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Linear maps and tensors

The purpose of these notes is to give conceptual proofs of a number of results on Lie derivatives
of tensor fields and differential forms. We start with some remarks on the effect of linear maps
on tensors. In what follows, U, V, W will be finite dimensional real vector spaces.

A linear map A : V — W induces a linear map

A, =@"A: "V — @FW.

Indeed, let a : V¥ — @FW be the multilinear map given by a(vy,...,vy) — Avy ® --- Avy.
Then A, is just the map a from the universal property of the tensor product. In particular,
on elementary tensors A, is given by

A1 @ Qug) = A @ - - ® Auy,.

On the other hand, A also induces the adjoint linear map A* : W* — V* n — no A. This
map in turn induces a linear map

Note that the assignment A +— A, preserves the direction of arrows, whereas A +— A*
reverses directions. Therefore, it is in general impossible to define a natural induced map
between the spaces of mixed tensors of type (r,s), V;., and W, ;. Here we have used the
notation of Warner’s book.

We recall that there exists a natural isomorphism

%,s = ®SV* = MS(V),

where M,(V') denotes the space of k-multilinear forms on V. Via this isomorphism, a tensor
of the form £ ® - - - ® &5 corresponds with the multilinear form

(V1,...,0s) = &1 (v1) -+ Es(vs).

From this we see that the induced map A* : V) s — W, o corresponds with the map My(W) —
Ms(V), p— poA®, which is the genuine pull-back of multi-linear forms by A.

As in Warner’s book, let C(V') denote the (graded) tensor algebra ®5>0Vi,0, where Vp o :=
R. Then a linear map A : V' — W induces a linear map A, : C(V) — C(W) which is readily
seen to be a homomorphism of graded algebras. Also, it is clear that A, maps I(V) into
I(W), hence induces an algebra homomorphism A, : AV — AW.



Similarly, the adjoint A* : W* — V* induces an algebra homomorphism
(A%) : AW™ — AVF

which we briefly denote by A*. Again, this is a homomorphism of graded algebras.
We recall that we introduced a particular linear isomorphism

AV~ AR(V).

Under this isomorphism, an element & A --- A & € AFV corresponds with the alternating
k-form given by

V1, 08) = Y sgn(0)Eo1(v1) - - Eoplvr) = det(&i(v;)). (1)

ogEeSy,

Identifying the elements of A¥V* with alternating k-forms in this fashion, we see that A*
becomes the ordinary pull-back map

Ak(W) - Ak(V), on— /LoAk.

As Ap(V) € Mp(V), we may use the above isomorphisms to identify A*V* with a subspace
of Vp x. From (1) we then see that

QA AG =) sen(0)n ® - @ Lo
€Sk
Finally, if A is a linear isomorphism of V' onto W, we do have an induced map
A= @TAR ATV, — Wi,
In this situation we agree to also write
A=A =@ AT @ RAF W, — Vi

For later purposes, we need the notion of contraction of tensors. First of all, the natural
pairing V x V* — R corresponds to a linear map V®V* — R, called contraction, and denoted
by C. Note that

Clv®§) =¢&(v).
If A:V — W is a linear isomorphism, then
CyoA* =Cy.
This is readily seen from
CyoA*(wen) = Cy(A'we A*n)
= Asxn(A'w) = n(AA  w)
= Cw(w®mn).

More generally, if r,s > 1 and 1 <7 < r and 1 < j < s, we may a define a contraction
Cij 2 Vs — Vi_1,s-1 on the i-th contravariant slot and the j-th covariant slot. More precisely,
C;,; is the linear map induced by the multi-linear map

(’Ul,...,’l}r,fl...gs) —



C(’Ui®§j)U1®"‘®@'®"'®UT®£1®“'®EJ‘®"‘®fs-
The above formula is now readily seen to generalize to
A* ° CWﬂ?] - CV77/7] ° A*'

Note that A* =1 on Vpo = R.

Maps and tensor fields

We will now describe the effect of maps on tensor fields. Let ¢ : M — N be a smooth map
between manifolds. Then for every m € M we have an induced linear map dp,¢ : T, M —
Tw(m)N which in turn induces an algebra homomorphism

Accordingly, we have the induced map
" E(N) — E(M)
given by
(" W)m = (dmp) We(m), (@ € E(N)).

As the wedge product of forms is defined pointwise, the map ¢* thus defined is a homomor-
phism of graded algebras.

Note that Fo(M) ~ I'*°(R) = C*°(M). Moreover, for f € C°°(M) the function ¢*f is
given by the usual pull-back fo¢.

