

cdx(e) = Te(Co—1)"dx(e) = Ad(g ") *dx(e) = |detAd(g™")| dx(e).
It follows thatc = |detAd(g)|™". O

A Lie group G with |detAd(g)| = 1 for all g € G is said to baunimodular The following
result is an immediate consequence of the lemma.

Corollary 19.13 Let G be a unimodular Lie group. Then every left invariant dengtglso
right invariant.

Lemma 19.14 LetG be a compact Lie group. Theh is unimodular.

Remark 19.15 It follows that the normalized Haar measure of a compact ltug is bi-
invariant.

Proof: The mapx — |detAd(x)| is a continuous group homomorphism fr@minto the group
(R4, -) of positive real numbers equipped with multiplication. itsage H is a compact sub-
group of (R, -). Now apply the lemma below to conclude thfat= {1}. O

Lemma 19.16 The only compact subgroup @&, ) is {1}.

Proof: LetI" be a compact subgroup 6R,,-). Thenl € I". Assumel’ contains an element
y > 0 different from1. SinceI contains botly andy~! we may as well assume that> 1. The
sequencéy”),>; belongs tal" and is unbounded from above, contradicting the compactfess
I'. It follows thatI" = {1}. 0J

We shall now investigate the existence of invariant degsitin homogeneous spaces ¢or
According to Proposition 15.5 such a space is of the farms= G/H, with H a closed subgroup
of G. HereG acts onX by left translation. Fog € G we writel, : X — X, xH +— gxH.

The tangent map at of the canonical projectiom : G — G/H induces a linear isomor-
phismg/h ~ T,y (G/H) by which we identify. Ifh € H, thenC, : G — G, g — hgh™!
leavesH invariant. Differentiation at gives that Adh) leaves the subspadeof g invariant,
hence induces a linear automorphiditk) of the quotient spacg/l. The following lemma will
be useful in the sequel.

Lemma 19.17 Leth € H. Then the tangent map &f : G/H — G/H,xH + hxH ate is
given by

Ten(ln) = A(h).
Proof: Leth € H. Recall thatC, : G — G,x — hxh™! has tangent map Ad) ate. We
note thatr - C, = [, - . Differentiating ate and applying the chain rule we firid = - Ad(h) =

Tog (lp) o T,r. It follows from this that7, g (/) is the endomorphism af/h induced by Adh).
O
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The fiber of the bundle©T (G/H) overeH is identified withD(g/h). Thus A(h)* is an
automorphism of the associated space of densiigg'h). Note that forw € D(g/h) we have:

_ |detAdh)|y|

A(h)*w = |detA(h)|w = detAd)]s w.

(21)

We write D(g/h) for the linear space of densiti@s on g/h satisfyingA(h)*w = . Such
densities are called -invariant. SinceD(g/h) is one dimensional, the space Hf-invariant
densities is eithef or 1 dimensional. In view of (21) the latter is the case if and oifly
|detAd(h)|,| = |detAd(h)|y| forallh € H.

Lemma 19.18

(@) The evaluation mag : o — w(eH) defines a bijection fronT(DT(G/H))® onto
D(g/h) . This bijection maps positive densities onto positive d&ssi

(b) The space of;-invariant densities orG/H is at most one dimensional. It is one dimen-
sional if and only if

detAd(h)l,| = [detAdh)l|  (h € H).

Proof: Clearlye is a linear map. Assume that is a G-invariant density orG/H. Then for
g € GwehaveT,y(lg)*w(gH) = [;(w)(eH) = €(w), hence

o(gH) = (Ten(lg) ™) e(w) = A(g)*" e (w).

This shows that the maphas a trivial kernel, hence is injective, and that its imageantained
in D(g/h). To establish its surjectivity, leby, € D(g/h)*. Then for allh € H we have

(Terr (In) ™) @y = A(h)*'wo = w0,
hence we may define a density 6fiH by
w(gH) = (Ter (Ig) ™) wo.

Note that the right hand side of this equation stays the shpmisreplaced by, h € H. Hence
the definition is unambiguous. One readily verifies thahus defined is smootld;-invariant,
and has image, undere. This proves (a); the statement about positivity is obviagosifthe
above.

From (a) it follows that the dimension &f(DT(G/H))® equals dirD(g/h); hence, it is at
most one. The final assertion now follows from what was sattiépreceding text. O

Corollary 19.19 LetG be a Lie group,H a compact subgroup. Thek/H has aG-invariant
positive density. Two such densities differ by a positiceofa
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Proof: Forh € H, we put
_ |detAd(h)|y|

~ |detAdh)|y|
Clearly A is a Lie group homomorphism froiff to the groupR™ consisting of the positive real

numbers, equipped with multiplication. Thus(H) is a compact subgroup @*. In view of
Lemma 19.16 this implies that(H) = {1}. The result follows. 0J

A(h)

Example 19.20 As §” ~ SQO(n + 1)/SQO(n), see Example 15.6, it follows th&t’ has a unique
SQ(n + 1)-invariant density of total volumeé. Similarly, P" (R) has a unique S@ + 1)-invariant
density of total volumd ; see Example 15.7. Real projective space is non-orientabli,does
not have a volume form, i.e., a nowhere vanishing exteritberdintial form of top degree. This
problem of possible non-orientability of homogeneous spdtas been our motivation in using
densities rather than forms to define invariant integration

20 Representations

In this sectionG will always be a Lie group.

In the following we will give some of the basic definitions efaresentation theory with a
completdocally convex spaceverC. EveryBanach spaces an example of such a space. Natu-
ral spaces of importance for analysis, lKeM ), C.(M), C*(M), C(M), with M a smooth
manifold, and also the spac®s(M ) and&’ (M) of distributions and compactly supported distri-
butions, respectively, are complete locally convex, bugeneral not Banach. Of courstlbert
spacesare Banach spaces; thus, they are covered as well.

Definition 20.1 Let V be a locally convex space. éontinuous representatiam = (x, V') of
G in V is a continuous left actiomr : G x V — V, such thatr(x) : v = 7(x)v = 7w (x,v) is
a linear endomorphism df, for everyx € G. The representation is calldthite dimensionaif
dimV < oo.

Remark 20.2 If G is just a group, and’ just a linear space, one defines a representati@n of
in V' similarly, but without the requirement of continuity.

Example 20.3

(@) LetG x X — X, (g,x) — gx be aleft action ofz on a setX, and letF(X) denote the
space of function& — C. Then the action naturally induces the representatiaf G
on F(X) given by

Lep(x) = p(g" '),

forp € F(X), g € G andx € X.
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(b) Let L be the action of; on F(G) induced by the left actio x G — G, (g, x) — gx.
This is called thdeft regular representationf G. It is given by the formulal,¢(x) =
(g x), forx, g € G.

Similarly, the right multiplication ofG on itself induces theight regular representation
of G on F(G) given by

Rep(x) = @(xg),
for ¢ € F(G), g,x € G. These representations leave the subsgaee) C F(G) in-
variant. Similarly, ifdx is a left or right invariant Haar measure 6n then the associated

spacel?(G) of square integrable functions is invariant under bbtndR. One can show
that the restrictions of. andR to L?(G) are continuous, see Proposition 20.10.

(c) The natural action of S@@) on C? induces a representatianof SU(2) on F(C?) given
by
m(xX)(z) = p(x~'2) = @(@zy + Bz2, —Pz1 + az2),

for ¢ € F(C?),z € C*> and
x:(“ -
p

ie.,a,BeC, andlaf® + 8] = 1.

QI ™

) e SU(2),

Lemma 20.4 Let(x, V) be afinite dimensional representation@f If = is continuous, themn
is smooth.

Proof: By finite dimensionality o/, the group GI(V') is a Lie group. The map : x — n(x)is

a homomorphism frondr to GL(V'). The hypothesis that the representation is continuous means
that the map(x,v) — m(x)v is continuous. By finite dimensionality df this implies that

7 : G — GL(V) is continuous. By Corollary 9.3 it follows that : G — GL(V) is smooth.
This in turn implies thatg, v) — 7 (g)v is smoothG x V — V. OJ

In the setting of the above lemma, the tangent map oflG — GL(V) ate is a Lie algebra
homomorphismz, : g — End(V), where the latter space is equipped with the commutator
bracket. This motivates the following definition.

Definition 20.5 By arepresentatiorof [ in IV we mean a Lie algebra homomorphigm [ —
EndV), i.e., pis alinear map such that for all, Y € [ we have:

p([X,Y]) = p(X)p(Y) — p(Y)p(X).

A representation of in V is also called a structure ¢dmoduleon V. Accordingly, p is often
suppressed in the notation, by writipgX )v = Xv, for X € [,v € V. With this notation, the
above rule becomes

[X.Y]v=XYv—YXv (X,Y el, velV).
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Remark 20.6 Similarly, a complete locally convex spa&eequipped with a continuous repre-
sentation of a Lie groug, will sometimes be called @-module

Example 20.7 Ad : G — GL(g) is a continuous representation 6f in g. The associated
infinitesimal representation gfin End(g) is given by(X,Y) — (adX)Y = [X,Y].

Proposition 20.8 Let & be a representation ofr in a Banach spacéd’. Then the following
conditions are equivalent:

(@) 7 : G xV — V is continuous.

(b) For everyx € G the maprr(x) is continuous, and for eveny € V the mapG — V, x —
7 (x)v is continuous at.

Proof: That (b) follows from (a) is obvious. We will establish thenwerse implication by
application of théBanach-Steinhau®r uniform boundedness) theorem.

Assume (b). Fixxg € G. If v € V thenn(x)v = 7(x¢)7(x; ' x)v; using (b) we see that
x — m(x)v is continuous ak,.

Now fix vy € V. Select a compact neighborhodd of x, in G. Then{n(x) | x € N}isa
collection of continuous linear maps — V. Moreover, for every € V, the mapx — ||z (x)v||
is continuous, hence bounded &h By the uniform boundedness theorem it follows that the
collection of operator normigr (x)||, for x € N is bounded, say by a constatit> 0. It follows
that forx € N,v € V we have

[ (x)v — 7 (x0)voll = [lm(x)v — 7w (x)voll + l[7w(x)vo — 7 (x0) o

< Cllv—=voll + [[7w(x)vo — 7 (x0)vo].
The second term on the right-hand side tendg ifox — x,, by (b). Hence(x, v) > w(x)v is
continuous in(xg, vo). O

Remark 20.9 The above proof is based on the principle of uniform boundednand readily
generalizes to the category of complete locally convexepéar which this principle holds, the
so called barrelled spaces.

The following result is in particular of interest ¥ = G anddx a left invariant positive
density onX.

Proposition 20.10 Let X be a manifold equipped with a continuous I@ftaction. Letdx be a
G-invariant positive continuous density &h Then the natural representatidnof G in L?(X)
is continuous.

Proof: In view of the previous proposition it suffices to show that éverygp € L?(X) the

map® : x — L,p, G — L?(X) is continuous a¢. Thus we must estimate the*-norm of the
functionL,p—¢ asx — e. Lete > 0. Then there exists@ € C.(X) suchthatjo—v |, < %e.
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Let g € C.(G) be a non-negative function such tliat= 1 on an open neigbourhood of sufpp
Then forx sufficiently close tae we haveg = 1 on supg., . Thus for suchx we have:

2
“Lx(P - §0||2 = 56 + “wa - ‘ﬁ“z

2
= 3¢ + [(Lx¥ — ¥)gll2

2
3€ T ILx¥ = Vo8-

IA

Fix a compact neighborhoadl of supp). For x sufficiently close te one has supp,y¥ C N.
By uniform continuity ofy on N, it now follows that|| L.y — ¥[| gll2 < § for x sufficiently
close toe. O

Definition 20.11 Letx be a representation &f in a (complex) linear spacké By aninvariant
subspaceve mean a linear subspaBé C V such thatr(x)W C W for everyx € G.

A continuous representation of G in a complete locally convex spadé is calledirre-
ducible if 0 andV are the only closed invariant subspace$of

Remark 20.12 Note that for a finite dimensional representatian}’) an invariant subspace is
automatically closed. Thus, such a representation isuaibte if the only invariant subspaces
are0 andV.

Definition 20.13 By aunitary representationf G we will always mean a continuous represen-
tationsr of G in a (complex) Hilbert spacg, such thatr (x) is unitary for everyx € G.

Remark 20.14 Let VV be a complex linear space. Then bgesquilinear fornon 1V we mean a
mapp : V x V — C which is linear in the first variable, and conjugate lineathie second, i.e.,
B, Aw + w') = AB(v,w) + B(v,w’) forallv,w,w’ € V, A € C.
A Hermitian inner producbn V' is a sesquilinear forny, -) that is conjugate symmetric, i.e.
(v, w) = (w, v), and positive definite, i.e(p , v) > 0and(v, v) =0=v =0forallv e V.
Finally, we recall that @omplex Hilbert spaces a complex linear spack equipped with a
Hermitian inner product:, -), whose associated norm is complete.

Remark 20.15 According to the above definition, a continuous represemtadf G in H is
unitary if and only if

(mx)v, w) = (v, 7(x" Hw) (v,weH, x €G).

Definition 20.16 A continuous finite dimensional representation 1) of G will be called
unitarizableif there exists a Hermitian inner product &hfor which r is unitary.

Proposition 20.17 Let G be compact, and suppose that, 1) is a continuous finite dimen-
sional representation af. Thens is unitarizable.
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Proof: Let dx denote right Haar measure ¢h and fix any positive definite Hermitian inner
product(-, -); on V. Then we define a new Hermitian pairing &nby

(v, w) = /G(n(x)v, w(x)w)y dx (v,we V).

Notice that the integrand, ,,(x) = (w(x)v, m(x)w); in the above equation is a continuous
function of x. We claim that the pairing thus defined is positive definitedeked, ifv € V
then the function, , is continuous and positive o&. Hence(v, v) = fG p(x)dx > 0
by positivity of the measure. Also, ifv, v) = 0, theny,,, = 0 by Lemma 19.2, and hence
(v, v) = 1y(e) = 0, and positive definiteness follows.

Finally we claim thatr is unitary for the inner product thus defined. Indeed thifes from
the invariance of the measure.ife G, andv, w € V, then

(2 ()0, 2 ()W) = /G o (xy)dx = /G o ()dx = (v, w).

O

Lemma 20.18 Let (7, H) be a unitary representation d@f. If ; is an invariant subspace for
m, then its orthocomplemeft, = ”Hf is a closed invariant subspace for If 7, is closed, then
we have the direct sufl = H; & H, of closed invariant subspaces.

Proof: Letv € H, and letx € G. We will show thatz(x)v € H,. If w € H, thenn(x~Hw
belongs taH; as well, so thatr (x)v, w) = (v, 7(x"Hw) = 0. It follows thatr (x)v € Hi.
O

Corollary 20.19 Let (7, V) be a continuous finite dimensional representationGoflf z is
unitarizable, then it decomposes as a finite direct sum eflucibles; i.e., there exists a direct
sum decompositiolr = @;<;<,V; of V into invariant subspaces such that for evgrythe
representationr; defined byr; (x) = 7 (x)|y, isirreducible.

Proof: Fix an inner product for whichr is unitary, and apply the above lemma repeatedly]

Corollary 20.20 Let(x, V') be a continuous finite dimensional representation of a carnpie
group. Then every invariant subspacelohas a complementary invariant subspace. Moreover,
7 admits a decomposition as a finite direct sum of irreduciblgesentations.

Proof: By Proposition 20.17 is unitarizable. Now apply Lemma 20.18 and Corollary 20.19.

Definition 20.21 Let (x, V') be a finite dimensional continuous representatio& of hen by a
matrix coefficienbf = we mean any functiom : G — C of the form

m(x) = my,(x) = (7(x)v, n)

withv € V andn € V*.
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Remark 20.22 Note that the map — 7 (x) is smooth, so that every matrix coefficient belongs
to C*°(G).

If (-, -) is a Hermitian inner product oW, then a matrix coefficient ot may also be charac-
terized as a function of the form

M =My : X > (T(x)v, w),
with v, w € V, sincew — (-, w) is a conjugate linear bijection from onto V' *.

Let now (r, V') be a finite dimensional unitary representationgfand fix an orthonormal
basisui, ..., u, of V. Then for everyx € G we define the matrid/ (x) = M, (x) by

M(x),-j = My;u; (x)

This is just the matrix ofr(x) with respect to the basig. Note that it is unitary. Note also
thatM(xy) = M(x)M(y). ThusM is a continuous group homomorphism framto the group
U(n) of unitaryn x n matrices.

Definition 20.23 If (w;,V;), for j = 1,2, are continuous representations®@fin complete
locally convex spaces, then a continuous linear MapV; — V; is said to besquivariant or
intertwiningif the following diagram commutes for everye G :
T
V1 —> V2

mi(x) 1 1T ma(x)
v, o v,

The representations; andn, are said to bequivalentf there exists a topological linear iso-
morphism? from V; ontoV, which is equivariant.

If the above representations are finite dimensional, thendmes not need to requiféto be
continuous, since every linear mdp — 1, has this property. In the case of finite dimensional
representations we shall write Hgr(1, V>) for the linear space of interwining linear maps
Vi — V5 and Eng; (V) for the space of intertwining linear endomorphismg/of

If V' is a complex linear space, we write Emd for the space of linear maps frobnto itself,
and GL(V) for the group of invertible elements in E(id). If = is a representation a¥ in V,
then we may define a representatiof G in End(V) by

7(g)A =n(g)Am(g)™"
Note that ifz is finite dimensional and continuous, then sa@ idNote also that the space
EndV)® = {A c EndV) | 7(g)4A = A}

of G-invariants inV is just the space Erd)’) of G-equivariant linear mapg — V.
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Exercise 20.24 Let (w;,V;), for j = 1,2, be two finite dimensional representations@f
Show thatr; andrw, are equivalent if and only if there exist choices of based/fandV,, such
that for the associated matrices one has:

matr;(x) = matr,(x).

Example 20.25 We recall that S{2) is the group of matrices of the form

= (5 <)

with «, B € C and|a|? + |B|*> = 1. The group SW2) acts onC? in a natural way, and we have
the associated representatioron the spaceP (C) of polynomial functionsp : C?> — C. Itis
given by the formula

n(g)p(z) = p(g~'z) = p(@zi + fz2,—PBz1 + az,)

The subspac#®, = P,(C?) of homogeneous polynomials of degreés an invariant subspace
for =. We write rr,, for the restriction ofr to P,.

We will now discuss a result that will allow us to show that tlepresentations,, of the
above example are irreducible. We first need the followimgnte from linear algebra.

Lemma 20.26 LetV be a finite dimensional complex linear space, anddeB € End(}') be
suchthatd B = BA. ThenA leavesker B,imB and all the eigenspaces &f invariant.

Proof: Elementary, and left to the reader. O
From now on all representations Gfare assumed to be continuous.

Lemma 20.27 (Schur's lemma)Let (rr, V') be a finite dimensional representation@f Then
the following holds.

(@) If wisirreducible therEndg (V) = Cly.
(b) Conversely, ifr is unitarizable ancEndg (V) = Cly, thenx is irreducible.

Proof: ‘(a)’ Suppose thatr is irreducible, and led € End(V)°. Let A € C be an eigenvalue
of A, and letE; = ker(A — A1) be the associated eigenspace. Note that for non-triviaditiis
eigenspace we nedd to be complex. For every € G we have thatr (x) commutes with4,
hence leave%, invariant. In view of the irreducibility ofr it now follows thatE; = V, hence
A=Al

‘(b)’ By unitarizability of x, there exists a positive definite inner prodgct-) for which =
iS unitary.

LetO # W C V be aG-invariant subspace. For the proof thais irreducible it suffices
to show that we must havd’ = V. Let P be the orthogonal projection — W. Since W
and W+ are bothG-invariant, we have, fog € G, thatz(g)P = n(g) = Pn(g) onW, and
m(g)P =0 = Pn(g) on Wt. HenceP € Endg(V), and it follows thatP = Al for some
A € C.Now P # 0, henceX # 0. Also, P? = P, henceA? = A, and we see that = 1.
ThereforeP = I, andW = V. O
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We will now apply the above lemma to prove the following.
Proposition 20.28 The representation&r,,, P,(C?)) of SU(2), for n € N, are irreducible.

For the proof we will need compactness of @W In fact we have the following more general
result.

Exercise 20.29 Forn > 1, let M(n, R) and M(n, C) denote the linear spacesmf n matrices
with entries inR andC respectively. Show that SW) is a closed and bounded subset afiC).

Show that S@:) = SU(rn) N M(n, R). Finally show that the Lie groups §@) and SUn) are
compact.

Proof of Proposition 20.28: Letn > 0 be fixed, and put = =, andV = P,(C?). Thenx, is
unitarizable, since SQ@) is compact. Suppose thdte EndV) is equivariant. Then in view of
Lemma 20.27 (b) it suffices to show théts a scalar.

For0 < k < n we define the polynomig, € V by

pr(z) = Z{‘_kzg.

Then{p; | 0 < k < n}is abasisfolV. Forp € R we put
P e’ 0 . _( cosp —sing
¢ 0 e )’ ¢~ \ sing cosp |-

T={t,|l¢eR} and R={r,|¢ R}
are (closed) subgroups of $2J. One readily verifies that fdd < k < n and¢ € R we have:
iRk—n)e

Then

w(ty)pr = e Dk-

Thus everypy is a joint eigenvector fof". Fix a ¢ such that the numbeed?*—"¢ are mutually
different. Then for every) < k < n the spaceCpy is eigenspace for (z,) with eigenvalue
¢!?k=m¢_ Since A and r(7,) commute it follows thatd leaves all the spaceSp; invariant.
Hence there exist; € C such that

Apk:)tkpk, 0<k<n.

Let E, be the eigenspace df with eigenvaluel,. We will show thatE, = V, thereby complet-
ing the proof. The spacg, is SU(2)-invariant, and containg,. Hence it contains (r,) po for
everyp € R. By a straightforward computation one sees that

. "\ (n _ .
7(ry) po(z1,22) = (COSp 21 + Sing z,)" = Z (k) cos ¥ ¢ sin ¢ py.
k=0
From this one sees by application#fand using the intertwining property, that
Z (Z) cog ¢ sinf @ (Ao — ) px =0,
k=0

for all ¢ € R. By linear independence of the,, it follows thati, = A, for every0 < k < n.
HenceE, = V. O
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We end this section with two useful consequences of Schamisra.

Lemma 20.30 Let (z, V), (', V') be two irreducible finite dimensional representationg;of
If = andn’ are not equivalent, then every intertwining linear mép V — V" is trivial.

Proof: LetT be intertwining, and non-trivial. Then k&r C V' is a propeiG-invariant subspace.
Hence kefl" = 0, and it follows thatT is injective. Therefore its image ifhis a non-trivialG-
invariant subspace df’. It follows that imI" = V', henceT is a bijection, contradicting the
inequivalence. O

If (z, V) is a representation for a grodp, then a sesquilinear forgh on V is called equiv-
ariantif (w(g)v, r(g)w) = B(v,w) forallv,w e V, g € G.

