Lie derivatives, tensors and forms

Erik van den Ban

Fall 2006

Linear maps and tensors

The purpose of these notes is to give conceptual proofs of a number of results on Lie derivatives of tensor fields and differential forms. We start with some remarks on the effect of linear maps on tensors. In what follows, U, V, W will be finite dimensional real vector spaces.

A linear map $A: V \to W$ induces a linear map

$$A_* = \otimes^k A : \otimes^k V \to \otimes^k W.$$

Indeed, let $a: V^k \to \otimes^k W$ be the multilinear map given by $a(v_1, \ldots, v_k) \mapsto Av_1 \otimes \cdots Av_k$. Then A_* is just the map \bar{a} from the universal property of the tensor product. In particular, on elementary tensors A_* is given by

$$A_*(v_1 \otimes \cdots \otimes v_k) = Av_1 \otimes \cdots \otimes Av_k.$$

On the other hand, A also induces the adjoint linear map $A^*: W^* \to V^*$, $\eta \mapsto \eta \circ A$. This map in turn induces a linear map

$$A^* = \otimes^k (A^*) : \otimes^k W^* \to \otimes^k V^*.$$

Note that the assignment $A \mapsto A_*$ preserves the direction of arrows, whereas $A \mapsto A^*$ reverses directions. Therefore, it is in general impossible to define a natural induced map between the spaces of mixed tensors of type (r, s), $V_{r,s}$ and $W_{r,s}$. Here we have used the notation of Warner's book.

We recall that there exists a natural isomorphism

$$V_{0,s} = \otimes^s V^* \simeq M_s(V),$$

where $M_s(V)$ denotes the space of k-multilinear forms on V. Via this isomorphism, a tensor of the form $\xi_1 \otimes \cdots \otimes \xi_s$ corresponds with the multilinear form

$$(v_1,\ldots,v_s)\mapsto \xi_1(v_1)\cdots\xi_s(v_s).$$

From this we see that the induced map $A^*: V_{0,s} \to W_{s,0}$ corresponds with the map $M_s(W) \to M_s(V), \mu \mapsto \mu \circ A^s$, which is the genuine pull-back of multi-linear forms by A.

As in Warner's book, let C(V) denote the (graded) tensor algebra $\bigoplus_{k\geq 0} V_{k,0}$, where $V_{0,0} := \mathbb{R}$. Then a linear map $A: V \to W$ induces a linear map $A_*: C(V) \to C(W)$ which is readily seen to be a homomorphism of graded algebras. Also, it is clear that A_* maps I(V) into I(W), hence induces an algebra homomorphism $A_*: \wedge V \to \wedge W$.

Similarly, the adjoint $A^*: W^* \to V^*$ induces an algebra homomorphism

$$(A^*)_* : \wedge W^* \to \wedge V^*,$$

which we briefly denote by A^* . Again, this is a homomorphism of graded algebras.

We recall that we introduced a particular linear isomorphism

$$\wedge^k V^* \simeq A_k(V)$$

Under this isomorphism, an element $\xi_1 \wedge \cdots \wedge \xi_k \in \wedge^k V$ corresponds with the alternating k-form given by

$$(v_1, \dots, v_k) \mapsto \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) \xi_{\sigma 1}(v_1) \cdots \xi_{\sigma k}(v_k) = \det(\xi_i(v_j)).$$
 (1)

Identifying the elements of $\wedge^k V^*$ with alternating k-forms in this fashion, we see that A^* becomes the ordinary pull-back map

$$A_k(W) \to A_k(V), \ \mu \mapsto \mu \circ A^k.$$

As $A_k(V) \subset M_k(V)$, we may use the above isomorphisms to identify $\wedge^k V^*$ with a subspace of $V_{0,k}$. From (1) we then see that

$$\xi_1 \wedge \cdots \wedge \xi_k = \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) \xi_{\sigma 1} \otimes \cdots \otimes \xi_{\sigma k}.$$

Finally, if A is a linear isomorphism of V onto W, we do have an induced map

$$A_* := \otimes^r A \otimes \otimes^s A^{-1*} : V_{r,s} \to W_{r,s},$$

In this situation we agree to also write

$$A^* := A_*^{-1} = \otimes^r A^{-1} \otimes \otimes^s A^* : W_{r,s} \to V_{r,s}.$$

