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1 Introduction

For an introduction to the following material we refer to the first lecture given by the author.
One may also confer [Sug], ! which will be the basic reference for the rest of this course.

2 Haar measure

Let X be a locally compact Hausdorff space.

Definition 2.1 A positive Radon integral on X is a linear functional I : C.(X ) — C such that
f>0=1I(f)>0.

Remark. By the Riesz representation theorem [ is actually the integral associated with a
regular Borel measure u. We shall refer to this measure as the Radon measure associated with
I, and we shall use the notation:

105) = [ 1) duta).

Lemma 2.2 Let I be a positive Radon measure on X. Then:
(a) f<g=1(f)<1g) (f,9€ C(X)).
(b) feCX) = (N < I(FD;
(¢) The map f — I(f) is continuous on C.(G).

Proof. For (a) use that ¢ — f > 0 and the definition of I.
(b): First assume that f is real-valued, and define continuous functions by f; = max(f,0)

and f_ = max(—f,0). Then f= fi — f_ and |f| = f+ + f-. Hence:
LN = L(f+) = IO < L)+ 10=) = I f])-
Now assume that f is complex valued, and that I(f) € R. Then I(Im f) = 0. Hence

()] = [I(Re f)] < I([Re f]) < I(|f]),

![Sug]: M. Sugiura, Unitary Representations and Harmonic Analysis, 2nd ed. North-Holland/Koddansha,
Amsterdam 1990.




by what we proved above. Let f now be arbitrary. Then there exists a z € C with |z| = 1 and
SI(f) > 0. Then I(=]) € R, hence |1()] = |[(=)] < I(|2/]) = I(|f]).

It remains to establish (c). Let K C X be a compact subset. Then we must show that there
exists a C' > 0 such that for all f € C.(K) we have |I(f)| < C||f||co. There exists a non-negative
function g € C.(X) such that ¢ = 1 on K. Hence for all f € C.(K) we have |f| = |flg < || fll~9,
and it follows that

O < IASD) < 1Nl I(9),

which establishes the desired estimate. Note that by taking the infimum over g one obtains the
estimate [I(f)| < || f]|oo volume (K'). 0

By a G—space we shall from now on mean a locally compact Hausdorff space X together
with a continuous action of G on X.

We agree to write L for the induced action of G on C(X). Thus, if ¢ € C'(X), then Lyp(z) =
elg~").

The G—space X is called homogeneous if there is only one G—orbit, i.e. if g € X is a point,
then G- 29 = X. One readily verifies that in this setting the stabilizer

Gy ={9€G; gro= o}

is a closed subgroup of G. Moreover, the map G — X,g — gz induces a homeomorphism
G /G, — X. Thus any homogeneous G—space is of the form G/H with H a closed subgroup of
G. Conversely, if H is a closed subgroup, then G/ H is a homogeneous space in a natural way.

Example. The unit sphere $? in R® is a homogeneous space for the special orthogonal group
SO(3). Let eg = (1,0,0). Then the stabilizer of e in SO(3) is the group of rotations with axis
Rey, which is isomorphic to SO(2). The sphere is thus identified with the quotient SO(3)/5S0(2).
This is the starting point for the spherical harmonics to be discussed later.

Lemma 2.3 Let X be a G—space and let ¢ € C.(X). Then g — Lyp is a continuous map
G — Co(X).

Proof. Let go € G. Then we must show that L,p — L, ¢ is close to 0 in Co(X) for g close to
go.- Now Ly — Ly o = ngo_llb — 1, where 1 = L, ¢, and we see that without loss of generality
we may as well assume that gg = e. Let C' be a compact neighbourhood of e in GG. Then the set
K = Csuppyp is compact in X. Moreover, for g € C' the function L, — ¢ has support contained
in K. Fix € > 0. Then we must show that there exists an open neighbourhood U of e in € such
that

1y = ¢llc = sup | Lypla) = pla)] < e (1)
RSN

for all @ € U. The map (g,2) — (g~ 'a) is continuous, hence for every z € K there exists an
open neighbourhood N, 3 2 in X and an open neighbourhood U, 3 e in C' C G, such that
lo(g7 y) —@(y)| < e for all y € N,, g € U,. By compactness of K there exists a finite collection
T1,...,T, of points in K such that the sets N, cover K. Let U be the intersection of the sets
U;. Then U is an open neighbourhood of e in &, and one readily checks that (1) holds for g € U.
O



Corollary 2.4 Let X be a G—space, and let I be a positive Radon integral on . Then for
¢ € C.(X) we have that g — I(L,p) defines a continuous function G — C.

A positive Radon integral [ on a G—space X is called invariant if for all ¢ € C.(X) and
g € G we have

I(Lyp) = I(9),

or equivalently, if 1 denotes the measure associated with 1,

[ g™ ety = [ ooyt

Lemma 2.5 Let I be a G—invariant positive non-trivial Radon measure on a G—homogeneous
space X. Let f € C.(X), and suppose that f > 0 everywhere. Then I(f)=0= f=0.

Proof. Suppose that f is as above, and I(f) = 0, but f # 0. Then there exists a point zg € X
such that f(xzg) # 0. Hence there exists a compact neighbourhood U 5 ¢ and a positve constant
e > 0 such that f > ¢ on U. Let now g € C.(X),g > 0. Let C' = suppg be the compact support
of g. Then every point of C' is contained in Gzg and by compactness there exists a finite subset
S C G, such that the sets sU, s € 5 cover (. For every s € 5 there exists a A; > 0 such that on
sU we have: g < A\ge < A Lgf. Hence g < 37 cg A Ls(f), and it follows that

0<I(g)< Y AJI(Lsf) =0,
sES

the latter equality being a consequnece of the invariance of the integral. It follows from this
that I = 0, contradiction. a

Corollary 2.6 Let the hypothesis of the above lemma be fulfilled. Then

(flg) = I(fg) = /X f(2)g(@) da

defines a positive definite Hermitian inner product on C.(X).

We denote the completion of C.(X) with respect to the above inner product by L*(X). Let
L denote the left represenation of G on X. Then by invariance of the measure the map L, is
unitary for the inner product on C.(z) and therefore has a unique extension to a unitary map
L,: L3 (X) — L*X).

The group G may be viewed as a homogeneous space for its left (right) action. A left—
(right—) invariant positive non-trivial Radon integral on X is called a left (right) Haar integral

on GG.

Theorem 2.7 Let GG be a locally compact group. Then there exists a left (right) Haar integral
I on G. If I' is a second left (right) Haar integral on G, then I" = ¢l for a positive constant
c> 0.

Proof. For the existence part of this theorem we refer the reader to [BI 7].2 We will prove

uniqueness. If f € C.(X) then we define the function f¥ € C.(X) by f¥(z) = f(z71). If Jis a

2[BI 7]: Bourbaki, Intégration, Chapter 7



right Haar integral then we define the left Haar integral JY by JY(f) = J(f¥). Thus we have a
bijection between left and right Haar integrals.