Lemma 20.31 Let (x, V) be an irreducible finite dimensional unitary representataf a lo-
cally compact groups. Then the equivariant sesquilinear forms &nare precisely the maps
B :V xV — Cofthe formg = A(-, :), A € C. Here (-, -) denotes the (equivariant) inner
product of the Hilbert spac#.

Proof: Letg : V x V — C be sesquilinear. Then for eveuy € V the mapv — S(v,w) is a
linear functional onV. Hence there exists a uniqugw) € V such thatf (v, w) = (v, A(w), .)
One readily verifies thatl : V' — V' is a linear map. Moreover, the equivariance8adnd (- , -)
imply that A is equivariant. Since is irreducible it follows by Schur’s lemma that = Al for
somel € C, whence the result. O

21 Schur orthogonality

Assumption In the rest of these notes every finite dimensional repraientof a Lie group will
be assumed to be continuous, unless specified otherwise.

In this sectionG will be a compact Lie group, unless stated otherwise.dxebe the unique
left invariant density orG with [, dx = 1; for its existence, see Lemma 19.10. Thénis
positive. By Remark 19.15, the density is right invariant as well.

If 7 is a finite dimensional irreducible unitary representabbr we write

C(G)y (22)

for the linear span of the space of matrix coefficientg oNotice that the spac€(G ), does not
depend on the chosen (unitary) inner productoimhus, by Proposition 20.17 we may define
C(G), for any irreducible finite dimensional (continous) repraséions of G.

There is a nice way to express sums of matrix coefficients ofigefdimensional unitary
representatioiirr, V') of G by means of the trace of a linear map. et € V. Then we shall
write L, ,, for the linear mag” — V given by

Lywu) = (u, wv.
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One readily sees that
tr(Lyw) = (v, w), v,w e V. (23)

Indeed both sides of the above equation are sesquilineasfor(v, w), so it suffices to check
the equation fow, w members of an orthonormal basis, which is easily done.
It follows from the above equation that

mMy,w (x) = tr(n(x)Lv,w)-

Hence every sum of matrix coefficients is of the form(x) = tr(w(x)A), with A € End(V).
Conversely iffex | 1 < k < n} is an orthonormal basis fdr, then one readily sees that any
endomorphism € End(V') may be expressed as

A= Z (Aej,ei)Lei,ej.

1<i,j<n

Using this one may express every function of the form— tr(w(x)A) as a sum of matrix
coefficients.
We now define the linear map, : EndV) — C(G) by

T (A)(x) =tr(m(x)A), x e€aqG,

for everyA € End(V'). Let = be irreducible, then it follows from the above discussioat i,
mapsV ontoC(G),. Define the representation® 7* of G x G on EndV') by

[7 ® 7*](x, y)A = n(x)An(y)~",

for A e EndV) andx, y € G.
We define the representatidghx L of G x G onC(G) by

(RxL)(x,y) :=RxoL, = L,oRy.

Lemma 21.1 Let(x, V) be a finite dimensional irreducible representationtafThenC(G),
is invariant underR x L. The magl, : V — C(G), is surjective, and intertwines the represen-
tationsr ® 7* andR x L of G x G.

Proof: We first prove the equivariance @f : End(V) — C(G).LetA € End V) andx, y € G,
then for allg € G,

Tr([r @ 2*](x, y)A)(g) = tr(x(g)m(x)An(y™")) = tr(w(y ™' gx)A) = Ry Ly (Tz(A))(8)

Note that it follows from this equivariance that the imagdfis R x L-invariant. In an earlier
discussion we showed already thai(ifp) = C(G),,. O

Corollary 21.2 If & andn’ are equivalent finite dimensional irreducible represeiutas of G,
thenC(G), = C(G),.
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Proof: Let V, V'’ be the associated representation spaces. Then by equwdleTe exists a
linear isomorphisn?” : Vv — V’/ such thatT or(x) = n’(x)- T for all x € G. Hence for
A € EndV) andx € G,

T (TAT V) (x) = tr(n’ (X)TAT ™) = tr(T7'7' (x)TA) = tr(m(x)A) = Tr(A)(x).
Now use that’, andT,  have image€'(G), andC(G),, respectively, by Lemma 21.1. [
We now have the following.

Theorem 21.3 (Schur orthogonality)Let (iz, V') and (z’, V') be two irreducible finite dimen-
sional representations @ . Then the following holds.
(a) If x andn’ are not equivalent, the@(G),, L C(G), (with respect to the Hilbert structure
of L2(G)).

(b) LetV be equipped with an inner product for whiahis unitary. Ifv, w,v’, w’ € V, then
the L2-inner product of the matrix coefficients, ,, andm, ,, is given by:

/ Moy (X) My () dx = dim(z) ™ (v, V') {w, w’) (24)
G

Remark 21.4 The relations (24) are known as tBehur orthogonality relationgOf course the
assumption thadx is normalized is a necessary assumption for (24) to hold.

Proof: Forw € V andw’ € V' we define the linear map,  : V — V' by Ly pu =
(u, w)w’. Consider the following linear mag — V’, defined by averaging,

Iw,’w = / ]T,(_x)_l °Lw’,w o]T(X) dx.
G

One readily verifies that
(Iyr v, V') = (My o, My ) 2. (25)

Moreover, by right invariance of the measute it readily follows that/,, ,, is an intertwining
map from(V, ) to (V', n’).

(a): If = andx’ are inequivalent then the intertwining magp ,, is trivial by Lemma 20.30.
Now apply (25) to prove (a).

(b): Now assumé’ = V'. Then for allw, w” € V we havel,, ,, € Endz(V), hencel,, ,,
is a scalar. It follows that there exists a sesquilinear fgron V' such that

Iw’,w = ,B(w/, w) IV-

Applying the trace to both sides of the above equation we hattt(/,, ,,) = d.B(w’, w). Here
we have abbreviated, = dim(;r). On the other hand, since tris linear,

tr(ly w) = /Gtr(n(x)_le/,wn(x)) dx = /Gtr(Lw/,w) dx =tr(Ly ) = (W', w).

Hence
Ly = B, w)ly = d N w', w)ly.
Now apply (25) to prove (b). O

79



Another way to formulate the orthogonality relations is thkowing (V is assumed to be
equipped with an inner product for which is unitary). If A € End(V), let A* denote the
Hermitian adjoint of4. Then one readily verifies that

(A,B)— (A, B) :=trB*A

defines a Hermitian inner product on Eid. Moreover, the representation® n* is readily
seen to be unitary for this inner product.

Corollary 21.5 The mapg T, := +/d, T, is a unitaryG-equivariantisomorphism frofnd(1")
ontoC(G),.

Proof: We begin by establishing a few properties of the endomonphis, ,,, for v, w € V.
From the definition one readily sees that, #6rw’ € V the adjoint ofL,. ,, is given by

* —
LY =

Lw’,v/-
Moreover, one also readily checks that
Lw’,v/ °Lv,w = (U s v,>Lw/,w-

From these two properties it follows in turn that

(Lyw, Ly w) =t (LyryoLyy) = (v, v'){w, w). (26)
Finally, we recall that

Trn(Lyw)(x) =tr(m(x)Ly ) = My (x) (x € G),
hence
<0Tn(Lv,w) , OTJT(LU’,w’))L2 = dn (mv,w , mv’,w’)L2- (27)
From (26) and (27) we see that the Schur orthogonality mlatmay be reformulated as

<0Tn(Lv,w) > oTn(Lv’,w’)>L2 = (Lv,w > Lv’,w’)v (28)

forall v, v, w,w" € V. The map<_, ,,, for v, w € V, span the space Efld,). Hence the Schur
orthogonality relations are equivalent to the assertian®h, is an isometry from End’) into
C(G),. We proved already thatT,, is surjective ontaC(G),; hence°T, is a unitary isomor-
phism. The equivariance 6f,, has been established before. O

Definition 21.6 Let (V, ) be a finite dimensional representationafThe functiony, : G —
C defined by
X (x) = trm(x), (x € G),

is called thecharacterof .
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Remark 21.7 Since the representationis continuous, it is also smooth, hengg € C*°(G).
Note thaty,, is a sum of matrix coefficients of. Thus, if G is compact andr irreducible, then
Xz € C(G)x.

Lemma 21.8 Let (7, V) be an irreducible finite dimensional representationthfTheny,, is
the unique conjugation invariant function @(G), with y.(e) = d,. Its L?-norm relative to
the normalized Haar measure|jg.|. = 1.

Proof: We equipV with an inner product for whickr is unitary, and define the associated inner
product on En@l) as above. Lep € C(G),. Thenp = °T,(A) for a uniqued € EndV).

By equivariance of’;, the functiony is conjugation invariant if and only il is G-intertwining,
which in turn is equivalent tol = cly for a constant € C. We observe that = <p(e)/d,3/2.
This implies that there exists a unique conjugation invarianctiong with ¢(e) = d,. For this
function we have = 1/./d, and

p(x) =T (cly)(x) = Vdztr(m(x)cly) = trr(x) = xr(x).
The assertion about the?-norm follows from

| xzll2 = trl(c)*cl] = c*tr(]) = c?d, = 1.

22 Characters

In this section we assume thatis a Lie group. We shall discuss properties of charactersibéfi
dimensional representations Gf

If V is a finite dimensional complex linear space, we write @hdfor the space of complex
linear maps from’ to itself, and det= dety and tr= try for the complex determinant and trace
functions Endl) — C.

Lemma?22.1 LetT : V — W be a linear isomorphism of finite dimensional linear spaces.
Then for every linearmagd : V — V,

dety(ToAoT ') =devyA and try(ToAdoT ') =tryA.
Let V' be a finite dimensional linear space. Then forallB € End(V),
tr(A o B) = tr(B o A)

Proof: Exercise for the reader. O
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The charactey,, of a finite dimensional representati¢m, V) of G is defined as in Defini-
tion 21.6.

Lemma 22.2 Let x, p be finite dimensional representations@f If = and p are equivalent,
their characters are equaly,, = x,.

Proof: LetT : V, — V, be an equivariant linear isomorphism. Thefx) = T o (x)o 7!
for everyx € G. The result now follows by application of Lemma 22.1. O

Lemma 22.3 Let (7, V) be a finite dimensional representation@f Then, for allx, y € G,

Xn(xyx_l) = x=(y).

Proof: Exercise for the reader. O

Definition 22.4 Let z be a representation @f in a finite dimensional complex linear spake
We define thecontragredientor dual of 7 to be the representation” of G in the dual linear
spacel * given by

v (x) =a(x"H* v s v*em(x7Y), (x € G).

Lemma 22.5 Let (x, V) be a finite dimensional representation®f
(a) If 7 is continuous, them " is continuous as well.

(b) The character ofrV is given by
Yo (X) = 1z (x7)  (x €G).

Proof: Letuv;,...,v, be abasis fol’ and letv!, ..., v" be the dual basis for*, i.e., v’ (v;) =
8ij. Then, forx e G, the matrix ofz " (x) with respect to the basis, ..., v, is given by

7V (x)i; = (w(x"H* v) = (0, m(xTHy) = o (x7h i

If 7 is continuous, then its matrix coefficients are continuausfions. Therefore, so are the
matrix coefficients oft v, and (a) follows. Assertion (b) follows from the above idgnés well.
O

Characters of unitarizable representations have theWoilpspecial property.
Lemma 22.6 Letx be afinite dimensional representation@f If 7 is unitarizable, then
Xﬂ(x_l) = Xn(x)v (X € G)

Proof: Exercise for the reader. O
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If (71, V1) and(m,, V,) are two continuous representations(afthen we define théirect
sumrepresentatiomw = m; @ 7, in the direct sun¥ = V; @ V, by

T(x)(v1,v2) = (1 (x)v1, T2(X)V2) (vi € Vi, v € V3, x €G).
Lemma 22.7 Letn,, 7, be finite dimensional representations@fThen

Xmi@my = Xmy + Xma-

Proof: Exercise for the reader. O

If (71, V1) and(m,, V3) are two finite dimensional representation€ofve define theitensor
productz; ® m, to be the representation 6f in the tensor product spadg ® V, given by
(m1 ® m)(x) = m1(x) ® ma(x). Thus, forx € G, the linear endomorphisitir; ® 7,)(x) of
V1 ® V5 is determined by

(m1 ® m2)(x)(V1 ® V2) = w1 (X)v; @ m2(X)V2,
for all v € V1, vy € V5.

Lemma 22.8 Let (71, V1) and (75, V>) be finite dimensional representations @f Then the
character of their tensor produet; ® =, is given by

Ami®ny = Xmy Xma-

Proof: Exercise for the reader. Establish, more generally, artityesf the form t(A ® B) =
tr(A)tr(B), by choosing suitable bases. O

Exercise 22.9 Recall the definition, for € N, of the representation, of SU(2) in the finite
dimensional spac®, (C?) of homogeneous polynomial functio®® — C of degreen. Show
that the charactey, of ,, is completely determined by its restrictionfo= {z, | ¢ € R}. Hint:
use that every matrix in SQ) is conjugate to a matrix df.

Show that: _
sin(n + 1)g

f,) = :
In(ty) sing

’

for ¢ € R. Herer,, denotes the diagonal matrix with entri€$ ande¢.

Assumption: In the rest of this section we assume that the Lie gréup compact. We denote
by (-, -) the L>-inner product with respect to the normalized Haar meagurenG.

Lemma 22.10 Letr, p be finite dimensional irreducible representationgiof

(@) If 7 ~ pthen(y., x,) = 1.
(b) If = £ pthen(yx, x,) = 0.

Proof: This follows easily from Theorem 21.3. O
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Let 7 be a finite dimensional representation of the compact gf@uphens is unitarizable,
and therefore equivalent to a direct sdifi_, 7; of irreducible representations. It follows that
Xr = Y iy X=:- Using the lemma above we see that for every irreducible sgptations of G
we have

#i | i~ 8% = (Xx s x5)- (29)

In particular this number is independent of the particukeezamposition ofr into irreducibles.
For obvious reasons the number (29) is calledrthatiplicity of § in 7. We shall also denote it
by m(§, ).

Let G denote the set of equivalence classes of finite dimensioeallcible representations
of G. Then by abuse of language we shall wiite G to indicate tha$ is a representative for an
element ofG. (A better notation would perhaps bg € @.) If § € G andm € N, then we write
mé for (the equivalence class of) the direct sunmotopies ofs.

We have proved the folllowing lemma.

Lemma 22.11 Letx be a finite dimensional representation of the compact g @uphen

T~ @ m(8, )b,

Fite!

wherem(8, w) = (yx . xs) € N, for every§ € G. Any decomposition of into irreducibles is
equivalent to the above one.

Exercise 22.12 This exercise is meant to illustrate that a decompositioa oépresentation

into irreducibles is not unique. Let;, 7, be irreducible representations i, V, respectively.

Assume thatr, 7, are equivalent, and I€t : 1'; — V, be an intertwining isomorphism.
EquipV = Vi & V, with the direct sum representatian and show thatV; = {(v, Tv) |

v € V1}is an invariant subspace &f Show that the restriction of to W is irreducible, and

equivalent tar;. Find a complementary invariant subspdZeand show that the restriction af

to this space is also equivalentitg.

The following result expresses that the character is a gahierariant.
Corollary 22.13 Letr, p be two finite dimensional continuous representations.ofhen
T ~p & Yz = Yp-

Proof: The implication = follows from Lemma 22.2. For the converse implication, .asg
that y, = yx,. Then for everys € G we haven (8, 7) = (x=, xs) = (xp. xs) = m(8, p). Now
use the previous lemma. O

Corollary 22.14 Letn be a finite dimensional representation®f Thens is irreducible if and
only if its charactery, hasL?-norm one.

Proof: By Schur orthogonality, the characters, for § € G form an orthonormal set in%(G).
It follows that|| x [|* = Y_s m(8, w)?. The result now easily follows. O
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23 The Peter-Weyl theorem

In this section we assume th@tis a compact Lie group. We denote 5ythe set of (equivalence
classes of) irreducible continuous finite dimensional@spntations of;.

Definition 23.1 We define the spacB(G) of representative functiorte be the space of func-
tions f : G — C that may be written as a finite sum of functiofise C(G)s, for§ € G.

Note that the spac®(G) is contained inC*°(G). Moreover, it is invariant under both the
left- and the right regular representationgbf

Exercise 23.2 Show thatR(G) is the linear span of the set of all matrix coefficients of énit
dimensional continuous representationg;oHint: consider the decomposition of finite dimen-
sional representations into irreducibles.

Proposition 23.3 The space of representative functions decomposes acgduaithe algebraic
direct sum

R(G) =D C(G)s.

§eG

The summands are mutually orthogonal with respect tolthénner product. Every summand
C(G)s is invariant under the representatiat x L of G x G. Moreover, the restriction oR x L
to that summand is an irreducible representatiorGok G.

Proof: The orthogonality of the summands follows from Schur orthrwagity. It follows that the
above sum is direct.

The mapTs : End(Vs) — C(G)s is bijective and intertwine8 ® §* with R x L. Hence it
suffices to show that ® 6* is an irreducible representation 6fx G.

By a straightforward computation one checks that

Xses+(x,y) = xs(x)x5(y).
for (x,y) € G x G. If dx anddy are normalized right Haar measure 6nthen the product
measurelx dy is the normalized right Haar measure @< G. Moreover, by Fubini’s theorem,

litsor ooy = [ Lt dxdy

- /(/ 1P dx) dy
G G

- ”XS“%Z(G)”XSHiz((;) =1,

sinceé is an irreducible representation 6f It follows from Corollary 22.14 thad ® §* is an
irreducible representation of x G. OJ
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The proof of the following result is based on the spectrabtbm for compact self-adjoint
operators in a Hilbert space. It will be given in the next gestt

Proposition 23.4 The spacék(G) is dense inL?(G).

Let H, be a collection of Hilbert spaces, indexed by a.4efThen the algebraic direct sum

D,

aeA

is a pre-Hilbert space when equipped with the direct sumripneduct: (>, ve, D, Wa) =
> (Ve , wy). Its completion is called the Hilbert direct sum of the spakgs and denoted by

P He. (30)

oA
This completion may be realized as the space of sequeneety, )qc4 With v, € H, and
Il =) lvall? < oo
aeA

Its inner product is given by

(v, w) = Z(Utx, Wy).

aeA

If 7, IS a unitary representation 6f in H,, for everya € A, then the direct sum of the,
extends to a unitary representation®fin (30). We call this representation the Hilbert sum of
the .

Theorem 23.5 (The Peter-Weyl TheoremJhe spacd.?(G) decomposes as the Hilbert sum

A

L*G) =P CGs,

§eq

each of the summands being an irreducible invariant subspacthe representatio® x L of
G xG.

Proof: This follows from Propositions 23.3 and 23.4. O

Exercise 23.6 Fix, for every (equivalence class of an) ireducible unitaagresentatioiis, Vs)
an orthonormal basi 1, . . ., es qaim(s). Denote the matrix coefficient associatece(g andes ;
by ms ;;. Use Schur orthogonality and the Peter-Weyl theorem to shatthe functions

Jdim@)ms,;;  §e€G, 1<i,j<dim@)

constitute a complete orthonormal system£3G).
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24 Appendix: compact self-adjoint operators

Definition 24.1 Let V, W be Banach spaces. A linear map V' — W is said to becompacif
the imageTl’ (B) of the unit ballB = B(0; 1) C V has compact closure iiv.

A compact operatof : V — W is obviously bounded. The set of compact operators forms
a linear subspace of the spak€l/, W) of bounded linear operatois — W. The latter space is
a Banach space for the operator norm.

Lemma 24.2 Let V, W be Banach spaces, and I&(V, W) be the Banach space of bounded
linear operatorsV — W, equipped with the operator norm. Then the subspace of campac
linear operatorst’ — W is closed inL(V, W).

Proof: See a standard textbook on functional analysis. O

Remark 24.3 Alinear mapT : V — W is said to be of finite rank if its imag& (V) is finite
dimensional. Clearly an operator of finite rank is compatiug; if 7; is a sequence of operators
in L(V, W) all of which are of finite rank, and if; — T with respect to the operator norm, then
it follows from the above result thdt is compact.

We recall that a bounded linear operafofrom a complex Hilbert spac# to itself is said
to self-adjoint if7* = T, or, equivalently, if{Tv, w) = (v, Tw) forall v, w € H.

We now recall the importargpectral theorenfior compact self-adjoint operators in Hilbert
space. It will play a crucial role in the proof of the Peteryl\Mlaeorem in the next section. For a
proof of the spectral theorem, we refer to a standard texk lbodunctional analysis.

Theorem 24.4 LetT be a compact self-adjoint operator in the (complex) HillsgraceH. Then
there exists a discrete subgetC R \ {0} such that the following hold.

(a) For everyA € A the associated eigenspagg, of T in H is finite dimensional.
() f A, ue A,A# pnthenH, LH,.
(c) ForeveryA € A, let P, denote the orthogonal projectiod — ;. Then

T:ZAPA,

the convergence being absolute with respect to the openaton.
(d) The setA is bounded iR and had) as its only limit point.
We will end this section by describing a nice class of comsatt-adjoint operators in

L?(G), for G a compact Lie group. First we examine the space of compagfipated con-
tinuous functions on product space.
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Let X, Y be locally compact topological Hausdorff spacesy IE C(X), andy € C(Y),
then we writep ® v for the continuous function o x Y defined by:

Y :(x,y) > o(xX)Y(y).

The linear span of such functions (X x Y) is denoted byC(X) ® C(Y). If ¢ € C.(X)
andy € C.(Y) thengp ® v is compactly supported. Hence the sganiX) ® C.(Y) of such
functions is a subspace 6§ (X x Y).

Proposition 24.5 Let X, Y be locally compact Hausdorff spaces. Then for every opesetub
U C X x Y with compact closure, eved € C.(U) and every > 0, there exists a function
¢ € Co(X) ® Ce(Y) withsupg C U andsup.ey |P(z) — ¢(2)| < €. In particular, the space
C.(X)®C.(Y)isdenseinC.(X xY).

Proof: Using C.-partitions of unity forX andY, we see that we may reduce to the case that
U = Uy x Uy, with Uy and Uy open neighborhoods with compact closuresXinand Y
respectively.

Fix ® € C.(X xY), with K = suppb C U. Then, by compactnes® C Ky x Ky for
compact subsetEy C Uy andKy C Uy. Lete > 0. Then by compactness there exists a finite
open coveringV;} of Kx such that for every and allx;, x, € V;,y € Ky one has

D(xq1,y) — D(x2,y) <e.

Without loss of generality we may assume thatC Uy for all j. Select a partition of unityy; }
which is subordinate to the coverify;}, and fix for every;j a point§; € V;. Letx € Kx,y €
Ky.If jissuchthat € V;, then|®(x;, y) — ®(x, y)| < e. It follows from this that

D 000 0] =P p)| = Y [p;()P(x;. ) — ¢; () D(x, )|
J J

IA

D 0 (0)|D(xs, y) — Bx, )|
j
< Z(pj(x)e = €.
j
Hence, if we puty;(y) = ®(x;, y), then
1) ¢ @Y — Pl <.
j

Moreover, supp; ® ¥, C Uy x Uy C Uy x Ky C U. O

Let now G be a Lie group. We fix a left invariant densitft on G and equipG x G with
the left invariant product off x with itself. Thisproduct densitydenoteddxdy, is determined
by the formula

GxG Sl y) dxdy :/G (/G f(X,y)dx) dy :/G (/G f(x,y)dy) dx,
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for f € C.(X xY).
If K € C.(G x G), then we define the linear operatbg : C.(G) — C.(G) by

Te(@)(x) = [G K(x. y)o(y)dy.

