Lie derivatives, tensors and forms

Erik van den Ban

Fall 2006

Linear maps and tensors

The purpose of these notes is to give conceptual proofs of a number of results on Lie derivatives of tensor fields and differential forms. We start with some remarks on the effect of linear maps on tensors. In what follows, U, V, W will be finite dimensional real vector spaces.

A linear map $A: V \rightarrow W$ induces a linear map

$$
A_{*}=\otimes^{k} A: \otimes^{k} V \rightarrow \otimes^{k} W .
$$

Indeed, let $a: V^{k} \rightarrow \otimes^{k} W$ be the multilinear map given by $a\left(v_{1}, \ldots, v_{k}\right) \mapsto A v_{1} \otimes \cdots A v_{k}$. Then A_{*} is just the map \bar{a} from the universal property of the tensor product. In particular, on elementary tensors A_{*} is given by

$$
A_{*}\left(v_{1} \otimes \cdots \otimes v_{k}\right)=A v_{1} \otimes \cdots \otimes A v_{k}
$$

On the other hand, A also induces the adjoint linear map $A^{*}: W^{*} \rightarrow V^{*}, \eta \mapsto \eta \circ A$. This map in turn induces a linear map

$$
A^{*}=\otimes^{k}\left(A^{*}\right): \otimes^{k} W^{*} \rightarrow \otimes^{k} V^{*} .
$$

Note that the assignment $A \mapsto A_{*}$ preserves the direction of arrows, whereas $A \mapsto A^{*}$ reverses directions. Therefore, it is in general impossible to define a natural induced map between the spaces of mixed tensors of type $(r, s), V_{r, s}$ and $W_{r, s}$. Here we have used the notation of Warner's book.

We recall that there exists a natural isomorphism

$$
V_{0, s}=\otimes^{s} V^{*} \simeq M_{s}(V),
$$

where $M_{s}(V)$ denotes the space of k-multilinear forms on V. Via this isomorphism, a tensor of the form $\xi_{1} \otimes \cdots \otimes \xi_{s}$ corresponds with the multilinear form

$$
\left(v_{1}, \ldots, v_{s}\right) \mapsto \xi_{1}\left(v_{1}\right) \cdots \xi_{s}\left(v_{s}\right) .
$$

From this we see that the induced map $A^{*}: V_{0, s} \rightarrow W_{s, 0}$ corresponds with the map $M_{s}(W) \rightarrow$ $M_{s}(V), \mu \mapsto \mu \circ A^{s}$, which is the genuine pull-back of multi-linear forms by A.

As in Warner's book, let $C(V)$ denote the (graded) tensor algebra $\oplus_{k \geq 0} V_{k, 0}$, where $V_{0,0}:=$ \mathbb{R}. Then a linear map $A: V \rightarrow W$ induces a linear map $A_{*}: C(V) \rightarrow C(W)$ which is readily seen to be a homomorphism of graded algebras. Also, it is clear that A_{*} maps $I(V)$ into $I(W)$, hence induces an algebra homomorphism $A_{*}: \wedge V \rightarrow \wedge W$.

Similarly, the adjoint $A^{*}: W^{*} \rightarrow V^{*}$ induces an algebra homomorphism

$$
\left(A^{*}\right)_{*}: \wedge W^{*} \rightarrow \wedge V^{*}
$$

which we briefly denote by A^{*}. Again, this is a homomorphism of graded algebras.
We recall that we introduced a particular linear isomorphism

$$
\wedge^{k} V^{*} \simeq A_{k}(V)
$$

Under this isomorphism, an element $\xi_{1} \wedge \cdots \wedge \xi_{k} \in \wedge^{k} V$ corresponds with the alternating k-form given by

$$
\begin{equation*}
\left(v_{1}, \ldots, v_{k}\right) \mapsto \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \xi_{\sigma 1}\left(v_{1}\right) \cdots \xi_{\sigma k}\left(v_{k}\right)=\operatorname{det}\left(\xi_{i}\left(v_{j}\right)\right) \tag{1}
\end{equation*}
$$