Let now I and J be a left and a right Haar integral respectively. Then it suffices to show that
JY = ¢l for some ¢ > 0. Let 4 and v denote the measures associated with I and .J respectively,

and let f € C.(G) be such that I(f) # 0. Define

Dyiam 1) [ S ey drty). (2)
Then Dy is a continuous function on &, by Lemma 2.3.
Let g € C.(G). Then
Io) = [ glay)ve)

for every y € (. Multiplying the above identity with f(y) and integrating with respect to du(y)

we obtain:
// g(zy)dv(x // g(zy) du(y)dv(z)

where the change of order of integration is allowed by Fubini’s therorem. Note that the integrand
is compactly supported as a function on GG X G. Using left invariance of u, and after that again
changing the order of integration we may rewrite the integral as:

L e nave)| swidut) = ntutr1019).

Hence J(g) = I(Dyg) for every g € C.(G.) Let fi, fo € Co(G) be two functions with I(f;) # 0,
then it follows from the above that I((Dp — Dy,)g) = 0 for all g, hence Dy = Dy,. Thus it
follows that D = Dy is a continuous function which is actually independent of the particular
choice of f. Substituting @ = e in the definition (2) of Dy we now infer that

D(e)I(f)=T'(]) (3)
for all f in the set S of functions ¢ € C.(G) with I(¢) # 0. The set S is readily seen to be dense
in C.(G), so that (3) is actually valid for all f € C.(G). Hence JY = D(e)l. 0

Remark 2.8 The existence (and the uniqueness) of Haar measure is much easier to establish
when G is a Lie group, i.e. G possesses the structure of (°°-manifold, compatible with its
topology, and such that the map G x G — G, (2,y) — zy~! is smooth (i.e. ). Examples of
Lie groups are: SU(n),SO(n),SL(n,C), GL(n,C), SL(n,R), GL(n,R). For simplicity we assume
that GG is connected. Let n = dim (7, and fix a non-trivial n-form w. € A"T7G. Here TG denotes
the cotangent-space of G at an element « € G. Let [, : G — G, g — xg, and define, for z € G,
the n-form w, € A"T;G by
Wy = (Telgg)_1

Then w : 2 — w; is a nowhere vanishing smooth differential n—form on G, hence defines an
orientation on GG. We define I : C,(G) — C by the oriented integral:

:/fw (f € CGY).
G



One readily verifies that I is a positive Radon integral which is non-trivial. Moreover, one also
readily checks that ({,)*w = w for all ¢ € G from which it follows that [ is a left Haar integral.
For further details we refer to [BD] ® or [Wa]. 4

Let I be a left Haar integral on (. Then for every 2 € G we define the Radon integral R,[
by R.I(¢) = I(R;1¢). Then one readily verfies that R,[ is a left Haar integral (use that R,
and L, commute). Hence R,I = A(z)I for a uniquely determined A(z) > 0. The function
A : G —]0,00[ which is readily seen to be independent of tyhe particular choice of I, is called:
the modular function of .

Exercise 2.9 Show that A is a continuous group homomorphism.

A group GG with A = 1 is called unimodular. Thus, a group is unimodular if its left Haar
measure is a right Haar measure. For obvious reasons the Haar measure is said to be bi-invariant
in this case.

Exercise 2.10 Show that a compact group G is unimodular. Hint: use that the image A(G)
is a compact group.

3 Representations

From now on G will always be a locally compact topological group.

Exercise 3.1 Let © be a representation of G in a Banach space V. Show that the following
conditions are equivalent:

(a) m: G XV — V is continuous.

(b) Forevery & € GG the map 7(z)is coninuous, and for every v € V the map ¢ — V,z — 7(a)v
is continuous.

Hint: to show that (a) follows from (b), use the Banach-Steinhaus theorem.

Lemma 3.2 Let X be a G-homogeneous space, and let I be a non-trivial invariant positive
Radon integral on X. Then the representation L of G in L*(X) defined in the previous section
is continuous.

Proof. In view of the above exercise it suffices to show that for every ¢ € L*(X) the map
®:a Lyp,G — L?(X) is continuous. Using that L is a representation, we readily see that it
suffices to establish the continuity of ® at e. Thus we must estimate the L?-norm of the function
Lyo—¢asz — e. Let ¢ > 0. Then there exists a ) € C.(X) such that [|¢ — ¢| < ic. Let

°[BD]: T. Brocker, T. tom Dieck, Representations of Compact Lie Groups, Graduate Texts in Math. 98,
Springer-Verlag 1985.

*[Wa]: F. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman and Co., Glenview
Ilhinois 1971.



g € C.(G) be a non-negative function such that ¢ = 1 on an open neigbourhood of suppt. Then
for x sufficiently close to e we have ¢ = 1 on suppl,. Thus for such z we have:

2
ILop =2l < ge+l1Lat = ¢z

= et ll(Eey — gl

2
< e 1Lt = dllellgl

Using Lemma 2.3 one sees that the last term becomes smaller than £ as z — e. a

Let 7 be a representation of G in a (complex) linear space V. By an invariant subspace we
mean a linear subspace W C V such that #(z)W C W for every z € G.

A continuous representation © of G in a Banach space V is called irreducible, if 0 and V are
the only closed invariant subspaces of V.

Remark. Note that for a finite dimensional representation an invariant subspace is auto-
matically closed.

By a unitary representation of G we will always mean a continuous representation © of ¢
in a Hilbert space H, such that 7(z) is unitary for every z € G.

Proposition 3.3 Let G be compact, and suppose that (7,V') is a continuous finite dimensional
representation of GG. Then there exists a positive definite Hermitian inner product (-|-) on V for
which the representation 7 is unitary.

Proof. Let dx denote Haar measure on &, and fix any positive definite Hermitian inner
product (:|-); on V. Then we define a new Hermitian pairing on V' by

(o]w) = /G<7r(ac)v|7r(x)w>1 de  (v,weV).

Notice that the integrand ¢, ,(z) = (7(2)v|r(2)w); in the above equation is a continuous func-
tion of z. We claim that the pairing thus defined is positive definite. Indeed, if v € V' then the
function ¢,, is continuous and positive on G. Hence (v|v) = [ ty(2)da > 0 by positivity of
the measure. Also, if (v|v) = 0, then ¢,, = 0 by Lemma 2.2, and hence (v|v) = ¢, ,(¢) = 0, and
positive definiteness follows.

Finally we claim that 7 is unitary for the inner product thus defined. Indeed this follows
from the invariance of the measure: If y € GG, and v, w € V, then

(melr()e) = [ vlenda = [ 1u(e)de = (o)

Lemma 3.4 Let (7, H) be a continuous representation of Gi. If Hy is an invariant subspace for
7, then its orthocomplement Hq = Hi is a closed invariant subspace for 7. If Hy is closed, then
we have the direct sum H = Hq1 ® Hy of closed invariant subspaces.

Proof. Left to the reader a



Corollary 3.5 Assume that G is compact, and let (w,V) be a continuous finite dimensional
representation of GG. Then © decomposes as a finite direct sum of irreducibles, i.e. there exists
a direct sum decomposition V = B1<j<,V; of V into invariant subspaces such that for every j
the representation w; defined by w;(x) = w(z)|V; is irreducible.

Proof. Fix an inner product for which =« is unitary, and apply the above lemma repeatedly.
O

Definition 3.6 Let (7, H) be a unitary representation of GG. Then by a matrix coefficient of &
we mean any function m : G — C of the form

m(x) = My (2) = (7 (a)v]w)

with v, w € H.