For obvious reasons this is callediategral operatomwith kernel K.

Lemma24.6 Let K € C.(G ® G). Then the operatofly extends uniquely to a bounded
linear endomorphism of?(G) with operator norm|| Tk |lop < || K||>. Moreover, this extension
is compact.

Proof: Letgp € C.(G). Then

(Tx(@). ¥) = fG T (@)Y (x) dx

| ( | K(x,y)w(y)dy)de
G G

= (K,¢o® lﬁ)m(GxG_)
< [Kll2iexa)le ® ¥l2@exe) = IK2llel2l1v 2.

Hence||Tx¢|2 < ||K|l2ll¢]l.. This implies the first assertion, sin€g(G) is dense inL?(G).
For the second assertion, note that by Proposition 24.6 thests a sequendg; in C.(G) ®
C.(G) which converges t& with respect to thé.2-norm onG x G. It follows that

ITk; — Tk llop < | K; — Kl2 = 0.

Every operatoflx,; has a finite dimensional image hence is compact. The subspaoepact
endomorphisms of.2(G) is closed for the operator norm, by Lemma 24.2. Therefdgejs
compact. ]

Let G be a Lie group, equipped with a left invariant density. If (x, V') is a continuous
finite dimensional representation 6f then for /' € C.(G) we define the linear operatat( 1) :
V — V by

w(f)v :/Gf(x)n(x)v dx.

Referring to integration with values in a Banach space,dbfmition actually makes senserif
is a continuous representation in a Banach space,; it islyessin that them ( /) is a continuous
linear operator. In particular, the definition may be apptie the regular representatiohsand
R of G in L?(G). Thus, for f € C.(G) andg € L?(G),

[R(f)pl(x) = /G FOp(xy) dy = /G Fa e dy  (xeG). (1)

Of course, this formula can also be used as the defining faymvithout reference to Banach-
valued integration.
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Corollary 24.7 Assume thatG is compact, and letf’ € C(G). Then the operatoR(f) :
L?*(G) — L?*(G) is compact.

Proof: If ¢ € C(G), then from (31) we see tha&(f) = T, with K(x,y) = f(x~'y). The
result now follows by application of Lemma 24.6. 0J

Remark 24.8 Note that for this argument it is crucial thétis compact. For if not, and’ €
C.(G), then the associated integral kerdeheed not be compactly supported.

The following lemmas will in particular be needed for thentigegular representatiaR.

Lemma 24.9 Let (r, H) be a unitary representation @ in a Hilbert space. Letf € C.(G),
then

()" =n(f7),
where f*(x) = f(x~1).

Proof: Straightforward and left to the reader. 0J

Lemma 24.10 Letx be a continuous representation Gfin a Banach spacé’. If f € C.(G)
is conjugation invariant, them ( /) is intertwining.

Proof: Straightforward and left to the reader. O

Corollary 24.11 Assume that is compact, and leff € C(G) be such thatf* = f. Then
R(f) (and L(f) as well) is a compact self-adjoint operator. If, in additjofi is conjugation
invariant thenR( f) is G-equivariant.

Proof: This follows by combining Corollary 24.11 and Lemmas 24.6 24.10. 0J

25 Proof of the Peter-Weyl Theorem

In the beginning of this section we assume tats any Lie group. At a later stage we will
restrict our attention to compact. We assume tha® is equipped with a positive left invariant
densitydx.

Lemma 25.1 Lety € C.(G). ThenR(¢) mapsL?(G) into C(G).
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Proof: Letx, € G and lete > 0. Sincep has compact suppoft := suppp, it follows by the
principle of uniform continuity that there exists a compaetghborhood/ of ¢ in G such that
lp(u) — ()| < €|1c|l2 + 1)~ forallu,v € G withvu™! € U.

Let now f € L?*(G). Forx,y € G with x € xoU we have(x,'y)(x7'y)™' = x;'x € U,
hence

[R(p) f(x) = R(p) f(x0)| = I[G[w(x_ly)—w(xaly)]f(y) dyl

/ lf)] dy = € [ Lecunc | fO)] dy
xCUxoC G
< ellacusell £l < 2¢ el 1 £l < €l flb.

A

From this we deduce th&(¢) f is continuous inx,. O

Lemma 25.2 Let f € L?(G) and lete > 0. There exists an open neighborhobidof e in G
such that for allk € U we have| R, f — f||» < €. Moreover, ifU is any neighborhood with this
property and ifp € C.(U) satisfiesp > 0 and [ ¢(x) dx = 1, then

IR(@)f — fl2 <e. (32)

Proof: The first assertion follows from the continuity of the map— R, f, see Proposition
20.10. LetU, ¢ be as stated. Then, for alle G,

R@) f(x) — f(x) = [G oL () — F(0] dy.
Hence, for everyg € L?(G) we have
(R@)f —f.g) < /G /G o) 1 f () — f(0)] g(x) dy dx
/ / o) |/ (xy) — £ g(x) dx dy
GJIG
/Gmy) IRy f — fllallglla dy

= ellgl2.

IA

From this the estimate (32) follows. O

From now on we assume that the graiips compact.

Lemma 25.3 Let V be a finite dimensional righG -invariant subspace of?(G). ThenV C
R(G).
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Proof: Decomposing’ into a direct sum of irreducible subspaces, we see that werethce
the case that is irreducible. We claim thalt’ consists of continuous functions. For this we
observe thatC(G) N V is an invariant subspace. Hence it suffices to show kthabntains a
non-trivial continuous function. Fi¥ € V \ {0} and fix0 < € < 1/2|| f||.. ChooseU andg
as in Lemma 25.2. ThefR(¢) f|| > 1/2¢, henceR(¢) f # 0. From Lemma 25.1 it follows
that R(¢) f € C(G). Moreover, sincel is right invariant, it follows thatR(¢) f € V. This
establishes the claim th&t C C(G).

Choose an orthonormal bagig;) of V. Then for f € VV we have

R.f = Z(Rxf, Vi)V,

hence by evaluation ia,

) =) (Ref . Yi)¥ile).

1

By definition of R(G) it now follows that f € R(G). OJ

Lemma 25.4 LetU be an open neighborhood efin G. Then there exists a € C.(U) such
that:

(@) ¢ > 0and/; p(x)dx = 1;

(b) ¢* = ¢;
(c) ¢ is conjugation invariant.

Proof: From the continuity of the map — x~! one sees that there exists a compact neighbor-
hoodV of e such that’ c U andV~! c U. For everyx € G there exist an open neighborhood
N, of x and a compact neighborhod@ of e in V such thatyz=! € V forallz € Ny, y € V4.
By compactness aof; finitely many of theN, coverG. Let Q be the intersection of the corre-
spondingV,. Then is a compact neighborhood efand for allx € G andy € Q we have
xyx~leV.

Now selecty € C.(£2) such thaty, > 0 and f; ¥o(x) dx = 1. Define

V(x) = [G Yolyxy™) dy.

Since(x, y) — ¥ (yxy~!) is a continuous function, it follows that is a continuous function.
Clearlyyr > 0. Moreover, by interchanging the order of integration, andgishe fact that/x
is bi-invariant and normalized, we deduce thiaty (x) dx = 1. If ¥/(x) # 0, thenyxy™' €
suppy, for somey € G, hencex € U,cgy~'Qy C V. It follows that supgsr C V. One now
readily verifies that the functiop = %(lﬁ + ¥*) satisfies all our requirements. O

Corollary 25.5 Let f € L?(G), f # 0. Then there exists a left and riglé-equivariant
bounded linear operatof : L?(G) — L?(G) with:
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@ Tf #0.
(b) T is self-adjoint and compact;

(c) T maps every righG-invariant closed subspace 6f (G) into itself.

Proof: Lete = %||f||2, and fix an open neighborhodd of ¢ in G that satisfies the assertion
of Lemma 25.2 Letp € C.(U) be as in Lemma 25.4, and defiffe = R(¢). Then||Tf —
fll < e, hence (a). Moreover, every closed right invariant subspaas L2(G) equipped
with the restriction ofR is a continuous representation in a Banach space, henaceimvander
T = R(p). Thisimplies (c).

The operatorT is left G-equivariant, sincd. and R commute. It is rightG-equivariant
because is conjugation invariant, cf. Lemma 24.10. Finally (b) tails from Corollary 24.11.
O

Proof of Propostion 23.4The spac&(G) is left and rightG-invariant, and by unitarity so is its
orthocomplement. Suppose thal’ contains a non-trivial element Let 7' be as in Corollary
25.5. ThenT'|y : V — V is a non-trivial compact self-adjoint operator which istbtdft and
right G-equivariant. By the spectral theorem for compact seléadjoperators, Theorem 24.4,
there exists & € R, A # 0, such that the eigenspatgé = ker(T — Aly) is non-trivial. By
compactness df the eigenspack, is finite dimensional, and by equivarianceloft is both left
and rightG-invariant. By Lemma 25.3 it now follows thd}, C R(G), contradiction. Therefore,
V must be trivial. OJ

26 Class functions

By aclass functioron a compact Lie grou@ we mean a functiorf' : G — C that is conjugation
invariant, i.e.,L, R, f = f for all x € G. The name class function comes from the fact that a
conjugation invariant function is constant on the conjygelasses, hence may be viewed as a
function on the set of conjugacy classes.

The spaceC (G, clasg of continuous class functions is a closed subspac€ (@f) (with
respect to the sup norm). Its closurdlif(G) equalsL?(G, clasg, the space of square integrable
class functions 0.

If § € G, we denote the orthogonal projection framd(G) onto the finite dimensional sub-
spaceC(G)s by

Ps : L*(G) — C(G);

Note thatPs is equivariant for both the representaticRsnd L of G. In particular, this implies
that Ps mapsC (G, clasg into its intersection withC(G)s. Hence, by Lemma 21.8

Ps(C(G,clasy) = C(G)s N C(G,clasg = Cys.

It follows from this that the spac®(G, clasg = C(G,clasy N R(G) of representative class
functions is the linear span of the charactgss § € G.
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Lemma 26.1 LetG be a compact Lie group. Then the charactggs § € G, form a complete
orthonormal system fok.?(G, class.

Proof: By Schur orthogonality, the characters form an orthonorﬂy\atem. To establish its
completeness, lef € L?(G, clas9 and assume that L ys forall § € G.
FromPs f € C(G)s = Cys, we see that

Psf = (Psf . xs)xs =(f. xs) xs =0.

Hencef L R(G). By the Peter-Weyl theorem, the latter implies tifat= 0. O

Corollary 26.2 Let f € L?(G,clasy. Then

F=Y"f 1) x5

§eG

with convergence in the2-norm.

27 Abelian groups and Fourier series

In this section we consider the special case that the conypagroup G is commutative. If, in
addition,G is connected, the6 ~ R”/Z" for somen € N, and we will see that the Peter-Weyl
theorem specializes to the theory of Fourier series.

By amultiplicative characteof G we mean a continuous (hence smooth) group homomor-
phismé : G — C*, whereC* = C\ {0} is equipped with complex multiplication. By the lemma
below, if £ is a multiplicative character, théd(x)| = 1, x € G.

Lemma 27.1 Let H be a compact subgroup &f*. ThenH C T.

Proof: By compactness, there exists a constant 0 such that—! < |z| < r forall z € H.
Letw e H, then applying the estimate to= w” we obtain that~!/” < |w| < r!/". Taking
the limit forn — oo we see thatw| = 1. OJ

Lemma 27.2 Let G be a commutative compact Lie group. (8 Vs) is a finite dimensional
irreducible representation af, thendimVs = 1. Moreoverd(x) = ys(x)Iy,. The map — y;
induces a bijection frond: onto the set of multiplicative characters Gf

Proof: If x € G, thené(y)é(x) = 6(yx) = 8(xy) = 6(x)8(y) for all y € G, henced(x) is
equivariant, and it follows that

8(x) = £(X)1, (33)

for someé(x) € C, by Schur’s lemma. It follows from this that every linear spase ofV is
invariant. By irreducibility ofé this implies that the dimension &f must be one. From the fact
thats is a representation it follows immediately that> £(x) is a character. Applying the trace
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to (33) we see that = ys, the character of. Thusé — xs induces a map from the spa@eof
equivalence classes of finite dimensional irreducibleasgntations to the set of multiplicative
characters ofz. This map is injective by Corollary 22.13. §fis a multiplicative character then
(33) defines an irreducible representatdoof G in C, andé = ys. Therefore the map — xs is
surjective onto the set of multiplicative characters. OJ

Corollary 27.3 Assume thafr is a commutative compact Lie group. Then the set of muléiplic
tive charactersys, § € G, is a complete orthonormal system b#(G).

Proof: This follows immediately from the previous lemma combindthwhe theorem of Peter
and Weyl (Theorem 23.5). O

In the present setting we define the Fourier transfgfrm@ — Cof afunctionf € L?(G)
by R
f@)=(f. xs)
LetG be equipped with the counting measure. Then the assodidtspace i§2(§), the space
of functionsy : G — C such thaty ;& [¢(8)|*> < oo, equipped with the inner product:

(0. ¥):=>" @) ¥(@).

§e€G

Corollary 27.4 (The Plancherel theorem)Let G be a commutative compact Lie group. Then
the Fourier transformf — £ is an isometry fronl.2(G) onto/2(G). Moreover, if f € L2(G),
then

f=Yf© .
§eG
with convergence in the2-sense.

Proof: Exercise for the reader. O

If in addition it is assumed that the groapis connected, the6 ~ (R/Z)" for somen € N,
see Theorem 6.1. The purpose of the following exercise ictordingly view the classical
theory of Fourier series as a special case of the Peter-\Wegty.

Exercise 27.5 LetG = R"/2xZ". If m € 7", show that

Y X > )
defines a multiplicative character 6f. (HereAm - X = mx; + --- + myx,.) Show that every
multiplicative character is of this form. Thus ~ Z". Accordingly for f € L2(G) we view the
Fourier transformf as a may,” — C.

Show that the normalized Haar integral@fis given by

1 2n 2n
I(f):(zn)”[) /(; f(x1,...,xp) dxy...dx

95



Show that forf € L?(G), m € Z" we have:

1
2m)

“ 2w 2w _
f(m) = / .. f(x1,...,Xn) e imixittmaxn) g dx,.
0 0

Moreover, show that we have the inversion formula

Sy =" fme™  (x eR"/2nZ")

mezn

in the L?-sense.

28 The group SU(2)

In this section we assume th@tis the compact Lie group SQ).

Recall the definition of the representatiop of SU(2) in the spacd/, = P,(C?) of homo-
geneous polynomials of degredrom Section 20. In Proposition 20.28 it was shown thais
irreducible. Moreover, the associated character is détearby the formula:

sin(n + 1)g

sno @R (34)

Xn (l(p) =

(see Exercise 22.9). The purpose of this section is to ptwvéilowing result:

Proposition 28.1 Every finite dimensional irreducible representatiorSa(2) is equivalent to
7, forsomen € N.

We recall that every element of $2) is conjugate to an element 6f = {7, | ¢ € R}. Therefore

a class functionf on SUQ2) is completely determined by its restrictiof\; to 7. For every

¢ € R the diagonal matrices, andtw‘l = t_, are conjugate. Therefore, the restrictigiy

is invariant under the substitutian— ¢~!. Thus, if C(T)e, denotes the space of continuous
functionsg : T — C satisfyingg(:™') = g(¢z) for all ¢ € T, then restriction tdl" defines an
injective linear map : C(G, clasg — C(T)ey.

Lemma 28.2 The mapr : C(G,clasg — C(T)ey is bijective. Moreover is isometric, i.e., it
preserves the sup-norms.

Proof: Thatr is isometric follows from the observation that the set ofuesl of a function
f € C(G,clasg is equal to the set of values of its restrictiofyf'). Thus it remains to establish
the surjectivity ofr. Let g € C(T)ey. Theng(z,) = g(e'?) for a unique continuous function
g : T — C satisfyingg(z) = g(z™!). Now g(z) = G(Re) for a unique continuous function
G : [-1,1] — C. It follows thatg(z,) = G(cosp), for ¢ € R.

An elementx € SU(2) has two eigenvalues(x) andz(x)™!, with |z(x)] = 1. Clearly
x — Rez(x) is a well defined continous function on &).

Define f(x) = G(Rez(x)). Then f is a well defined continuous class function. Moreover,

f(t,) = G(Ree'*) = g(1,). hencer(f) = g. 0
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Corollary 28.3 The linear span of the characteys, for n € N, is dense inC(G, class.

Proof: By Lemma 28.2 it suffices to show that the linear spaof the functionsy, |r is dense
in C(T)ey. From formula (34) we see that, (t,) = > 7_, ¢'®~29¢_ HenceS equals the linear
span of the functions, : 7, > ¢'"? + ¢7'"% = 2cosng, (n € N). The latter span is dense in
C(T)ev, by the classical theory of Fourier series. O

Corollary 28.4 Let f € C(G,class. If f L y,foralln € N, thenf = 0.
Remark 28.5 Once we know that the,, exhausG this follows from the Peter-Weyl theorem.

Proof: We first note that, fog € C(G),

]2, = [G 2P dx < gl

where| - ||« denotes the sup norm. Using this estimate we see that thar Ispan of the
charactersy, is dense inC(G, clasg with respect to thd.2-norm. Thus, iff € C(G, clasg is
perpendicular to aly,,, then it follows thatf L C(G, clasy. In particular) /|13 = (f, f) =0,
which implies thatf = 0. O

Corollary 28.6 Every finite dimensional irreducible representationS3(2) is equivalent to
one of ther,,, n € N.

Proof: Suppose not. Then there exists & G such that is not equivalent tor,, for every
n € N. Hence the class functiops is perpendicular tg, for everyn € N. This implies that
xs = 0. This is impossible, sincgs(¢) = dim(5) > 1. O

From the fact that every element of 81) is conjugate to an element @f one might expect
that there should exist a Jacobidn T — [0, oo[ such that for every continuous class function
f on SU2) we have

27
Fx) dx = / £(t) I (i) do.
SU(Z) 0

It is indeed possible to compute this Jacobian by a subistitwf variables. However, we shall
obtain the above integration formula by other means.

Lemma 28.7 For every continuous class functigh: SU(2) — C we have:

feydx = [ fay) ST

SU(2) 0 T

de. (35)
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Proof: Consider the linear map which assigns tof € C(G, clasg the expression on the left-
hand side minus the expression on the right-hand side otibtvesequation. Then we must show
thatL is zero.

Obviously the linear functional : C(G, clasg — C is continuous with respect to the sup
norm. Hence by density of the span of the characters it saffcehow that.(y,) = 0 for every
n € N. The functiony, is identically one; therefore left- and right-hand side @) both equal
1 if one substitutes” = yo. HenceL(yo) = 0. On the other hand, it > 1, and f = yx,, then
the left hand side of (35) equalg, . xo) = 0. The right hand side of (35) also equalshence
L(x,) = 0foralln. 0J

Corollary 28.8 Let f € C(G). Then

2w H
B . sint ¢
/Gf(x) dx—/o /Gf(xt(,,x )dx — do

Remark 28.9 The interpretation of the above formula is that the integrabverG = SU(2)
may be split into an integration over conjugacy classefvad by an integration over the circle
groupT.

Proof: Put
F(y) = /G Flayx™) dx.

Then by bi-invariance of the Haar measuré,is a continuous class function. Hence by the

previous result
2 n2
/ F(y) dy :/ / fxty,x 1 dx ST e de.
G o JG

T

On the other hand,

/G Fy)dy = /G /G Flryx ) dx dy
- /G /G Flryx ) dy dx,

by Fubini’s theorem. By bi-invariance of the Haar measure,itiner integral is independent of

x. Therefore,
F(y)dy = S(y)dydx
/. L),
- [G £ dy.

This completes the proof. 0J
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We end this section with a description of all irreducibleresentations of SG). From Sec-
tion 10 we recall that there exists a surjective Lie group aorarphismg : SU(2) — SQO(3)
with kernel kerp = {—1, I}. Accordingly, S@3) ~ SU(2)/{£1} (Thm. 17.4).

Proposition 28.10 For k € N the representation,; of SU(2) factors through a representation
o Of SO(3) ~ SU(2)/{£1}. The representations,; are mutually inequivalent and exhaust

S003).

Proof: One readily verifies thatr,x(x) = I for x € {£I}. Hencen,; factors through a
representatiotr,; of SO(3). Every invariant subspace of the representation spagcef m,; is

121 (SU(2)) invariant if and only if it is, (SO(3)) invariant. A non-trivial S@3)-equivariant
map Vo, — V; would also be Sl(B)-equivariant./I—|\ence thé,; are mutually inequivalent.
Finally, to see that the representationg exhaustSQO(3), assume thatr, ') is an irreducible
representation of S@). Theng*r := mo¢ IS an irreducible representation of 8, hence
equivalent to some,, n € N. Fromg*n = [ on kerg it follows thatnz,, = I on{+1}, hence
n is even. O

29 Lie algebra representations

Let IV be a finite dimensional complex linear spacexlfs a continuous representation Gf
in V, thenx is a (smooth) Lie group homomorphisth — GL(V), in view of Corollary 9.3.
Accordingly, the tangent map,. : ¢ — EndV) ate is a homomorphism of Lie algebras.
Thus, . IS a representation of in V. In other words, we see that a finite dimensional
moduleV automatically is gz-module (see Remark 20.6 and the text preceding the remark fo
the terminology used here).

By the chain rule one readily sees that

Te(X)v = i m(exptX)v, (36)
dt|,—

forv € V andX € g. On the other hand, it follows from Lemma 4.16 that for Elle g we
have:
n(expX) = e™X), (37)

WhenG is connected this equation allows us to compareihand theg-module structures on
V.When there is no chance of confusion, we will omit the stahertotation of the representation
ofginV.
Lemma 29.1 Assume tha is connected, and I8t, IV’ be two finite dimensionar-modules.
(a) Let W be a linear subspace df. ThenW is G-invariant if and only ifW is g-invariant.
(b) TheG-moduleV is irreducible if and onlyl is irreducible as ag-module.

(c) LetT : V — V’'bealinear map. Thef' is G-equivariantif and only iff" is g-equivariant.
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(d) V andV’ are isomorphic ags-modules if and only if they are isomorphic gsnodules.

Proof: Write 7 andn’ for the representations @ in V and V'’ respectively. As agreed, we
denote the associated representationg iof IV and V' by the same symbols, i.e., we omit the
stars in the notation.

(a): If W is g-invariant, then it follows from (37) thal is invariant under the grou@.
which is generated by exp But G, = G, sinceG is connected. The converse implication is
proved by differentiatingr (exp(t X)) attr = 0.

(b): This is now an immediate consequence of (a).

(c): Suppose that is g-equivariant. Then for alX € g we have:n’(X)oT = T o (X),
hencer’/(X)"oT = T or(X)" for all n € N, and sincel is continuous linear it follows that

eﬂ/(X) oT =T o e”(X).