For later purposes, we need the notion of contraction of tensors. First of all, the natural pairing $V \times V^* \to \mathbb{R}$ corresponds to a linear map $V \otimes V^* \to \mathbb{R}$, called contraction, and denoted by \mathcal{C} . Note that

$$\mathcal{C}(v\otimes\xi)=\xi(v).$$

If $A: V \to W$ is a linear isomorphism, then

$$\mathcal{C}_V \circ A^* = \mathcal{C}_W.$$

This is readily seen from

$$\mathcal{C}_V \circ A^*(w \otimes \eta) = \mathcal{C}_V(A^{-1}w \otimes A^*\eta)$$

= $A * \eta(A^{-1}w) = \eta(AA^{-1}w)$
= $\mathcal{C}_W(w \otimes \eta).$

More generally, if $r, s \ge 1$ and $1 \le i \le r$ and $1 \le j \le s$, we may a define a contraction $C_{i,j}: V_{r,s} \to V_{r-1,s-1}$ on the *i*-th contravariant slot and the *j*-th covariant slot. More precisely, $C_{i,j}$ is the linear map induced by the multi-linear map

$$(v_1,\ldots,v_r,\xi_1\ldots\xi_s)\mapsto$$

$$\mathcal{C}(v_i \otimes \xi_j) v_1 \otimes \cdots \otimes \widehat{v}_i \otimes \cdots \otimes v_r \otimes \xi_1 \otimes \cdots \otimes \widehat{\xi}_j \otimes \cdots \otimes \xi_s.$$

The above formula is now readily seen to generalize to

$$A^* \circ \mathcal{C}_{W,i,j} = \mathcal{C}_{V,i,j} \circ A^*.$$

Note that $A^* = I$ on $V_{0,0} = \mathbb{R}$.

Maps and tensor fields

We will now describe the effect of maps on tensor fields. Let $\varphi: M \to N$ be a smooth map between manifolds. Then for every $m \in M$ we have an induced linear map $d_m \varphi: T_m M \to T_{\varphi(m)} N$ which in turn induces an algebra homomorphism

$$(d_m\varphi)^* : \wedge T^*_{\varphi(m)}N \to \wedge T^*_mM$$

Accordingly, we have the induced map

$$\varphi^*: E(N) \to E(M)$$

given by

$$(\varphi^*\omega)_m = (d_m\varphi)^*\omega_{\varphi(m)}, \qquad (\omega \in E(N))$$

As the wedge product of forms is defined pointwise, the map φ^* thus defined is a homomorphism of graded algebras.

Note that $E_0(M) \simeq \Gamma^{\infty}(\mathbb{R}) = C^{\infty}(M)$. Moreover, for $f \in C^{\infty}(M)$ the function $\varphi^* f$ is given by the usual pull-back $f \circ \varphi$.

Similar remarks can be made for the spaces of covariant tensor fields: a smooth map $\varphi: M \to N$ naturally induces a linear map

$$\varphi^*: \Gamma T_{0,s}N \to \Gamma T_{0,s}M.$$

By the identifications of the previous sections, we have a natural embedding of vector bundles

$$\wedge^k T^*M \hookrightarrow T_{0,k}M,$$

and accordingly an embedding

$$E_k(M) \hookrightarrow \Gamma T_{0,k}M,$$

identifying k-differential forms with alternating tensor fields. The embedding is compatible with the definitions of φ^* given above.

Lemma 1 Let $\varphi : M \to N$ be a smooth map of manifolds. Then for every differential form $\omega \in E(N)$,

$$\varphi^*(d\omega) = d\varphi^*\omega.$$

Proof: We will first check the formula for $\omega = f \in C^{\infty}(M)$. Then, for every $m \in M$,

$$d(\varphi^*f)_m = d_m(f \circ \varphi) = d_{\varphi(m)}f \circ d_m\varphi.$$

by the chain rule. The latter expression equals

$$(df)_{\varphi(m)} \circ d_m \varphi = (d_m \varphi)^* (df)_{\varphi(m)} = (\varphi^* df)_m$$

The formula for f follows.