Notice that the matrix coefficent m definied above is a continuous function on G.
Let now (7, V') be a finite dimensional unityary representation of ¢, and fix an orthonormal
basis w1, ..., u, of V. Then for every x € (¢ we define the matrix M(z) = My(z) by

M(z)ij = muy; 0, (2).

This is just the matrix of w(z) with respect to the basis u. Note that it is unitary. Note also
that M(zy) = M(2)M(y). Thus M is a continuous group homomorphism from G to the group
U(n) of unitary n X n matrices.

If (7;,V;) (j = 1,2) are continuous representations of G in topological linear spaces, then
a continuous linear map T" : V; — V5 is said to be equivariant, or called interwining if the
following diagram commutes for all z € G :

Vi VW
mi(x) | I ma(x)
Vi VW

The representations m; and 7y are said to be equivalent if there exists a topological linear
isomorphism T from V; onto V5 which is equivariant.

Exercise 3.7 Let (7;,V;) be two finite dimensional representations of G. Show that 7y and
7wy are equivalent if and only if there exists choices of bases for Vi and V,, such that for the
assocxiated matrices one has:

mat m1(z) = mat mo(z).

We will now discuss an important example of representations. Let SU(2) denote the group
of 2 by 2 unitary matrices with determinant one. Thus SU(2) is the group of matrices of the

(5 70)

form



with a, 8 € C and |a|* 4+ |B]? = 1. Then SU(2) acts on C? in a natural way, and we have the
associated representation m on the space P(C) of polynomial functions p : C* — C. It is given
by the formula

m(9)p(2) = plg~'%) = plaz + Bz, =Bz + Gz)

The subspace P, = P,(C?) of homogeneous polynomials of degree n is an invariant subspace for
7. We write 7, for the restriction of 7 to P,.



We will now discuss a result that will allow us to show that the representations m, of the
above example are irreducible. We first need the following (fundamental) lemma from linear
algebra. If V is a complex linear space, we write End(V') for the space of linear maps from V'
to itself, and GL(V) for the group of invertible elements in End(V'). If 7 is a representation of
G in V', then we may define a representation 7 of G in End(V') by

(g)A = m(g)Ar(g)™",
Note that if 7 is finite dimensional and continuous, then so is #. Note also that the space
End(V)¥={AeV; #(g)A= A}

of G-invariants in V is just the space of G—equivariant linear maps V — V.

Lemma 3.8 Let V be a finite dimensional complex linear space, and let A, B € End(V) be
such that AB = BA. Then A leaves ker B,imB and all the eigenspaces of B invariant.

Proof. Elementary, and left to the reader. a

From now on we assume that G is a locally compact group. All representations are assumed
to be continuous.

Lemma 3.9 (Schur’s lemma) Let (7,V) be a representation of G in a finite dimensional com-
plex linear space V. Then the following holds.

a) If 7 is irreducible then End(V)¢ = Cly.
(a)

(b) If G is compact and End(V )% = Cly, then 7 is irreducible.

Proof. “(a)” Suppose that 7 is irreducible, and let A € End(V)%. Let A € C be an eigenvalue
of A, and let Fy = ker(A — Al) be the associated eigenspace. Note that for the existence of this
eigenspace we need that V is complex. For every 2 € (G we have that m(z) commutes with A,
hence leaves F) invariant. In view of the irreducibility of 7 it now follows that Fy = V, hence
A= AL

“(b)” By compactness of GG there exists a Hermitean inner product (-|-) for which 7 is unitary.

Let 0 # W C V be a G—invariant subspace. For the proof that 7 is irreducible it suffices
to show that we must have W = V. Let P be the orthogonal projection V. — W. Since W
and W+ are both G-invariant, we have, for ¢ € G, that 7(g)P = 7(g) = Px(g) on W, and
m(g)P = 0 = Pr(g) on Wt. Hence P € End(V )Y, and it follows that P = Al for some \ € C.
Now P # 0, hence A # 0. Also, P? = P, hence A\? = )\, and we see that A\ = 1. Therefore P = I,
and W = V. O

We will now apply the above lemma to prove the following.

Proposition 3.10 The representations (7, P,(C*)) (n > 0) of SU(2) are irreducible.

For the proof we will need compactness of SU(2). In fact we have the following more general
result.



Exercise 3.11 Forn > 1,let M, (R) and M,,(C) denote the linear spaces of n X n matrices with
entries in R and C respectively. Show that SU(n) is a closed and bounded subset of M,,(C). Show
that SO(n) = SU(n) N M,,(R), and finally show that SO(n) and SU(n) are compact topological

groups.

Proof of Prop. 3.10 Let n > 0 be fixed, and put 7 = 7, and V = P,(C?). Suppose that
A € End(V) is equivariant. Then in view of Lemma 3.9 (b) it suffices to show that A is a scalar.
For 0 < k < n we define the polynomial pr € V by

pr(z) = z?_kzg.

Then {pr; 0 <k <n}isa basis for V. For ¢ € R we put
; € 0 [ cosp —sing
v 0 e )7 e = sing  cosg |

T=At,; ¢€R} and R={r,; ¢ €eR}
are (closed) subgroups of SU(2). One readily verifies that for 0 < k < n and ¢ € R we have:

Then

2k—n)

T(ty)pk = el Y pr.

Thus every py is a joint eigenvector for T. Fix a ¢ such that the numbers ¢'(2k=n)¢ are mutually

different. Then for every 0 < k < n the space Cpy, is eigenspace for w(t,) with eigenvalue
¢!@k=n)% Since A and 7(t,) commute it follows that A leaves all the spaces Cpy invariant.
Hence there exist A, € C such that

Apr = Mepr, 0< k< n.

Let Fy be the eigenspace of A with eigenvalue Ay. We will show that Fy = V, thereby completing
the proof. The space I is SU(2)-invariant, and contains p;. Hence it contains 7 (r,)p; for every
¢ € R. By a straightforward computation one sees that

. W = [n e .
T(ro)p1(21, 22) = (cosp 2y +sinp z9)" = Z (k) cos" % o sin® ¢ py.
k=0

From this one sees that the 7(r,)py (which are contained in Ey) span V. Hence £y = V. o

We end this section with two useful consequences of Schur’s lemma.

Lemma 3.12 Let (7,V), n',V') be two irreducible finite dimensional representations of the
locally compact group G. If 7 and 7' are not equivalent, then every intertwining linear map
T:V — V' is trivial.

Proof. Let T be intertwining, and non-trivial. Then kerT C V is a proper G-invariant
subspace. Hence ker T = 0, and it follows that T is injective. Therefore its image im7 is a non-
trivial G—invariant subspace of V'. It follows that im7T = V', hence T is a bijection, contradicting
the inequivalence. a

10



Let V' be a complex linear space. Then by a sesquilinear form on V' we mean a map § :
V x V. — C which is linear in the first variable, additive in the second, and which satisfies
B(v, Aw) = A3(v,w), v,w € V, A € C. Thus a Hermitean inner product is a sesquilinear form.
If (7, V) is a representation for a group G, then a sesquilinear form § on V' is called equivariant

if B(x(g)v,m(g)w) = p(v,w)for all v,w eV, g€ d.

