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Exercise 1. Let G be a group, equipped with the structure of a C∞-manifold. Let µ : G×G→
G, (x, y) 7→ xy be the multiplication map. We assume that µ is smooth, i.e., C∞.

(a) Show that the tangent map T(e,e)µ : TeG×TeG→ TeG of µ at (e, e) is given by (X, Y ) 7→
X + Y. Hint: use partial derivatives with respect to x and y.

(b) Show that the inversion map ι : G → G, x 7→ x−1 is smooth in an open neighborhood of
e and that the tangent map Teι : TeG→ TeG is given by X 7→ −X. Hint: use the implicit
function theorem.

(c) Show that G is a Lie group.

Exercise 2. We recall that SU(2) is the group of unitary 2 × 2 matrices with determinant 1. Let
S3 denote the unit sphere in R4, centered at the origin. For x ∈ S3 we define the complex 2× 2
matrix

ux :=

(
x1 + ix2 −x3 + ix4
x3 + ix4 x1 − ix2

)
(a) Show that the map ϕ : x 7→ ux is a bijection from S3 onto SU(2).

(b) We view S3 as a smooth submanifold of R4 and transfer this manifold structure to SU(2) so
that ϕ becomes a diffeomorphism. Show that SU(2), equipped with this manifold structure
is a Lie group.

(c) Show that SU(2), equipped with this manifold structure, is a smooth submanifold of
GL(2,C).

Exercise 3. We recall that O(n) is the group of real n × n matrices a ∈ GL(n,R) such that
aat = I.

(a) Let S be the linear space of symmetric n×nmatrices in M(n,R). Show that ϕ : A 7→ AAt

defines a smooth map M(n,R)→ S with tangent map at I given by

TIϕ : X 7→ X +X t, M(n,R)→ S.
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(b) Show that ϕ is a submersion at I.

(c) Show that O(n,R) is a Lie group.

Exercise 4. We identify M(n,R) ' Rn2 and transfer the standard inner product on Rn2 to an
inner product on M(n,R).

(a) Show that
〈X, Y 〉 = tr (XY t), (X, Y ∈ M(n,R)).

(b) Show that O(n) is contained in the sphere of center 0 and radius
√
n for this inner product.

(c) Show that O(n) is compact.

Exercise 5. We identify M(n,C) ' Cn2 and transfer the standard complex inner product on Cn2

to an inner product on M(n,C).

(a) Show that
〈X, Y 〉 = tr (XY ∗), (X, Y ∈ M(n,C).

(b) Show that U(n) is contained in the sphere of center 0 and radius
√
n for this inner product.

(c) Show that U(n) is compact.

Exercise 6. Let now G be a Lie group. The commutator of two elements x, y ∈ G is the element
c(x, y) := xyx−1y−1. Show that for all X, Y ∈ TeG we have

[X, Y ] =
∂

∂s

∣∣∣∣
s=0

∂

∂t

∣∣∣∣
t=0

c(exp sX, exp tY ).

Hint: use relations like x expY x−1 = exp(Ad (x)Y ).

Exercise 7. If u, v are two smooth vector fields on a smooth manifold M , we recall that their
bracket [u, v] is the vector field defined by

[u, v] =
d

dt

∣∣∣∣
t=0

(ϕt)∗v.

Here ϕt denotes the flow of u. Moreover, the pull-back of a vector field v by a diffeomorphism ϕ
is given by ϕ∗v(x) = (Txϕ)−1v(ϕ(x)), for x ∈ M. We recall that the bracket defines a bilinear
map V(M)×V(M)→ V(M) that is anti-symmetric and satisfies the Jacobi identity, hence turns
V(M) into a Lie algebra.

Let G be a Lie group. The purpose of this exercise is to relate the Lie algebra structures of
V(G) and TeG. We recall that for X ∈ TeG the left G-invariant vector field vX on G is defined
by vX(x) = Te(lx)X. Let ΦX : R×G→ G denote the flow of vX .
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(a) Show that ΦX(t, x) = x exp(tX) for t ∈ R, x ∈ G.

(b) Let Y ∈ TeG, t ∈ R. Show that (Φt
X)∗vY is a left invariant vector field.

(c) Let Y, t be as above. Show that (Φt
X)∗vY = vAd (exp tX)Y .

(d) Let X, Y ∈ TeG. Show that [vX , vY ] = v[X,Y ].

(e) Show that VL(G), the space of left invariant vector fields, is a Lie subalgebra of V(G), and
that the map X 7→ vX is an isomorphism from the Lie algebra TeG onto VL(G).

Exercise 8. Let V be a finite dimensional real linear space.

(a) Show that det : GL(V )→ R∗ is a homomorphism of Lie groups.

(b) Show that D(det )(I) = tr . Here tr denotes the linear map End (V ) → R, asigning to a
linear endomorphism of V its trace.

(c) Show that for all A ∈ End (V ) we have:

det (eA) = etrA

(hint: avoid computations; use a result from the text instead).

Exercise 9. We recall that a smooth manifold M is connected if and only if it is arcwise con-
nected, i.e. for every two points p, q ∈ M there exists a continuous curve c : [0, 1] → M with
c(0) = p, c(1) = q. In the following we will use the notation

so(n) := {A ∈ M(n,R) | At = −A}.

(a) Consider the exponential map exp : A 7→ eA =
∑∞

n=0(n!)−1An. Compute

exp

(
0 −ϕ
ϕ 0

)
and show that exp maps so(2) surjectively onto SO(2).

(b) Show that for every x ∈ SO(n) there exists a y ∈ SO(n) such that x = yby−1 with b a
matrix consisting of 2 × 2 matrix blocks B ∈ SO(2), and 1 × 1 matrix blocks B = (1)
along the diagonal.

(c) Let n ≥ 2. Show that the exponential map exp maps so(n) onto SO(n), i.e. every x ∈
SO(n) may be written as expX with X ∈ so(n).

(d) Show that SO(n) is connected.
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Exercise 10. Show that U(n) and SU(n) are connected. (Hint: use the method suggested in the
previous exercise, but now with diagonal matrices.)

