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Linear maps and tensors

The purpose of these notes is to give conceptual proofs of a number of results on Lie derivatives
of tensor fields and differential forms. We start with some remarks on the effect of linear maps
on tensors. In what follows, U, V,W will be finite dimensional real vector spaces.

A linear map A : V →W induces a linear map

A∗ = ⊗kA : ⊗kV → ⊗kW.

Indeed, let a : V k → ⊗kW be the multilinear map given by a(v1, . . . , vk) 7→ Av1 ⊗ · · ·Avk.
Then A∗ is just the map ā from the universal property of the tensor product. In particular,
on elementary tensors A∗ is given by

A∗(v1 ⊗ · · · ⊗ vk) = Av1 ⊗ · · · ⊗Avk.

On the other hand, A also induces the adjoint linear map A∗ : W ∗ → V ∗, η 7→ η ◦A. This
map in turn induces a linear map

A∗ = ⊗k(A∗) : ⊗kW ∗ → ⊗kV ∗.

Note that the assignment A 7→ A∗ preserves the direction of arrows, whereas A 7→ A∗

reverses directions. Therefore, it is in general impossible to define a natural induced map
between the spaces of mixed tensors of type (r, s), Vr,s and Wr,s. Here we have used the
notation of Warner’s book.

We recall that there exists a natural isomorphism

V0,s = ⊗sV ∗ 'Ms(V ),

where Ms(V ) denotes the space of k-multilinear forms on V. Via this isomorphism, a tensor
of the form ξ1 ⊗ · · · ⊗ ξs corresponds with the multilinear form

(v1, . . . , vs) 7→ ξ1(v1) · · · ξs(vs).

From this we see that the induced map A∗ : V0,s →Ws,0 corresponds with the map Ms(W ) →
Ms(V ), µ 7→ µ ◦As, which is the genuine pull-back of multi-linear forms by A.

As in Warner’s book, let C(V ) denote the (graded) tensor algebra ⊕k≥0Vk,0, where V0,0 :=
R. Then a linear map A : V → W induces a linear map A∗ : C(V ) → C(W ) which is readily
seen to be a homomorphism of graded algebras. Also, it is clear that A∗ maps I(V ) into
I(W ), hence induces an algebra homomorphism A∗ : ∧V → ∧W.
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Similarly, the adjoint A∗ : W ∗ → V ∗ induces an algebra homomorphism

(A∗)∗ : ∧W ∗ → ∧V ∗,

which we briefly denote by A∗. Again, this is a homomorphism of graded algebras.
We recall that we introduced a particular linear isomorphism

∧kV ∗ ' Ak(V ).

Under this isomorphism, an element ξ1 ∧ · · · ∧ ξk ∈ ∧kV corresponds with the alternating
k-form given by

(v1, . . . , vk) 7→
∑
σ∈Sk

sgn(σ)ξσ1(v1) · · · ξσk(vk) = det(ξi(vj)). (1)

Identifying the elements of ∧kV ∗ with alternating k-forms in this fashion, we see that A∗

becomes the ordinary pull-back map

Ak(W ) → Ak(V ), µ 7→ µ ◦Ak.

As Ak(V ) ⊂ Mk(V ), we may use the above isomorphisms to identify ∧kV ∗ with a subspace
of V0,k. From (1) we then see that

ξ1 ∧ · · · ∧ ξk =
∑
σ∈Sk

sgn(σ)ξσ1 ⊗ · · · ⊗ ξσk.

Finally, if A is a linear isomorphism of V onto W, we do have an induced map

A∗ := ⊗rA⊗⊗sA−1∗ : Vr,s →Wr,s,

In this situation we agree to also write

A∗ := A−1
∗ = ⊗rA−1 ⊗⊗sA∗ : Wr,s → Vr,s.

For later purposes, we need the notion of contraction of tensors. First of all, the natural
pairing V ×V ∗ → R corresponds to a linear map V ⊗V ∗ → R, called contraction, and denoted
by C. Note that

C(v ⊗ ξ) = ξ(v).

If A : V →W is a linear isomorphism, then

CV ◦A∗ = CW .

This is readily seen from

CV ◦A∗(w ⊗ η) = CV (A−1w ⊗A∗η)
= A ∗ η(A−1w) = η(AA−1w)
= CW (w ⊗ η).