Lemma 3.13 Let (7,V) be a finite dimensional unitary representation of a locally compact
group G. Then the equivariant sesquilinear forms on V are precisely the maps §:V x V — C
of the form 3 = A(-|-), A € C. Here (-|-) denotes the (equivariant) inner product of the Hilbert
space V.

Proof. Let :V x V. — C be sesquilinear. Then for every w € V the map v — f(v,w) is
a linear functional on V. Hence there exists a unique A(w) € V such that f(v,w) = (v, A(w)|.)
One readily verifies that A : V' — V' is a linear map. Moreover, the equivariance of 5 and (-|-)
implies that A is equivariant. Hence A = Al for some A € C, and the result follows. a

4 Schur orthogonality

In this section &' will be a compact topological group, unless stated otherwise. Let I be a left
Haar integral on G. Then [ is determined up to multiplication by a positive constant. Thus
I is uniquely determined by the additional requirement that /(1) = 1. We denote the measure
associated with I by dx. Then [, dx = 1.

If m is a finite dimensional irreducible unitary representation of G we write C(G), for the
linear span of the space of matrix coefficients of 7. Notice that the space C'(G'), does not depend
on the chosen (unitary) inner product on V.. Thus by Proposition 3.3 we can define C'(G), for
any irreducible finite dimensional representation 7 of G.

There is a nice way to express sums of matrix coeflicients of a finite dimensional unitary
representation (7, V') of a locally compact group G. Let v, w € V. Then we shall write L, ,, for
the linear map V — V given by

Ly w(u) = (u|w)v.

One readily sees that
tr(Lyw) = (v|w), v,we V. (4)

Indeed both sides of the above equation are sesquilinear forms in (v, w), so it suffices to check
the equation for », w members of an orthonormal basis, which is easily done.
It follows from the above equation that

My () = tr(m(2) Ly ).

Hence every sum m of matrix coefficients is of the form m(g) = tr(w(g)A), with A € End(V).
Conversely if {e; ; 1 <k < n} is an orthonormal basis for V, then one readily sees that

A= Z <Aej|ei>Lei76].
1<i5<n

11



Using this one may express every function of the form ¢ — tr(m(g)A) as a sum of matrix
coefficients. We now define the linear map 7 : End(V) — C(G) by

T.(A)(z)=tr(n(z)A), r e,

for every A € End(V). Let 7 be irreducible, then it follows from the above discussion that 7'
maps V onto C'(G),. Define the representation 7 @ 7* of ¢ x G’ on End(V') by

(r@ ")z, y)A = 7T($)A7T(y)_1,

for A € End(V),z,ye V.
We define the representation R x L of G x G on C(G) by

(Rx L)(z,y)= LyoR,.
Then we have the following:
Lemma 4.1 Let (7,V) be a finite dimensional irreducible representation of G. Then C(G),

is invariant under R x L, and the map T, : V — C(G), is surjective, and intertwines the
representations # ® 7 and R X L of G X G.

Proof. We first prove the equivariance of T : End(V) — C(G). Let A € End(V), and
x,y € G, then

Tr(m @ 7 (2, y)A)(g) = tr (n(g)n(2)An(y™")) = tr (7(y~ g2)A) = (Ro Ly Tr(A))(2).
Note that it follows from this equivariance that the image of T, is R X L—invariant. In a previous
dicussion we saw already that im(7;) = C(G),. o

Corollary 4.2 If 7 and «' are equivalent finite dimensional irreducible representations of G,

then C(G)r = C(G)pr.

Proof. Let V, V' be the associated representation spaces. Then by equivalence there exists
a linear isomorphism 7' : V' — V' such that Ton(z) = 7'(2)oT for all 2 € (. Hence for
A€ End(V), x € G we have:

T(TAT M) (2) = tr (2/(2)TAT™Y) = to (T 7' (2)T A) = tr (7(2)A) = Tr(A)(2).
Now use Lemma 4.1. a

We now have the following.

Theorem 4.3 (Schur orthogonality). Let (7,V) and (7',V") be two irreducible finite dimen-
sional representations of G. Then we have the following.

(a) Ifm and 7’ are not equivalent, then C'(G),. L C(G)r (with respect to the Hilbert structure
of L*(G)).

(b) Let V be equipped with an inner product for which « is unitary. If v,w,v',w’ € V| then
the L?-inner product of the matrix coefficients m,, ,, and m,s s is given by:

/va’w(x) My (2) de = dim(7) (v]o")(w|w’) (5)

12



Remark. The relations (5) are known as the Schur orthogonality relations.
Proof. For w € V and w' € V' we define the linear map Ly, : V — V' by Ly u = (u|w)w'.
Consider the map:

Ly = / (@) o Ly gy om(2) da.
G
Then one readily verifies that
<Iw’,wv|vl> = (M| M0 )2 (6)

Moreover, using invariance of the measure one readily sees that I, ,, is intertwining.

(a): If 7 and 7’ are inequivalent then the interwtwining map I, ,, is trivial by Lemma 3.13.
Now apply (6) to prove (a).

(b): Now assume V = V’. Then for all w,w’ € V we have [, € End(V)%, hence I, ,, is a
scalar. It follows that there exists a sesquilinear form 8 on V such that

Ly = B(w',w)l.

Applying the trace to both sides of the above equation we find that d.f(w’, w) = tr (L, ,,). Here
we have abbreviated d; = dim(7). On the other hand, since tr is linear, we have that

tr(Iw/M):/Gtr(ﬂ(x)_le/Mﬂ(x))dx:/Gtr(Lw/ﬂU) di = tr (L) = (w']w).

Hence
Ly = d; N w'|w).

Now apply (6) to prove (b). ]

Another way to formulate the orthogonality relations is the following (V' is assumed to be
equipped with an inner product for which 7 is unitary). If A € End(V), let A* denote the
Hermitean adjoint of A. Then one readily verifies that

(A,B) — (A|B) :=tr B*A

defines a Hermitean inner product on EndV. Moreover, the representation 7 @ 7* is readily seen
to be unitary for this inner product.

Corollary 4.4 The map V/d, T, is a unitary isomorphism from End(V) onto C(G).

Notice that it follows from the above result that C'(G); has a unique conjugation invariant
function y, whose L?-norm is one. In fact one has

Xr(z)=T-(Iv)(z) = trr(a).

The function Y, is called the character of .
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5 Characters

For the moment assume that G is a locally compact group. If 7 is any finite dimensional
representation of G, we define its character y. € C(G) by xr(z) = trm(z).

Exercise 5.1 Let (7, V) be a finite dimensional representation of G. Show that:

(a) Xr(eye™") = x=(9);
(b) xr(2) = xa(2™h).
For z € G, define 7%(z) € End(V*) by 7*(x) = m(x~1)".

(c) Show that 7* is a (continuous) representation of & in V*. (This representation is called
the contragredient of 7.)

(d) Show that y.» = X5.

Exercise 5.2 Let 7, p be finite dimensional representations of . Show that:
T~p= Xr= Xp-

If (m1,V1) and (7, V) are two continuous representations of ¢, then we define the direct
sum representation 7 = w1 @ 73 in the direct sum V = Vi @ V; of topological linear spaces by

(@) (v1,v2) = (T (2)vy, To(2)v2) (nn € Vi, vp € Vo, 2 € Q).