From this it follows thatt’(x) o T = T o (x) for all x € expg, and hence fox € G, = G.
The reverse implication follows by a straightforward diéfetiation argument as in part (a) of
this proof.

(d): This follows immediately from (c). O

Lemma 29.2 LetG be a connected compact Lie group, andrdbe a representation a¥ in a
finite dimensional Hilbert spack. Thens is unitary if and only if

7(X)* = —n(X) (38)
forall X € g.

Proof: We recall thatr : G — GL(V) is a Lie group homomorphism. Hence for Alle g, ¢ €
R we have:

n(exptX) = /™.

If 7z is unitary, thenz(exptX)* = n(exp(—tX)), hence

etn(X)* — e—tn(X). (39)

Differentiating this relation at = 0 we find (38). Conversely, if (38) holds, then (39) holds for
all X, and it follows thatr (x) is unitary forx € expg. This implies thatr(x) is unitary for
x € G, =0G. [

It will turn out to be convenient to extend representatiohg ®o its complexificationgc.
If £ is a real linear space, its complexificatidhy is defined as the real linear spakexy C,
equipped with the complex scalar multiplicatiafw ® z) = v ® Az. We embedE as a real
linear subspace dfc by the map — v® 1. ThenE¢c = E @i E as areal linear space. In terms
of this decomposition, the complex scalar multiplicatisigiven in the obvious fashion. dfis a
real Lie algebra, then its complexificatign is equipped with the complex bilinear extension of
the Lie bracket. Thugyc is a complex Lie algebra.
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Any representatiop of g in a complex vector spadé has a unique extension to a (complex)
representation gfc in V; this extension, denotedt, is given by

pc(X +1iY) = p(X) + ip(Y),
for X,Y eg.

Lemma 29.3 Let V, V'’ be g-modules, and letV C V a (complex) linear subspace, arffd :
V — V' a (complex) linear map.

(&) The spacédV is g-invariant if and only if it isgc-invariant.

(b) V isirreducible as gg-module if and only if it is so as g@--module.

(c) T is g-equivariant if and only if it igyc-equivariant.

(d) V andV’ are isomorphic ag-modules if and only if they are isomorphic @s-modules.

Proof: Left to the reader. O

Example 29.4 The Lie algebrau(2) of SU(2) consists of compleX x 2 matricesd € M(2, C),
satisfying td = 0 and A* = —A. It follows from this thatisu(2) is the real linear subspace
of M(2, C) consisting of matricest with tr4A = 0 and A* = A. In particular, we see that
su(2) Nisu(2) = {0}. Therefore, the embedding(2) — M(2, C) extends to a complex linear
embedding

J isu(2)c = M(2,C).

Clearly, the image of is contained in the Lie algebra of &, C), which is given by
52,C) ={4 e M(2,C) | trA = 0}.

On the other hand, ift € s[(2,C), then(A — A*) belongs tosu(2) and$(4 + A4*) belongs
to isu(2); summing these elements, we see that j(su(2)c). Therefore,;j is an isomorphism
from su(2)¢ ontosl(2, C), via which we shall identify from now on.

30 Representations of sl(2,C)

It follows from the discussion in the previous section that 8U2)-module P, (C?), for n €
N, carries a natural structure ef(2, C)-module. The associated representatios(¢f, C) in
P, (C?) equals(m,+)c, the complexification ofr,.. We shall now compute this structure in
terms of the basig,, ..., p, of P,(C?) given by

n—j

pi() =2z, (e,

Let p € P,(C?). Then we recall that, fox € SU(?2), [m,(x)pl(z) = p(x~'z),z € C2. It
follows from this that, fo € su(2),

d
[0+ (§) P)(2) = Ep(e_tSZ) :

t=0
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hence, by the chain rule

0 0
[T (8) P (2) = 5§%<z>c—sz>1-+ 5§z(z>c—5z>2.

The expression on the right-hand side is complex line&rivence it also giveSp = (,4)c(§) p
for £ € s[(2, C). Thus, we obtain, fot € sl(2,c) andp € P,(C?),

e = € + Enlp. (40)
Z1 Zyp

We shall now compute the action of the ba&isX, Y of sl(2, C) given by

1 0 0 1 00
n=(o ) x=(0a) r=(00)
By a straightforward computation we see that

[H X]=2X, [HY]=-2Y, [X.Y]=H. (41)

Definition 30.1 Let [ be a Lie algebra. By atandards[(2)-triple in [ we mean a collection of
linear independent elements, X, Y € [ satisfying the relations (41).

Remark 30.2 Let [ be a complex Lie algebra. Then the complex linear span ai@j-triple
in [ is a Lie subalgebra isomorphic &2, C).

SubstitutingH, X andY for £ in (40), we obtain, fopp € P,(C?),
0 0 0 0
Hp=[-z1—+2z2—]p, Xp=—-2—p, Yp=—-z1—0p. (42)
821 822 821 a22
By a straightforward computation we now see that the actfadhetriple H, X, Y on the basis
elementp; is given by
Hpj = —=2j)pj. Xpj=—jpj—1. Ypj=(0 —n)pju.
For the matrices of the action &f, X, Y on P,(C?) relative to the basipy, . .., p, we thus find

n 0 .. 0
mat(H) = 0 n—2 -,
0 —n
and
0 -1 0 ... 0 0 .. 0
0O 0 -2 ... 0 -n 0 :
matX) =1 : eote, matY) = 0 I—-n O

0 —n e, Tl
0 ... .. 0 0 .0 =10

These matrices will guide us through the proof of the follogvtheorem.
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Theorem 30.3 Every irreducible finite dimensional(2, C)-module is isomorphic t@®, (C?),
for somen € N.

Remark 30.4 From the above theorem we deduce again, using Lemmas 29.2%Bdthat
every irreducible continuous finite dimensional repreatomn of SU?2) is equivalent tar,,, for
somen € N.

The proof of the the above theorem will be given in the resthig section. Let be an
irreducible finite dimensionall(2, C)-module.

GivenA € C, we shall writeV), := ker(H — AI). This space is non-trivial if and only ¥ is
an eigenvalue for the action éf on V.

Lemma 30.5 LetA € C. Then
XV, CViga, YV)CVos.

Proof: Letv € V,. ThenHXv = XHv + [H, X]v = AXv + 2Xv = (A + 2)Xv, hence
Xv € V,4,. This proves the first inclusion. The second inclusion is ptbw a similar manner.
O

By aprimitive vectorof IV we mean a vectar € V \ {0} with the property thak'v = 0. The
idea behind this definition is to get hold of the analoguggoft P,(C?).

Lemma 30.6 V' contains a primitive vector that is an eigenvector fér

Proof: Let A be an eigenvalue of the action &f on V. Fix an eigenvectow € V,, w # 0
and consider the sequence of vectars £ > 0, defined byw, = w andwgy1; = Xwy.
Thenwy € V, . If all vectorsw, were non-zero, then they would be eigenvectors for differen
eigenvalues o/, hence they would be linear independent, contradicting ke filimensionality

of V. It follows that there exists a largestsuch thatw, # 0. The vectorwy is primitive. OJ

In the following we assume thate V is a fixed primitive vector that is an eigenvector fér
The associated eigenvalue is denotedibyVe now consider the vectorg defined byvy = v
andvy4+1 = Yvg. By a similar reasoning as in the above proof it follows tharéexists a largest
numbem such that,, # 0.

Lemma 30.7
(a) The vectors, = Y*v, 0 < k < n, form a basis forV.
(b) The eigenvalug equalsn = dimV — 1.
(c) Forevery0 <k <n,

Hvp = (A —2k)vy, Xvrg =k(A —k 4+ 1)vg_;.
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(d) The primitive vectors ir¥ are the non-zero multiples of,.

Proof: We first prove (c) for alk € N (but note that, = 0for k > n). It follows from repeated
application of Lemma 30.5 that, € V),_,¢, henceHv, = (A — 2k)v,. We prove the second
assertion of (c) by induction. Sinag = v is primitive, the second assertion of (c) holds for
k = 0. Let nowk > 0 and assume that the assertion has been established fty smnaller
values ofk. Then

Xvk = XYvk_l
YXvg—1 + [X, Y]vg—y
= YXvr_1 + Hvogy
= (k=D@A = (k—=2)Yve—2 + (A —2(k — 1))ve—
k(A —k + 1vg—y

and (c) follows.

Let W be the linear span of the vectarg, for 0 < k < n. Then by definition of the vectors
vk, YUr = vrs1. ThereforeY leavesW invariant. By (c),H and X leaveW invariant as well.
It follows that W is a non-trivial invariant subspace &f hencel’ = W by irreducibility. The
vectorsvg, for 0 < k < n, must be linear independent since they are eigenvector# fwr
distinct eigenvalues; hence (a).

Finally, we have established the second assertion of (@lfdr > 0, in particular fork =
n+1.Nowv,;+; = 0, hence) = (n + 1)(A —n)v, and sincev,, # 0 it follows thatA = n. This
establishes (b).

It follows from (@) and (c) that the only primitive vectors ihare non-zero multiples af,.
O

Corollary 30.8 Let VV and V' be two irreducible finite dimensional(2, C)-modules. Then
V ~ V’if and only ifdimV = dimV’. Moreover, ifv andv’ are primitive vectors o¥ and V’,
respectively, then there is a unique isomorphiBml’ — V' mappingv ontov’.

Proof: Clearly if V' ~ V' thenV and V'’ have equal dimension. Conversely, assume that
dimV = dimV’ = n and thatv andv’ are primitive vectors o¥’ and V"’ respectively. Then by
the above lemma, the vectars = Y*v, 0 < k < n form a basis ofV’. Similarly the vectors

v, = Y*v', 0 < k < n form a basis of’’. Any intertwining operatof : V — V' that mapw
ontov’ must map the basis; onto the basis, , hence is uniquely determined. LEt: V' — V'

be the linear map determined vy = v, for 0 < k < n. ThenT is a linear bijection.
Moreover, by the above lemma we see thanhtertwines the actions o/, X, Y onV andV”. It
follows that7 is equivariant, henc& ~ 1. O

Completion of the proof of Theorem 30.3: The spaceP,(C?) is an irreducibles((2, C)-
module, of dimension + 1. Hence ifV is an irreducible!((2, C)-module of dimensiom > 1,
thenV ~ P,(C?), withn =m — 1. O
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31 Roots and weights

Let t be a finite dimensional commutative real Lie algebra, an@del’) be a finite dimensional
representation afin V.

Let % denote the space of complex linear functionalst@nNote thatt*, the space of real
linear functionals ort may be identified with the space bfe {7 that are real valued ot Thus,
t* is viewed as a real linear subspacefAccordinglyit* equals the space afe (7 such that
Al¢ has values inR.

If A € (7, then we define the following subspacelof.

Vi = [ ker(p(H) — A(H)T). (43)
Het

In other words,V, consists of the space ofe V such thato(H)v = A(H)v forall H € t. If
V), # 0, thenA is called aweightof tin V, andV, is called the associatedeight spaceThe set
of weights oft in V' is denoted by (p).

Lemma3l.1 LetT € EndV) be ap-intertwining linear endomorphism, theh leavesV,
invariant, for everyd € A(p).

Proof: LetA € A(p). The endomorphisrii’ commutes withp( H) hence leaves the eigenspace
ker(o(H) — A(H)) invariant, for everyH < t. HenceT leaves the intersectiol, of all these
spaces invariant. O

Lemma 31.2 The setA(p) is a non-empty finite subset gf. Assume thap(X) is diagonaliz-
able for everyX € t. Then

V=& W (44)

A€A(p)

Moreover, if W is a t-invariant subspace of, thenW is the direct sum of the spac& N V),
for A € A(p).

Proof: Fix a basisXy,..., X, of t. The endomorphism(X;) has at least one eigenvalue, say
A1, with corresponding eigenspaég C V. Sincet is commutative, this eigenspace is invariant
under the action of. Proceeding by induction on ditnwe obtain a sequence of non-trivial
subspace&, C E,_; C --- C E; such thatX; acts by a scalat; on E;, for eachl < j <n.
DefineA € t7 by A(X;) = A;, thenE, C V,, henceA € A(p). This establishes the first
assertion.

If p(X) diagonalizes, for evernX € t, then, in particular,) admits a decomposition of
eigenspaces for the endomorphis(X;). Each of these eigenspaces is invariant und€here-
fore, by induction on dirithere exists a direct sum decomposition= 1, & --- @ V such that
X; acts by a scalak;; onV;, forall1 <i < N andl < j < n. LetA; € ¢ be defined by
Ai(Xj) = A5, forl <i < N.ThenA(p) = {A1.....An}. Moreover, one readily verifies that,
for A € A(p). Va = @;.1=1,V;. Hence, (44) follows.
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For the final assertion, we observe that by finite dimensitynaf 1V the setA(p) is finite.
Hence, there exists &, € t such that(v — u)(Xo) # O forall v, u € A(p) with v # u. For
v € A(p), let P, : V — V, be the projection along the remaining summands in (44). \akecl
that

Po= [] (Xo)—pu(Xo)™ (p(Xo) — u(Xo)).
neA(p)\{v}
Indeed this is readily checked on each of the summandsf the decomposition in (44), for
A€ A(p).

It follows from the above formula foP, that P, (W) c W. Hence,P,(W) C W NV, and

the final assertion follows. O

Assumption: In the rest of this section we assume tliais a compact Lie group, with Lie
algebrag.

Definition 31.3 A torusin g is by definition a commutative subalgebragofA torust C g is
calledmaximalif there exists no torus af that properly containg

From now on we assume thiais a fixed maximal torus ig.
Lemma 31.4 The centralizer of in g equalst.

Proof: Sincet is abelian, it is contained in its centralizer. Conversalgsume thak < g
centralizes. Thent' = t + RX is a torus which contains Hencet’ = t by maximality, and we
see thatX € t. O

Let («r, V) be a finite dimensional representationgef the complexification of the Lie alge-
brag;i.e., isacomplex Lie algebra homomorphism frgginto End V) (the latter is the space
of complex linear endomorphisms equipped with the comrutae bracket). Alternatively we
will also say thatl is a finite dimensionaj--module. We denote by (.) = A(m«, t) the set
of weights of the representatign= x|, of tin V. If 1 € (7, then as beforel; is defined as in
(43), with | in place ofp. Thus

Vi=4{veV |n(H)v=AH)v forall H et}

From Lemma 31.2 we see tha(,) is a non-empty finite subset ¢f.

Let (7, V') be a finite dimensional continuous representatio oThen the mapr : G —
GL(V) is a homomorphism of Lie groups. Let. = T,n. Thenz, : g — End(V) is a Lie
algebra homomorphism, or, differently said, a represemtadf g in V. The homomorphism
7« has a unique extension to a complex Lie algebra homomorph@amgc into End1) (we
recall thatl is a complex linear space by assumption). This extensioallecttheinduced
infinitesimal representatioaf gc in V.

Lemma 31.5 Letx be a finite dimensional continuous representatiorGofThenA () is a
finite subset oft*. Moreover,
v= P .

A€A(my)
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If V' is equipped with & -invariant inner product, then for alk, u € A(my) with A # © we
haveV, L V,.

Proof: There exists & -invariant inner product o’ ; assume such an inner prodyct -) to be
fixed. Thent mapsG into U(V), the associated group of unitary transformations. It foHow
that 7. mapsg into the Lie algebrai(V) of U(V'), which is the subalgebra of anti-Hermitian
endomorphismsin End). It follows that forX € g the endomorphism. (X) is anti-Hermitian,
hence diagonalizable with imaginary eigenvalues. Thefgsamow completed by application of
Lemma 31.2. U

If A € End(g), then we denote byl the complex linear extension dfto g-. Obviously the
map A — Ac induces a real linear embedding of Egginto Endgc) := End-(gc). Accord-
ingly we shall view Endyg) as a real linear subspace of the complex linear spacégenttom
now on. Thus, we may view Ad as a representatioiizah the complexificationyc of g. The
associated infinitesimal representation is the adjointasgmtation ad ofic in gc. The associ-
ated collectiomA (ad) of weights contains the weight Indeed the associated weight spaeg
equals the centralizer #fin gc, which in turn equalsc, by Lemma 31.4. Hence:

gco = tc.

Definition 31.6 The weights of ad i different from0 are called theootsof t in gc¢; the set
of these is denoted bR = R(gc,t). Givena € R, the associated weight spage, is called a
root space.

It follows from the definitions that
gca ={X €gc | [H. X]=a(H)X forall H etj.

From Lemma 31.5 we now obtain the so caltedt space decompositiaf gc, relative to the
torust.

Corollary 31.7 The collectionR = R(gc, t) of roots is a finite subset of*. Moreover, we have
the following direct sum of vector spaces:

gc=1tc® EB gca- (45)
a€R

Example 31.8 The Lie algebray = su(2) has complexificationl(2, c), consisting of all com-
plex2 x 2 matrices with trace zero. Léf, X, Y be the standard basis ¢i{(2, c); i.e.

(3 0) w=(80) =(00)

Now t = iRH is a maximal torus irsu(2). We recall that{H, X] = 2X, [H,Y] = -2Y,
[X,Y] = H. Thus, if we definex € t7 by a(H) = 2, thenR = R(gc,t) equals{a, —a}.
Moreover,gcy, = CX andge(—q) = CY.
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We recall that, by definition, the centgr= 3, of g is the ideal ker agi.e., it is the space of
X e gthat commute with alY” € g.

Lemma 31.9 The center ofy is contained int and equals the intersection of the root hyper-
planes:
3¢ = ﬂ kera.

In particular, if 3, = 0, thenR spans the real linear space™*.

Proof: The center ofy centralizeg in particular, hence is contained inby Lemma 31.4. Let
H € tand assume thdf centralizeg; thenH centralizegc, hence every root space gf. This
implies thate(H) = 0 for all « € R. Conversely, ifH € tis in the intersection of all the root
hyperplanes, the# centralizegc and every root spagg-,. By the root space decomposition it
then follows that € 3. This establishes the characterization of the center.

If 3 = 0, then the root hyperplanes kere € R) have a zero intersection tn This implies
that the seiR C it* spans the real linear spac. O

Lemma 31.10 Let (=, V) be a finite dimensional representationgef. Then for allA € A(x)
and alla € R U {0} we have:
7(9ca)Va C Vita.

In particular, if A + o ¢ A(x), thenm(gey) anihilatesV .
Proof: Let X € gco andv € V). Then, forH € t,

r(Hyn(X)v = a(X)n(H)v+ [z#(H), w(X)]v
= AMH)z(X)v+#([H, X]))v = [AMH) + a(H)]7r(X)v.

Hencen(X)v € Vyte. If A + « is not a weight ofr, thenV,,, = 0 and it follows that
T(X)v =0. OJ

Corollary 31.11 If o, 8 € R U {0}, then
[9cas 8cs] C gc@+p)-
In particular, if« + B ¢ R U {0}, thengc, andgcp commute.

Proof: This follows from the previous lemma applied to the adjoepnesentation. OJ

We shall writeZR for the Z-linear span ofR, i.e., theZ-module of elements of the form
> wer Mo, With ng € Z.
In the following corollary we do not assume thatomes from a representation Gf
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Corollary 31.12 Let(, V) be a finite dimensional representationgaf. Then

W= P W (46)

A€A(m)

is a non-trivialgc-submodule. Ifr is irreducible, thenW = V. Moreover, ifA, u € A(x), then
A—u €eZR.

Proof: By Lemma 31.2 the sek(r) is non-empty and finite, and thereforé is a non-trivial
subspace o¥. From Lemma 31.10 we see thHf is gc-invariant. If 7 is irreducible, then
W = V. To establish the last assertion we define an equivalencgorelan A(x) by A ~
U << A—pu € ZR.If Sisaclass for, thenVs = @ sV, IS a non-trivialge-invariant
subspace of, by Lemma 31.10. HencBs = V and it follows thatS = A(x). O

Remark 31.13 If g has trivial center, then the above result actually holdetery finite dimen-
sionalV-module. To see that a condition like this is necessary,ideng = R, the Lie algebra
of the circle. Define a representationgiin VV = C? by

n(x):(g )(;)

ThenA(x) = {0}, butVy = C x {0} is not all of V.
Note that this does not contradict the conclusion of Lemm&,3incer is not associated
with a continuous representation of the circle groun

Lemma 31.14 Lett be a maximal torus iy, and R the associated collection of roots.dfe R
then—a € R.

Proof: Let t be the conjugation ofc with respect to the real for. That is: 7 (X + iY) =
X —iY forall X,Y € g. One readily checks thatis an automorphism af, considered as a
real Lie algebra (by forgetting the complex linear struejut_eta € R, and letX € gc,. Then
foreveryH € t,

[H,7(X)] =t[H,X] =t(x(H)X) = a(H)t(X) = —a(H)1(X).

For the latter equation we used thahas imaginary values anlt follows that—« € R and that
T Mapsgcy INtO ge—q (in fact is a bijection between these root spaces; why?). O

We recall that we identifyt* with the real linear subspace g§f consisting ofA such thaf |t
has values inR; the latter condition is equivalent to saying tha, is real valued. One readily
verifies that the restriction map — A|;; defines a real linear isomorphism fraitt onto the
real linear dualit)*. In the following we shall use this isomorphism to identity with (it)*.
Now R is a finite subset ofit)* \ {0}. Hence the complement of the hyperplanesoker it,
for « € R is a finite union of connected components, which are all conféese components
are called théVeyl chamberassociated withR. Let C be a fixed chamber. By definition every

109



root is either positive or negative @h We define thesystem of positive rootR™ := R*(C)
associated witld by
Rt={eeR|a>0 on C}.

By what we said above, for evety € R, we have that eithex or —« belongs toR™, but not
both. It follows that

R = R"U(—=R™) (disjoint union). (47)
We write NR™ for the subset o¥.R consisting of the elements that can be written as a sum
of the form)_ . g+ noa, With n, € N.

Lemma 31.15 NR™ N (-=NR*) = 0.

Proof: Letu € NR*. Thenu > 0 onC, the chamber corresponding®'. If also—u € NR™,
thenu < 0onC as well. Hencex = 0 onC. SinceC is a non-empty open subsetdf, this
implies thatu = 0. O

Lemma 31.16 The spaces
gt = Z 9Ca gc = Z gcp
aeRt Be—R+

are adt)-stable subalgebras gf-. Moreover,
gc = 9¢ @ tc @ g

Proof: Leta, € R™ and assume thaigicy, gcpg] # 0. Thena + 8 € RU {0}, anda + 8 > 0
onC. Thisimplies thatr + 8 € R, hencege+p) C g¢ - It follows thatg is a subalgebra. For
similar reasong: is a subalgebra. Both subalgebras arét)estable, since root spaces are. The
direct sum decomposition is an immediate consequence pa@b(47). OJ

We are now able to define the notion of a highest weight vectoa finite dimensionadc-
module, relative to the system of positive ro®$. This is the appropriate generalization of the
notion of a primitive vector fos((2, C).

Definition 31.17 Let V be a finite dimensionglc-module. Then dighest weight vectaof 1/
is by definition a non-trivial vector € V' such that

(@) tcv C Cu;

(b) Xv=0forall X € g}.
Lemma 31.18 Let V' be a finite dimensionalc-module. Ther¥’ has a highest weight vector.