Similar remarks can be made for the spaces of covariant tensor fields: a smooth map
@ : M — N naturally induces a linear map

©* :TTy N — I'Ty ;M.
By the identifications of the previous sections, we have a natural embedding of vector bundles
AET* M s Ty 1. M,

and accordingly an embedding
Ek(M) — FT071€M,

identifying k-differential forms with alternating tensor fields. The embedding is compatible
with the definitions of ¢* given above.

Lemma 1 Let p: M — N be a smooth map of manifolds. Then for every differential form
w € E(N),
O (dw) = dyp*w.

Proof: We will first check the formula for w = f € C*°(M). Then, for every m € M,

d((p*f)m = dm(fogo) = d@(m)fodMQP'

by the chain rule. The latter expression equals
(df) p(m) © dmp = (dm@) ™ (df ) p(m) = (" df )

3



The formula for f follows.

In general, let U be a coordinate patch in NV and observe that the restriction of ¢ to p~(U)
is a smooth map ¢~ 1(U) — U. It suffices to prove the formula for a k-form w € Ei(U). By
using local coordinates, we see that in such a patch w € Ei(U) can be expressed as a sum of
k-forms of type

A= fdg' A AdgF,

with f, g/ € C*(U). Hence, it suffices to prove the formula for such a k-form .
As d is an anti-derivation, and d? = 0,

d\=df Adg* A--- AdgF

so that
P (dN) = ¢ (df) A" (dgh) Ao At (dg")
= dp*f Adptg't Ao Ndptg
= dl(*f)de*g" A+ N dpgh]
= dl¢" ) dg' N--- N g dg]
= d[p*A].
Here we have been using that ¢* is an algebra homomorphism E(U) — E(p~Y(U)). O

Lie derivatives

If ¢ is a (local) diffeomorphism M — N, we may define a pull-back map ¢* : I'T; N —
I'T}. s M on mixed tensor fields as follows. For T' € I'T,. ;N we define

©* (T)m = (dmgp)*Tap(m) .

This definition facilitates the definition of Lie derivative of tensors with respect to a given
smooth vector field.

Let X € X(M) be a smooth vector field. Then for every m € M we denote by ¢ — ¢’ (m)
the (maximal) integral curve for X with initial point m. The domain of this integral curve is
an open interval Ix ,, containing 0. Let T' € I'T;. ;M. Then we define the Lie derivative of T
with respect to X by

(ExThn = S| 165 Tl
t=0
Here we note that (% is a diffeomorphism from a neighborhood of m onto a neighborhood of
¢’ (m). Accordingly, the expression
[(£5%) T

is a well-defined element of (T, M), s which depends smoothly on ¢ (in a neighborhood of 0).
Accordingly, (LxT')y, defines a tensor in (75,M), ;. Moreover, by smoothness of the flow of
the vector field X it follows that the section L£xT of the tensor bundle T;. sM thus defined is
smooth. In other words, we have defined a linear map

Lx :TT, M —TT, M,

called the Lie derivative. In a similar way it is seen that the Lie derivative defines a linear
map Ly : Ex(M) — Ei(M).



Lemma 2 Let f € C*°(M). Then Lxf = Xf.

Proof: By definition and application of the chain rule,

d
dt
d
dt

(Lxf)(m) =

t=0

t=0

d
— dnf P m)limo
= dnfXm = (Xf)m.

O
We have the following Leibniz rule with respect to tensor products
Lemma 3 Let S € I'T. M and T € I'T,, ,M. Then
Lx(SRT)=LxSRT+ SR LxT.
Proof: We note that
(%) (S @ T)m = ((¥%)"S)m @ ((¥’x) T)im-
Now differentiate at ¢t = 0 and apply the lemma below. ]

Lemma 4 Let I be an open interval containing 0 and let f : I — M be a smooth map.
Then

d
— t,t t) =
dt t_of(a ) 9 )
d d d
= — f(t,0,...,0)+ — f(0,t,...,0)+ —|  f(0,0,...,¢).
dt |, dt | dt |

Proof: We will prove this for n = 2. The general case is proved similarly.
Consider the diagonal map & : I — I%,t + (t,t). Then

qa
dt

flt,t) = % t_ofo5(t)

= dmf : 6/(0) = dmf : (17 1)

= dnf - (1,0) + dmf - (0,1)
F(£,0) 1(0,).

t=0 t=0

t=0

dt

@



Taking the Lie derivative commutes with contractions. More precisely, if r > 1, s > 1,
and 1 <i<r, 1< 75 <s, we may define a contraction map

Ci,j : FTnSM — FTrfl,sflM

by point-wise contraction:

(CijS)m = Cr,u0,ij (Sm)-
Let ¢ : M — N be diffeomorphism. Then it is readily seen that

©* oCnyij =Cumijop” on I'T,4N.
Lemma 5 Let X be a smooth vector field on M. Then
LxoCij=CijoLx
on I'T. s M.