Exercise 5.3 Let w1,y be finite dimensional representations of . Show that xr, gr, = Xr, +
X7T2 .

Exercise 5.4 Recall the definition of the irreducible representations m,, n € N of SU(2). Show
that the character x,, of 7, is completely determined by its restriction to 7' = {t, ; ¢ € R}.
Hint: use that every matrix in SU(2) is conjugate to a matrix of 7.

Show that:
sin(n 4+ 1)¢

Xn(tw) - sin ¢

From now on we assume that G is a compact group.

Lemma 5.5 Let w,p be finite dimensional irreducible representations of .
(a) If 7 ~ p then (xr|x,) = 1.
(b) If 7 & p then (xx|x,) = 0.

Proof. This follows easily from Theorem 4.3. a
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Let 7 be a finite dimensional representation of the compact group . Then 7 is unitarizable,
and therefore is equivalent to a direct sum ¢!, 7; of irreducible representations. It follows that
Xr = 2.ieq Xr;- Using the lemma above we see that for every irreducible representation 6 of &
we have

#{i; m~ 6 = (Xxlxs)- (7)

In particular this number is independent of the particular decomposition of 7 into irreducibles.
For obvious reasons the number (7) is called the multiplicity of 6 in 7. We shall also denote it
by m(é, ).

Let (@ denote the set of equivalence classes of finite dimensional irreducible representations
of . Then by abuse of language we shall write ¢ € G to indicate that 6 is a representative for
an element of G. (A better notation would perhaps be [4] € @) If § € G and m € N, then we
write mé for (the equivalence class of) the direct sum of m copies of 6.

We have proved the folllowing lemma.

Lemma 5.6 Let 7 be a finite dimensional representation of the compact group . Then
T~ @ m(6,T)é.
§eG

Moreover, any decomposition of © into irreducibles is equivalent to the above one.

Exercise 5.7 This exercise is meant to illustrate that a decomposition of a representation into
irreducibles is not unique. Let 71, 7 be irreducible representations in Vy, V5 respectively. Assume
that 71, 72 are equivalent, and let 7' : Vi — V5 be an intertwining isomorphism.

Equip V' = V3 &V, with the direct sum representation 7, and show that Wy = {(v,Tv); v €
Vi} is an invariant subspace of V. Show that the restriction of 7 to Wj is irreducible, and
equivalent to my. Find a complementary invariant subspace Wy and show that the restriction of
7 to this space is also equivalent to .

The following result expresses that the character is a powerful invariant.
Corollary 5.8 Let 7, p be two finite dimensional representations of GG. Then

T~ p <= Xo = Xp-

Proof. The ‘only if” part is obvious. To prove the ‘if” part, assume that x, = x,. Then for
every § € G we have m(6,7) = (x»|0) = (x,|6) = m(6, p). Now use the above lemma. 0

6 Integration with values in a locally convex space

Let V' be a complex linear space. Then by a seminorm on V we mean a map p : V — [0,R]
satisfying

(a) p(v+w) <plo)+p(w)  (v,weV);
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() pAo) = Alp(v)  (ve VA€ C).

If p is a seminorm on V, v € V and ¢ > 0, we write B(v,p,e)={w eV ; plv—w)<e}.

A set P of seminorms on V will be called fundamental if for every py, po € P there exists a
p € P such that py, pa < p, and moreover, if p(v) =0 (Vp € P) = v = 0. To a set P of seminorms
one may associate the set Fp = {B(0,p,e); p € P,e > 0}. If P is fundamental, then there
exists a unique structure of topological linear space on V such that the set Fp is a fundamental
system of neighbourhoods, i.e. for every open neighbourhood € 3 0 in V there exist p € P
and ¢ > 0 such that B(0,p,¢) C Q. Note that {0} is closed for this topology, so the topology is
Hausdorff. By a locally convex space we will always mean a (complex) topological linear space
whose topology is given by a fundamental system of seminorms in the fashion described above.
The name convex refers to the fact that the fundamental neighourhoods B(0, p,¢) are convex in
V' viewed as a real vector space. One may also use convexity properties of neighbourhoods to
characterize locally convex spaces®.

Note that a normed linear space (V, ]|-]|) is locally convex, because P = {||-]|} is fundamental.

We recall that a filter in a set S is any collection F of subsets of 5 satisfying the following
conditions

(a) A, Be F=>AnNBCF;
(by Ac FandACBCS=BecF,
(c) D¢ F.

A filter F in a topological linear space V' is said to be convergent with limit v € V if for every
neighbourhood €2 3 v there exists a A € F such that A C Q. If V' is Hausdorff then every filter in
V has at most one limit (because of conditions (b) and (c¢)). The notion of convergence of a filter
extends the notion of convergence of a sequence. Indeed, let v; be a sequence. To this sequence
one may associate the filter G consisting of all of sets A C V such that {vy; k€ N} \ A is
finite. Then {vg} is convergent with limit v if and only if G is convergent with limit v.

A filter F in a topological linear space V is called a Cauchy filter if for every neighbourhood
Qof 0in V there exists a A € F such that A4 (—A) C Q. This notion generalizes the notion of
Cauchy sequence in the same fashion as above.

A topological linear space is said to be complete if every Cauchy filter is convergent. This
definition obviously extends the old definition of completeness for a normed space (V, || -||).

In the following we shall need the following property of complete topological linear Hausdor{T
spaces.

Lemma 6.1 Let Vj be a dense linear subspace of a topological linear space V' (equipped with the
restriction toplogy). Moreover, let A be a continuous linear map of Vy to a complete topological
linear Hausdorff space. Then A has a unique continuous linear extension to a map V — W.

Proof. Uniqueness is obvious. To establish existence, let v € V, let AN be the filter of all
neighbourhoods of v in V, and let Fy be the filter of sets BNVy, B € F. Let G be the filter of all
sets § C W such that A=1S € F. Then from the continuity and the linearity of A it follows that
G is Cauchy, hence has a (unique) limit Av. One readily checks that A is the desired extension.
O

®see e.g. Bourbaki, Espaces Vectoriels Topologiques, Chap. 2, par. 4.
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A locally convex space whose topology is determined by a countable fundamental set of
seminorms {p; ; j € N} is complete if and only if a sequence which is Cauchy with respect to
every p; is convergent. Such a space is called a Fréchet space.

Frample. Let X be alocally compact Hausdorf{T space, and V' a locally convex space, with a
fundamental set P of seminorms. Then C'(X, V'), the space of continuous functions X — V may
be equipped with a locally convex topology in the following natural way. For every compact
subset K C X and every p € P we define the seminorm

SKpt [+ jlelgyp(f(w))-

The set of these seminorms is easily seen to be fundamental.

Exercise 6.2 Show that the locally convex space C(X,V') defined above is complete if V' is
complete. Show that if X is o-compact, i.e. X is a countable union of compact sets, and V is
Fréchet, then C'(X,V) is a Fréchet space.