More generally, if r, s ≥ 1 and 1 ≤ i ≤ r and 1 ≤ j ≤ s, we may a define a contraction
Ci,j : Vr,s → Vr−1,s−1 on the i-th contravariant slot and the j-th covariant slot. More precisely,
Ci,j is the linear map induced by the multi-linear map

(v1, . . . , vr, ξ1 . . . ξs) 7→
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C(vi ⊗ ξj)v1 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ vr ⊗ ξ1 ⊗ · · · ⊗ ξ̂j ⊗ · · · ⊗ ξs.

The above formula is now readily seen to generalize to

A∗ ◦ CW,i,j = CV,i,j ◦A
∗.

Note that A∗ = I on V0,0 = R.

Maps and tensor fields

We will now describe the effect of maps on tensor fields. Let ϕ : M → N be a smooth map
between manifolds. Then for every m ∈ M we have an induced linear map dmϕ : TmM →
Tϕ(m)N which in turn induces an algebra homomorphism

(dmϕ)∗ : ∧T ∗ϕ(m)N → ∧T ∗mM.

Accordingly, we have the induced map

ϕ∗ : E(N) → E(M)

given by
(ϕ∗ω)m = (dmϕ)∗ωϕ(m), (ω ∈ E(N)).

As the wedge product of forms is defined pointwise, the map ϕ∗ thus defined is a homomor-
phism of graded algebras.

Note that E0(M) ' Γ∞(R) = C∞(M). Moreover, for f ∈ C∞(M) the function ϕ∗f is
given by the usual pull-back f ◦ϕ.

Similar remarks can be made for the spaces of covariant tensor fields: a smooth map
ϕ : M → N naturally induces a linear map

ϕ∗ : ΓT0,sN → ΓT0,sM.

By the identifications of the previous sections, we have a natural embedding of vector bundles

∧kT ∗M ↪→ T0,kM,

and accordingly an embedding
Ek(M) ↪→ ΓT0,kM,

identifying k-differential forms with alternating tensor fields. The embedding is compatible
with the definitions of ϕ∗ given above.

Lemma 1 Let ϕ : M → N be a smooth map of manifolds. Then for every differential form
ω ∈ E(N),

ϕ∗(dω) = dϕ∗ω.

Proof: We will first check the formula for ω = f ∈ C∞(M). Then, for every m ∈M,

d(ϕ∗f)m = dm(f ◦ϕ) = dϕ(m)f ◦ dmϕ.

by the chain rule. The latter expression equals

(df)ϕ(m) ◦ dmϕ = (dmϕ)∗(df)ϕ(m) = (ϕ∗df)m.
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The formula for f follows.
In general, let U be a coordinate patch inN and observe that the restriction of ϕ to ϕ−1(U)

is a smooth map ϕ−1(U) → U. It suffices to prove the formula for a k-form ω ∈ Ek(U). By
using local coordinates, we see that in such a patch ω ∈ Ek(U) can be expressed as a sum of
k-forms of type

λ = fdg1 ∧ · · · ∧ dgk,

with f, gj ∈ C∞(U). Hence, it suffices to prove the formula for such a k-form λ.
As d is an anti-derivation, and d2 = 0,

dλ = df ∧ dg1 ∧ · · · ∧ dgk

so that

ϕ∗(dλ) = ϕ∗(df) ∧ ϕ∗(dg1) ∧ · · · ∧ ϕ∗(dgk)
= dϕ∗f ∧ dϕ∗g1 ∧ · · · ∧ dϕ∗gk

= d[(ϕ∗f)dϕ∗g1 ∧ · · · ∧ dϕ∗gk]
= d[(ϕ∗f)ϕ∗dg1 ∧ · · · ∧ ϕ∗dgk]
= d[ϕ∗λ].

Here we have been using that ϕ∗ is an algebra homomorphism E(U) → E(ϕ−1(U)). �

Lie derivatives

If ϕ is a (local) diffeomorphism M → N , we may define a pull-back map ϕ∗ : ΓTr,sN →
ΓTr,sM on mixed tensor fields as follows. For T ∈ ΓTr,sN we define

ϕ∗(T )m := (dmϕ)∗Tϕ(m).

This definition facilitates the definition of Lie derivative of tensors with respect to a given
smooth vector field.