Proof: We define thgyc-submoduléV of V' as the sum of thé--weight spaces, see Corollary
31.12.

Let C be the positive chamber determini®y . Fix X € C. Thena(X) > Oforalla € R™.
We may seleck, € A(rr) such that the real part df( X') is maximal. Themy + o ¢ A(x) for
alla € R*. By Lemma 31.10 this implies that. (gco) Vs C Viy+e = Oforalla € R*. Hence
g¢ annihilatesV,,,. Thus, every non-zero vector &, is a highest weight vector, O
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Definition 31.19 Let VV be a finite dimensionalc-module. A vectow € V is calledcyclicif it
generates thgc-moduleV, i.e., V' is the smallesgc-submodule containing.

Obviously, if V is irreducible, then every non-trivial vector is cyclic.

Proposition 31.20 Let V' be a finite dimensionglc-module and leb € V be a cyclic highest
weight vector.

(a) There exists a (uniqué) € A(V) such that € V. Moreover,V, = Cv.

(b) The spacéd’ is equal to the span of the vectarsand = (X;) - - - w(X,)v, withn € N and
Xjege forl1 <j<n.

(c) Every weightu € A(V) is of the formA — v, withv € NR™.
(d) The moduld’ has a unique maximal proper submodiite

(e) The moduld’ has a unique non-trivial irreducible quotient.

Proof: The first assertion of (a) follows from the definition of high&eight vector. We define
an increasing sequence of linear subspacel afductively by V, = Cv andV,,+; = V,, +
7(gc)Va. Let W be the union of the spacds$,. We claim thatW is an invariant subspace of
V. To establish the claim, we note that by definition we havyg:)V, C V,41; henceW is g¢
invariant. The spack¥, is t- andg. -invariant; by induction we will show that the same holds for
V,. Assume that/, is t- andgg-invariant, andlev € V,,, Y € gc. Then forH in t we have
HYv=YHv+[H,Y]v.Nowv € V, and by the inductive hypothesis it follows thdb < V,.
HenceYHv € V,4,. Also [H,Y] € g; and it follows that{ /4, Y]v € V,4;. We conclude that
HYv € V,4. It follows from this that

n(t)n(g(E)Vn C Vn-H-

HenceV, 4 is t-invariant.

Letnowv € V,, Y € gz andX € gf. ThenXYv = YXv + [X,Y]v. Now Xv € V,
by the induction hypothesis and we see thatv € V,,;;. Also, [X, Y] € gc¢. By the induction
hypothesis it follows thajcV,, C V,,+1. Hence[X, Y]v € V, 1. We concludethakYv € V4.
It follows from this that

7(g3)7(92) Ve C Vi1

HenceV, 4, is gt -invariant. This establishes the claim th#tis agc-invariant subspace df.

Since W contains the cyclic vectoo, it follows that W = V. Hence, (b) follows. Let
w = (Y1) --w(Ya)v, withn € N, Y; € ge—q;). @; € R*. Thenw belongs to the weight
spaceV,_,, wherev = «; + --- + a, € NRT. Sincev and such elements spanW = V,
we conclude that every weightin A(V) is of the formA — v with v € NR™. This establishes
(c). Moreover, it follows from the above description tHatequals the vector sum @v and
V_, whereV_ denotes the sum of the weight spaégswith © € A(V) \ {A}. This implies that
V, = Cv, whence the second assertion of (a).
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We now turn to assertion (d). L&t be a submodule of. In particular,U is atc-invariant
subspace. LeA(U) be the collection ofx € A(V) for whichU,, := U NV, # 0. In view of
Lemma 31.2[ is the direct sum of the spacés,, for u € A(U). If U is a proper submodule,
thenU, = 0, henceA(U) C A(V) \ {A}. It follows that the vector sun¥ of all proper
submodules satisfies(W) C A(V) \ {1} hence is still proper. Therefor&, hasW as unique
maximal submodule.

The final assertion (e) is equivalent to (d). To see thispletl — V' be a surjectiveyc-
module homomorphism onto a non-trivigd-module. Then/ — p~1(U) defines a bijection
from the collection of proper submodules Bf onto the collection of proper submodules of
V' containing kep. It follows that V' is irreducible if and only if kep is a proper maximal
submodule of. The equivalence of (d) and (e) now readily follows. O

Corollary 31.21 Let V be a finite dimensional irreduciblg--module. TherV/ has a highest
weight vectow, which is unique up to a scalar factor. Létbe the weight ob. Then assertions
() - (c) of Proposition 31.20 are valid.

Proof: It follows from Lemma 31.18 that’ has a highest weight vector. Letbe any highest
weight vector inV and letA be its weight. By irreducibility of’, the vector is cyclic. Hence
all assertions of Proposition 31.20 are valid.

Let w be a second highest weight vector and /febe its weight. Then all assertions of
Proposition 31.20 are valid. Henge€ A — NR*™ and)A € u — NR™, from whichu — A €
NR*T N (-=NR*) = {0}. It follows thatu = A; hencew € V; = Cv. O

Remark 31.22 For obvious reasons the above weidghts called thehighest weightof the
irreduciblegc-moduleV, relative to the choic&™ of positive roots.

The following theorem is the first step towards the clasdificaof all finite dimensional
irreducible representations gf.

Theorem 31.23 Let VV and V' be irreduciblegc-modules. Ifi¥ and V' have the same highest
weight (relative toR ™), thenV and V' are isomorphic (i.e., the associatgd-representations
are equivalent).

Proof: We denote the highest weight iyand fix associated highest weight vectors V) \ {0}
andv’ € V] \ {0}. We consider the direct sugaz-moduleV @ V' and denote byV the smallest
gc-submodule containing the vectar := (v, v’). Thenw is a cyclic weight vector o#V, of
weightA.

Letp:V @ V' — V be the projection onto the first component, arid V & V' — V' the
projection onto the second. Thenand p’ aregc-module homomorphisms. Singdw) = v, it
follows that p|y is surjective ontd’. Similarly, p’|w is surjective ontd’’. It follows thatV, V’
are both irreducible quotients &f, hence isomorphic by Proposition 31.20 (e). OJ

Remark 31.24 In the above proof it is easy to deduce that in fécts irreducible, ang |y and
p'|lw are isomorphisms frori’ ontoV andV’, respectively.
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32 Conjugacy of maximal tori

We retain the notation of the previous section. In this sectve shall investigate to what extent
the collectionR = R(gc) depends on the choice of the maximal totugn elementX € t¢
will be calledregularif a(X) # 0 for all @« € R. The set of regular elements frandtc will be
denoted byt andt;?, respectively. Since is finite, % is an open dense subsettogimilarly
t="is an open dense subsettef

Lemma 32.1 Lett be a maximal torus iy, and letX € t. Then the following statements are
equivalent.

(@) X et
(b) kerfad(X)) = t;
(c) with respect to anys-invariant inner product org we havet = im(ad X))*;

(d) with respect to somé-invariant inner product org we havet = im(ad(X))*;

Proof: Assume (a), and leY € g commute withX. In the complexification ofy we may
decompos€” = Yy + Y _,cg Yo. With Yj € tc andYy, € gy for o € R. Then
0=[X.Y]=) a(X)Y,.

d€R

Since X is regular,a(X) # 0 for all «, and it follows thatY, = 0 for all « € R. Hence
Y € gNtg = t. This implies ke(ad X)) C t; the converse inclusion is obvious, hence (b)
follows.

Next, we assume that (b) holds. Since(8glis anti-symmetric with respect to any invariant
inner product, it follows that iflad( X))+ = ker(ad(X)). The latter space equalby (b). Hence
(c) follows.

That (c) implies (d) is obvious. Now assume that (d) holdset follows that adX)
induces a linear automorphismgft. All eigenvalues of a linear automorphism must be different
from zero, hence(X) # O for all ¢ € R. O

If ¢ € G, then Adg) is an automorphism of the Lie algebgahence Adg)t is a maximal
torus ing. The following result asserts that all maximal torigoérise in this way.

Lemma 32.2 Lett, t' be two maximal tori irg. Then there exists @ € G such that
t' = Ad(g)t.

Proof: By the method of averaging ovérwe see that there exist€ainvariant positive definite
inner product ory; select such an inner produgt -). Moreover, select regular elementse t
andY € t. Then by Lemma 32.1 we see thaquals the centralizer &f in g. We consider the
smooth functionf : G — R given by

f(x) = (Ad(x)X ,Y).
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By compactness aofr, the continuous functiory’ attains a minimal value at a poing € G. It
follows that for everyZ € g the functionr — f(xo expt Z) has a minimum at = 0, hence

0= % f(xoexptZ) = (Ad(xo)[Z, X], Y) = —(adX)(Z) , Ad(xo)~'Y).
t=0

By Lemma 32.1 we see that @) mapsg ontot'. Hence Adx,)~'Y e (t+)*+ = . It follows
from this that the maximal torug’ = Ad(x()t containsY; obviouslyt” is contained in the
centralizer ofY, which equalg’, by Lemma 32.1. By maximality of’ it follows thatt = t’ =
Ad(Xo)f 0]

If ¢ € G, then Adg) is an automorphism of the Lie algebga More generally we now
consider an automorphisgmof the Lie algebray; its complex linear extension, also denoted by
@ is an automorphism of the complex Lie algelgra If t is a maximal torus, theti = ¢(%) is a
maximal torus as well. The map — - given byA - A0 ¢ ™! is a linear isomorphism, which
we again denote by. With this notation we have:

Lemma 32.3 Lety be an automorphism of the Lie algebyalf t is a maximal torus iry, then
t' = @(t) is amaximal torus iy as well. Moreover, the induced linear isomorphigmt?. — ¢
mapsRk = R(gc, t) bijectively ontoR’ = R(gc, t). Finally, if @ € R, then

¢(gca) = Gcp(@)-
Proof: Leta € R and letX € g¢,. Then, for everyH’ € ¢/,
[H',o(X)] = oo~ (H'), X]) = p(a(p™ (H)X) = [p(@)](H)p(X).

From this we see thai(a) € R’ and¢(gca) C gep@)- The proof is completed by applying the
same reasoning to the inverseyof OJ

Corollary 32.4 Let R, R’ be the collections of roots associated with two maximaltafiof g.
Then there exists a bijective linear map froth ontoi t'* which mapsk onto R’.

Proof: By Lemma 32.2 there exists@ e G such that Adg)t = t. The mapy = Ad(g) is
an automorphism of. By Lemma 32.3 the induced isomorphism frafnonto t satisfies all
requirements. O

33 Automorphisms of a Lie algebra

In this section we assume thais a finite dimensional real or complex Lie algebra. We denote
by Aut(g) thegroup of automorphismaf the Lie algebrg. This is clearly a subgroup of Gl).

In fact, Aut(g) is the intersection, foX, Y < g, of the subsetsly y consisting ofp € GL(g)
with ¢([X,Y]) — [e(X), ¢(Y)] = 0. All of these subsets are closed, hence (§pis a closed
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subgroup of Gl(g). Its Lie algebra is a sub Lie algebra of Hggl, equipped with the commutator
bracket.
A derivationof g is by definition a linear ma® € Endg) such that

D(X.Y) =[DX). Y]+ [X,D(Y)] (X.Y €g).
One readily sees that the space (@¢of all derivations ofg is a Lie subalgebra of Erg).
Proposition 33.1 Der(g) is the Lie algebra oAut(g).

Proof: Let D be an element in the Lie algebra of Aglt. Then exgzD) € Aut(g) for all z € R.
Let X,Y € g, then it follows that

eP[X, Y] =[P X, ePY].

Differentiating this expression with respectrtatz = 0 we obtain thatD[X, Y] = [DX, Y] +
[X, DY]; henceD is a derivation. It follows that the Lie algebra of Agj is contained in D€l).
To prove the converse inclusion, |18t € Der(g), and letX,Y < g. Consider the function
¢ : R — g defined by
c(t) = e P[P X, ePY].

Thenc is differentiable, and its derivative is given by
ct) = (0, e ™)X, ePY] 4+ e P[0, e X), ePY] + e P[P X, (0, P Y)]

— —e_’DD([etDX, etDy]) + e—tD [DetDX, etDy] + e—tD [etDX, DetDY]
= 0.

Hencec is constantly equal to(0) = [X, Y]. It follows from this thate’® < Aut(g) for all
t € R, henceD belongs to the Lie algebra of Aj). O

Corollary 33.2 The homomorphisradmapsg into Der(g). If X € g, thene2¥ is an automor-
phism of the Lie algebrg.

Proof: The first assertion follows from the Jacobi identity. The Etatement is now a conse-
quence of the above lemma; inded € Aut(g), for D € Der(g). O

The subgroup of Auty) generated by21X) X e gis called the group ahterior automor-
phismsof g, notation: Intg). Its Lie algebra equals &g, see Section 7.

34 The Killing form

Let g be a finite dimensional Lie algebra ovigr = R, C. Its Killing form is by definition the
bilinear formg x g — K defined by

B(X,Y) =tr(adX) o adY)),  (X.Y € g).
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Lemma 34.1 The Killing form is symmetric. Morever, df € Aut(g), then
B(p(X),o(Y)) = B(X,Y) (X.Y €g). (48)

Finally,
B(Z,X],Y)=—-B(X,[Z,Y)) (X,Y,Z €yg). (49)

Proof: If A, B are endomorphisms of a linear space, it is well known #ht— BA has tracé).
Hence ttad X) o adY)) = tr(adY) o ad X)), for X, Y € g, and the symmetry oB follows.
If ¢ is a Lie algebra automorphism gfthen it follows thatp - adX = ad(¢(X)) . ¢. Hence
adp(X)) = g0 ad(X) o ~1. Using this and conjugation invariance of the trace (48)ofwH.
Lets € R, thene’2 ¢ Aut(g); thus (48) holds witte? 2 inserted forp. Differentiation of
the resulting identity with respect toatr = 0 yields (49).
The latter identity can also be derived algebraically, dews. We note that adZ, X]) =
adZ)adX) — adX)ad Z), hence

B([Z,X],Y) = tr(adZ)adX)adY))—tr(adX)adZ)adY))
= tr(adX)adY)adZ)) —tr(adY)adZ) ad(X))
= tr(adX)ad[Y, Z])) = —B(X,[Z,Y])).

O

The identity (49) is known amvariance of the Killing form If v is a linear subspace @f
then byv! we shall denote its orthocomplement with respecBta.e., the collection o € g
such thatB(X,Y) = 0 for all X € v. Note that from the invariance & the following lemma is
an immediate consequence.

Lemma 34.2 Letv C g. If v is an ideal, then so is+.

35 Compact and reductive Lie algebras

Throughout this sectiog will be a real finite dimensional Lie algebra.

The algebrag is calledcompacif it is isomorphic to the Lie algebra of a compact Lie group.
The purpose of this section is to derive useful criteria fdri@ algebra to be compact. Our
starting point is the following result.

Let B denote the Killing form ofy. We recall from Lemma 34.1 thd is a symmetric bilinear
form. Since ad is a Lie algebra homomorphism, its kegnel ker ad is an ideal ig. This ideal
is called thecenterof g.

Lemma 35.1 Letg be compact. Then the Killing fori is negative semi-definite. Moreover,
1
g =3
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Proof: We may assume thatis the Lie algebra of the compact groGp The representation
Ad of G in g¢ is unitarizable, hence there exists a positive definiteripmeduct ongc that is
Ad(G)-invariant. With respect to this inner product we havg &4l C U(gc).

Since ad is the infinitesimal representationgoin g¢ associated with Adit follows that
ad(g) C u(ge). Hence, adX) is an anti-symmetric Hermitian endomorphismgef for X € g.
This implies that ad has a an orthonormal basis of eigenvectors and imaginagnesdues.
Hence adX)? has the same orthonormal basis of eigenvectors with eiygewsa 0. It follows
that B(X, X) = trad(X)? < 0. Hence,B is negative semi-definite. Moreover,Bf(X, X) = 0
then tradX)? = 0 and it follows that all eigenvalues of @Xl)?, hence of a¢X) are zero.
Hence, adX) = 0. This shows thag* C 3. The converse inclusion is obvious. O

If v, tv are subspaces gf then by[v, o] we denote the subspacegdpanned by the elements
[X,Y],whereX € v,Y € . If v, 10 are ideals, thefv, tv] is an ideal ofg. Indeed, this follows
by a straightforward application of the Jacobi identityphrticular

Dg := [g, 9]

is an ideal ofg, called thecommutator ideal.
If a, b are ideals ofy, thena + b is an ideal ofg as well. Two idealst andb of g are said to
be complementary if
g=adb (50)

as linear spaces.

Lemma 35.2 If a,b are ideals ofg, then[a,b] C a N b. If a and b are complementary, then
[a,b] = 0. In that case, (50) is a direct sum of Lie algebras.

Proof: Sincea is an ideal[a, b] = [b, a] C a. Similarly, [a, b] C b. Hence[a, b] C a N b. The
last two assertions now readily follow. O

Lemma 35.3 Letg be a compact Lie algebra. Then every ideag blas a complementary ideal.

Proof: As in the proof of Lemma 35.1 there exists a positive defimteer product- , -) on
g with respect to which AdG) C O(g). It follows that adg) C o(g), or, equivalently, that
([X,U],V)y=—(U, [X,V]),forall X,U,V € g. By this property, ifa C g is an ideal, then
at is an ideal; moreovey = a @ a*. O

Lemma 35.4 Letg have the property that every ideal has a complementary iddeadn
g=3®Dg.

Proof: The idealDg has a complementary ideal, saySince obviouslyg, a] C Dg, we have
[g,a] C a N Dg = 0, from which we conclude that C 3. It follows thatg = 3 + Dg.

The ideal; has a complementary ideal, say Thus,g = 3 & b. Now Dg = [g,g] C
[g.3] + [g, b] C b, from which we conclude thatn Dg = 0. O
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Theorem 35.5 The following assertions are equivalent.
(@) gis compact
(b) g = 3 @ Dg and B is negative definite oPg.

(c) There exists a subalgebga C g such thaty = 3 + g’ and such thaB is negative definite
ong’.

Finally, if g’ is as in (c) thery’ = Dg.

Proof: First, assume that (a) is valid. Thgn= 3 & Dg by Lemma 35.4. By Lemma 35.1 it
follows thatB < 0 onDg. Hence (b). The implication (b (c) is obvious. The implication (c)
= (@) and the final assertion will be established in the follayliemma. O

Lemma 35.6 Let the Killing form ofg be negative definite. Thekut(g) is compact. Moreover,
adis a Lie algebra isomorphism frognonto Der(g). In particular it follows thatg is compact
and has trivial center.

Proof: Let O(g) denote the group of invertible transformationgydahat are orthogonal relative
to the positive definite inner produetB. Then Q(g) is compact. From (48) it follows that the
closed subgroup Agg) of GL(g) is contained in the compact grougd), hence is compact.

By definition of the Killing form, ker adc g*; sinceB is non-degenerate, it follows that ad
is an injective Lie algebra homomorphism. It follows fronetBacobi identity that ad maps
into Deng).

If D € Der(g), thenforX € gwe have thalD . ad X)](Y) = ad DX)Y +[ad X). D](Y)
for Y € g. Hence

[D, ad(X)] = ad DX). (51)

It follows that adg) is an ideal in Defy).

Now Der(g) is the Lie algebra of the compact group Aut see Proposition 33.1. It follows
that DeKg) is compact. By application of Lemma 35.3 it follows that(g@dhas a complementary
ideal b in Der(g). Let D € b. Then D commutes with a@), hence from (51) we see that
adDX) = 0, whenceDX = O for all X € g. HenceD = 0. We conclude thab = 0, hence
ad(g) = Der(g).

It follows that ad is an isomorphism froponto DeKg); the latter is the Lie algebra of the
compact group Aut). Henceg is compact. O

Completion of the proof of Theorem 35.5: Assume that (c) holds. Thegl has negative
definite Killing form, hence is compact. Singe= ker ad C g+ it follows that; N g’ = 0.
Hence,g = 3 @ ¢’ as linear spaces. Since obviou§yg’] = 0, the mentioned direct sum is a
direct sum of Lie algebras.

Let G’ be a compact Lie group with algebra isomorphigtoLet n = dimj. Thenz ~ R”
as abelian Lie algebras. Hence, the compact t@rus- R”/Z" has Lie algebra isomorphjc
It follows that the compact grou@ := T x G’ has Lie algebra isomorphic o ¢’ = g. (a)
follows.

Finally, letg’ be as in (c). Then by the above reasoning; ; ¢ ¢’ as Lie algebras. It follows
thatDg C [¢/, g'] C ¢’. Now apply (b) to conclude thg?g = ¢'. O
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The Lie algebray is calledsimpleif it is not abelian and has no ideals besi@esndg. It is
calledsemisimpléf it is a direct sum of simple ideals.

Lemma 35.7 Letg be semisimple, then= 0 andDg = g.

Proof: Letg = g:®- - -®g, be adecomposition into simple ideals. We observe that eisetiy ;

is non-abelian, hendg;, g;] is a non-trivial ideal ing;. Since the latter is simple, we conclude
thatDg; = g;. Since theg; mutually commute, it follows thabPg = Dg; + --- + Dg, = g. If

X belongs to the center @f write X = X; + --- + X,,, according to the decomposition (52).
ThenX commutes withg; and eachX;, for j # i, commutes withg;. Hence,X; commutes
with g; as well. HenceX belongs to the centgy of g;. This center is an ideal different from,
sinceg; is not abelian. Sincg; is simple,3; = 0. We conclude thak = 0. Hencej3 =0. [

Proposition 35.8 The following assertions are equivalent.
(a) The algebrag is compact and has trivial center;
(b) The Killing form ofg is negative definite;
(c) The algebrag is compact and semisimple.

Proof: Assume (a). Then by Theorem 35¢= Dg and (b) follows. Since the implication (c)
= (@) follows from Lemma 35.7, it remains to establish the iicgtion (b)= (c). Assume (b).
If a, b are adg)-invariant subspaces @fwith a C b, thena, := a* N b is an adg)-invariant
subspace ofi andb = a & a, is a direct sum decomposition 6f Applying this observation
repeatedly, we obtain a direct sum decomposition

g=01D- D gn (52)

of non-trivial adg)-invariant subspaces, such thathas no ady)-invariant subspaces besides
andg;, for each;j € g. The assertion thaf; is adg)-invariant is equivalent to the assertion that
g; is an ideal ing. Hence, (52) is a direct sum of ideals. It follows thgt g,;] = 0 fori # j.
Hence every ideal of g; is also an ideal ofi. We see that each algehgahas no ideals besides
0 and itself. Ifg; were abelian, it would centralizg andg; for all j # i, henceg. This would
imply thatg;, C gt = 0, contradiction. Thus, each idegl is simple, and it follows thag is
semisimple. O

Lemma 35.9 Let g be a finite dimensional Lie algebra, and Iletbe a simple ideal of. If
g=g0g1D...D g, Iis adirect sum of ideals, then there exists a unique ; < n such that
g; DOa.

Proof: We note thafg, a] C a sincea is an ideal, andg, a] O [a,a] = a sincea is simple.
Hencelg, a] = a. From the direct sum decomposition it now follows that

a=[gi,a] +---+ [gn, a].