Identifying the elements of $\wedge^{k} V^{*}$ with alternating k-forms in this fashion, we see that A^{*} becomes the ordinary pull-back map

$$
A_{k}(W) \rightarrow A_{k}(V), \quad \mu \mapsto \mu \circ A^{k}
$$

As $A_{k}(V) \subset M_{k}(V)$, we may use the above isomorphisms to identify $\wedge^{k} V^{*}$ with a subspace of $V_{0, k}$. From (1) we then see that

$$
\xi_{1} \wedge \cdots \wedge \xi_{k}=\sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \xi_{\sigma 1} \otimes \cdots \otimes \xi_{\sigma k}
$$

Finally, if A is a linear isomorphism of V onto W, we do have an induced map

$$
A_{*}:=\otimes^{r} A \otimes \otimes^{s} A^{-1 *}: V_{r, s} \rightarrow W_{r, s}
$$

In this situation we agree to also write

$$
A^{*}:=A_{*}^{-1}=\otimes^{r} A^{-1} \otimes \otimes^{s} A^{*}: W_{r, s} \rightarrow V_{r, s}
$$

For later purposes, we need the notion of contraction of tensors. First of all, the natural pairing $V \times V^{*} \rightarrow \mathbb{R}$ corresponds to a linear map $V \otimes V^{*} \rightarrow \mathbb{R}$, called contraction, and denoted by \mathcal{C}. Note that

$$
\mathcal{C}(v \otimes \xi)=\xi(v)
$$

If $A: V \rightarrow W$ is a linear isomorphism, then

$$
\mathcal{C}_{V} \circ A^{*}=\mathcal{C}_{W} .
$$

This is readily seen from

$$
\begin{aligned}
\mathcal{C}_{V} \circ A^{*}(w \otimes \eta) & =\mathcal{C}_{V}\left(A^{-1} w \otimes A^{*} \eta\right) \\
& =A * \eta\left(A^{-1} w\right)=\eta\left(A A^{-1} w\right) \\
& =\mathcal{C}_{W}(w \otimes \eta)
\end{aligned}
$$

More generally, if $r, s \geq 1$ and $1 \leq i \leq r$ and $1 \leq j \leq s$, we may a define a contraction $C_{i, j}: V_{r, s} \rightarrow V_{r-1, s-1}$ on the i-th contravariant slot and the j-th covariant slot. More precisely, $C_{i, j}$ is the linear map induced by the multi-linear map

$$
\left(v_{1}, \ldots, v_{r}, \xi_{1} \ldots \xi_{s}\right) \mapsto
$$

$$
\mathcal{C}\left(v_{i} \otimes \xi_{j}\right) v_{1} \otimes \cdots \otimes \widehat{v}_{i} \otimes \cdots \otimes v_{r} \otimes \xi_{1} \otimes \cdots \otimes \widehat{\xi}_{j} \otimes \cdots \otimes \xi_{s}
$$

The above formula is now readily seen to generalize to

$$
A^{*} \circ \mathcal{C}_{W, i, j}=\mathcal{C}_{V, i, j} \circ A^{*}
$$

Note that $A^{*}=I$ on $V_{0,0}=\mathbb{R}$.

Maps and tensor fields

We will now describe the effect of maps on tensor fields. Let $\varphi: M \rightarrow N$ be a smooth map between manifolds. Then for every $m \in M$ we have an induced linear map $d_{m} \varphi: T_{m} M \rightarrow$ $T_{\varphi(m)} N$ which in turn induces an algebra homomorphism

$$
\left(d_{m} \varphi\right)^{*}: \wedge T_{\varphi(m)}^{*} N \rightarrow \wedge T_{m}^{*} M
$$

Accordingly, we have the induced map

$$
\varphi^{*}: E(N) \rightarrow E(M)
$$

given by

$$
\left(\varphi^{*} \omega\right)_{m}=\left(d_{m} \varphi\right)^{*} \omega_{\varphi(m)}, \quad(\omega \in E(N))
$$

As the wedge product of forms is defined pointwise, the map φ^{*} thus defined is a homomorphism of graded algebras.

Note that $E_{0}(M) \simeq \Gamma^{\infty}(\mathbb{R})=C^{\infty}(M)$. Moreover, for $f \in C^{\infty}(M)$ the function $\varphi^{*} f$ is given by the usual pull-back $f \circ \varphi$.