In general, let U be a coordinate patch in N and observe that the restriction of φ to $\varphi^{-1}(U)$ is a smooth map $\varphi^{-1}(U) \to U$. It suffices to prove the formula for a k-form $\omega \in E_k(U)$. By using local coordinates, we see that in such a patch $\omega \in E_k(U)$ can be expressed as a sum of k-forms of type

$$\lambda = f dg^1 \wedge \dots \wedge dg^k,$$

with $f, g^j \in C^{\infty}(U)$. Hence, it suffices to prove the formula for such a k-form λ .

As d is an anti-derivation, and $d^2 = 0$,

$$d\lambda = df \wedge dg^1 \wedge \dots \wedge dg^k$$

so that

$$\begin{split} \varphi^*(d\lambda) &= \varphi^*(df) \wedge \varphi^*(dg^1) \wedge \dots \wedge \varphi^*(dg^k) \\ &= d\varphi^* f \wedge d\varphi^* g^1 \wedge \dots \wedge d\varphi^* g^k \\ &= d[(\varphi^* f) d\varphi^* g^1 \wedge \dots \wedge d\varphi^* g^k] \\ &= d[(\varphi^* f) \varphi^* dg^1 \wedge \dots \wedge \varphi^* dg^k] \\ &= d[\varphi^* \lambda]. \end{split}$$

Here we have been using that φ^* is an algebra homomorphism $E(U) \to E(\varphi^{-1}(U))$.

Lie derivatives

If φ is a (local) diffeomorphism $M \to N$, we may define a pull-back map $\varphi^* : \Gamma T_{r,s}N \to \Gamma T_{r,s}M$ on mixed tensor fields as follows. For $T \in \Gamma T_{r,s}N$ we define

$$\varphi^*(T)_m := (d_m \varphi)^* T_{\varphi(m)}$$

This definition facilitates the definition of Lie derivative of tensors with respect to a given smooth vector field.

Let $X \in \mathfrak{X}(M)$ be a smooth vector field. Then for every $m \in M$ we denote by $t \mapsto \varphi_X^t(m)$ the (maximal) integral curve for X with initial point m. The domain of this integral curve is an open interval $I_{X,m}$ containing 0. Let $T \in \Gamma T_{r,s}M$. Then we define the Lie derivative of T with respect to X by

$$(\mathcal{L}_X T)_m := \left. \frac{d}{dt} \right|_{t=0} [(\varphi_X^t)^* T]_m.$$

Here we note that φ_X^t is a diffeomorphism from a neighborhood of m onto a neighborhood of $\varphi_X^t(m)$. Accordingly, the expression

$$[(\varphi_X^t)^*T]_m$$

is a well-defined element of $(T_m M)_{r,s}$ which depends smoothly on t (in a neighborhood of 0). Accordingly, $(\mathcal{L}_X T)_m$ defines a tensor in $(T_m M)_{r,s}$. Moreover, by smoothness of the flow of the vector field X it follows that the section $\mathcal{L}_X T$ of the tensor bundle $T_{r,s} M$ thus defined is smooth. In other words, we have defined a linear map

$$\mathcal{L}_X: \Gamma T_{r,s}M \to \Gamma T_{r,s}M,$$

called the Lie derivative. In a similar way it is seen that the Lie derivative defines a linear map $\mathcal{L}_X : E_k(M) \to E_k(M)$.

Lemma 2 Let $f \in C^{\infty}(M)$. Then $\mathcal{L}_X f = X f$.

Proof: By definition and application of the chain rule,

$$(\mathcal{L}_X f)(m) = \frac{d}{dt}\Big|_{t=0} (\varphi_X^t)^* f(m)$$
$$= \frac{d}{dt}\Big|_{t=0} f(\varphi_X^t(m))$$
$$= d_m f \frac{d}{dt} \varphi_X^t(m)|_{t=0}$$
$$= d_m f X_m = (Xf)_m.$$

We have the following Leibniz rule with respect to tensor products

Lemma 3 Let $S \in \Gamma T_{r,s}M$ and $T \in \Gamma T_{u,v}M$. Then

$$\mathcal{L}_X(S \otimes T) = \mathcal{L}_X S \otimes T + S \otimes \mathcal{L}_X T$$

Proof: We note that

$$(\varphi_X^t)^*(S \otimes T)_m = ((\varphi_X^t)^*S)_m \otimes ((\varphi_X^t)^*T)_m.$$

Now differentiate at t = 0 and apply the lemma below.