Hence there exists Asuch thafg;. a] # 0. Sincea is simple andg;, a] is an ideal ina we must
have[g;. a] = a. This implies thatr = [a, g;] C g;. Of course; is uniquely determined by the
latter property. O
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Lemma 35.10 Letg be semisimple, and I&t be the collection of simple ideals gnEvery ideal
a C gis the direct sum of the ideals frofthat are contained ir. In particular, g is the direct
sum of the ideals frorf.

Proof: We may expresg as a direct sum of simple ideals of the form (52)al€ S then, by
the previous lemmay C g; for some;,. Sinceg; is simple, it follows thatt = g;. We conclude
thatS = {g1,....gn}.

Let nowb C g be any ideal. We will show thét is the direct sum of the simple ideals from
S(b) := {a € S | a C b} by induction on #. First, assume that# = 1. Theng is simple,
henceb = 0 or b = g and the result follows. Now assume thét # 1 and that the result has
been established fgrwith S of strictly smaller cardinality. Ib = 0 there is nothing to prove. If
b # 0, then[g, b] # 0 sincez = 0. It follows that[g;, b] # 0 for some;. But [g;, b] is an ideal
in the simple algebrg;, henceg; = [g;,b] C b. Let g’ be the direct sum of the ideals from the
non-empty sef(b), and letg” be the direct sum of the ideals fros\ S(b). Theng’ C b and
g=9¢g ®g’, henceb =g & (bNg”’). Nowb N g”is an ideal in the semisimple algelyya By
the induction hypothesi$, N g” is the direct sum of the ideals fro contained in bottb and
g’. This set is empty, henden g” = 0 and the result follows. O

36 Root systems for compact algebras

In this section we assume thats a compact Lie algebra with trivial center. Th8nthe Killing
form of g, is symmetric and negative definite, see Lemma 34.1 and Fitapo35.8. The exten-
sion of B to a complex bilinear form ogc equals the Killing form ofyc and is also denoted by
B. We fix a maximal torus in g. Let R be the associated root system andRétbe a choice of
positive roots.

If « € R, thena € it*. Therefore, ket is a hyperplane itic, which is the complexification
of the hyperplane kern it in it. The Killing form B is negative definite o, hence positive
definite onit. It follows that there exists a unique eleméiy € it with the properties

H, | kera and a(Hy) = 2. (53)

Lemma 36.1 LetA, u € .
(@) If A+ pu #0,thenB = 00ngcy X goy.
(b) fax e RandX € gey, ¥ € ge—o, then[X, Y] € tc and

B(X,Y], H) = B(X.Y)a(H) (H € to). (54)

(C) [9cas 9c—a] C CH,.
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Proof: Let X € gca andY € g¢,. Then by invariance of the Killing form we have, for all
H € t(C3
[A(H) + u(H)]B(X,Y)=B([H,X],Y)+ B(X,[H,Y]) =0.

From this, (a) follows.
Let nowa, X, Y be asin (b). ThefX, Y] € gco = tc, by Corollary 31.11 and Lemma 31.4.
Moreover, for allH € tc we have

B(X,Y], H) = —B(Y,[X, H]) = B(Y,[H, X]) = B(Y,a(H)X) = B(X,Y)a(H).

Hence, (b).
Finally, for (c) we note that (b) implies thfk, Y] L kera, relative toB, for X € gc, and
Y € gc—q. Inview of (53) this implies thalgcy, gc—o] € CH,.

O
Lett : gc — gc be the conjugation with respect to the real fogrof gc. Thus,z = I on
gandt = —1 onig. We recall thatr (gcy) = gc—o., for alla € R, see proof of Lemma 31.14.

We denote the positive definite inner produd®( -, - )|, by (- . -) and extend it to a Hermitian
positive definite inner product gi-. Then

(X,Y)=—B(X,1Y), (X,Y € go).
The following result is now immediate.

Corollary 36.2 The root space decomposition

gc = tc & P gca

®¢€ER

is orthogonal with respect to the inner prodyct, -).

Lemma 36.3 Leta € R. Then there exists X, € gc, Such thatd,,, X, andY, := —tX, form
a standards((2, C)-triple.

Proof: We observe that- , -) is positive definite ogc, @ ge—«. Let X be a non-zero element
iN gco. ThenX 4+ X # 0, henced < (X + X, X +1X) = -B(X + X, X + 1X) =
—2B(X,1tX), sincetX belongs to the spagg-_, which is perpendicular tgc_, with respect
to the Killing form. PutY = —7X, then

B(X,Y) > 0.
Moreover,t[X, tX]| = [t X, X] = —[X, tX], hencelX, Y] = —[X,tX] € igNtc = it. It now
follows from Lemma 36.1 (c) that

[X,Y] = cHy,

for somec € R. Substituting this in (54) withlH = H,, we obtainB(cH,, Hy) = 2B(X,Y).
SinceB is positive definite orit, we haveB(H,, H,) > 0. Hencec > 0. Take X, = ﬁ_lX.
Then[X,, —1X.] = ¢! [X, —tX] = H,. Hence X, satisfies the requirements. O
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Example 36.4 Let g = su(2). Thenge = sl(2,C) and the conjugation is given bytA =
—A*, where the star indicates that the Hermitian adjoint is takeet H, X, Y be the usual
standard triple irsl(2, C). Thus, H is diagonal with entriest1,—1 and X is upper triangular
with 1 in the upper right cornerY is lower triangular withl in the lower left corner. Then
t = iRH is a maximal torus irg. Moreover,R = {a,—a}, wherea € it* is determined by
a(H) = 2. Finally, tX = —Y, and we see that the above lemma wkfj = X gives us the
usual standard triple.

If [is a Lie subalgebra of, then via the adjoint representatiofn; may be viewed as a
(-module.

Lemma 36.5 Let[ be a Lie subalgebra of and letV C gc be a ad(l)-invariant subspace.
ThenV decomposes as a direct sum of irreduciblaodules.

Proof: We observe that, for evety € [, the endomorphism &d) of gc is anti-symmetric with
respecttq - , -). Indeed, this follows from invariance of the Killing form. @ik, if W C Visa
ad()-invariant subspace, then solig- N V. The lemma follows by repeated application of this
observation. O

Proposition 36.6 Leta € R. Thendim¢ g, = 1. Moreover,R N Re = {—«, a}. The algebra
S¢ = gc—a D CHa @ 9gca

is isomorphic withs[(2, C). Its intersection withy is isomorphic withsu(2). Finally, t, := iRH,
is a maximal torus i, N g and the associated root system is equaldq, , —«|x, }-

Proof: We fix X, € gce as in Lemma 36.3 and put = CH, & CX, & CY,. Thens is
isomorphic withsl(2, C). Moreover,s is invariant underr andg Ns = ker(t — I) Ns =
iRH, + R(Xy — Yy) + iR(X, + Yy) =~ su(2). The two last assertions of the proposition hold
with s in place ofs,.

We consider the subspace

V=V@:= > gcp®CH,.
BERNRa

and leave it to the reader to verify thHtis invariant under the adjoint action ef It follows
that IV splits as a direct sum of irreducibemodules. The decomposition of each irreducible
s-submodule irC H,-weight spaces is compatible with the given weight spacem@osition of

V. All weights of the irreducible representationssolbelong to%Zao, with o9 = o|cp,. Thus,

if 8. € RNRa, thenBlcy, € 2ao, from which we conclude that € R N 1Za. It follows that
RNRa = Rﬂ%Za. Put

Vev = Z dcp @ CHa-
BeRNZa
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and letV,;, be the sum of the remaining root spacesVinThen bothV,, and V,;,; are s,-
invariant. The first of these spaces splits as a direct sumrerfucibles-modules all of whose
weights belong t&«,. By the classification of irreduciblg(2, C)-modules it follows that each
of the irreducible summands has a zero weight space, whishlmeicontained i€ H,,. It follows
thatV,, has only one irreducible summand, hence is irreduciblecesinc V., is an invariant
subspace, it follows that= V,,. This implies thatR N Za = {«, —a} ands = s,.

It remains to be shown thdt,;, is the zero space. Assume not. ThEnhas aCH,-
weight of the form(2n + 1)/2ay, with n € Z. This weight occurs in an irreducible summand
of thes,-moduleV, ;4. From the classification of the irreducibd&2, C)-modules, we see that
%ao then also occurs as a weight in the irreducible summand,enenk. Puta’ = %a. Then
it follows that gcor # 0, hencea’ € R. Defines, as above, withy’ in place ofa. Then
V() = V(') = V(a')even. By the first part of the proof, applied witta’ in place ofe, it
follows thatV(«) = V(a')ey = 54 This contradicts the fact that, C V().

We conclude that,;; = 0. Hence,V = V,, = s, = s and all assertions follow. O

Leta € R. Then bys, we denote theB-orthogonal reflection in the hyperplane kein it.
Thus,s,(Hy) = —H, ands, = I on kera, from which one readily deduces that

se(H) = H—a(H)H,  (H € ib).

The complex linear extension 6f to tc, also denotedy, is given by the same formula, for
H € tc.

If V' is a finite dimensional real linear space, equipped with digesiefinite inner product
(-, -), then the map — (v, -) defines a linear isomorphisgh: V' — V*. We equipV*
with the so called dual inner product. This is defined to beuthigue inner product that makes
j orthogonal. Thus, i, u € V* then

Aoy =72 7w =207 ) = 1A,

If A :V — V is orthogonal, then soigoA4-;~! : V* — V*. Using the definitions one
readily verifies that o A- j~! = A~*. In this case we agree to writ€ for the orthogonal map
A™* . V* — V* Thus, forn € V* we write Anp = no A~ L.

Following the above convention fof = it equipped with the positive definite inner product
B, we obtain an orthogonal mag : it* — it* defined bysyA = dos;' = Aos,, for A €
it*. Let H € it; then it follows by application of the above formula for thdleetion s,, that
S¢ M) (H) =A(H —a(H)H,) = A(H) — A(Hy)x(H). From this we see that

Sed = A — A(Hy)a, (A eith).

Thus,s, mapse to —a and is the identity on the hyperpla#&® := {A | A(H,) = 0}. Sinces,
is orthogonal it follows tha#/? = o+ and thats, is the orthogonal reflection in the hyperplane
at. The reflections, € End(i t*) is therefore also given by the formula

(A, a)

ad = A —2
’ (o )

a, (A €ith).

Comparing this formula with the previous one we see jtial,) = 2a/(a , o).
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Lemma 36.7 Leta € R. There exists an automorphisgof gc, which leavest invariant
and has restrictiors, to this space. The induced endomorphignof 7 leavesR invariant.
Moreover, ife € R thenf — s,(B) € Za.

Proof: We fix X,, Y, € s, such thatH,, X,, Y, is a standard triple. Moreover, we put
T
Ua = E(Xot - Ya)

andy := eV« Theng is an automorphism afc. Since ad/, annihilates every element of the
subset kew it follows thaty = I on kera. On the other hand, we claim thatH,) = —H,.

To establish the claim, we observe that the identity is elytiformulated in terms of the
structure of the Lie algebra,. By isomorphism it suffices to show the similar identity in €as
H,, X,,Y, is the usual standard triple #i(2, C). The advantage in that situation is that we can
use computations in the group @..C). In fact, we have

b4 0 1
U(Y_E(_l O)a

cosZ sinZ 0 1
exXpUe = ( —sin% cos% ) - ( -1 0 )
from which we see that®@« H, = Ad(exp(Uy))Hy = exp(Uy)H, exp(U,)~' = —H,. This
establishes the claim.
We conclude thap € Aut(gc), ¢(tc) = tc andg|. = sq. It follows from Lemma 32.3 that

the induced map, € GL(tf) mapsR to itself.
Finally, letg € R. Then

hence

V=3 gc@tka
kez

is readily seen to be an &g)-invariant subspace. Sinég, € s, it follows thatV is adU,)-
invariant, and sincé’ is closed, it follows thap leaves) invariant. Therefore,

9csa(8) = Bco(B) = ¢(gcp) CV
and we conclude that,(8) € B + Za. O

Definition 36.8 The subgroupgV = W(g,t) of GL(it*) generated by the reflectiong, for
a € R, is called theNeyl groupof (g, t).

Lemma 36.9 The Weyl groupV is finite.

Proof: By Lemma 36.7, each reflectiary leavesR invariant. Hencew(R) C R for each
w € W. Sincew is injective andR finite, it follows thatw|z belongs to the group SyiR) of
bijections fromR onto itself. Clearly the restriction map: w +— w|g, W — Sym(R), is
a group homomorphism. Moreover, sinRespanst*, by Lemma 31.9, it follows that keris
trivial. Hence #V < #SymR) < oo. O
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Let E be a finite dimensional linear spacealfe E \ {0} then by areflectionin « we mean
alinear map : E — E with s(o) = —a and

E =Ra @ ker(s — I).
Note that any reflection satisfies = 7. Hences € GL(E) ands™! = s.

Lemma 36.10 Let E be a finite dimensional real linear space, aRdC E a finite subset that
spanskE. Then for everyr € R there is at most one reflectionn « such thats(R) = R.

Proof: Let K be the group oA € GL(FE) with A(R) = R. The restrictionmap : A — A|r is

a group homomorphism fror to the group of bijections oR. Moreover,r has trivial kernel,
sinceR spanskE. It follows that K is a finite group. Hence, there exists an inner producEon
for which K acts by orthogonal transformations (use averagingy.isfany reflection in a non-
zero elemen& of E which preserve®, then it must be an orthogonal transformation, hence the
orthogonal reflection in the hyperplaaé. In particular, there exists at most one such reflection.
O

Definition 36.11 A (general)root systenis a pair(E, R) consisting of a finite dimensional real
linear spacer and a finite subseR C E \ {0} such that the following conditions are fulfilled.

(&) R spansE.

(b) If ¢ € R,thenR N Ra = {—a, a}.

(c) If @ € R then there exists a (necessarily unique) reflectjoim « that mapsR to itself.
(d) Ifa, B € Rthensy(B) € B + Za.

According to the results of this section, the pair consgsbhE = it* andR = R(g,t) isa
root system in the sense of the above definition.

For a general root system, the subgrdupof GL(E), generated by the reflectiong, for
a € R, is called theWeyl groupof the root systentE, R). By the same proof as that of Lemma
36.9, it follows thatW is finite. By averaging we see that may be equipped with a positive
definite inner product- , -) that isW-invariant. It follows that each reflection, for@ € R is
orthogonal relative td- , -). Hence, it is given by the formula

(. a)
(o, )

In terms of the inner product the condition (d) in the defomtof root system may therefore be
rephrased as
NER)

(o, )

Two root systemsE, R) and(E’, R") are calledsomorphicif there exists a linear isomor-
phismT : E — E’ with T(R) = R’. If g is a compact semisimple Lie algebra, then it follows

sa(l) = A —2

(L € E). (55)

e (o, B € R).
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from Lemmas 32.2 and 32.3 that the isomorphism class of thtesystemR (g, t) is independent
of the choice of the maximal tords

We now have the following result, which we state without grdbreduces the classification
of all compact semisimple Lie algebras to the classificatioall root systems.

Theorem 36.12 The mag — R(gc, tc) induces a map from (a) the isomorphism classes of real
Lie algebras with negative definite Killing form to (b) themsorphism classes of root systems.
This map is a bijection.

37 Weyl's formulas

We retain the notation of the previous section. In this sectre will describe the classification of
of all irreducible representations of the compact semiterhe algebray. Moreover, in terms of
this classification we will state the beautiful characted dimension formulas due to Hermann
Weyl.

Theweight latticeA = A(g, t) of the pair(g, t) is defined as the set

A={Ae€it" |Va € R:s4,A €A+ Za}.

Equipit* with any W-invariant positive definite inner produ¢t , -). Then from (55) we see
that, alternativelyA (g, t) may be defined as the set of elemehts i t* such that

el for all o € R.

It follows from the definition of root system that tielattice spanned by is contained inA.
The collection ofdominant weightgrelative toR ™) is defined by

AT ={dlecit"|Va € RT: s4A € A + N(—a)}.
Thus,A™ consists of the collection of weights ik that are contained in the convex cone
Ct={Aleit*|{(A,a)>0 forall aoeR"}.
The following results amount to the classification of akkducible representations @f

Theorem 37.1 For everyAd € A* there exists a unique (up to equivalence) irreducible repre
sentationr, of g with highest weighdi .

From this result combined with Theorem 31.23 we obtain tevong.

Corollary 37.2 The map) — ; induces a bijection fronA* onto the collection of equiva-
lence classes of irreducible representationg.of
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Let nowG be a compact connected Lie group with algehraet 7 be a finite dimensional ir-
reducible representation 6f. Then the associated representation of the Lie algebra igadgnt
to r,, for a uniquel € A ™. It turns out that in terms of this parametrization, theresekeautiful
formulas for the character and dimensionofThe charactey,, of 7 is conjugation invariant.
In view of the following result, which we state without prodfis completely determined by its
restriction toT := exp(t).

Proposition 37.3 The groupl’ = exp(t) is a compact torus ittz. Moreover, each element 6f
is conjugate to an element &f

If w € W we writee(w) = detf(w) for the determinant ofv; sincew is orthogonal with
respect to a suitable inner product, we haye) = +1. We define the elemeidte it* by

82%20{.

a€RT
Theorem 37.4 (Weyl's formulas). Let be an irreducible representation 6f of highest weight
A. Then the charactey, is given by
ZweW e(w)ew()t-‘r(?)(X)
2 wew €(w)ew? O

for all X e t for which the denominator is non-zero; the§edorm an open dense subset (Weyl's
character formula). Moreover, the dimensionofs given by

dimr = [ A+0,a)

werr (029

An (eXpX) =

(Weyl’'s dimension formula).

Example 37.5 We consider the example @f = su(2), with the associated standard triple
H,X,Y in gc = sl(2,C). We recall thatt = iRH is a maximal torus irg. Moreover,R =
{—a,a}, wherea € it* is determined by (H) = 2. Also, R™ = {«} is a choice of positive
roots. The associated Weyl group consists of two elemérasds,. Moreover,§ = %a. Hence,

AT ={né|neN}.

The representation with highest weigtstwas earlier denoted by,. We note thatns+46)(H) =
n 4+ 1 and[s,(né + 8)](H) = —(n + 1). According to the above formula the characterpfis
therefore given by the formula

in+1)t _ e—l'(n-i—l)t
mu(expitH) =

eit _ e—it

which is consistent with what we computed earlier. The dism@mofr,, is given by
(né+46, a)
(0, a)

consistent with what we discussed before.

dim(z,) = =n+1,
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38 The classification of root systems

38.1 Cartan integers

In this section we shall study some aspects of the theoryaifggstems. In particular we shall
describe the first step towards their classification. Theistppoint of the theory is the definition
of a root system as given in Definition 36.11. In the rest of #action we assume th@, R) is
such a root system. The dimensionfis called theank of the root system.

By the process of averaging over the Weyl grdiipof the given root system, we select a
W -invariant positive definite inner produ¢t , -) om E. Then, for everyx € R the reflection
sq IS given by the following formula, fok € E,

(A, @)
CRE

Sq(h) = A —2

For two rootsy, 8 € R we definen,g to be the integer determined by

sa(B) = B —napa, (56)

see Definition 36.11 (d). These integers are calledGagan integerdor the root system. It
follows from the above representation of the reflection mmte of the inner product that the
Cartan integers are alternatively given by

_ (B, )
Ngpg = 2(0[ ’ O[)' (57)

Lemma 38.1 Lety be an isomorphism frorfE, R) onto a second root systefi’, R’). Then,
forall o, B € R,

(@) posq = So(@) °P;
(b) ny@ ) = Nap-

Proof: Itis readily seenthat := gos,o¢~! : E' — E is a reflection inp(«). Sinces(R’) =
s« Y(@R) = R’, (a) follows. Assertion (b) follows by application of (56). OJ

We shall now discuss the possible values of the Cartan irgedfer, € E \ {0}, then by
the Cauchy-Schwarz inequality there is a unigug < [0, ] such that

(o, B) = |o[|p]| cOS@ap.

The numberpy; is called theanglebetweeny andp (with respect to the given inner product).
Assume thatr, 8 € R anda # +f. Then

B B )
2m COS@ep = 2(a, o)

= Ngp € Z.
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It follows that
Neplge = 4-COS2 Yap € Z.

From this formula we see that the valuegfs is independent of the particular choice of-
invariant inner product oi. By Definition 36.11(b) the roots, 8 are not proportional, hence
| cospap| < 1. It follows that

NapNgae € {0, 1,2, 3}.

After renaming we may assume that < |B|. It then follows from (57) thatn,g| > |ngel.
By integrality of the Cartan integers we find that eitleerl. B orng, = =£1. This leads to the
following table of possibilities for,s andggg.

Lemma 38.2 Letw, B € R be non-proportional roots withx| < |8|. Then the following table

contains all possible combinations of valuesigg. ng, and¢,g. The question mark indicates
that the value involved is undetermined.

Naplpa  Nap Npa  COSPap  Qup % - Z%ﬁ
0 0 0 0o 3 ?
1 1 1 : z 1
1 B -1z 1
2 21 12 T 2
2 -2 -1 -y 2
3 31 13 z 3
3 -3 -1 -3 Iz 3

Example 38.3 Let E = R?, equipped with the standard inner product. kebe the first
standard basis vectdi,0), and = (—1,1+/3). Then|f| = |a| = 1 andg.s = 27/3.
Moreover,o + B = (%, %\/5) has angler/3 with botha andg. It is easily verified thatR =
{£a, B, £(x + B)} is aroot system. Note that,s = ng, = —1. This root system, called,,
is depicted in the illustration following Lemma 38.16. Let= sq445,. Thenr is the rotation

over angle2rr/3. The reflections = s, is the reflection in the linet = R(0, 1). The Weyl
groupW equals{l,r,r=1, s, sr,sr71}.

The following lemma will be extremely useful in the furthesglopment of the theory.

Lemma 38.4 Leta, B € R be non-proportional roots.
(@) If («, B) > 0thena — B € R.
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(b) If (e, B) < Othena + B € R.

Proof: It suffices to establish (a). Then (b) follows by replachgith —8. Sincea — 8 € R is
equivalent tg8 —a € R we may as well assume thiat| < |]. Then it follows thatd < ng, <
neg. henceng, = 1. In view of (56) this implies thatg («) = o — 8. Now use Definition 36.11
to conclude tha — 8 € R. O

Given non-proportional rooig, 8 € R we define thex-string throughg to be the set
Lo(B) := (B +Za) N R.

The following lemma expresses that root strings have norugpéions and have at most 4 ele-
ments.
Lemma 38.5 Leta, 8 € R be non-proportional.

(@) There exist unique, g € Z with p < g suchthatL,(8) = {8 + ka | p <k < q}.

(b) p<0=<gandp +q = —nu.

(c) #Lo(B) < 4.
Proof: We first establish (a). Writ¢; := B — ja, for j € Z. Assume (a) does not hold. Then
there exist integers < [ such thatl;,A; € R buti,1,A;—1 ¢ R. It follows by application of

Lemma 38.4 that
(Ak,a)>0 and (A;, a) <0.