Exercise 11. We recall that the Lie group SL(n,R) has tangent space at I equal to

sl(n,R) = {X ∈ Mn(R) | trX = 0}.

(a) Show that the matrix y =

(
−1 1

0 −1

)
belongs to SL(2,R), but cannot be written as

y = expY with Y ∈ sl(2,R).

(b) Let n ≥ 2. Show that every x ∈ SL(n,R) can be written as x = expXa expXs, with Xa

an antisymmetric, and Xs a symmetric matrix in sl(n,R). (Hint: consider xtx).

(c) Show that SL(n,R) is a connected Lie group.

Exercise 12. Let ϕ, ψ : H → G be two homomorphisms of Lie groups, and assume that H is
connected. Show that

ϕ = ψ ⇐⇒ ϕ∗ = ψ∗

Exercise 13.

(a) Show that R3 together with the exterior product (X, Y ) 7→ X × Y is a Lie algebra.

(b) Show that the above Lie algebra is isomorphic to the Lie algebra o(3) of the orthogonal
group O(3). Hint: Consider the map ψ : R3 → M3(R) defined by v 7→ mat(v × ·), the
matrix with respect to the standard basis of the linear map v × · : X 7→ v ×X, R3 → R3.

Exercise 14. Let H1, H2 be Lie groups.

(a) If ϕ : H1 → H2 is an isomorphism of groups show that ϕ is C∞ if and only it is C∞ on
a neighborhood of e. Hint: use left translations. Show that ϕ is a diffeomorphism if and
only if it is local diffeomorphism at e.

We now assume that G is a Lie group and that ij : Hj → G, j = 1, 2, are two injective Lie
group homomorphisms with i1(H1) = i2(H2).

(b) Show that there exists a unique map ϕ : H1 → H2 such that i2 ◦ϕ = i1. Show that ϕ is an
isomorphism of groups.

(c) Show that there exists a unique map τ : h1 → h2 such that i2∗ ◦ τ = i1∗. Show that τ is an
isomorphism of Lie algebras.

(d) Show that there exists an open neighborhood Ω of 0 in g with the following properties.
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• The exponential map exp : g → G is a diffeomorphism from Ω onto an open subset
of G.

• For each j = 1, 2, the exponential map expj : hj → Hj is a diffeomorphism from
Ωj := i−1j∗ (Ω) onto an open subset of Hj.

(e) Show that for every X ∈ Ω1 we have ϕ(exp1(X)) = exp2(τX).

(f) Show that ϕ is an isomorphism of Lie groups and that ϕ∗ = τ.

(g) Show that every subgroup H of G carries at most one structure of a Lie subgroup.

Exercise 15. Let l be a Lie algebra, and a an ideal of l, that is: a ⊂ l is a linear subspace such
that [l, a] ⊂ a, i.e. [X, Y ] ∈ a for all X ∈ l and Y ∈ a.

Show that l/a has a unique structure of Lie algebra such that the canonical projection π : l→
l/a is a Lie algebra homomorphism.

Exercise 16. Recall that a subgroup H of a group G is called normal if xHx−1 ⊂ H for all
x ∈ G. We recall that normality of H is equivalent to the existence of a group structure on the
coset space G/H for which the canonical map π : G → G/H is a group homomorphism. Note
that H = ker(π).

Let l be a Lie algebra. By an ideal of l we mean a linear subspace a ⊂ l with the property
that [l, a] ⊂ a, i.e., [X, Y ] ∈ a for all X ∈ l, Y ∈ a.

(a) Let a ⊂ l be an ideal. Show that the quotient (linear) space l/a has a unique structure
of Lie algebra such that the canonical projection π : l → l/a is a homomorphism of Lie
algebras.

(b) Let ϕ : l→ m be a surjective homomorphism of Lie algebras. Show that kerϕ is an ideal
in l and that the induced map

ϕ̄ : l/ kerϕ→ m

is an isomorphism of Lie algebras (this is the analogue of the isomorphism theorem for
surjective group homomorphisms).

Exercise 17. Suppose that H is a Lie subgroup of a Lie group G. As usual we denote the Lie
algebras of G and H by g and h, respectively.

(a) Show that ifH is normal inG then h is an ideal in g. Hint: this exercise is more subtle than
it may seem at first. The reason is that H need not be a smooth submanifold of G. Use a
suitable characterization of h.

Now assume that G and H are connected.

(b) Show: if h is an ideal in g, then H is normal in G.
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Exercise 18. We define the center Z(G) of a Lie group G by

Z(G) = {x ∈ G | ∀y ∈ G : xy = yx }.

Now assume that G is connected.

(a) Show that Z(G) = ker Ad .

(b) Show that Z(G) has Lie algebra equal to ker ad .

If l is a Lie algebra, we define its center by

Z(l) = {X ∈ l | [X, Y ] = 0 ∀Y ∈ l} = ker ad .

(c) Show that Z(l) is an ideal in l.

(d) Show that the Lie algebra of Z(G) equals Z(g).

Exercise 19. We consider the Lie algebra so(4) of the group SO(4). It consists of the matrices
of the form (

A −Ct

C B

)
,

with A,B ∈ so(2) and C ∈ M(2,R).
Let D1 be a matrix as above with A = B 6= 0 and C = 0. Let D2 be a matrix as above with

A = −B 6= 0 and C = 0. Let v ⊂ so(4) be the linear subspace of matrices of the above form
with A = B = 0.

(a) Show that v is invariant under both adD1 and adD2, and compute v2 := ker adD1 ∩ v
and v1 := ker adD2.

(b) Show that v = v1⊕v2 and that [v1, v2] = 0, i.e., [X1, X2] = 0 for allX1 ∈ v1 andX2 ∈ v2.

(c) Put a1 = RD1 ⊕ v1 and a2 = RD2 ⊕ v2. Show that [a1, a2] = 0.

(d) Show that a1 and a2 are ideals in so(4) and show that so(4) = a1 ⊕ a2 as Lie algebras.