Lemma 4 Let I be an open interval containing 0 and let $f: I^n \to M$ be a smooth map. Then

$$\frac{d}{dt}\Big|_{t=0} f(t,t,\dots,t) = \\ = \frac{d}{dt}\Big|_{t=0} f(t,0,\dots,0) + \frac{d}{dt}\Big|_{t=0} f(0,t,\dots,0) + \frac{d}{dt}\Big|_{t=0} f(0,0,\dots,t).$$

Proof: We will prove this for n = 2. The general case is proved similarly. Consider the diagonal map $\delta : I \to I^2, t \mapsto (t, t)$. Then

$$\begin{aligned} \frac{d}{dt}\Big|_{t=0} f(t,t) &= \left. \frac{d}{dt} \right|_{t=0} f \circ \delta(t) \\ &= \left. d_m f \cdot \delta'(0) = d_m f \cdot (1,1) \right. \\ &= \left. d_m f \cdot (1,0) + d_m f \cdot (0,1) \right. \\ &= \left. \frac{d}{dt} \right|_{t=0} f(t,0) + \left. \frac{d}{dt} \right|_{t=0} f(0,t). \end{aligned}$$

Taking the Lie derivative commutes with contractions. More precisely, if $r \ge 1$, $s \ge 1$, and $1 \le i \le r$, $1 \le j \le s$, we may define a contraction map

$$\mathcal{C}_{i,j}: \Gamma T_{r,s}M \to \Gamma T_{r-1,s-1}M$$

by point-wise contraction:

$$(\mathcal{C}_{i,j}S)_m := \mathcal{C}_{T_m M, i,j}(S_m).$$

Let $\varphi: M \to N$ be diffeomorphism. Then it is readily seen that

$$\varphi^* \circ \mathcal{C}_{N,i,j} = \mathcal{C}_{M,i,j} \circ \varphi^*$$
 on $\Gamma T_{r,s} N$.

Lemma 5 Let X be a smooth vector field on M. Then

$$\mathcal{L}_X \circ \mathcal{C}_{i,j} = \mathcal{C}_{i,j} \circ \mathcal{L}_X$$

on $\Gamma T_{r,s}M$.

Proof: Let $S \in \Gamma T_{r,s}M$ and $m \in M$. Then

$$(\mathcal{L}_X \circ \mathcal{C}_{i,j}S)_m = \frac{d}{dt} \Big|_{t=0} ((\varphi^t)^* \mathcal{C}_{i,j}S)_m$$

$$= \frac{d}{dt} \Big|_{t=0} \mathcal{C}_{T_m M, i, j} (\varphi^t)^* S)_m$$

$$= \mathcal{C}_{T_m M, i, j} \frac{d}{dt} \Big|_{t=0} (\varphi^t)^* S)_m$$

$$= (\mathcal{C}_{i,j} \mathcal{L}_X S)_m.$$

Here the interchange of d/dt and $\mathcal{C}_{T_mM,i,j}$ is allowed by linearity of the latter map.

Lemma 6 The Lie derivative \mathcal{L}_X defines a derivation of order 0 of the graded algebra E(M) which commutes with the exterior differentiation d.

Proof: We observed already that \mathcal{L}_X maps the subspace $E_k(M)$ to itself, for each k. Let $\omega, \eta \in E(M)$. Then, for $m \in M$,

$$\mathcal{L}_X(\omega \wedge \eta)_m = \frac{d}{dt}\Big|_{t=0} (\varphi^t)^* (\omega \wedge \nu)_m$$
$$= \frac{d}{dt}\Big|_{t=0} [((\varphi^t)^* \omega)_m \wedge ((\varphi^t)^* \nu)_m].$$

Now apply Lemma 4 to see that \mathcal{L}_X is a derivation.

Let now $\omega \in E(M)$. Then we must show that $\mathcal{L}_X d\omega = d\mathcal{L}_X \omega$. We first assume that $\omega = f \in C^{\infty}(M)$. Fix $m \in M$ and $Y_m \in T_m M$ and extend Y_m to a smooth vector field on M. Then it suffices to show that

$$(\mathcal{L}_X df)_m Y_m = d(\mathcal{L}_X f)_m Y_m$$

The expression on the left-hand side equals

$$\frac{d}{dt}\Big|_{t=0} (\varphi^{t*} df)_m Y_m = \frac{d}{dt}\Big|_{t=0} (d\varphi^{t*} f)_m Y_m$$
$$= \frac{\partial}{\partial t}\Big|_{t=0} \frac{\partial}{\partial s}\Big|_{s=0} \varphi^{t*} f(\psi^s(m))$$

where $\psi^s := \varphi^s_Y$. In the last expression the derivatives with respect to s and t may be interchanged. From this we see that the expression equals

$$\left. \frac{d}{ds} \right|_{s=0} \left(\mathcal{L}_X f \right) (\psi^s(m)) = (d\mathcal{L}_X f)_m Y_m$$

and the result for $\omega = f$ follows.