Similar remarks can be made for the spaces of covariant tensor fields: a smooth map $\varphi: M \rightarrow N$ naturally induces a linear map

$$
\varphi^{*}: \Gamma T_{0, s} N \rightarrow \Gamma T_{0, s} M
$$

By the identifications of the previous sections, we have a natural embedding of vector bundles

$$
\wedge^{k} T^{*} M \hookrightarrow T_{0, k} M
$$

and accordingly an embedding

$$
E_{k}(M) \hookrightarrow \Gamma T_{0, k} M
$$

identifying k-differential forms with alternating tensor fields. The embedding is compatible with the definitions of φ^{*} given above.

Lemma 1 Let $\varphi: M \rightarrow N$ be a smooth map of manifolds. Then for every differential form $\omega \in E(N)$,

$$
\varphi^{*}(d \omega)=d \varphi^{*} \omega
$$

Proof: We will first check the formula for $\omega=f \in C^{\infty}(M)$. Then, for every $m \in M$,

$$
d\left(\varphi^{*} f\right)_{m}=d_{m}(f \circ \varphi)=d_{\varphi(m)} f \circ d_{m} \varphi
$$

by the chain rule. The latter expression equals

$$
(d f)_{\varphi(m)} \circ d_{m} \varphi=\left(d_{m} \varphi\right)^{*}(d f)_{\varphi(m)}=\left(\varphi^{*} d f\right)_{m}
$$

The formula for f follows.
In general, let U be a coordinate patch in N and observe that the restriction of φ to $\varphi^{-1}(U)$ is a smooth map $\varphi^{-1}(U) \rightarrow U$. It suffices to prove the formula for a k-form $\omega \in E_{k}(U)$. By using local coordinates, we see that in such a patch $\omega \in E_{k}(U)$ can be expressed as a sum of k-forms of type

$$
\lambda=f d g^{1} \wedge \cdots \wedge d g^{k},
$$

with $f, g^{j} \in C^{\infty}(U)$. Hence, it suffices to prove the formula for such a k-form λ.
As d is an anti-derivation, and $d^{2}=0$,

$$
d \lambda=d f \wedge d g^{1} \wedge \cdots \wedge d g^{k}
$$

so that

$$
\begin{aligned}
\varphi^{*}(d \lambda) & =\varphi^{*}(d f) \wedge \varphi^{*}\left(d g^{1}\right) \wedge \cdots \wedge \varphi^{*}\left(d g^{k}\right) \\
& =d \varphi^{*} f \wedge d \varphi^{*} g^{1} \wedge \cdots \wedge d \varphi^{*} g^{k} \\
& =d\left[\left(\varphi^{*} f\right) d \varphi^{*} g^{1} \wedge \cdots \wedge d \varphi^{*} g^{k}\right] \\
& =d\left[\left(\varphi^{*} f\right) \varphi^{*} d g^{1} \wedge \cdots \wedge \varphi^{*} d g^{k}\right] \\
& =d\left[\varphi^{*} \lambda\right] .
\end{aligned}
$$

Here we have been using that φ^{*} is an algebra homomorphism $E(U) \rightarrow E\left(\varphi^{-1}(U)\right)$.

Lie derivatives

If φ is a (local) diffeomorphism $M \rightarrow N$, we may define a pull-back map $\varphi^{*}: \Gamma T_{r, s} N \rightarrow$ $\Gamma T_{r, s} M$ on mixed tensor fields as follows. For $T \in \Gamma T_{r, s} N$ we define

$$
\varphi^{*}(T)_{m}:=\left(d_{m} \varphi\right)^{*} T_{\varphi(m)} .
$$

This definition facilitates the definition of Lie derivative of tensors with respect to a given smooth vector field.

Let $X \in \mathfrak{X}(M)$ be a smooth vector field. Then for every $m \in M$ we denote by $t \mapsto \varphi_{X}^{t}(m)$ the (maximal) integral curve for X with initial point m. The domain of this integral curve is an open interval $I_{X, m}$ containing 0 . Let $T \in \Gamma T_{r, s} M$. Then we define the Lie derivative of T with respect to X by

$$
\left(\mathcal{L}_{X} T\right)_{m}:=\left.\frac{d}{d t}\right|_{t=0}\left[\left(\varphi_{X}^{t}\right)^{*} T\right]_{m} .
$$