(e) Determine a basisRj1, Rj2, Rj3 of aj, for j = 1, 2, such that the linear map Tj : so(3)→ aj
determined by TjRi = Rji is an isomorphism of Lie algebras.

(f) GivenA ∈ End (so(4)), let matA denote its matrix with respect to the basisR11, R12, . . . , R23

of so(4). Show that ϕ = mat ◦ ad determines a Lie algebra embedding from so(4) into
M(6,R) with image isomorphic to so(3)⊕ so(3).

(g) Show that Φ = mat ◦ Ad determines a Lie group homomorphism from SO(4) into GL(6,R)
with image isomorphic to SO(3)×SO(3).Hint: follow the same reasoning as for SU(2)→
SO(3) in the lecture notes.

(h) Determine the kernel of Φ.
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Exercise 20.

(a) Show that the matrices

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
generate the Lie algebra sl(2,R) of SL(2,R).

(b) Express the commutator brackets [H,X], [H, Y ] and [X, Y ] as linear combinations of
H,X, Y. Remark: a triple of elements H,X, Y of an arbitrary Lie algebra satisfying the
same commutator relations, is called a standard sl(2,R)-triple.

(c) Compute the matrix of adA with respect to H,X, Y, for A = H,X, Y.

Exercise 21. This exercise gives an introduction to the non-commutative field H of quaternions.
We introduce H as the R-algebra of complex 2× 2-matrices of the form

m(a, b) =

(
a b
−b̄ ā.

)
The map m is a real linear isomorphism from R4 ' C2 → H. The images of the standard basis
vectors e1, . . . , e4 of R4 are denoted by 1, i, j, k, respectively. Thus, 1 = I,

i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
.

(a) Show that i2 = j2 = k2 = −1 and ij = −ji = k. Determine ik, ki, jk, kj.

We embed C into H by x+ yi 7→ m(x+ yi, 0). Thus x+ yi is mapped to the matrix xI + yi. In
particular, we view R as a subspace of H via the map a 7→ aI.

(b) Show that, accordingly, H is a two dimensional vector space over C with basis 1, j. Show
that for all z ∈ C we have zj = jz̄.

We define the conjugation ι on H by

ι : x1 + x2i+ x3j + x4k 7→ x1 − (x2i+ x3j + x4k).

(c) Considering the elements of H as matrices, show that ι(h) equals h∗, the complex conju-
gate of h. Show that ι(αβ) = ι(β)ι(α) for all α, β ∈ H. Show that ι2 = IH.

(d) Via m we transfer the Euclidean norm ‖ · ‖ on R4 to a norm on H. Show that

h ι(h) = ι(h)h = ‖h‖2 (h ∈ H).
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(e) Show that every element h ∈ H \ {0} is invertible, with inverse h−1 = ‖h‖−2ι(h) (this
extends the similar formula for C). Thus, H has all properties of a field, except for com-
mutativity of the multiplication.

(f) Show that
‖αβ‖ = ‖α‖‖β‖ (α, β ∈ H).

(g) Show that the unit sphere S in H, is a group for the H-multiplication. Show that S =
SU(2). Show that the Lie algebra of SU(2) coincides with the space Ri⊕Rj ⊕Rk ' R3;
this space is called the space of pure quaternions. Show in a direct fashion that the adjoint
action of SU(2) on its Lie algebra is by means of transformations from SO(3).

Exercise 22. We retain the notation of the previous exercise. We denote by GLR(H) the group
of invertible real linear transformations of H; thus, GLR(H) ' GL(4,R). We denote by SO(H)
the subgroup corresponding to SO(4).

(a) Show that for all A,B ∈ SU(2)×SU(2) the map ϕ(A,B) : H→ H, h 7→ AhB−1 belongs
to SO(H) ' SO(4).

(b) Show that the kernel K of the map ϕ consists of (I, I) and (−I,−I).

(c) Show that ϕ factors to a Lie group isomorphism ϕ̄ : SU(2)× SU(2)/K
'−→ SO(4). Hint:

try to use a minimal amount of computation. Be inspired by the lecture notes on SU(2)
and SO(3). First consider the derivative of ϕ̄. What is its kernel?

(d) Let H = {I,−I} ⊂ SU(2). Let π denote the canonical projection SU(2) × SU(2)/K →
SU(2)/H × SU(2)/H. Show that the map ψ := π ◦ (ϕ̄)−1 is a surjective Lie group homo-
morphism from SO(4) onto SU(2)/H × SU(2)/H.

(e) Show that so(4) ' so(3)⊕ so(3) and that SO(3)× SO(3) ' SO(4)/{±I}.

Exercise 23. Grassmannian manifold. Let K be the field R or C. As a set, the Grassmannian
manifold Gn,k = Gn,k(K) consists of all k-dimensional linear subspaces of Kn. We consider
the linear space Hom(Kk,Kn) of linear maps Kk → Kn. Given a sequence i = (i1, . . . , ik) of
integers ij with 1 ≤ i1 < i2 < · · · < ik ≤ n and an element A ∈ Hom(Kk,Kn), we denote
by Di(A) the determinant of the k × k submatrix of A determined by the rows with numbers
i1, . . . , ik. The set Hi of matrices A with Di(A) 6= 0 is open in Hom(Kk,Kn) (why?). We denote
by Hom0(Kk,Kn) the collection of A ∈ Hom(Kk,Kn) with kerA = {0}. Then Hom0(Kk,Kn)
is the union of the sets Hi, hence open in Hom(Kk,Kn).

We define the map p : Hom0(Kk,Kn)→ Gn,k by p(A) = A(Kk).

(a) Show that p is surjective.
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It is known that the set Gn,k has a structure of smooth manifold such that p is submersive. Put
G = GL(n,K). We define the map α : G × Hom0(Kk,Kn) → Hom0(Kk,Kn)by α(g, A) =
g ◦A. We define the map β : G×Gn,k → Gn,k by β(g, V ) = g · V := g(V ).