Let X ∈ X(M) be a smooth vector field. Then for every m ∈M we denote by t 7→ ϕt
X(m)

the (maximal) integral curve for X with initial point m. The domain of this integral curve is
an open interval IX,m containing 0. Let T ∈ ΓTr,sM. Then we define the Lie derivative of T
with respect to X by

(LXT )m :=
d

dt

∣∣∣∣
t=0

[(ϕt
X)∗T ]m.

Here we note that ϕt
X is a diffeomorphism from a neighborhood of m onto a neighborhood of

ϕt
X(m). Accordingly, the expression

[(ϕt
X)∗T ]m

is a well-defined element of (TmM)r,s which depends smoothly on t (in a neighborhood of 0).
Accordingly, (LXT )m defines a tensor in (TmM)r,s. Moreover, by smoothness of the flow of
the vector field X it follows that the section LXT of the tensor bundle Tr,sM thus defined is
smooth. In other words, we have defined a linear map

LX : ΓTr,sM → ΓTr,sM,

called the Lie derivative. In a similar way it is seen that the Lie derivative defines a linear
map LX : Ek(M) → Ek(M).
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Lemma 2 Let f ∈ C∞(M). Then LXf = Xf.

Proof: By definition and application of the chain rule,

(LXf)(m) =
d

dt

∣∣∣∣
t=0

(ϕt
X)∗f(m)

=
d

dt

∣∣∣∣
t=0

f(ϕt
X(m))

= dmf
d

dt
ϕt

X(m)|t=0

= dmfXm = (Xf)m.

�

We have the following Leibniz rule with respect to tensor products

Lemma 3 Let S ∈ ΓTr,sM and T ∈ ΓTu,vM. Then

LX(S ⊗ T ) = LXS ⊗ T + S ⊗ LXT.

Proof: We note that

(ϕt
X)∗(S ⊗ T )m = ((ϕt

X)∗S)m ⊗ ((ϕt
X)∗T )m.

Now differentiate at t = 0 and apply the lemma below. �

Lemma 4 Let I be an open interval containing 0 and let f : In → M be a smooth map.
Then

d

dt

∣∣∣∣
t=0

f(t, t, . . . , t) =

=
d

dt

∣∣∣∣
t=0

f(t, 0, . . . , 0) +
d

dt

∣∣∣∣
t=0

f(0, t, . . . , 0) +
d

dt

∣∣∣∣
t=0

f(0, 0, . . . , t).

Proof: We will prove this for n = 2. The general case is proved similarly.
Consider the diagonal map δ : I → I2, t 7→ (t, t). Then

d

dt

∣∣∣∣
t=0

f(t, t) =
d

dt

∣∣∣∣
t=0

f ◦ δ(t)

= dmf · δ′(0) = dmf · (1, 1)
= dmf · (1, 0) + dmf · (0, 1)

=
d

dt

∣∣∣∣
t=0

f(t, 0) +
d

dt

∣∣∣∣
t=0

f(0, t).

�
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Taking the Lie derivative commutes with contractions. More precisely, if r ≥ 1, s ≥ 1,
and 1 ≤ i ≤ r, 1 ≤ j ≤ s, we may define a contraction map

Ci,j : ΓTr,sM → ΓTr−1,s−1M

by point-wise contraction:
(Ci,jS)m := CTmM,i,j(Sm).

Let ϕ : M → N be diffeomorphism. Then it is readily seen that

ϕ∗ ◦ CN,i,j = CM,i,j ◦ϕ
∗ on ΓTr,sN.

Lemma 5 Let X be a smooth vector field on M. Then

LX ◦ Ci,j = Ci,j ◦LX

on ΓTr,sM.

Proof: Let S ∈ ΓTr,sM and m ∈M. Then

(LX ◦ Ci,jS)m =
d

dt

∣∣∣∣
t=0

((ϕt)∗Ci,jS)m

=
d

dt

∣∣∣∣
t=0

CTmM,i,j(ϕt)∗S)m

= CTmM,i,j
d

dt

∣∣∣∣
t=0

(ϕt)∗S)m

= (Ci,jLXS)m.

Here the interchange of d/dt and CTmM,i,j is allowed by linearity of the latter map. �

Lemma 6 The Lie derivative LX defines a derivation of order 0 of the graded algebra E(M)
which commutes with the exterior differentiation d.