In the following we assume that X is a locally compact Hausdorff space, and V' a complete
locally convex space. We also assume that I is a positive Radon integral on X. Qur purpose is
to extend the definition of I to the space C.(X, V) of compactly supported continuous functions
with values in V. We will first do this under the assumption that X is compact, which we assume
to be fulfilled until asserted otherwise. Let V* denote the space of continuous linear functionals

on V.

Proposition 6.3 There exists a unique continuous linear map I : C(X,V) — V such that for
every £ € V* we have:

U =1 f)  [elX,V). (8)
Moreover, if p is a continuous seminorm on V' then for all f € C(X,V') we have:
pL(f)) < I(p(f))- (9)

We will prove this proposition in a number of steps. If V is finite dimensional, then one
readily verifies the existence of I. For the estimate we need the following.

Lemma 6.4 Let W be a finite dimensional real linear space, and p a seminorm on W. Then for
every w € W \ {0} and every ¢ > 0 there exists a linear hyperplane H C W such that for all
h € H we have p(w + h) > p(w) — ¢.

Proof. If p(w)—e < 0, there is nothing to prove. Thus assume that p(w)—¢ > 0. Let L be the
linear subspace of W consisting of v € W with p(v) = 0. Then the image w of w in W = W/L
is non-zero, and p induces a norm p on W. It suffices to prove the assertion for W, p, w. Thus
without loss of generality we may assume from the start that p is a norm. Then the set

S={veW; plv)<pw)-e}
is compact and convex, and does not contain w. Hence there exists a linear hyperplane H C W

such that (w + H) NS = (. This implies the desired estimate. 0
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Proof of Prop. 6.3 when V is finite dimensional. It remains to prove the estimate. Let p
be a seminorm, let f € C'(X,V), and put w = I(f). Let ¢ > 0 be arbitrary. Then by the above
lemma there exists a real linear subspace H C V of real codimension 1 such that for all h € H
we have p(w+ h) > p(w) — . Obviously this must imply that V = Rw @ H as a real linear space.
Write f = fiw + fa, where fi € C(X,R) and fy € C(X, H). Then I(f) = w implies I(f1) =1
and I(f;) = 0. Now I(|f1]) > |{(f1)] = 1, hence

pU(f)) = plw) < I(|ADp(w) = I(p(w)| A]) = L(p(frw)) < L(p(f) + € 1x),

where 1y denotes the constant function with value 1. Hence

pU(f)) < L(p(f)) +el(1x)

for arbitrary ¢ > 0, from which the desired estimate follows. a

In general, if W C V is a finite dimensional linear subspace, then we may view C'(X, W) as a
subspace of C'(X, V) and we obtain a continuous linear functional I : C'(X, W) — W satisfying
(8) with W instead of V. One now readily sees that I extends to the algebraic direct sum of such
subspaces C'(X, W) with W finite dimensional; we denote this direct sum by C(X)® V. If p is
a continuous seminorm on V, then for every f € C(X )@V we have p(I(f)) < I(p(f)). Hence I
on C'(X)® V is continuous for the topology on C(X, V). Thus in view of Lemma 6.5 the proof
of Proposition 6.3 is completed by the following lemma.

Lemma 6.5 The space C(X)® V is dense in C(X,V).

Proof. Let f € C(X,V), let p be a continuous seminorm on V, and let ¢ > 0. Then it suffices
to show that there exists a ¢ € C'(X)® V such that

p(fly)—g(y)) <e (10)

for all y € X. For every & € X there exists a neighbourhood N, such that for all y € N, we
have p(f(z) — f(y)) < e. By compactness there exists a finite set of z; € X such that the sets
N; = N, cover X. Let ; be a partition of unity subordinate to the covering {N;}. Then we
claim that g = 3~ ¢ f(z;) satisfies our requirements. First of all it is clear that g has its values
in the linear span of the f(z;), hence belongs to C'(X) ® V. Secondly, let y € X, and let J,
denote the set of j such that y € N;. Then j € J, implies p(f(y) — f(z;)) < €, hence

i) f(y) — wi(y)f(z;) < ¢j(y)e.

If j ¢ Jy, then ¢;(y) = 0. Thus summing the above inequality over the j, we obtain the desired
inequality (10). o

We will now describe the extension of the Radon integral to C.(X,V) when X is locally
compact. Let Y C X be a compact subset, then it suffices to define I on the space Cy (X, V) of
continuous functions X — V with support contained in Y. Let Z be a compact neighbourhood
of Y, and select a function ¢ € C.(X) with 0 < ¢ < 1, ¢ = 1 on Y, and such that 7 is a
neighbourhood of suppy. If f € C(Z), then ¢f may be viewed as an element of C.(X), with
support contained in Z. Hence we may define the positive Radon integral I, : C(Z) — C by
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[ — I(¢f). We now define I to be restriction to Cy (X, V) of I,’s extension to C'(Z,V). One
readily verifies that this definition of I does not depend on the choices of Z, ¢ involved.

We end this section with a useful result, assertying that continuous linear maps commute
with integration.

Lemma 6.6 Let X be a locally compact Hausdorfl space, and I a positive Radon integral on
X. Let A:V — W be a continous linear map between complete locally convex spaces. Then

for all f € C.(X,V) we have Ao f € C.(X,W). Moreover:

A(f)) = I(As f).

Proof. As in the previous discussion we may reduce to the situation that X is compact. Let
n be any continuous linear functional on W. Then A’ = 5o A is a continous linear functional
on V. Hence

no AUI(f)) = [A"](I(f)) = I([A"n] o f) = I(no Ao f) = y(I(Ao f)).

Since 1 was arbitrary this completes the proof. a

We shall now apply the material of this section to representation theory. Let GG be a locally
compact group, and let dz be a choice of left Haar measure on G. Let (7, V') be a (continous)
representation of ¢ in a complete locally convex space. If f € C.(G), then we define the linear
operator 7(f):V — V by

ﬂ(f)v:/Gf(x)ﬂ(x)vdw.

Lemma 6.7 If f € C.(G), then:
(a) the linear operator 7( f) is continuous;

(b) for all y € G we have
T(Lyf) = 7(y)om(f)- (11)

Proof. Exercise for the reader. To prove the last equality one needs the previous lemma.
O

Remark. Note that if dx is a right Haar measure then the above lemma is also valid, but

with eqn. (11) replaced by 7(R,f) = 7(f)om(y)~ .
The following lemma asserts that the identity operator Iy can be approximated by 7(f).

Lemma 6.8 For every v € V, every continuous seminorm p on V and every ¢ > 0 there exists
an open neighbourhood U of e in G such that for every ¢ € C.(U) with ¢ > 0 and [ p(z)dx =1
we have:

p(r(p)v—v) < e.
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Proof. There exists an open neighbourhood U 3 e such that € U = p(n(2)v —v) < %5.

Let ¢ € C.(U) satisfy the above hypotheses. Then:

preio=v) = ol [ [e(@)n()o— pla)] do)
< [ eloplr(ey—v)de
< /G%ecp(x)dx: le<e.

7 The algebra of representative functions

Let (7, V') be a continuous representation of a locally compact group G. Then a vector v € V' is
called Gfinite if the linear span (7(z)v; 2« € () is finite dimensional.

Let R((G) denote the space of left and right G—finite functions in C'(G'). This space is called
the algebra of representative functions.