(b) Show that α and β are actions of G on Hom0(Kk,Kn) and Gn,k respectively, and that
p(α(g, A)) = β(g, p(A)), for all A ∈ Hom0(Kk,Kn) and all g ∈ Gn,k.

(c) Show that α is smooth.

(d) Show that β is smooth.

(e) Show that Gn,k ' GL(n,K)/P, where P is the subgroup of matrices g ∈ GL(n,K) of the
form

g =

(
A C
0 B

)
,

with A ∈ GL(k,K), B ∈ GL(n− k,K) and C a k × n matrix with entries in K.

(f) Show that Gn,k is compact. Hint: treat the fields R and C separately.

Exercise 24. Flag manifold. Let K be one of the fields R or C. Let n ≥ 2 and let d =
(d1, . . . , dk) be a sequence of positive integers with

∑k
j=1 dj = n. We define a flag of type d

in Kn to be an ordered sequence F = (F0, F1, . . . , Fk−1, Fk) of linear subspaces of Kn with
0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk = Kn and with dim(Fj/Fj−1) = dj, for all 1 ≤ j ≤ k. The collection
of all flags of type d, denoted by F = Fd, is called a flag manifold.

Let G = GL(n,K) and let α : G × F → F be defined by α(g, F ) = g · F := (g(Fj) | 0 ≤
j ≤ k).

(a) Show that α is a transitive action of G on F .

Let the standard flag E of type d be defined by E0 = 0 and Ej = span {e1, . . . , ed1+···+dj},
for 1 ≤ j ≤ k. We define the map ϕ : G→ F by ϕ(g) = g · E.

(b) Determine the stabilizer P = Pd of E in G. Show that P is a closed subgroup of G.

(c) Show that ϕ : G → F induces a bijection ϕ̄ : G/P → F . Accordingly, we equip F with
the structure of a smooth manifold such that ϕ̄ is a diffeomorphism.

(d) Put K = O(n) if K = R and K = U(n) if K = C. In both cases show that ϕ(K) = F .
Put H = K ∩ P and show that F is diffeomorphic to K/H. Conclude that F is compact.

(e) With notation as in (d), show that m : K ×P 7→ G, (k, p) 7→ kp is a surjective map. Hint:
use (d) and (b). Moreover, show that m is a smooth submersion. Hint: use homogeneity.

(f) Determine d such that Fd ' Pn−1(K). More generally, let 1 ≤ k < n. Determine d such
that Fd ' Gn,k(K).
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Exercise 25. Let A and B be commuting endomorphisms of a linear space V over the ground
field k = R or C. Show that for each λ ∈ k and all k ∈ N the endomorphism B leaves the space
ker(A−λI)k invariant. We define the generalized eigenspace of A for the eigenvalue λ to be the
space Eλ of vectors v ∈ V for which there exists a k ∈ N such that (A− λI)kv = 0. Show that
B leaves the space Eλ invariant.

Exercise 26. Let G be a commutative Lie group, and let (π, V ) be a unitary representation of G.

(a) Show that π is irreducible if and only if dimV = 1. Hint: use Schur’s lemma.

(b) Show that there exist mutually orthogonal one dimensional invariant linear subspaces
V1, . . . , Vn of V, such that V = V1 ⊕ · · · ⊕ Vn.

(c) Show that the natural representation of SO(2) in C2 is not irreducible.

(d) Show that the natural representation of SO(2) in R2 is irreducible.

Exercise 27. Let n ≥ 3, and let π be the natural representation of SO(n) in Cn. We consider the
centralizer c of SO(n) in M(n,C).

(a) Let v1, v2 be a pair of orthonormal vectors in Rn and w1, w2 a second such pair. Show that
there exists an element g ∈ SO(n) such that gvj = wj, for j = 1, 2.

(b) Let v1, v2 and w1, w2 be two pairs as in item (a). Show that for all T ∈ c we have
〈Tv1, v2〉 = 〈Tw1, w2〉.

(c) Show that π is irreducible.

Exercise 28. Let (δ, V ) be an irreducible finite dimensional representation of the Lie group G.

(a) Let π be the n-fold direct product of δ in W = V ⊕ · · · ⊕ V (n summands). Show that
HomG(V,W ) is a linear space of dimension n.

(b) Show that End G(V ⊕ V ) is 4-dimensional.

(c) Show that the space V 2 = V ⊕ V has a direct sum decomposition V 2 = U1 ⊕ U2 into
G-invariant non-trivial subspaces different from V ⊕{0} and {0}⊕ V. From this we draw
the conclusion that V 2 has no canonical decomposition into irreducibles.

Exercise 29. Let (δ1, V1), (δ2, V2) be two irreducible finite dimensional representations of the
Lie group G. Show that

(a) dim HomG(V1, V2) = 1 ⇐⇒ δ1 ∼ δ2 (hint: use the previous exercise).

(b) dim HomG(V1, V2) = 0 ⇐⇒ δ1 6∼ δ2.
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In the following exercises, (π, V ) and (ρ,W ) will be finite dimensional continuous representa-
tions of a compact Lie group G. We recall that the character of the representation π is defined to
be the function χπ : G→ C given by

χπ(x) = tr (π(x)), (x ∈ G).

Exercise 30. Show that:

(a) χπ(e) = dimV ;

(b) χπ(xyx−1) = χπ(y), for all x, y ∈ G;

(c) χπ(x−1) = χπ(x), for x ∈ G.

Exercise 31. Let G = SU(2). For ϕ ∈ R we define tϕ ∈ G to be the diagonal matrix with entries
eiϕ in the upper left corner, and e−iϕ in the lower right corner.

(a) Show that T = {tϕ | ϕ ∈ R} is a commutative compact subgroup of G. Show that every
element of G that commutes with T belongs to T. (Such a group is called a maximal torus
of G.)

(b) Let χn be the character of the irreducible representation πn of G, for n ∈ N. Show that

χn(tϕ) =
sin(n+ 1)ϕ

sinϕ
.

(c) Prove the following Clebsch-Gordon formula, for m,n ∈ N with m ≤ n :

πn ⊗ πm ∼ πn+m ⊕ πn+m−2 ⊕ · · · ⊕ πn−m.