Here we note that φ_{X}^{t} is a diffeomorphism from a neighborhood of m onto a neighborhood of $\varphi_{X}^{t}(m)$. Accordingly, the expression

$$
\left[\left(\varphi_{X}^{t}\right)^{*} T\right]_{m}
$$

is a well-defined element of $\left(T_{m} M\right)_{r, s}$ which depends smoothly on t (in a neighborhood of 0). Accordingly, $\left(\mathcal{L}_{X} T\right)_{m}$ defines a tensor in $\left(T_{m} M\right)_{r, s}$. Moreover, by smoothness of the flow of the vector field X it follows that the section $\mathcal{L}_{X} T$ of the tensor bundle $T_{r, s} M$ thus defined is smooth. In other words, we have defined a linear map

$$
\mathcal{L}_{X}: \Gamma T_{r, s} M \rightarrow \Gamma T_{r, s} M,
$$

called the Lie derivative. In a similar way it is seen that the Lie derivative defines a linear $\operatorname{map} \mathcal{L}_{X}: E_{k}(M) \rightarrow E_{k}(M)$.

Lemma 2 Let $f \in C^{\infty}(M)$. Then $\mathcal{L}_{X} f=X f$.
Proof: By definition and application of the chain rule,

$$
\begin{aligned}
\left(\mathcal{L}_{X} f\right)(m) & =\left.\frac{d}{d t}\right|_{t=0}\left(\varphi_{X}^{t}\right)^{*} f(m) \\
& =\left.\frac{d}{d t}\right|_{t=0} f\left(\varphi_{X}^{t}(m)\right) \\
& =\left.d_{m} f \frac{d}{d t} \varphi_{X}^{t}(m)\right|_{t=0} \\
& =d_{m} f X_{m}=(X f)_{m} .
\end{aligned}
$$

We have the following Leibniz rule with respect to tensor products
Lemma 3 Let $S \in \Gamma T_{r, s} M$ and $T \in \Gamma T_{u, v} M$. Then

$$
\mathcal{L}_{X}(S \otimes T)=\mathcal{L}_{X} S \otimes T+S \otimes \mathcal{L}_{X} T
$$

Proof: We note that

$$
\left(\varphi_{X}^{t}\right)^{*}(S \otimes T)_{m}=\left(\left(\varphi_{X}^{t}\right)^{*} S\right)_{m} \otimes\left(\left(\varphi_{X}^{t}\right)^{*} T\right)_{m}
$$

Now differentiate at $t=0$ and apply the lemma below.

Lemma 4 Let I be an open interval containing 0 and let $f: I^{n} \rightarrow M$ be a smooth map. Then

$$
\begin{aligned}
& \left.\frac{d}{d t}\right|_{t=0} f(t, t, \ldots, t)= \\
& \quad=\left.\frac{d}{d t}\right|_{t=0} f(t, 0, \ldots, 0)+\left.\frac{d}{d t}\right|_{t=0} f(0, t, \ldots, 0)+\left.\frac{d}{d t}\right|_{t=0} f(0,0, \ldots, t)
\end{aligned}
$$

Proof: We will prove this for $n=2$. The general case is proved similarly.
Consider the diagonal map $\delta: I \rightarrow I^{2}, t \mapsto(t, t)$. Then

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} f(t, t) & =\left.\frac{d}{d t}\right|_{t=0} f \circ \delta(t) \\
& =d_{m} f \cdot \delta^{\prime}(0)=d_{m} f \cdot(1,1) \\
& =d_{m} f \cdot(1,0)+d_{m} f \cdot(0,1) \\
& =\left.\frac{d}{d t}\right|_{t=0} f(t, 0)+\left.\frac{d}{d t}\right|_{t=0} f(0, t)
\end{aligned}
$$

Taking the Lie derivative commutes with contractions. More precisely, if $r \geq 1, s \geq 1$, and $1 \leq i \leq r, 1 \leq j \leq s$, we may define a contraction map

$$
\mathcal{C}_{i, j}: \Gamma T_{r, s} M \rightarrow \Gamma T_{r-1, s-1} M
$$

by point-wise contraction:

$$
\left(\mathcal{C}_{i, j} S\right)_{m}:=\mathcal{C}_{T_{m} M, i, j}\left(S_{m}\right)
$$