Exercise 7.1 Show that R(() is indeed a subalgebra of C'(G).

Proposition 7.2 Let G be compact. Then

R(G)=EP C(G)s. (12)

Proof. For every ¢ € G the space C'(()s is finite dimensional and left and right G-invariant,
hence contained in R(G). Therefore it remains to be shown that every element of R(G) is a finite
linear combination of matrix coefficients of finite dimensional representations. Let ¢ € R(G),
and let V; be the span of all translates of the form LR, v,y € G. Moreover, let V = V; + V7,
the bar denoting complex conjugation. Then V is a finite dimensional left and right G—-invariant
subspace of R((G), hence decomposes as a finite direct sum of irreducible G' X G-modules. We
must show that every direct summand Vp in this decomposition is contained in the right hand

side of 12. Let f € Vi \ {0}. Then

W=AL()f; YeV}

is a left and right G-invariant subspace of V. Moreover, since L(f)f(e) = (f|f) # 0, we see that
W is non-trivial. Therefore W = Vj. In particular there exists a 1» € V such that L(¢)f = f.
But this means that:

RO () = [ ) ) dy = (Lol

Hence f is a matrix coefficient of the left regular representation restricted to the finite dimen-
sional space V. a
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Let 'H, be a collection of Hilbert spaces, indexed by a set a. Then the algebraic direct sum
@, is a pre-Hilbert space when equipped with the direct sum inner product: (3>°, vya| >, wy) =
Yoo lva|ws). Its completion is called the Hilbert direct sum of the spaces H,, and denoted by

é}Hw (13)

a€A

If 7, is a unitary representation of G in H,, for every a € A, then the direct sum of the 7,
extends to a unitary representation of G in (13). We call this representation the Hilbert sum of
the 7.

Theorem 7.3 (The Peter-Weyl Theorem). The space L*(G) decomposes as the Hilbert sum

each of the summands being an irreducible invariant subspace for the representation R x L of

G x G

It remains to establish density of R(G) in L?(G). This will be achieved in the next section
(cf. Lemma 9.1), after some necessary preparations.

Exercise 7.4 Fix, for every (equivalence class of an) ireducible unitary representation (4, Vs)
an orthonormal basis €1, ..., €5 dim(s)- Denote the matrix coefficient associated to es; and es;
by ms ;. Use Schur orthogonality and the Peter-Weyl theorem to show that the functions

dim(8)ms;; b€ G, 1<4,5<dim(é)

constitute a complete orthonormal system for L(G).

8 Compact operators

Let X,Y be locally compact Hausdorff spaces. If ¢ € C(X ), and ¢ € C(Y'), then we write o @
for the continuous function on X X Y defined by:
PR P (z,y) = e(@)(y).

The linear span of such functions in C'(X x Y') is denoted by C(X)® C(Y). If p € C.(X) and
1 € Co(Y) then ¢ @1 is compactly supported. Hence the span C.(X)® C.(Y) of such functions
is a subspace of C'.,(X x Y).

Lemma 8.1 Let X,Y be locally compact Hausdorff spaces. Then the space C.(X)® C.(Y) is
dense in C'o(X x Y).

Proof. Fix & € C.(X xXY), and let ' = supp®. Then K C Kx x Kx for compact subsets
Kx C X, Ky C Y. Fix an open neighbourhood Ux D Kx with a compact closure. Let ¢ > 0.
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Then by compactness there exists a finite open covering {V;} of Ky such that for every j and
all 1,22 € V;,y € Ky one has
P(x1,y) — P(az,y) < €.

Without loss of generality we may assume that V; C Ux for all j. Select a partition of unity
{¢;} which is subordinate to the covering {V;}, and fix for every j a point §; € V. Let z €
Kx,y € Ky. If jis such that 2 € V}, then |®(z;,y) — ®(z,y)| < e. It follows from this that

Z% ®(zj,y)] - ®(z,y)| = IZ% ®(zj,y) — @i(2)®(z, )|
< Z% )Ne(zj,y) — @z, y)l
< Zw; z) =
J
Hence if we put ¢;(y) = ®(z;,y), then

HZ%@%‘ - 9P| <.
J

Moreover, suppy; @ ¥; C Ux X Ky, and we see that we have support control which is uniform
in e. a

Let now G be a locally compact group. Let J be a left Haar integral on G x . Then one
readily verifies that for a fixed ¥ € C.(G) with ¢ > 0 one has that ¢ — J(¢ @ ¥) is a left Haar
integral on G, hence equal to a constant times the Haar integral I on . Applying the same
reasoning with interchanged variables, one sees that there exists a constant ¢ > 0 such that
J(p @) = cl(p)l(1). Without loss of generality we may assume that ¢ = 1. Of course in the

sense of measure theory this means that the Haar measure of G X G is the square of the Haar
measure of G'. More precisely we have:

Lemma 8.2 Let f € C.(G x G). Then
10 = [ (] st gde)dy.

Proof. By what we said above the identity is valid for f € C.(G)® C.(G). Now use a density
argument. a

If K € C.(G x G), then we define the linear operator Tk : C.(G) — C.(G) by

Ti(e)e) = [ Kzl

For obvious reasons this is called an integral operator with kernel K.

Lemma 8.3 Let K € C.(G @ (). Then the operator Tk extends uniquely to a bounded linear
endomorphism of L*(G) with operator norm ||Tk|| < || K||2. Moreover, this extension is compact.
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Proof. Let ¢ € C.(G). Then

(Tk(@)l) = (Kle @ ¥) < |Kl2lle @ vz = [ Kllall#ll2l2]]2-

Hence || Tk @|l2 < || K]2]l¢|]2. This implies the first assertion, since C.(G) is dense in L?(G).
For the second assertion, note that there exists a sequence K; in C.(G) @ C.(G) which
converges to K. It follows that

1Tx; — Tkl < [[K; = Kl[2 — 0.

Every operator T, has a finite dimensional image hence is compact. The subspace of compact
operators is closed for the operator norm, hence Tk is compact. a

Corollary 8.4 Assume that G is compact, and let f € C(G). Then the operator R(f) :
L*(G) — L*(G) is compact.

Proof. If ¢ € C'(G), then
Fwietenydy= [ f pe(y) dy.
G G

Hence R(f) = Tk, with K(z,y) = f(z'y). (Note that for this argument it is crucial that G be
compact. For if not, and f € C. ) then the associated K need not be compactly supported.
O

Exercise 8.5 Let (7,H) be a unitary representation of G. Let f € C(G), and put f*(z) =
f(z=1). Show that

T(f)" = =(f").
Show also: if f is conjugation invariant, i.e. f(zyz~!) = f(y) for all z,y € G, then 7(f) is
intertwining.

Corollary 8.6 Assume that (G is compact, and let f € C(G) be such that f* = f. Then R(f)
(and L(f) as well) is a compact self-adjoint operator.

We now recall the important spectral theorem for compact self-adjoint operators in Hilbert
space.
Theorem 8.7 Let T be a compact self-adjoint operator in the (complex) Hilbert space H. Then
there exists a discrete subset A C R\ {0} such that the following holds.

(a) For every A € A the associated eigenspace Hy of T' in H is finite dimensional;
(b) IfX, € A, XN # p then Hy L H,,.