Hint: establish an identity of characters.

In the following exercises, G will be a compact Lie group, and dx normalized Haar measure
on G. For two continuous functions f, g : G→ C we define the convolution product f ∗g : G→
C by

f ∗ g(x) =

∫
G

f(xy−1)g(y) dy.

Exercise 32. Let δ1, δ2 ∈ Ĝ be inequivalent representations.

(a) Show that f ∗ g = 0 for all f ∈ C(G)δ1 and g ∈ C(G)δ2 .

(b) Show that χδ1 ∗ χδ2 = 0.

(c) Let δ ∈ Ĝ. Show that χδ ∗ χδ = 1
dim δ

χδ
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If (π, V ) is a continuous finite dimensional representation of G and f ∈ C(G), we define the
endomorphism π(f) of V by

π(f) =

∫
G

f(x)π(x) dx.

Exercise 33. Let (π, V ) be a finite dimensional unitary representation of G.

(a) Show that, for all f, g ∈ C(G) :

π(f ∗ g) = π(f) ◦ π(g).

For δ ∈ Ĝ we put Pδ = dim(δ) π(χ̄δ), where the bar indicates that the complex conjugate of the
character is taken.

(b) Show that Pδ is G-intertwining.

(c) Show that Pδ is an orthonormal projection, i.e. Pδ is symmetric and P 2
δ = Pδ.

(d) Show that Pδ1 ◦Pδ2 = 0 if δ1, δ2 ∈ Ĝ are inequivalent.

(e) Show that the set S(π) of δ ∈ Ĝ with Pδ 6= 0 is finite.

(f) Assume that W is an irreducible G-submodule of V, and let π|W ∼ δ ∈ Ĝ. Show that
Pδ = I on W. Hint: first show that Pδ is a scalar on W.

(g) Show that
V = ⊕δ∈S(π)Pδ(V )

is an orthogonal direct sum of invariant subspaces of V.Moreover, show that the restriction
of π to Pδ(V ) is equivalent to a finite direct sum of copies of δ.

(h) Assume that V = V1 ⊕ · · · ⊕ Vm is a decomposition of V into irreducibles. Show that for
every δ ∈ Ĝ we have

Pδ(V ) =
∑

i:π|Vi∼δ

Vi

Show that the number of terms in the above sum equals the L2-inner product of χπ with
χδ.

Angular momentum operators
The purpose of the following set of exercises is to clarify the connection between the angular
momentum operators in quantum mechanics, and the representation theory of the Lie algebra
su(2).
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In the following, e1, e2, e3 will denote the standard basis in R3. Matrices will be taken with
respect to this basis. We will use the notation a × b for the exterior product of two vectors
a, b ∈ R3. Recall that this product is determined by the requirement

〈x, a× b〉 = det (x, a, b)

for all x ∈ R3. By substituting the elements of the standard basis for x one obtains the usual
determinant formulas for the components of a× b.

We start with a general exercise on smooth group actions and the associated representations
on function spaces.

Exercise 34. Let G be a Lie group, g its Lie algebra. Let τ : G ×M → M, (g,m) 7→ gm be
a smooth action of G on a smooth manifold M. There is an associated representation π of G on
the space C∞(M) of smooth functions on M. It is given by the formula:

π(g)ϕ (m) = ϕ(g−1m),

for ϕ ∈ C∞(M), g ∈ G, m ∈M.

(a) Check that indeed π is a representation of G in C∞(M); we assert nothing on continuity
here.

Given X ∈ g and ϕ ∈ C∞(M) we define the function π∗(X)ϕ : M → C by

π∗(X)ϕ =
d

dt

∣∣∣∣
t=0

π(exp tX)ϕ.

(b) Show that π∗(X) is a smooth first order linear partial differential operator on M.

(c) Show that π(x)π∗(X)π(x)−1 = π∗(Ad (x)X) for all X ∈ g and x ∈ G.

(d) Show that π∗([X, Y ]) = π∗(X)π∗(Y )− π∗(Y )π∗(X) for all X, Y ∈ g.

Thus,X 7→ π∗(X) is a Lie algebra homomorphism from g into the algebra DO(M) ⊂ End (C∞(M))
of smooth linear partial differential operators on M. In particular, π∗ is a representation of the
Lie algebra g in C∞(M).

Exercise 35.

(a) Show that for a ∈ R3 the matrix Ra of the linear map x 7→ a× x belongs to so(3), the Lie
algebra of SO(3); thus so(3) consists of all real anti-symmetric 3× 3 matrices.

(b) Show that for a, b ∈ R3 we have Ra×b = [Ra, Rb].

(c) Show that (R3,×) is a Lie algebra isomorphic to so(3); here a 7→ Ra is the isomorphism.
Observe that Rej = Rj, the infinitesimal generating rotation around the xj-axis.

13



In the following we shall apply both of the above exercices to the natural smooth action of
the group SO(3) on R3 by the usual matrix multiplication.

Let π denote the associated representation of SO(3) in C∞(R3), and let π∗ be the representa-
tion of so(3) in End (C∞(R3)), defined as above. Thus, if R ∈ so(3), then π∗(R) is a first order
linear partial differential operator on R3.

Exercise 36. Show that for every a ∈ R3, ϕ ∈ C∞(R3),

π∗(Ra)ϕ(x) = −a · (x×∇ϕ(x)) (x ∈ R3).

In the following we shall write R̄a for π∗(Ra). By linearity of the map a 7→ R̄a, the formula of
the above exercise is equivalent to:

R̄1 = −(x2∂3 − x3∂2)
R̄2 = −(x3∂1 − x1∂3)
R̄3 = −(x1∂2 − x2∂1)

In classical mechanics, angular momentum of a particle tested with a vector a ∈ R3 is given by

La := a · (r × p).

The quantum mechanical analogue of momentum p is the momentum operator 6h
i
∇. The analogue

of angular momentum is then the operator:

La :=
6 h
i
a · (x×∇).