On the other hand,
Ak, o) =(B,a)+kla|> <(B,a)+laf = (A, a),

contradiction. We conclude that (a) holds. Sirttee L, (B), the first assertion of (b) follows.
For the other assertion, we note thaimapsL, (B) bijectively onto itself. Hence, (8 + pa) =
B + qa, from which it follows that-nq.go — pa = ga. This establishes (b).

For (c) we note thay = B + pa is aroot. ClearlyLy,(8) = Lo(y) = {y + ja | 0 <
Jj <q— p},sothat#,(y) = g — p + 1. It now follows from (b) applied to the pair, y that
q — p = —ngy, hencen,, <0andg — p € {0, 1,2, 3}. OJ

38.2 Fundamental and positive systems

If F is afinite subset o we write

NF ={) nsf|ns €Ny

feF

HereN = {0,1,2,...}.
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Definition 38.6 A fundamental systeor basisfor (E, R) is a subsefs C R such that
(@) S is a basis forE';
(b) R C NS UN(-9).

Conditions (a) and (b) of the above definition may be restatefbllows. Every roof € R
admits a unique expression of the form

=) ko,

a€ES

with k, € R. Moreover, eithek, € Nforalla € S ork, € —N for all @« € S. Theheightof g
relative tosS is defined by

ht(B) = D ke

aeS

Lemma 38.7 LetS be a fundamental system for the root sys#nThen for all rootsx, 8 € S
with o # B one has«a, B) < 0 (or, equivalentlypyg > 7/2).

Proof: Sincea — f is a linear combination of the elements$fvith both plus and minus signs,
it cannot be a root. It follows from Lemma 38.4 tHat, 8) < 0. O

To ensure the existence of fundamental systems, we intedtieaotion of a positive system.
By anopen half spacef E we mean a set of the forld*(§) = {x € E | £(x) > 0}, where
¢ is a non-zero element of the dual spdte := Homg(E, R). Via the given inner product, we
sometimes identify with E*. Accordingly, ify € E \ {0}, we write

ET(y)={x € E|(x,y)>0}
Definition 38.8 A positive systeror choice of positive rootfor R is a subsef” C R with the
following properties.
(&) There exists an open half space containtng
(b) RC PU(-P).
Let P be a positive system fak. An indecomposabler simple rootin P is defined to be

a root that cannot be written as the sum of two roots frBnThe set of these simple roots is
denoted by§(P).

Lemma 38.9 Let P be a positive system f&k. ThenS(P) is a fundamental system fd& and

P = NS(P)N R. The mapP — S(P) is a bijective map from the collectioR of positive
systems foR onto the collectiorS of fundamental systems fé.
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Proof: PutS = S(P). Leta € P. Then eithex € S, or @ can be written as a suph+ y with
B,y € P.Proceeding in this way we see th&tC NS, hence condition (b) of Definition 38.6
holds. In particular, it follows tha$ spansE. It remains to be shown that the elementsScdre
linearly independent. Let, B be distinct roots ir. By definition of S, neithera — 8 nor 8 — «
does belong t&P. Hence — B ¢ R. It follows by application of Lemma 38.4 thét , 8) < 0.
From the lemma below it now follows that the elementsSddre linearly independent. HenSe
is a fundamental system. In the above we establighed NS, whence— P C N(—S) and since
R =P U(—P)itfollowsthatP = NS N R.

We have shown that the map — S(P) is injective’P? — S and will finish the proof
by establishing its surjectivity. Fo§ a fundamental system @t we defineR™ = R*(S) =
NS N R. SinceS is a basis forE, the linear functionalge, -), for o € S, form a basis for
the dual spacé *. It follows that there exists @ € E such thate, y) > Oforalla € S. We
conclude thafS, henceR™, is contained in a half space. FraRic NS U (—NJ) it follows that
R C RT U (—R™). HenceR*(S) is a positive system. Froii C R*(S) C NS it follows that
S(R*(S)) C S. Both sets of of this inclusion are bases #6r hence, they must be equal. We
conclude that the mag — S(P), P — S is bijective with inverse§ — R (S). OJ

Lemma 38.10 Let E be afinite dimensional real linear space, equipped with datp@sdefinite
inner product. LetS C E be a finite subset contained in a fixed open half space and sath t
(a, B) < 0forall distincte, B € S. Then the elements éfare linearly independent.

Proof: There exists § € E suchthat¢, o) > Oforalla € S. LetA, € R, fora € S, be such
that) s Ao = 0. We defineSy := {a € § | £4, > 0}. ThenS, andS_ are disjoint. We
defineey := ZaeSi |Aq|. If one of the sets of summation is empty, the sum is undersimod
be zero. The linear relation between the elements wfay now be expressed as —e_ = 0 or

€4 = €_.

From the fact thafe, ) < O for all« € S; and allg € S_ it now follows that(e , €;) =
(€4, €e~) <0.Hence,ey, €4) = 0 and we conclude that, = ¢ = 0. We now observe that
0=(£,e4) = ZaeS+ |[Aq|(€, ). Since each of the inner produdts, «) is strictly positive,
it follows that S, = @. Similarly, S- = @ and we conclude that, = 0 for all « € S. This
establishes the linear independence. O

For eachu € R, the setP, := ker(I — s,) is called the root hyperplane associated with
Relative to the giver¥ -invariant inner productP, = o*. We define the set of regular points in
E by

E™:= E\ UgerPa. (58)

SinceR is a finite set, it is easy to show that®*?is an open dense subset®f in particular, the
set of regular points is non-empty.

We can now establish the existence of positive systems ghaso of fundamental systems.
Fory € E™9we define

R*(y) =RNET(y)={a € R|(y,a)>0}.
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Lemma 38.11 For everyy € E™9the setR*(y) is a positive system faR. Moreover, every
positive system arises in this way.

Proof: ThatR™(y) is a positive system is immediate from the definitions. Cosely, letP be

a positive system foR, and letS = S(P) be the associated fundamental system. The linear
functionals(- , «), for @ € S, form a basis for the dual spad&*. Hence there existsa € E
such thaty , «) > 0 forall« € S. From P C NS it now follows thatP c R*(y), hence also
[-P]N RT(y) = 0. SinceP is a positive systemR*(y) C P U (—P), so we must have that

P = Rt(y). O

Definition 38.12 Let S be a fundamental system f&. The integersi,g, for o, B € S, are
called theCartan integersassociated witl$. The square matrix : S x S — Z, («, B) > ngg
is called theCartan matrixfor S.

We will end this section with a result that asserts that eveot system is completely de-
termined by the Cartan matrix of a fundamental system. leddp crucially on the following
lemma and Lemma 38.5.

Lemma 38.13 Let S be a fundamental system fRrand Rt = R N NS the associated positive
system. I8 € Rt \ S, then there exists am € S suchthatf —« € R*.

Proof: Sinceg is not simple, itis of the forn}_ < kv, k, € N, with at least two coefficients
non-zero. Thus, it € S andf — « € R, then at least one of the coefficientsf « is still
positive, and it follows tha — o € R*.

Assume tha —a ¢ R* for alla € S. Then it follows thatB —a ¢ R forall o € S.
By Lemma 38.4 this implies thdp , o) < 0 forall« € S, hence(B, B) < 0, hence = 0,
contradiction. O

Given any finite setS we write Eg for the real linear space with bas$s As a concrete
model we may take the spaB€ of functionsS — R; heresS is embedded iiRS by identifying
an elementr € § with the functiond, : S — R given by — d.p. If v € Eg, we put
v =Y ,cs Voe. With the above identification, as an elementlof, the vectorv is given by
o = Vgy.

Let E be areal linear space and: S — E a map, thenf has a unique extension to a linear
map Es — E, again denoted by. Moreover, if f : S — S’ is a map, thery’ may be viewed
as a mapy — Eg which in turn has a unique linear extension to a nfapEs — Eg'.

Theorem 38.14 There exists a maR assigning to every pair consisting of a finite $eand a
functionn : S x S — Z afinite subseR (S, n) C Eg with the following properties.

(@) If ¢ : S — S is a bijection of finite sets, and: S x § — Z a function, then the induced
mapg : Ess — Es mapsR(S’, ¢*n) bijectively ontoR (S, n).

(b) If (E, R) is a root system with fundamental syst8rand Cartan matrix: : S x S — 7Z,
then the natural mags — E mapsR(S, n) bijectively ontoR. In particular, (RS, R(S, n))
is a root system isomorphic {&, R).
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Remark 38.15 The above result guarantees that the isomorphism classoot aystem can be
retrieved from the Cartan matrix of a fundamental systentethae will see that all fundamental
systems are conjugate under the Weyl group, so that all €artdrices of a given root system
are essentially equal, cf. Lemma 38.1.

In the proof of the above result the setwill be defined by means of a recursive algorithm
with input dataS, ». This algorithm will provide us with a finite procedure for find all root
systems of a given rank. Let such a ranke fixed. LetS be a given set withr elements. Each
root systemR of rank r can be realized in the linear spaég, having the standard basis as
fundamental system.

The possible Cartan matrices run over the finite set of nfapsS — {0, +1, 2, +3}.
For each such map it can be checked whether or n@Es, R(S,n)) is a root system with
fundamental syster. Condition (b) guarantees that all root systems of rarge obtained in
this way.

Proof: We shall describe the maR and then show that it satisfies the requirements. Require-
ment (b) is motivational for the definition.

For eachx € S we define the map,, : S — Z by n,(B8) = n(a, f). As said above this map
induces a linear magp, : Es — R. If the linear maps:,, for « € S, are linearly dependent, we
defineR(S,n) = @ (we need not proceed, singecan impossibly be a Cartan matrix of a root
system). Thus, assume that theare linearly independent linear functionals.

We consider the semi-lattick = NS C Eg. Then for eachr € S the map, has integral
values onA. We define a height function afl in an obvious manner,

ht(d) = Aa.

aeS

Let A be the finite set ok € A with ht(1) = k. We putP; = S and more generally will define
setsP;, C Ay by induction onk.

Let Py,..., P, be given, thenP,. is defined as the subset &f, . ; consisting of elements
that can be expressed in the fofa- o with («, 8) € S x Py satisfying the following conditions.

() « andp are not proportional.

(i) ne(B +a)| <3.
(i) Let p be the smallest integer such thtat- pa € Py U ---U Py;thenp —ny(B) > 0.

We defineP(S, n) to be the union of the setBy, for k > 1 and putR(S,n) = P(S,n) U
(=P(S,n)).

The setF of B € Eg withn,(8) € {0, =1, £2, £3} foralla € S isfinite, because the, are
linearly independent functionals. In factF#< (#S)’. From the above construction it follows
thatR(S,n) C F, hence is finite. In particular, we see that the above indedgfinition starts
producing empty sets at some level. In fact,Aebe an upper bound for the height function on
F,thenP(S,n) = Py U---U Py.
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From the definition it is readily seen that the mRpdefined above satisfies condition (a)
of the theorem. We will finish the proof by showing that comatit(b) holds. Sssume that
S is a fundamental system for a root systém, R). Let Rt = R N NS be the associated
positive system and : S x § — Z the associated Cartan matrix. The inclusion nSag E
induces a linear isomorphisfy — E via which we shall identify. Then it suffices to show that
R(S,n) = R. Sincen is a genuine Cartan matrix, the functionalg for « € S are linearly
independent. Thus it suffices to show tifat = R N Ay, for everyk € N. We will do this by
induction onk. Fork = 1 we haveR N Ay = S = P, and the statement holds. Llet> 1 and
assumethaP; = RN Aj forall j < k. We will show thatPy; = RN Ag4q.

First, consider an element &% ;. It may be written ag +« with («, B) € S x P; satisfying
the conditions (i)-(iii). By the inductive hypothesi§,c R*. Moreover, there exists a smallest
integerp’ < 0 such that8 + p’a € R*. By the inductive hypothesis it follows that = p.
The a-string throughB now takes the fornlL,(8) = {8 + ka | p < k < g} with ¢ the non-
negative integer determined hy+ ¢ = —nq(B). From condition (iii) it follows thatg > 0,
henceB + « € R*. It follows that P, ;1 € R N Ag,. For the converse inclusion, consider an
element; € R of weightk + 1. Sincek + 1 > 2, the root8; does not belong t§. By Lemma
38.13 there existsa € S such thai := 8; —a € R™. Clearly, h{B) = k, soB € P, by the
inductive hypothesis. We will proceed to show that the pair3) satisfies conditions (i)-(iii).
This will imply that 8, € Px+1, completing the proof.

Sincep; is a root,a # B, hence (i). Since,(B81) = naqp,, condition (ii) holds by Lemma
38.2. Thex-root string throughs has the formL,(8) = {8 + ka | p < k < g}, with p the
smallest integer such tht+ pa is a root and withy the largest integer such thét+ g« is a
root. We note thap < 0 andg > 1. By the inductive hypothesig; is the smallest integer such
thatg € P, U---U Px. Moreover, by Lemma 38.%1,(8) = neg = —(p + ¢) and (iii) follows.

0]

38.3 The rank two root systems

We can use the method of the proof of Theorem 38.14 to clasiséy(isomorphism classes
of) rank two root systems. LdtE, R) be a rank two root system. Thdt has a fundamental
systemS consisting of two elements, and 8. Without loss of generality we may assume that
le| < |B|. Moreover, changing the inner product @by a positive scalar we may as well
assume thgtr| = 1. From Lemma 38.7 it follows that there are 4 possible valuesfg, namely

0, —1, -2, =3, with corresponding angles,s equal torr /2,27 /3,37 /4,57/6.1f neg = 0 then

the length off is undetermined. In the remaining cases, the length efjualsl, +/2 and v/3,
respectively. It follows from Theorem 38.14 that for eachiwdse cases there exists at most one
isomorphism class of root spaces. We shall discuss these saparately.

Casengg = 0. In the notation of the proof of Theorem 38.18, = {«, B} It follows that
P, can only contain the elemefit+ «. In the notation of condition (iii) of the mentioned proof,
we havep = 0 andny(B) = 0, hence + o ¢ P,. It follows that P; = @ for j > 2. Therefore,
R = {*«a, £} is the only possible root system with the given Cartan mathie leave it to the
reader to check that this is indeed a root system. It is called A;.
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Casengg = —1. Inthis caseP; = {«, B}. There is only one possible elementin, namely
B + «. Herep = 0 andny(B) = —1 whence—p — ny(B) > 0 and it follows that8 + « € P,.
The possible elements iP; are(« + ) + « or (a + B) + B. For the first element, Now = —1
andny (o + B) = 1, whenca + B ¢ P;. Similarly, (o + ) + B ¢ Ps. It follows thatP; = @
for j > 3. Hence,R = {£«a, £8, =(a + B)} is the only possible root system. We leave it to the
reader to check that it is indeed a root system. It is called

Casengg = —2. We haveP; = {«, B} andP, = {«+ B}. The only possible elements i
are(a + B) +a and(a + B) + B. For the first of these we have Fropn= —1 andn,(«+8) = 0,
so that—p — ny(a4+g) > 0 andp + 2a € P;. For the second element we have Frpm= —1
andng(a + B) = 1, whence—p —ng(ayB) = 0, from which we infer tha2p + « ¢ P5. Thus,
Py ={p + 2a}.

The possible elements &, are(f +2«) +« and(B +2«) + B. For the first elemenyy = —2
andny (B + 2a) = 2, hencef + 3a ¢ P,. For the second elemernt,= 0 andng(f + 2o) = 0,
hence2 + 2«a ¢ P4. We conclude thaP; = @ for j > 4.

Thus, in the present case the only possible root systetn=s{t+o, 8, (o + B), £(B +
2a)}. Again we leave it to the reader to check that this is a rooesystt is calledB..

Caseny,pg = —3. We haveP; = {«, B} and P, = {« + B}. The possible elements @ are
B + 2« and2p + «. For the first element we have, ,+p = —1 andn, (o + ) = —1, hence
B + 2« € Ps. For the second we havegs ,+p = —1 andng(a + B) = 1, hence2p + « ¢ Ps.
Thus,Ps; = {f + 2a}.

The possible elements &%, aref 43« and2f +-2«. For the first element we hayg, >4+ =
—2andn,(2a + B) = 1, hencef +3ua € Ps. Forthe secondpg »o+p = 0 andng(2a+ ) = 0,
hence2f + 2a ¢ P4. Thus, Py = {B + 3a}.

The possible elements &t are + 3a + « andf + 3« + B. For the first element we have
p = —3 andny(B + 3o) = 3, whenceB + 4a ¢ Ps. For the second element we hagwe= —1
andng(B + 3a) = —1, whence2 + 3« € Ps, and we conclude thats = {28 + 3«}.

The possible elements dfs are28 + 3o + « and2p + 3o + B. For the first element we
havep = 0 andn,(28 + 3a) = 0, and for the secong = —1 andng(2f + 3«a) = 1. Hence
P;j =¢forj >6.

We conclude that the only possible root systeRis- +{«, 8, a + 8,20 + B8, 3 + B, 3 +
28}. We leave it to the reader to check that this is indeed a rodésycalledG,.

Lemma 38.16 Up to isomorphism, the rank two root systems are completabsified by the
integernqgn ga, for {o, B} a fundamental system. The integer takes the vdluds 2, 3}, giving
the root systemd; x A, A,, B, andG,, respectively.

Proof: This has been established above. O

The rank 2 root systems are depicted below.
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38.4 Weyl chambers

We proceed to investigate the collection of fundamentatiesys of the root systerf, R). An
importantrole is played by the connected components'® see (58), called thé/eyl chambers
of R.

For everya € R, the complement \ P, is the disjoint union of the open half spadé$ («)
andE* (—a). Since E™ is the intersection of the complemeris, P,, each Weyl chamber can
be written in the formM,cr E* (), with @ € F, F C R. It follows that each Weyl chamber
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is an open polyhedral cone. We denote the set of Weyl chanilye€s If C < C then for
everya € R the functional(«e, -) is nowhere zero o, hence either everywhere positive or
everywhere negative. We define

RT(C)={aeR|{x, -)>0o0on C}.

Note that for every € C we haveR™(C) = R*(y). Thus, by Lemma 38.11 the s&t"(C) is
a positive system foR and every positive system arises in this way.

If C is aWeyl chamber, then b§/(C') we denote the collection of simple roots in the positive
systemR ™ (C). According to Lemma 38.9 this is a fundamental systemior

Proposition 38.17

(a) The mapC — R™(C) defines a bijection between the collection of Weyl chambeds a
the collection of positive systems fBr

(b) The mapC +— S(C) defines a bijection between the collection of Weyl chambwsiidtze
collection of fundamental systems fRr

(c) Is C is a Weyl chamber, then
C={xcE|YaeRT(C): (x,a)>0={x€c E|VYaeSC): (x,a) >0

Proof: Recall that we denote the collections of Weyl chambers tpesystems and fundamen-
tal systems by, P andS, respectively.

If P € PwedefineC(P) :={x € E|VYeeP: (x,a) >0},andifS € S we
putC(S) :={x € E | Ya € § : (x,a) > 0}. With this notation, assertion (c) becomes
C = C(RT(C)) = C(S(C)) for everyC € C.

Let S € S. Then the seC(S) is non-empty and convex, hence connected. SiRce
NS U [-NS], it follows thatC(S) C E™9. We conclude that there exists a connected component
C € C such thatC(S) C C. Every root fromR has the same sign afi as onC(S); hence,

C C C(S). We conclude tha€ (S) = C. In particular,S — C(S) mapsS intoC.

Let P € P and letS be the collection of simple roots iR. FromS C P C NS it readily
follows thatC(S) = C(P). In particular,C(P) € C.

From Lemma 38.11 it follows that the ma&p — R (C) is surjective. IfC € C then from
the definitions it is obvious that ¢ C(R*(C)) c C(S(C)). The extreme members in this
chain of inclusions are Weyl chambers, i.e., connected ooripts ofE£™9, hence equal. Thus
(c) follows. Moreover,C(R*(C)) = C, from which it follows thatC +— R*(C) is injective,
whence (a). Finally, (b) follows from (a) and (c) combinediwiiemma 38.9. O

The following result gives a useful characterization of siraple roots in terms of the asso-
ciated Weyl chamber.

Lemma 38.18 Let C be an open Weyl chamber. A roet € R belongs to the associated
fundamental systei$i(C) if and only if the following two conditions are fulfilled.

@ (a, -)>00nC;
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(b) C N at has non-empty interior in*.

Proof: PutS = S(C) and assume that € S. Then (a) follows by definition. From Proposition
38.17 we know that consists of the points € E with (x, 8) > 0 forall 8 € S. Since
S is a basis of the linear spad it is readily seen tha€ consists of the points € E with
(x, B) > 0forall B € S. The functionalgB, -)|,., for B € S\ {a}, form a basis ofr*, hence
the setC N ™+ contains the non-empty open subset:éfconsisting of the points € o' with
(x, By >0forall B € S\ {«}. Thisimplies (b).

Conversely, assume thatis a root and that (a) and (b) are fulfilled. From (a) it follothat
a € RT(C). It remains to be shown thatis indecomposable. Assume the latter were not true.
Thena = B + y, for B,y € RT(C). From (b) it follows that{8, -) > 0 and(y, -) > 0O on an
open subsel/ of « On the other handB +y, -) = 0 onU. It follows that(8, -) and(y, -)
are zero orU, hence onx' by linearity. From this it follows in turn thag+ = o = y+. Hence
B andy are proportional te, contradiction. O

The Weyl group leaveR, henceE"™9, invariant. It follows that? acts on the set of connected
components orE™9, i.e., on the sef of Weyl chambers. Clearly} acts on the set of positive
systems and on the set of fundamental systems, and the @etiercompatible with the maps
of Proposition 38.17. More precisely,if € W andC € C, thenRT(wC) = wR*(C) and
S(wC) =wS(C).

Lemma 38.19 Let R be a positive system fat and leta be an associated simple root. Then
s mapsR™ \ {«} onto itself.

Proof: Let S be the set of simple roots iR™ and letf € R*, B # a. Thenp =} ¢k,
with k, € N andk,, > 0 for at least oney, different froma. Now s, (B) = >, co\ (o) ky Y + Lot
for somel, € Z. Sinces, B is a root, it either belongs .S or to —NS. The latter possibility is
excluded byk,, > 0. Hences,$ € NS N R = R*. O

If R is a positive system foR, we define§(R*) = § to be half the sum of the positive

roots, i.e., .
yeRT

Corollary 38.20 If « is simple inR™, thens,d = § — .

Proof: Write § = 3 ), cr+\(y ¥ + 3@ The sumin the first term is fixed by, whereas the
term 2o is mapped onte-3 . O

Two Weyl chamberg, C’ are said to be separated by the root hyperptahéf the linear
functional(«, -) has different signs o@ andC’. We will write d(C, C’) for the number of root
hyperplanes separatifgandC’. If P is any positive system faR thend (C, C’) is the number
of « € P such that{o, -) has different signs o' andC’ (use thatr is the disjoint union of
P and—P and that roots define the same hyperplane if and only if theypasportional). In
particular,

d(C,C"y=#RT(C)\ RT(C)].
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Definition 38.21 Two Weyl chamber€ andC’ are calledadjacentif d(C,C’) = 1, i.e., the
chambers are separated by precisely one root hyperplane.