Proof: Let S € I'T;. ;M and m € M. Then

ExoCyShn = | (@CsS)n
A A e )
dt|,_, ™" "
= Cr,M,ij a (©")*S)m
T g
= (CijLxS)m.
Here the interchange of d/dt and Cr,, a4 ; is allowed by linearity of the latter map. O

Lemma 6 The Lie derivative Lx defines a derivation of order 0 of the graded algebra E(M)
which commutes with the exterior differentiation d.

Proof: We observed already that £x maps the subspace Ep(M) to itself, for each k. Let
w,n € E(M). Then, for m € M,

d
dt|,_
d
dt

Lx(wAN)m =

t=0

Now apply Lemma 4 to see that Lx is a derivation.

Let now w € E(M). Then we must show that Lxdw = dLxw. We first assume that
w=feC®M).Fixmeée M and Yy, € T, M and extend Y, to a smooth vector field on M.
Then it suffices to show that

(Lxdf)mYm = d(Lx f)mYm-



The expression on the left-hand side equals

d d

el t*d mYm - d tx mYm
i, (¢ df) g t:0< " f)
8 8 tx S
= o s 52090 f(p(m)),
where ¢® := ¢7.. In the last expression the derivatives with respect to s and ¢ may be
interchanged. From this we see that the expression equals
d S
ds (Lx ) (m)) = (dLX f)mYm,
s=0

and the result for w = f follows.
For general w we may now obtain the result by applying the method of the proof of Lemma
1. O

Lemma 7 Let X,Y be smooth vector fields on M. Then LxY = [X,Y].

Proof: Let f € C°°(M). Then Y f = df(Y') equals the contraction C;; of Y ® df. It follows

that
XYf=Lx(Yf) = LxCa1(Y®df)
= CiiLx(Y ®df)
= CLal(LxY)®df +Y @d(Lx f)]
= (LxY)f+Y(X/[).
The result follows. O

Lemma 8 (Cartan’s formula) Let X be a smooth vector field on M. Then on E(M),
Lx = Z(X)od—i—doZ(X)

Proof: As in Warner, it is seen that the right-hand side of the expression is a derivation
of E(X) of order 0, which commutes with d. The same was seen to be true for the operator
on the left-hand side. It follows that the equality needs only be checked when applied to a
function f € C*°(M). Now i(X)f =0 and

Lxf(m)=Xf(m)=dnf Xpm=(i(X)df)m
so that the result follows. O

Lemma 9 Letw € Ex(M) and let Xy, ..., Xy be smooth vector fields on M. Then

k
Xolw(X1, ..., Xp)] = Lxyw(X1, ..., Xp) + Y w(X1, ..., [Xo, Xj],. .. Xp).
j=1

Proof: Viewing w as an alternating tensor field in I'Ty ,, M, we observe that
WX, X)) =C11C11 - CLaiw®@ X1 @ - @ Xj.

The result now follows by applying Lemmas 2, 5 and 7. ]



Lemma 10 Letw € Ei(M) and let Xy, ..., Xy be smooth vector fields on M. Then

k
dw(Xo, ..., Xp) = 3 (-1 Xjw(Xo, ..., X;,..., Xp)
7=0

D (D)Mw([X, Xj), Xoy -, Xy, X X,
1<j

Proof: First of all, if £k = 0, then w is a function and the equation is obvious. Note that
in this situation the second sum on the right-hand side equals zero. We now proceed by
induction. Thus, let £ > 0 and assume the result has been established for strictly smaller
values of k. Let w € Ex(M) and let X,..., X} be smooth vector fields. Then

dw(X(),...,Xk) ([Z(Xo)od]w)(Xl,,Xk))
= ([[’Xo — doi(X())]w)(Xl, e ,Xk)
k
= Xow(Xl,...,Xk)— w(Xl,...,[Xo,Xj],...Xk)—F
j=1
—[d(i(Xo)w)](X1,..., X)
Now apply the induction hypothesis to i(Xo)w to complete the proof. ]