Comparing with the above we see that La = i 6 hR̄a, for every a ∈ R3. In the following we shall
replace L/ 6 h by L, so that

La = iR̄a (a ∈ R3).

Since a 7→ Ra and R 7→ R̄ are Lie algebra homomorphisms, we have that

R̄a×b = [R̄a, R̄b].

For the angular momentum operators this means that we have the commutation rule:

[La, Lb] = iLa×b (a, b ∈ R3).

For the components Lj = Lej this means

L1L2 − L2L1 = iL3

L2L3 − L3L2 = iL1

L3L1 − L1L3 = iL2.

14



In the physics literature this set of equations is often briefly written as

L× L = iL.

We thus see that the assertion expressed by the latter formula is equivalent to the assertion that the
map a 7→ i−1La is a Lie algebra homomorphism from R3, equipped with the exterior product,
to End (C∞(R3)), equipped with the commutator bracket. One readily checks that the map
a 7→ La is injective. Hence the operators i−1L1, i

−1L2, i
−1L3 generate a sub Lie algebra of

End (C∞(R3)) isomorphic to (R3,×), hence to so(3).
In quantum mechanics one now calls any observable L with the property L× L = iL an an-

gular momentum operator. In our language we may translate this statement as follows. To avoid
technicalities we assume here that an observable corresponds to a bounded Hermitian operator
in a Hilbert space (which in general is too strong a restriction). Thus, an angular momentum
operator is by definition a map L from R3 to the space of bounded Hermitian operators of H
such that a 7→ i−1La is a non-trivial homomorphism of the Lie algebra (R3,×) into End (H).

Assumption: In the following two exercises we assume such a general angular momentum
operator L : R3 → End (H) to be fixed.

Exercise 37.

(a) Show that so(3) contains no ideals different from 0 and so(3).

(b) Show that the map a 7→ La is injective.

(c) Show (with minimum of computation) that the operators L1, L2, L3 satisfy the same com-
mutation relations as iR1, iR2 and iR3.

(d) Show (with minimum of computation) that the operators Lj satisfy the same commutation
relations as σj

2
, where σj are the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(e) Show that the map σj
2i
7→ 1

i
Lj extends to a representation ρ of su(2) inH.

The representation ρ extends to a complex linear representation of the complexification sl(2,C)
of su(2) inH. Let H,X, Y be the standard basis of sl(2,C).

We define the following bounded, but not Hermitian, operators ofH.

L± := L1 ± iL2.

(f) Show that L+ = ρ(X), L− = ρ(Y ) and 2L3 = ρ(H). Conclude that 2L3, L+, L− is a
standard sl2-triple.

(g) Show that L∗+ = L−.
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Exercise 38. Let Lj, L± be as above. We shall now discuss the raising and lowering procedure
one finds in the physics literature. We advise the reader to keep the observation about the standard
triple in mind.

We define the bounded operator L2 ofH by

L2 := L2
1 + L2

2 + L2
3.

(a) Show that L2 is Hermitian and commutes with Lj for every j = 1, 2, 3.

(b) Show that

L+L− = L2 − L3(L3 − I), L−L+ = L2 − L3(L3 + I).

(c) Assume that v ∈ H is an eigenvector for both L2 and L3 with eigenvalues λ and λ3,
respectively. Show that then L+v is an eigenvector for L2 and L3 with the eigenvalues λ
and λ3 + 1, respectively. Show also that

‖L+v‖2 = [λ− λ3(λ3 + 1)]‖v‖2

(d) Let v ∈ H be an eigenvector for both L2 and L3. Show that there exists a k ∈ N such that
Lk+v = 0. Show that there exists a l ∈ N such that Ll−v = 0.

(e) Let v ∈ H be an eigenvector for both L2 and L3. Show that there exists a unique linear
ρ-invariant linear subspace V ⊂ H containing v and such that ρ|V is a finite dimensional
irreducible representation of su(2).

We know that the irreducible representation ρ|V is completely determined by its dimension n+1,
where n ≥ 0. Put j = n

2
.

(f) Show that the eigenvalues of L3|V are j, j − 1, . . . ,−j.

(g) Show that L2 acts by a scalar on V. Show that this scalar is j(j+1).Hint: select v ∈ V \{0}
such that L+v = 0 and compute L2v by using (b).

Exercise 39. Let H,X, Y be the standard triple for sl(2,C) = su(2)C, and let α be the root
of t = iRH in gC determined by α(H) = 2. Let (π, V ) be a finite dimensional continuous
representation of SU(2). The collection of weights of π∗|t is denoted by Λ(π∗). Show that

(a) Λ(π∗) ⊂ 1
2
Zα.

(b) If 0 /∈ Λ(π∗), then 1
2
α ∈ Λ(π∗).

(c) If π is irreducible, then 0 and 1
2
α do not both belong to Λ(π∗).

(d) The representation π is the direct sum of dimV0 + dimVα/2 irreducibles (among which
equivalent ones may occur; they are all counted).

(e) π is irreducible if and only if dimV0 + dimVα/2 = 1.
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Exercise 40. We consider the connected compact Lie group G = SU(n), n ≥ 2.

(a) Show that the complexification of its Lie algebra equals

gC = {X ∈ Mn(C) : trX = 0} = sl(n,C).

Show that the linear space t consisting of all diagonal matrices in g is a maximal torus.

(b) For every 1 ≤ k ≤ n we define εk ∈ it∗ to be the real linear map t → iR that assigns to
X ∈ t the k-th diagonal element Xkk.
If 1 ≤ i, j ≤ n then we denote by Eij the matrix whose entries are zero, except on the i-th
row and the j-th column, where the entry is 1.
Show that the linear subspaces CEij(i 6= j) are root spaces of gC. Determine the set
R = R(gC, t) of roots in terms of the εk, 1 ≤ k ≤ n.

(c) PutE = it∗. Show that (E,R) is a root system, by verifying the conditions of the definition
of a root system. Determine, for every α ∈ R, the reflection sα : E → E.

(d) Show that the Weyl group W of (E,R) is isomorphic to the permutation group Sn of n-
elements. More precisely, define an explicit map Sn → W, and show that this map is an
isomorphism of groups.