For general ω we may now obtain the result by applying the method of the proof of Lemma 1.

Lemma 7 Let X, Y be smooth vector fields on M. Then $\mathcal{L}_X Y = [X, Y]$.

Proof: Let $f \in C^{\infty}(M)$. Then Yf = df(Y) equals the contraction $\mathcal{C}_{1,1}$ of $Y \otimes df$. It follows that

$$\begin{aligned} XYf &= \mathcal{L}_X(Yf) &= \mathcal{L}_X \mathcal{C}_{1,1}(Y \otimes df) \\ &= \mathcal{C}_{1,1} \mathcal{L}_X(Y \otimes df) \\ &= \mathcal{C}_{1,1}[(\mathcal{L}_X Y) \otimes df + Y \otimes d(\mathcal{L}_X f)] \\ &= (\mathcal{L}_X Y)f + Y(Xf). \end{aligned}$$

The result follows.

Lemma 8 (Cartan's formula) Let X be a smooth vector field on M. Then on E(M),

 $\mathcal{L}_X = i(X) \circ d + d \circ i(X).$

Proof: As in Warner, it is seen that the right-hand side of the expression is a derivation of E(X) of order 0, which commutes with d. The same was seen to be true for the operator on the left-hand side. It follows that the equality needs only be checked when applied to a function $f \in C^{\infty}(M)$. Now i(X)f = 0 and

$$\mathcal{L}_X f(m) = X f(m) = d_m f \cdot X_m = (i(X)df)_m$$

so that the result follows.

Lemma 9 Let $\omega \in E_k(M)$ and let X_0, \ldots, X_k be smooth vector fields on M. Then

$$X_0[\omega(X_1,...,X_k)] = \mathcal{L}_{X_0}\omega(X_1,...,X_k) + \sum_{j=1}^k \omega(X_1,...,[X_0,X_j],...X_k).$$

Proof: Viewing ω as an alternating tensor field in $\Gamma T_{0,k}M$, we observe that

$$\omega(X_1,\ldots,X_k)=\mathcal{C}_{1,1}\mathcal{C}_{1,1}\cdots\mathcal{C}_{1,1}\omega\otimes X_1\otimes\cdots\otimes X_k.$$

The result now follows by applying Lemmas 2, 5 and 7.

7

L				
L			1	
L	_	_	_	

Lemma 10 Let $\omega \in E_k(M)$ and let X_0, \ldots, X_k be smooth vector fields on M. Then

$$d\omega(X_0,\ldots,X_k) = \sum_{j=0}^k (-1)^j X_j \omega(X_0,\ldots,\widehat{X_j},\ldots,X_k)$$
$$+ \sum_{i< j} (-1)^{i+j} \omega([X_i,X_j],X_0,\ldots,\widehat{X_i},\ldots,\widehat{X_j},\ldots,X_k).$$

Proof: First of all, if k = 0, then ω is a function and the equation is obvious. Note that in this situation the second sum on the right-hand side equals zero. We now proceed by induction. Thus, let k > 0 and assume the result has been established for strictly smaller values of k. Let $\omega \in E_k(M)$ and let X_0, \ldots, X_k be smooth vector fields. Then

$$d\omega(X_0, ..., X_k) = ([i(X_0) \circ d]\omega)(X_1, ..., X_k))$$

= $([\mathcal{L}_{X_0} - d \circ i(X_0)]\omega)(X_1, ..., X_k)$
= $X_0\omega(X_1, ..., X_k) - \sum_{j=1}^k \omega(X_1, ..., [X_0, X_j], ..., X_k) + -[d(i(X_0)\omega)](X_1, ..., X_k).$

Now apply the induction hypothesis to $i(X_0)\omega$ to complete the proof.