Lemma 38.22 LetC, C’ be Weyl chambers. Thé&h C’ are adjacent if and only i€’ = s5,(C)
for somex € S(C). If the latter holds, ther-a € S(C”).

Proof: Let C andC’ be adjacent. The®R*(C) \ R*(C’) = {«a} for a unique rootr. From
S(C)\ R*(C’) = @ it would follow thatS(C) c R*(C’), whenceR*(C) c R*(C’). Since
both members of this inclusion have half the cardinalityjRothey must be equal, contradiction.
HenceS(C) \ R™(C’) contains a root, which must be Similarly, S(C’) contains the root
—a. SinceR*(C’) and RT(C) have the same cardinality, we infer that (C’) = [RT(C) \
{a}] U {—a} = s4(RT(C)), by Lemma 38.19. It follows thaR™(C’) = R (s,(C)), hence
C’' = 54(C).

Conversely, assume thate S(C) ands,(C) = C’. ThenR™(C’) = 5, RT(C) = [RT(C)\
{a}] U {—a} from which one sees that’# (C) \ R*(C’) = 1. Hence,C andC’ are adjacent.
0]

Lemma 38.23 Let C, C’ be distinct Weyl chambers. Then there exists a charGethat is
adjacent toC’ and such that/(C,C”) = d(C,C’) — 1.

Proof: There must be a roat € S(C’) \ R*(C), for otherwiseS(C’) ¢ R*(C), hence
RT(C’) c R*(C), contradiction. LetC” = s,(C’). ThenC’ andC” are adjacent by the
previous lemma. Also, by Lemma 38.18;"(C") = 5,RT(C’') = [RT(C") \ {a}] U {—a}.
From this we see thaR* (C’) \ R*(C) is the disjoint union ofR*(C”) \ R (C) and{a}. It
follows thatd (C,C") = d(C,C") — 1. O

Lemma 38.24 Let C be a Weyl chamber anfl = S(C) the associated fundamental system.
Then for every Weyl chambél’ # C there exists a sequengg, . . .s, of reflections in roots
from S such thatC’ = s ---5,(C).

Proof: We give the proof by induction od = d(C,C’). If d = 1, then the result follows
from Lemma 38.22. Thus, let > 1 and assume the result has been established favith
d(C,C’) < d. By the previous lemma, there exists a chamBé&r adjacent taC’ and such that
d(C,C")=d(C,C’)—1.By Lemma 38.22C" = s5,(C") for a simple rootx € S(C’).

By the induction hypothesis there existsvae W that can be expressed as a product of
reflections in roots fron$ (C) such thatw(C) = C”. Thus,s,w(C) = s4(C"”) = C’. Moreover,

SeW = WSy-1, = WS_y—14, and since-a € S(C”), it follows that 8 := —w ™'« belongs to
S(C) = w™'S(C"). We conclude tha€’ = ws(C) with w a product of reflections from roots
in S(C) and withs = sg, reflection in a root frons(C). 0J

Lemma 38.25 Let S be a fundamental system f&. Then every root fronR is conjugate to
a root from S by an element of¥ that can be written as a product of simple reflections, i.e.,
reflections in roots frons.
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Proof: Leta € R. There exists a Weyl chambér such thatx- N C has non-empty interior in
at. By Lemma 38.18 it follows that either or —« belongs taS(C). ReplacingC by s (C) if
necessary, we may assume that S(C). Let C* be the unique Weyl chamber wis(C ™) =
S. Then there exists a Weyl group element of the form statedthathy~! (C) = C*. It follows
thatwa € S(C1) = S. O

Corollary 38.26 Let S be a fundamental system f&. ThenW is already generated by the
associated collection of simple reflections.

Proof: Let I, be the subgroup d generated by reflections in roots fraSnLet o € R. Then
by the previous lemma there existsvtac W, such thatx = wpg, with g € S. It follows that
s¢ = wsgw ' € Wy. SinceW is generated by the,, for « € R, it follows thatW = W,. O

Definition 38.27 Let S be a fundamental system fat. If w € W then an expressiow =
s1-+-8, of w in terms of simple reflections is called@duced expressiaifit is not possible to
extract a non-empty collection of factors without changimg product.

Lemma 38.28 Leta;,...,a, € S be simple roots (possibly with repetitions), andslgt= s,
be the associated simple reflections. Assume shat s, () is positive relative taS. Then
s1 -+ S, IS not a reduced expression. More precisely, there exi$tsa& < n such that

S1c Sy = 81 Sk—15k+1 " Sn—1-

Proof: Write 8; = 5,41 ...5,—1(cy), for 0 < j < n. Let P be the positive system determined
by S. ThenBy, € —P andp,_; = a, € P, hence there exists a smallestindex k < n — 1
such thai, € P. We have that,(8x) = Bx—1 € —P, hence, by Lemma 38.18; = «,. We
now observe that for evety € W we havews, = syq, w. Applying thiswithw = sg41...5,—1
we obtainsg1 -« Sp—18, = S, Sk+1**Sn—1 = Sk - Sp—1. This implies that

810 8Sn = S1°SkSk - Sn—1 = 817 Sk—15k+1 " Sn—1-

Lemma 38.29 The Weyl group acts simply transitively on the set of Weyintieas.

Proof: Let C denote the collection of Weyl chambers. The transitivityted action of W on
C follows from Lemma 38.24. To establish that the action ispteanwe must show that for all
CeCandw eW,wC =C = w = 1.

Fix C € C and letS = S(C) be the associated fundamental systemifotetw € W \ {1}.
Thenw™! has a reduced expression of the foum' = s;---5,, Withn > 1, 5; = 54, 0j €
S(C). From Lemma 38.28 it follows that~!a,, < 0 onC, hencex,, < 0 onw(C). It follows
thatw(C) # C. O
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Remark 38.30 It follows from the above result, combined with Proposit8817, that the Weyl
group acts simply transitively on the collection of fundantae systems foR as well as on the
collection of positive systems.

Let S, S’ be two fundamental systems, anditebe the unique Weyl group element such that
w(S) = S'.Letn : Sx S - Zandn' : S’ x S’ — Z be the associated Cartan matrices.
Then it follows from Lemma 38.1 that (wa, wB) = n(a, B) for all a, B € S, or more briefly,
w*n’ = n. Thus, the Cartan matrices are essentially equal.

Let S be a fixed fundamental system f&t From now on we denote the associated positive
system byR*. The elements of are called the simple roots, thosef are called the positive
roots. The associated Weyl chamber

Et={xeE|VYaeR": (a,x)>0}

is called the associated positive chamber. Given a @oate will use the notatiomx > 0 to
indicate thatr € R*; this is equivalenttdo, -) > 0onE™.

We define number (w) = [(w) andng(w) = n(w) for a Weyl group elemen € W.
Firstly, /(w), the length ofw, is by definition the shortest length of a reduced expression f
w. Secondly,n(W) is the number of positive roots € R* such thatwa is negative, i.e.,
wa € —RT.

Remark 38.31 In general, the numbefs(w) andns(w) do depend on the particular choice of
fundamental system. This can already be verified for thesgstemA,.

Lemma 38.32 For everyw € W,
nw)=Iw)=dET, wET)) =dET, wE™)).
Moreover, any reduced expression foyrelative toS, has length/ (w).

Proof: d(E*,w '(E™)) equals the number of positive roats€ R™ such thate < 0 on
w~Y(E™T). The latter condition is equivalent witha < 0 on E* or wa € —R™. Thus,n(w) =
d(ET,w™'(ET)). On the other hand, clearly

d(ET, wNET) =dwET, ww'ET) =d(ET,wE™).

It follows from the proof of Lemma 38.24 that any reduced esgsion has length at most
d(E,wE™). In particular,/(w) < d(E*,wE™).

We will finish the proof by showing that(w) < /(w), by induction on/(w). If [(w) =1,
thenw is a simple reflection, and the inequality is obvious. Thesul > 1 and assume the
estimate has been established forwalith /(w) < n. Letw € W with [(w) = n. Thenw
has a reduced expression of the fotm= sy ---5,_154, With @ € S(C). Putv = s1...5,_1;
this expression must be reduced, heh@e < n and it follows thatn(v) < n — 1 by the
inductive hypothesis. On the other hand, from Lemma 38.28ldws thatwa € —R™, hence
B := va > 0. The rootp belongs taS(vE ™), henceRt (wE™) = R (sgvE™Y) = [RT(vET) \
{B}] U {—pB}. It follows that R* \ Rt (wE™) is the disjoint union ofR™ \ R (vE™) and{B}.
Hencen(w) = d(ET,wEY) =d(ET,vET) +1=n()+1<I1(v) +1 < [(w). O
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38.5 Dynkin diagrams

Let (E, R) be a root systemy a fundamental system fat. The Coxeter graphattached taS is
defined as follows. The vertices of the graph are in bijectim@espondence with the roots ®f
two verticesy, B are connected by,g - np, €dges. Thus, every pair is connectedby, 2 or 3
edges, see the table in Lemma 38.2.

The Dynkin diagramof S consists of the Coxeter graph together with the symbalr <
attached to each multiple edge, pointing towards the shostd. From Lemma 38.16 it fol-
lows that (up to isomorphism) the Dynkin diagrams of the ranmkot systems are given by the
following list:

p o p o

o o o0—o0
A1 XA1 A2

p o p o

o—>—0 fo=———0]
B, G,

It follows from Remark 38.30 that the Dynkin diagrams for tdiierent choices of fundamental
systems forR are isomorphic (in an obvious sense). We may thus speak @iythkin diagram
of a root system. The following result expresses that thesdiaation of root systems amounts
to describing the list of all possible Dynkin diagrams.

Theorem 38.33 Let R;, R, be two root systems. If the Dynkin diagrams associated Rijth
and R, are isomorphic, therR; and R, are isomorphic as well.

Proof: Let S; and S, be fundamental systems f&; and R,, respectively. It follows from
Lemma 38.2 that the Cartan matriegsandn, of S; andS, are completely determined by their
Dynkin diagrams. An isomorphism between these Dynkin @diagy gives rise to a bijection
¢ : S1 — S, suchthatn; = ¢*n,. By Theorem 38.14 it follows thak, and R, are isomorphic.
O

Remark 38.34 It follows from the above result combined with Theorem 3@Hzt the (isomor-
phism classes of) Dynkin diagrams are in bijective corraesigace with the isomorphism classes
of semisimple compact Lie algebras.

Let S be a fundamental system. The decomposition of its Dynkigrdia D into connected
component?;, (1 < j < p), determines a decomposition 8finto a disjoint union of subsets
S;.(1 < j < p). HereS; consists of the roots labelling the vertices/iy. The decomposition
of S is uniquely determined by the conditions tisatL S; if i # j, and that even; cannot be
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written as a disjoint union of proper subséts, S;, with S;; L S;,. We will investigate what
this means for the root system

If (E;,R;), with j = 1,2, are two root systems, we define their direct sufm R) as
follows. First,E := E; @ E,. Via the natural embeddings; — E, the setsk; andR, may be
viewed as subsets & accordingly we defin& to be their union. v € R, the maps, & I
is a reflection in«, 0) preservingR. By a similar remark forR,, we see thak is a root system.
Moreover, for alle € R; andf € R,, ngg = 0. From this we see thak; L E, for every
W -invariant inner product otk. Every reflection preserves bofty and R,, henceE; and E,
are invariant subspaces for the Weyl group. Moreover, thesma— v ® I andw — I ® w
define embeddingl; — W andW, — W via which we shall identify. Accordingly we have
W = Wy x W,. Similar remarks hold for the direct sum of finitely many rogs®ems.

Definition 38.35 A root system(E, R) is calledreducibleif R is the union of two non-empty
subsetsk; and R, such thatE = spanR;) @ spar{R,). It is calledirreducible if it is not
reducible.

The following result expresses that every root system alawecomposition as a direct sum
of irreducibles, which is essentially unique.

Proposition 38.36 Let(E, R) be a root system. Then there exist finitely many linear sulesgpa
Ej, 1 <j <n,suchthatrR; := E; N Ris an irreducible root system for evejyand such that
R =U;R;. TheE; are uniquely determined up to order.

If §; is a fundamental system &f;, for j = 1---n, thenS = S; U---U S, is a fundamental
system foiR. Every fundamental system f&rarises in this way.

If P; is a positive system df;, for j = 1-.-n,thenP = P, U-.-U P, iS a positive system
for R. Every positive system & arises in this way.

Proof: From the definition of irreducibility, it follows thatFE, R) has a decomposition as stated.
We will establish its uniqueness at the end of the proof.

If the S; are fundamental systems as stated, then it is readily ctiduie the definition that
their unions$ is a fundamental system fat. Let P; be positive systems as stated, then again
from the definition it is readily verified that their unighis a positive system foR.

Conversely, letP be a positive system fak. Then it is readily verified that every sél; :=
P N R; is a positive system foR ;. Moreover, letS be a fundamental system f&. SinceR is
the disjoint union of the setR;, it follows that$ is the disjoint union of the sets; := S N R;.
EachsS; is linearly independent, hence for dimensional reasonsia b&E ;. Now R; C (NS U
(—NS§)) andR; C RS;. By linear independence this implies taf ¢ NS; U(—NS;) for every
J. Hence everys; is a fundamental system.

We now turn to uniqueness of the decomposition as stated FLet EBlsjsmE} be a de-
composition with similar properties. Fix a fundamentalteysS’; for R, = R N E’, for every
J- The unionS$’ is a fundamental system f& hence of the forns = S; U--- U S,, with §; a
fundamental system fak ;, for eachy. It follows that S| is the disjoint union of the sets N S,

1 < j < n.HenceE] is the direct sum of the spacég N E; andR] is the union of the sets
R N R; = R} N E;. From the irreducibility ofE; it follows that there exists a uniquesuch
that E; = E;. The other components may be treated similarly. O
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In view of the above result we may now call the uniquely deteed(E;, R;) the irreducible
components of the root systeifi, R).

Lemma 38.37

(a) Let R be a root system. Then the Dynkin diagranRoi the disjoint union of the Dynkin
diagrams of the irreducible componentsif

(b) A root system is irreducible if and only if the associated Kgrdiagram is connected.

Proof: Let(E, R) be an root system, with irreducible componeiffs, R ;). Select a fundamen-
tal systemS; for eachR; and letS be their union. The inclusio§i; C S induces an inclusion of
D; — D via which we may identify. For distinct indicés;j we haven,g = 0 forall« € S;,
B € S;. Hence no vertex oD; is connected with any vertex d;. It follows that D is the
disjoint union of theD ;, and (a) follows.

We turn to (b). IfR is reducible, then by (a), the associated Dynkin diagranisonnected.
Conversely, assume that the Dynkin diagrankRa$ not connected. Then it may be written as the
disjoint union of two non-empty diagrani®; and D,. Fix a fundamental systet$i of R. Then
S decomposes into a disjoint union of two non-empty subSe&nd.S, such that the elements
of S; label the vertices oD;. It follows that for alla € S; and allg € S, neg = 0. Put
E; = span(S;), then it follows that for eaclx € S the reflections, leaves the decomposition
E = E| & E, invariant. Hence, the Weyl groujy of R leaves the decomposition invariant. Let
B € R, then there exists @ € W such thatwf € § = S; U S,. It follows that g lies either in
E,orin E,. HenceR = R, U R, with R; = E; N R, and we see thaR is reducible. O

The following result relates the notion of irreducibiliy @froot system with decomposability
of a semisimple Lie algebra.

Proposition 38.38 Let g be a compact semisimple Lie algebra with Dynkin diagrBmLet
D = D, U...U D, be the decomposition d into its connected components. Then ev@ry
is the Dynkin diagram of a compact simple Lie algehyaMoreover,

991D Dgn.
In particular, g is simple if and only ifD is connected.

Remark 38.39 Note that in view of Lemma 35.10 the above result implies thatconnected
components oD are in bijective correspondence with the simple ideals. of

Proof: Letg = &;h, be the decomposition af into its simple ideals. For each we fix a
maximal torust; C h;. Thent:=t; & --- @ t, is a maximal torus iy (use that); commutes
with b; for everyi # j). Via the direct sum decomposition ef we view t} as the linear
subspace of elements 6f that vanish ort; for everyk # j. Accordingly,t* =7 & --- @ ¢},

and a similar decomposition of the complexification. Retbe the root system af in b ;. Since
gc is the direct sum of: and the root spacgg,, for@ € R; U --- U R,, it follows that the
root systemk of t in g equals the disjoint union of the ;. Hence,R is the direct sum of th& ;.
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The Dynkin diagram oR is the disjoint union of the Dynkin diagrams of tikg . The proof will
be finished if we can show that the Dynkin diagram/yf, is connected, for eacj By Lemma
38.37 this is equivalent to the assertion that eRghs irreducible.

Thus, we may assumg is simple,t a maximal torus ing, and then we must show that
R = R(g,t) is irreducible. Assume not. Then we may decompgsas the disjoint union of
two non-empty subset®; and R, whose spans have zero intersection. But it*, and for
J =1,2,defineE; = sparfR;). ThenE = E; @ E,. Let

t := Naer, Kere and t, := Ngeg, kerp.

Thent = t; @ t, and, accordinglyE; >~ it;. Forj = 1,2, let

g, =t®(gN Y goa)-

(XGR]'

Theng = g, @ g, as a vector space. Moreover,tarmalizes this decompositiof, centralizes
g> andt, centralizegy,. If o, 8 € R anda + B € R, then we must have théi, 8} is a subset
of either R; or R,. From this we readily see that andg, are subalgebras qf. Moreover,

if « € Ry andf € R,, thena + B ¢ R, hencege+p) = 0. It follows that[g;, go] = 0. We

conclude thagy = g, ® g, as a direct sum of ideals, contradicting the assumptiontisagimple.

O

In view of the above the following result amounts to the dfasation of all simple compact
Lie algebras.

Theorem 38.40 The following is a list of all connected Dynkin diagrams adtreystems. These
diagrams are in bijective correspondence with the (isorham classes of) the simple compact
Lie algebras.
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A,: o o o o n>1 SUn+1)

B,: o o X =0 n>2 SO02n+1)
C,: o o — 0 n>3 Sp(n)
D,: o o < n=>4 SQO(2n)
G, >
F4: O X > X o]

o)
E¢ o o o o) o)

o)
E- o O O o) ‘e’ ‘o)

o)
Eg: o e’ O o o) o 'e}
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Index

abelian group, 4

action of a group, 43

adjacent Weyl chambers, 140
adjoint representation, @, 18
angle, between roots, 128
anti-symmetry, of Lie bracket, 20
arcwise connected, 8
associativity, 4

automorphism, of a Lie group, 7

Banach space, 69
Banach-Steinhaus theorem, 71
barrelled space, 71

base space, of principal bundle, 48
basis, of root system, 131

Cartan integer, 128

Cartan integers, 133

Cartan matrix, 133

center of a group, 5

center, of a Lie algebra, 116
character of a representation, 80
character, multiplicative, 94
choice of positive roots, 131
class function, 93

closed subgroup, 12
commutative group, 4
commutative Lie algebra, 22

commuting elements, of the Lie algebra, 22

compact Lie algebra, 116
complex Hilbert space, 72
complexification, of a Lie algebra, 100
component of the identity, 23
conjugation, 5

connected, 8

continuous action, 43

continuous representation, 69
contragredient representation, 82
coset space, 6

coset, left, 6

Coxeter graph, 143
cyclic vector, 111

densities, bundle of, 63

density, invariant, 64

density, on a linear space, 62
density, on a manifold, 63
derivation, 115

direct sum of representations, 83
dominant, 126

dual of a representation, 82
Dynkin diagram, 143

equivalence class, 5
equivalence relation, 5
equivalent representations, 74
equivariant map, 43, 74
exponential map, 16

fiber, of a map, 5

finite dimensional representation, 69
frame bundle, 48

free action, 50

fundamental system, 131

G-space, 43

group, 4

group of automorphisms, 114

group of interior automorphisms, 115

Haar measure, 66

Haar measure, normalized, 66
half space, 131

height of a root, 131

Hermitian inner product, 72
highest weight, 112

highest weight vector, 110
Hilbert space, 69
homogeneous, 55
homomorphism, of groups, 4
homomorphism, of Lie groups, 7
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ideal, 60 normal subgroup, 6

image, of a homomorphism, 4 normalized Haar measure, 66
indecomposable root, 131

induced infinitesimal representation, 106 ~ ©ne parameter subgroup, 18
integral curve, 16 open half space, 131

integral operator, 89 open subgoup, 24

integral, of a density, 64 orbitspace, 44
intertwining map, 43, 74 orbits, for group action, 44
invariance, of Killing form, 116 orthogonal group, 13
invariant density, 64

invariant subspace, 72

inverse function theorem, 17
irreducible representation, 72
isomorphic, 4

isomorphism, 4

isomorphism of Lie groups, 7
isomorphism of root systems, 125

partition, 5

Peter-Weyl theorem, 86

positive density, 63

positive density, on a manifold, 63
positive root, 110

positive system, 131

primitive vector of an sl(2)-module, 103
principal fiber bundle, 48

Jacobi identity, 21 product density, 88
proper action, 49
kernel, of a group homomorphism, 4 proper map between topological spaces, 49
kernel, of an integral operator, 89
killing form, 115 Radon measure, 65
rank, of a root system, 128
Lebesgue measure, 63 real symplectic group, 13
left action, 43 reducible root system, 144
left invariant vector field, 15 reflection, 125
left regular representation, 70 regular element, 113
left translation, 5 relation, 5
Lie algebra, 21 _ representation, of a Lie algebra, 70
Lie algebra homomorphism, 21 representative functions, 85
Lie subgroup, 28 right action, 43
local trivialization, of principal bundle, 48 right regular representation, 70
locally convex space, 69 right translation, 5
Lorentz group, 13 root space, 107

root space decompostion, 107
root system, general, 125
roots, 107

matrix coefficient, of representation, 73
maximal torus, 106

module, for a Lie algebra, 70

module, of a Lie group, 71
monpmorphlsm, 4 Schur orthogonality relations, 79
multiplicative character, 94 Schur's lemma, 75

multiplicity, of an irreducible representation, 8§emisimple Lie algebra, 119

neutral element, 4 sesquilinear form, 72

Schur orthogonality, 79
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simple ideal, 119

simple Lie algebra, 119

simple root, 131

slice, 50

smooth action, 45

special linear group, 10

special orthogonal group, 13

special unitary group, 13

spectral theorem, 87

standard sl(2)-triple, 102

structure group, of principal bundle, 48
subalgebra of a Lie algebra, 30
subgroup, 4

submersion theorem, 11

substitution of variables, for density, 64
symplectic form, 13

symplectic group, compact form, 15
symplectic group, complex form, 15
system of positive roots, 110

tensor product, of representations, 83
topological group, 43, 66

torus, 106

total space, of principal bundle, 48

uniform boundedness theorem, 71
unimodular group, 67

unitarizable representation, 72
unitary group, 13

unitary representation, 72

vector field, 15

weight, 105

weight lattice, 126

weight space, 105

Weyl chamber, 109, 137

Weyl group, of a compact algebra, 124
Weyl group, of root system, 125
Weyl's character formula, 127

Weyl's dimension formula, 127
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