(e) Determine a fundamental system S for R.

(f) Prove that the reflections sα (α ∈ S) already generate W.

(g) Determine explicitly a W -invariant inner product on E.

(h) Determine the Cartan integers associated with S.

(i) Determine the Dynkin diagram of SU(n).

In the following we assume that n = 3.

(j) Let α = ε1 − ε2 and β = ε2 − ε3. Show that R = {±α,±β,±(α + β)}. Show that the
angle beteen α and β equals 2π/3. Make a picture of R.

Exercise 41. Induced representation. Let G be a Lie group, H a closed subgroup, and (ξ, V )
a finite dimensional representation of H.

(a) Show that the action of H on G× V given by h · (g, v) = (gh, ξ(h)−1) is proper and free,
hence of PFB type.

It follows from the above that the quotient space V = G ×H V := (G × V )/H is a smooth
manifold.

(b) Show that the map p : V → G/H induced by the projection G× V → G is smooth.
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(c) Show that for each g ∈ G the map ϕg : v 7→ [(g, v)] defines a bijection from V onto the
fiber p−1(gH).

(d) Show that p : V → G/H has a unique structure of vector bundle such that all maps
ϕg (g ∈ G) are linear. This vector bundle is said to be associated with the representation
ξ.

(e) Show that the action of G on G × V given by g · (x, v) = (gx, v) factorizes to a smooth
action of G on V . Show that for each x ∈ G/H the action by g ∈ G maps the fiber Vx
linearly and bijectively onto the fiber Vgx (a vector bundle over G/H with this property is
said to be homogeneous).

(f) Let C(V) denote the space of continuous sections of the vectorbundle V . For g ∈ G and
s ∈ C(V) we define π(g)s : G/H → V by π(g)s(x) = g · s(g−1x). Show that π defines
a representation of G in C(V). This representation is said to be induced from ξ. Notation
π = Ind G

H(ξ).

(g) Let C(G, V, ξ) denote the space of continuous functions ϕ : G→ V such that

ϕ(gh) = ξ(h)−1ϕ(g) (g ∈ G, h ∈ H).

For ϕ in this space we define s̃ϕ : G→ V by sϕ(x) = [(x, ϕ(x))]. Show that s̃ϕ factorizes
to a section sϕ of V . Show that ϕ 7→ sϕ is a linear bijection C(G, V, ξ) ' C(V). Via this
bijection we may realize the representation π on the space C(G, V, ξ). Show that it is then
given by the formula:

π(g)ϕ(x) = ϕ(g−1x) (ϕ ∈ C(G, V, ξ), g, x ∈ G).

This realization of the induced representation is called ‘the induced picture.’
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Extra exercises 2012
Exercise 42. We consider the action of the group A = (R,+, 0) on M = R2 \ {0} given by

t(x1, x2) = (etx1, e
−tx2).

(a) Show that the action is free.

(b) Show that for every m ∈ M there exists an open A-invariant neighborhood U of m such
that the restriction of A to M is of principal fiber bundle type.

(c) Show that the quotient topology on A\M is not Hausdorff.

(d) Show that the action of A on M is not of principal fiber bundle type.

Exercise 43. In this exercise, we will give an interesting application of the formula for the
derivative of the exponential map to the polar decomposition of matrices.

Let G = SL(n,R), K = SO(n) and let s denote the space of symmetric matrices in Mn(R)
of trace zero.

(a) Show that the map ϕ : K × s→ G given by (k,X) 7→ k expX is bijective. Hint: use the
ideas of another exercise.

(b) Let k ∈ K and X0 ∈ s. Show that Tk,X0ϕ is bijective if and only if the map Te,X0ϕ is
injective.

(c) Let ψ = rexpX0 : G → G. Show that the tangent map T of ψ−1 ◦ϕ at the point (e,X0) is
the linear map k× s→ g given by

T (Y,X) = Y + F (X0)X,

where

F (X0) =
eadX0 − I
ad (X0)

=
∞∑
n=0

(ad (X0))
n

(n+ 1)!
.

(d) Show that [k, k] ⊂ k, [k, s] ⊂ s and [s, s] ⊂ k.

(e) Show that ad (X0) : g→ g is symmetric with respect to the positive definite inner product
〈 · , · 〉 on g ⊂ Mn(R) given by

〈A,B〉 = tr (ABT).

(f) Let p : s → s be the projection with kernel k. Show that p ◦F (ad (X0))|s is an injective
linear map s→ s.

(g) Show that ϕ is a diffeomorphism.
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Exercise 44. Let M be a smooth manifold, and ω a continuous density on M. Let V be finite
dimensional complex vector space.

(a) Show that there exists a unique linear map Iω : Cc(M,V ) → V such that for all f ∈
Cc(M,V ) and ξ ∈ V ∗,

ξ(Iω(f)) =

∫
M

(ξ ◦ f) ω.

We agree to write ∫
M

fω := Iω(f).

(b) Let W be a second finite dimensional complex vector space. Show that for any linear map
A : V → W and every f ∈ Cc(M,V ),

A

∫
M

fω =

∫
M

(A ◦ f)ω.

Exercise 45. Let M be a smooth manifold.

(a) Show that M has a smooth density ω such that ωa is positive for every a ∈ M. In the rest
of this exercise, we assume such a density to be fixed.

(b) Let ω be a smooth density on M, G a compact Lie group, and assume that G acts smoothly
on M from the left. For each a ∈M we define λa ∈ DTaM by

λa =

∫
G

(l∗xω)a dx

where dx is a choice of right invariant positive density on G. Show that this definition is
rigorous, and that λ : a 7→ λa defines a continuous density on M.

• Show: λ is G-invariant.

• Show: if ω is smooth, then λ is smooth;

• Show: if ω is positive, then λ is positive.

Conclusion: there exists a smooth positive G-invariant density on M.