Proof: We observed already that LX maps the subspace Ek(M) to itself, for each k. Let
ω, η ∈ E(M). Then, for m ∈M,

LX(ω ∧ η)m =
d

dt

∣∣∣∣
t=0

(ϕt)∗(ω ∧ ν)m

=
d

dt

∣∣∣∣
t=0

[((ϕt)∗ω)m ∧ ((ϕt)∗ν)m].

Now apply Lemma 4 to see that LX is a derivation.
Let now ω ∈ E(M). Then we must show that LXdω = dLXω. We first assume that

ω = f ∈ C∞(M). Fix m ∈M and Ym ∈ TmM and extend Ym to a smooth vector field on M.
Then it suffices to show that

(LXdf)mYm = d(LXf)mYm.
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The expression on the left-hand side equals

d

dt

∣∣∣∣
t=0

(ϕt∗df)mYm =
d

dt

∣∣∣∣
t=0

(dϕt∗f)mYm

=
∂

∂t

∣∣∣∣
t=0

∂

∂s

∣∣∣∣
s=0

ϕt∗f(ψs(m)),

where ψs := ϕs
Y . In the last expression the derivatives with respect to s and t may be

interchanged. From this we see that the expression equals

d

ds

∣∣∣∣
s=0

(LXf)(ψs(m)) = (dLXf)mYm,

and the result for ω = f follows.
For general ω we may now obtain the result by applying the method of the proof of Lemma

1. �

Lemma 7 Let X,Y be smooth vector fields on M. Then LXY = [X,Y ].

Proof: Let f ∈ C∞(M). Then Y f = df(Y ) equals the contraction C1,1 of Y ⊗ df. It follows
that

XY f = LX(Y f) = LXC1,1(Y ⊗ df)
= C1,1LX(Y ⊗ df)
= C1,1[(LXY )⊗ df + Y ⊗ d(LXf)]
= (LXY )f + Y (Xf).

The result follows. �

Lemma 8 (Cartan’s formula) Let X be a smooth vector field on M. Then on E(M),

LX = i(X) ◦ d+ d ◦ i(X).

Proof: As in Warner, it is seen that the right-hand side of the expression is a derivation
of E(X) of order 0, which commutes with d. The same was seen to be true for the operator
on the left-hand side. It follows that the equality needs only be checked when applied to a
function f ∈ C∞(M). Now i(X)f = 0 and

LXf(m) = Xf(m) = dmf ·Xm = (i(X)df)m

so that the result follows. �

Lemma 9 Let ω ∈ Ek(M) and let X0, . . . , Xk be smooth vector fields on M. Then

X0[ω(X1, . . . , Xk)] = LX0ω(X1, . . . , Xk) +
k∑

j=1

ω(X1, . . . , [X0, Xj ], . . . Xk).

Proof: Viewing ω as an alternating tensor field in ΓT0,kM, we observe that

ω(X1, . . . , Xk) = C1,1C1,1 · · · C1,1ω ⊗X1 ⊗ · · · ⊗Xk.

The result now follows by applying Lemmas 2, 5 and 7. �
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Lemma 10 Let ω ∈ Ek(M) and let X0, . . . , Xk be smooth vector fields on M. Then

dω(X0, . . . , Xk) =
k∑

j=0

(−1)jXjω(X0, . . . , X̂j , . . . , Xk)

+
∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk).

Proof: First of all, if k = 0, then ω is a function and the equation is obvious. Note that
in this situation the second sum on the right-hand side equals zero. We now proceed by
induction. Thus, let k > 0 and assume the result has been established for strictly smaller
values of k. Let ω ∈ Ek(M) and let X0, . . . , Xk be smooth vector fields. Then

dω(X0, . . . , Xk) = ([i(X0) ◦ d]ω)(X1, . . . , Xk))
= ([LX0 − d ◦ i(X0)]ω)(X1, . . . , Xk)

= X0ω(X1, . . . , Xk)−
k∑

j=1

ω(X1, . . . , [X0, Xj ], . . . Xk) +

−[d(i(X0)ω)](X1, . . . , Xk).

Now apply the induction hypothesis to i(X0)ω to complete the proof. �

8