Let $\varphi: M \rightarrow N$ be diffeomorphism. Then it is readily seen that

$$
\varphi^{*} \circ \mathcal{C}_{N, i, j}=\mathcal{C}_{M, i, j} \circ \varphi^{*} \quad \text { on } \quad \Gamma T_{r, s} N
$$

Lemma 5 Let X be a smooth vector field on M. Then

$$
\mathcal{L}_{X} \circ \mathcal{C}_{i, j}=\mathcal{C}_{i, j} \circ \mathcal{L}_{X}
$$

on $\Gamma T_{r, s} M$.
Proof: Let $S \in \Gamma T_{r, s} M$ and $m \in M$. Then

$$
\begin{aligned}
\left(\mathcal{L}_{X} \circ \mathcal{C}_{i, j} S\right)_{m} & =\left.\frac{d}{d t}\right|_{t=0}\left(\left(\varphi^{t}\right)^{*} \mathcal{C}_{i, j} S\right)_{m} \\
& \left.=\left.\frac{d}{d t}\right|_{t=0} \mathcal{C}_{T_{m} M, i, j}\left(\varphi^{t}\right)^{*} S\right)_{m} \\
& \left.=\left.\mathcal{C}_{T_{m} M, i, j} \frac{d}{d t}\right|_{t=0}\left(\varphi^{t}\right)^{*} S\right)_{m} \\
& =\left(\mathcal{C}_{i, j} \mathcal{L}_{X} S\right)_{m}
\end{aligned}
$$

Here the interchange of $d / d t$ and $\mathcal{C}_{T_{m} M, i, j}$ is allowed by linearity of the latter map.

Lemma 6 The Lie derivative \mathcal{L}_{X} defines a derivation of order 0 of the graded algebra $E(M)$ which commutes with the exterior differentiation d.

Proof: We observed already that \mathcal{L}_{X} maps the subspace $E_{k}(M)$ to itself, for each k. Let $\omega, \eta \in E(M)$. Then, for $m \in M$,

$$
\begin{aligned}
\mathcal{L}_{X}(\omega \wedge \eta)_{m} & =\left.\frac{d}{d t}\right|_{t=0}\left(\varphi^{t}\right)^{*}(\omega \wedge \nu)_{m} \\
& =\left.\frac{d}{d t}\right|_{t=0}\left[\left(\left(\varphi^{t}\right)^{*} \omega\right)_{m} \wedge\left(\left(\varphi^{t}\right)^{*} \nu\right)_{m}\right]
\end{aligned}
$$

Now apply Lemma 4 to see that \mathcal{L}_{X} is a derivation.
Let now $\omega \in E(M)$. Then we must show that $\mathcal{L}_{X} d \omega=d \mathcal{L}_{X} \omega$. We first assume that $\omega=f \in C^{\infty}(M)$. Fix $m \in M$ and $Y_{m} \in T_{m} M$ and extend Y_{m} to a smooth vector field on M. Then it suffices to show that

$$
\left(\mathcal{L}_{X} d f\right)_{m} Y_{m}=d\left(\mathcal{L}_{X} f\right)_{m} Y_{m}
$$

The expression on the left-hand side equals

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0}\left(\varphi^{t *} d f\right)_{m} Y_{m} & =\left.\frac{d}{d t}\right|_{t=0}\left(d \varphi^{t *} f\right)_{m} Y_{m} \\
& =\left.\left.\frac{\partial}{\partial t}\right|_{t=0} \frac{\partial}{\partial s}\right|_{s=0} \varphi^{t *} f\left(\psi^{s}(m)\right),
\end{aligned}
$$

where $\psi^{s}:=\varphi_{Y}^{s}$. In the last expression the derivatives with respect to s and t may be interchanged. From this we see that the expression equals

$$
\left.\frac{d}{d s}\right|_{s=0}\left(\mathcal{L}_{X} f\right)\left(\psi^{s}(m)\right)=\left(d \mathcal{L}_{X} f\right)_{m} Y_{m}
$$

and the result for $\omega=f$ follows.
For general ω we may now obtain the result by applying the method of the proof of Lemma 1.