Exercise 46. Let M be smooth manifold. Let h be a (smooth) Riemannian metric on M. Thus,
for each m ∈ M, the map hm : TmM × TmM → R defines a positive definite inner product on
TmM, and m 7→ hm is smooth as a section of T ∗M ⊗ T ∗M. In other words, in local coordinates
x1, . . . , xn on a coordinate patch U,

h =
∑
ij

hijdx
i ⊗ dxj,
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with hij ∈ C∞(U).
Given a diffeomorphism ϕ : M →M we define the pull-back ϕ∗(h) as usual, by

ϕ∗(h)a(X, Y ) = hϕ(a)(Taϕ(X), Taϕ(Y )),

for a ∈M and X, Y ∈ TaM.
Assume now that M is equipped with a smooth left action by a compact Lie group G, and

that dx ∈ Γ∞(DTG) is a right G-invariant and positive smooth density on G.

(a) Show that

g =

∫
G

l∗xh dx

defines a smooth Riemannian metric on M.

(b) Show that g is left G-invariant, i.e., l∗yg = g for all y ∈ G.

(c) Let M be an arbitrary smooth manifold, and G ×M → M a left action of a compact Lie
group G on M. Conclude that M has a smooth Riemannian structure for which G acts by
isometries.

Exercise 47. The purpose of this exercise is to extend Proposition 20.17 to the setting of con-
tinuous representations in Hilbert space. The proof suggested below depends on application
of the principle of uniform boundedness (also known as the Banach-Steinhaus theorem) from
Functional Analysis.

Let G be a compact Lie group. We assume that π is a continuous representation of G in a
complex Hilbert space H. By this we mean that π : G → GL(H) is a group homomorphism,
and that the associated action map G×H → H is continuous.

Let ( · , · ) denote the (Hermitian, positive definite) inner product on H and let ‖ · ‖ denote
the associated norm. In the course of this exercise, you will need to make use of the principle of
uniform boundedness or the Banach-Steinhaus theorem from Functional Analysis.

(a) Show that there exists a constant C > 0 such that

‖π(g)v‖ ≤ C‖v‖, (∀v ∈ H, g ∈ G).

(b) Show that for each v, w ∈ H the integral

〈v, w〉 =

∫
G

(π(x)v, π(x)w) dx

is well-defined and defines a sesquilinear form on H. Show that this sesquilinear form is
positive definite and also that it is continuous.

(c) Let (gn) be a sequence inG and let (vn) be a sequence inH such that limn→∞ π(gn)vn = 0.
Show that limn→∞ vn = 0.
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(d) Show that there exists a constant c > 0 such that ‖π(g)v‖ ≥ c‖v‖ for all g ∈ G.

(e) Show that the norm ‖ · ‖new defined by 〈 · , · 〉 is equivalent to the original norm ‖ · ‖.

(f) Show that (H, 〈 · , · 〉) is a Hilbert space and that π is a continuous unitary representation
in this Hilbert space.

Exercise 48. The purpose of this exercise is to investigate the appropriate continuity for repre-
sentations in infinite dimensional Hilbert space. We consider the group U(1), realized as the unit
circle in C.

We consider the complex linear space l2(N) of sequences c = (cn)n∈N of complex numbers
with

∑
n |cn|2 <∞. For each c ∈ l2(N) we write

‖c‖ :=

(
∞∑
n=0

|cn|2
)1/2

(a) Show that for all c, d ∈ N the sum

〈c, d〉 :=
∑
n∈N

cndn

is absolutely convergent and satisfies |〈c, d〉| ≤ ‖c‖‖d‖.

(b) Show that 〈 · , · 〉 defines a positive definite inner product for which l2(N) becomes a Hilbert
space.

(c) For z ∈ U(1) we define the operator π(z) : l2(N)→ l2(N) by

(π(z)c)n = zncn.

Show that π(z) is a unitary isomorphism of l2(N), for all z ∈ U(1).

(d) Show that the map U(1)× l2(N)→ l2(N) given by (z, c) 7→ π(z)c is continuous.

(e) Show that for each z ∈ U(1) \ {1} there exists an n ∈ N such that |zn − 1| ≥
√

2.

(f) Show that for each z ∈ U(1) \ {1} there exists a c ∈ l2(N) with ‖c‖ = 1 such that
‖π(z)c− c‖ ≥

√
2.

(g) Let End (l2(N)) denote the space of continuous linear endomorphisms of l2(N), equipped
with the operator norm. Show that the map π : U(1) → End (l2(N)) is not continuous at
1.

The purpose of the next two exercises is to go through a proof of the Peter-Weyl theorem for
finite groups, which may be viewed as zero-dimensional compact Lie groups.
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Exercise 49. In this exercise we assume that G is a finite group, equipped with the trivial topol-
ogy. Then C(G) equals the complex linear space of all functions G → C. We first concentrate
on the notion of invariant integral.

Given f ∈ C(G) we define

I(f) =
1

|G|
∑
x∈G

f(x).

(a) Show that C(G) is a finite dimensional linear space.

(b) Show that I : G→ C is complex linear, and has the following properties

(1) If f ≥ 0 then I(f) ≥ 0.

(2) If f ≥ 0 and I(f) = 0, then f = 0.

(3) If f ∈ C(G) and y ∈ G then I(l∗yf) = I(f).

(c) If J : C(G) → C is linear and satisfies conditions (1) - (3), then there exists a constant
c > 0 such that I = cJ.

Exercise 50. In this exercise, G is assumed to be a finite group. We equip C(G) with the inner
product 〈·, ·〉 given by

〈f, g〉 =
1

|G|
∑
x∈G

f(x)g(x).

Let Ĝ denote the collection of equivalence classes of finite dimensional representations ofG. Let
S denote the sum of the subspaces C(G)δ in C(G) with δ ∈ Ĝ.

(a) Show that Ĝ is finite.

(b) Let (π, Vπ) be any finite dimensional representation of G and let v1, v2 ∈ Vπ. Show that
the function m : x 7→ 〈π(x)v1, v2〉 belongs to S.

(c) Show that S⊥ is invariant for both L and R, the left and the right regular representations
of G, respectively.

(d) Show that S = C(G).

23