Lemma 7 Let X, Y be smooth vector fields on M. Then $\mathcal{L}_{X} Y=[X, Y]$.
Proof: Let $f \in C^{\infty}(M)$. Then $Y f=d f(Y)$ equals the contraction $\mathcal{C}_{1,1}$ of $Y \otimes d f$. It follows that

$$
\begin{aligned}
X Y f=\mathcal{L}_{X}(Y f) & =\mathcal{L}_{X} \mathcal{C}_{1,1}(Y \otimes d f) \\
& =\mathcal{C}_{1,1} \mathcal{L}_{X}(Y \otimes d f) \\
& =\mathcal{C}_{1,1}\left[\left(\mathcal{L}_{X} Y\right) \otimes d f+Y \otimes d\left(\mathcal{L}_{X} f\right)\right] \\
& =\left(\mathcal{L}_{X} Y\right) f+Y(X f)
\end{aligned}
$$

The result follows.
Lemma 8 (Cartan's formula) Let X be a smooth vector field on M. Then on $E(M)$,

$$
\mathcal{L}_{X}=i(X) \circ d+d \circ i(X) .
$$

Proof: As in Warner, it is seen that the right-hand side of the expression is a derivation of $E(X)$ of order 0 , which commutes with d. The same was seen to be true for the operator on the left-hand side. It follows that the equality needs only be checked when applied to a function $f \in C^{\infty}(M)$. Now $i(X) f=0$ and

$$
\mathcal{L}_{X} f(m)=X f(m)=d_{m} f \cdot X_{m}=(i(X) d f)_{m}
$$

so that the result follows.
Lemma 9 Let $\omega \in E_{k}(M)$ and let X_{0}, \ldots, X_{k} be smooth vector fields on M. Then

$$
X_{0}\left[\omega\left(X_{1}, \ldots, X_{k}\right)\right]=\mathcal{L}_{X_{0}} \omega\left(X_{1}, \ldots, X_{k}\right)+\sum_{j=1}^{k} \omega\left(X_{1}, \ldots,\left[X_{0}, X_{j}\right], \ldots X_{k}\right)
$$

Proof: Viewing ω as an alternating tensor field in $\Gamma T_{0, k} M$, we observe that

$$
\omega\left(X_{1}, \ldots, X_{k}\right)=\mathcal{C}_{1,1} \mathcal{C}_{1,1} \cdots \mathcal{C}_{1,1} \omega \otimes X_{1} \otimes \cdots \otimes X_{k} .
$$

The result now follows by applying Lemmas 2,5 and 7 .

Lemma 10 Let $\omega \in E_{k}(M)$ and let X_{0}, \ldots, X_{k} be smooth vector fields on M. Then

$$
\begin{aligned}
& d \omega\left(X_{0}, \ldots, X_{k}\right)=\sum_{j=0}^{k}(-1)^{j} X_{j} \omega\left(X_{0}, \ldots, \widehat{X}_{j}, \ldots, X_{k}\right) \\
& \quad+\sum_{i<j}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \widehat{X}_{i}, \ldots, \widehat{X}_{j}, \ldots, X_{k}\right)
\end{aligned}
$$

Proof: First of all, if $k=0$, then ω is a function and the equation is obvious. Note that in this situation the second sum on the right-hand side equals zero. We now proceed by induction. Thus, let $k>0$ and assume the result has been established for strictly smaller values of k. Let $\omega \in E_{k}(M)$ and let X_{0}, \ldots, X_{k} be smooth vector fields. Then

$$
\begin{aligned}
d \omega\left(X_{0}, \ldots, X_{k}\right)= & \left.\left(\left[i\left(X_{0}\right) \circ d\right] \omega\right)\left(X_{1}, \ldots, X_{k}\right)\right) \\
= & \left(\left[\mathcal{L}_{X_{0}}-d \circ i\left(X_{0}\right)\right] \omega\right)\left(X_{1}, \ldots, X_{k}\right) \\
= & X_{0} \omega\left(X_{1}, \ldots, X_{k}\right)-\sum_{j=1}^{k} \omega\left(X_{1}, \ldots,\left[X_{0}, X_{j}\right], \ldots X_{k}\right)+ \\
& \quad-\left[d\left(i\left(X_{0}\right) \omega\right)\right]\left(X_{1}, \ldots, X_{k}\right) .
\end{aligned}
$$

Now apply the induction hypothesis to $i\left(X_{0}\right) \omega$ to complete the proof.