(c) Forevery A € A, let P\ denote the orthogonal projection H — Hy. Then

T=> AP,

AEA

the convergence being absolute with respect to the operator norm.
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9 Proof of the Peter-Weyl Theorem

In this section we assume that GG is a compact group. We will establish the Peter-Weyl theorem
by proving the following lemma.

Lemma 9.1 Let ¢ be compact. Then the space R(() is dense in L*(().

We first need some preparation.

Lemma 9.2 Let U be a neighbourhood of e in Gi. Then there exists a ¢ € C.(G) such that:
(a) ¢ 20 and [ge(x)de =1;
(b) " = i
(¢) ¢ is conjugation invariant.

Proof. From the continuity of the map 2 — 27! one sees that there exists a compact neigh-
bourhood V' of e such that V. C U and V~=! C U. For every # € G there exist an open
neighbourhood N, of z and a compact neighbourhood V, of e in V such that zyz~! € V for all
z € N,y € V. By compactness of GG finitely many of the N, cover GG. Let Q be the intersection
of the corresponding V. Then 2 is a compact neighbourhood of e and for all z € G and y € Q
we have zyz~1 € V.

Now select 1y € C.(§) such that g > 0 and [ o(z)dz = 1. Define

b(z) = /G Po(yzy ™) dy.

Using the result of the exercise below we see that ¢ is a continuous function. Clearly ¢ > 0.
Moreover, by application of Fubini’s theorem and bi-invariance of the Haar measure it follows
that [ ¢(z)de = 1. T ¢(x) # 0, then yzy™" € suppyy for some y € G, hence & € Uyeqy™'Qy C
V. It follows that suppty C V. One now readily verifies that the function ¢ = %(zb + 10*) satisfies
all our requirements. a

Exercise 9.3 Let G be a compact group, I the normalized Haar integral, and assume that
[ :GxG — Cis a continuous function. Define the function ¥ : G — C(G) by F(y)(z) = f(z,y).

(a) Show that F'is a continuous function with values in the Fréchet space C(G).

(b) Show that for all 2 € G we have: I(F)(a) = [ f(z,y)dy.

Corollary 9.4 Let f € L*(G), f # 0. Then there exists a left and right GG—equivariant bounded
linear operator T : L*(G) — L*(G) with:

(a) Tf#0.

(b) T is self-adjoint and compact;
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(c) T maps every right G—invariant closed subspace of L*(G) into itself.

Proof. Let ¢ = 1|| f||2, and fix an open neighbourhood U of e in G that satisfies the assertion
of Lemma 6.8 with V = L*(G), v = f. Let ¢ € C.(U) be as in Lemma 9.2, and define T = R(¢p).
Then T satisfies (a) and (c). 7 is left G-equivariant, since L and R commute. It is right
G—equivariant because ¢ is conjugation invariant, cf. Exercise 8.5. Finally (b) follows from
Corollary 8.6. a

Proof of Lemma 9.1. The space R(G) is left and right G-invariant, and by unitarity so is its
orthocomplement V. Suppose that V contains a non-trivial element f. Let T be as in the above
lemma. Then T'|V : V — V is a non-trivial compact self-adjoint operator which is both left and
right G—equivariant. By the spectral theorem for compact self-adjoint operators, there exists
a A€ R, A # 0 such that the eigenspace V) = ker(T — Aly) is non-trivial. By compactness
of T the eigenspace V) is finite dimensional, and by equivariance of T it is both left and right
G—invariant. Hence V) € R((G), contradiction. Therefore, V' must be trivial. O

10 Density of G—finite vectors

For the moment we assume that GG is a locally compact group, and that dz is a choice of left
Haar measure on G. If f, g € C.(G), we define the convolution product of f and ¢ to be the
function f#*g:G — C given by

Frg@ = [ e dy.

If 2 € G, then ev, : f — f(z), is a continuous linear functional on C.(G); thus applying
Proposition 6.3 we see that f x g(z) = ev,L(f)g. Hence f g € C.(G). One readily checks that

supp(f * g) C suppf - suppg.

Exercise 10.1 Show that C.(G) equipped with addition and the convolution product is an
agsociative algebra. Show that in general this algebra has no unit element.

An important motivation for the definition of the convolution product is the following.

Exercise 10.2 Let 7 be a continuous representation of G in a complete locally convex space V.

Show that for all f,¢g € C.(G') one has
m(frg)=m(f)em(g).

The following fact will be needed in the sequel.

Exercise 10.3 Let f,g € C.(G) and let z € . Then

Lo(f*xg)=Lyfxg and R.(f*g)= [+ R.g.

We will also need the following.
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Lemma 10.4 Let f,g € C.(G). Then

1+ glloo < NI f1l2llgll2-

Proof. Define g : G — C by g(z) = g(2!). Then from the definition of the convolution
product it follows that for z € G we have:

f *g($) = <f|Lxg>2

By the Cauchy-Schwartz inequality this implies that |f * g(2)| < [|fll2||L«d||2- From the bi-
invariance of the Haar integral it follows that ||L,d||2 = ||g||2- Hence |f * g(z)| < || fll2]|g]|2 for
every x € (3. a

From now on we assume that the group & is compact, and that dz is normalized Haar
measure. Moreover, we assume that 7 is a continuous representation of GG in a complete locally
convex space V.

Let Vi denote the space of G—finite vectors in V. Then Vi is a G—-invariant linear subspace of
V. A vector v € Vi is called isotypical if there exists an irreducible finite dimensional represen-
tation 6 of G such that the linear span (7(G)v) is equivalent to a (necessarily finite) multiple of
4. The representation § (or rather its equivalence class) is then called the type of the isotypical
vector v. If § € G then by Vs we denote the set of isotypical G—finite vectors of type 6 in V.
Obviously Vj is a G—-invariant linear subspace of V. Moreover, in view of Corollary 3.5 the space
Vi is the algebraic direct sum of the spaces Vi :

Vo =DV (14)
sed
Notice that the above decomposition of Vi is canonical. The decomposition of each Vj into
irreducibles is not canonical in general, cf. Iixercise 5.7.
The notation introduced above is consistent with the notation C'(G')s introduced before:

Lemma 10.5 Let § € (. Then C(G)s equals the space of isotypical right G—finite functions of
type 6.

Proof. Let Vs denote the space of right G—finite functions of type ¢ in C'(G'). Then obviously
C(G)s C Vs. It remains to prove the reversed inclusion.

If p e, let P, : L*(G) — C(G), denote the orthogonal projection. By the invariance of the
subspace C'(G), it follows that P, is equivariant. The restriction 7" of P, to Vj is an intertwining
operator Vs — C(G), for the right regular representation. If p o¢ 6 then using Lemma 3.12 we
see that T" = 0. By the Peter-Weyl theorem this implies that Vs is contained in the closure of
C(G)s. This closure equals C(G)g, by finite dimensionality. 0

Exercise 10.6 Let § € . Show that C(G)s equals the space of isotypical left G—finite vectors
of type 6*.

Lemma 10.7 Let f € C(G)sx, 6 € (. Then 7(f) maps V into the space V5.

Proof. Let v € V, and consider the map T': C'(G) — V, ¢ — 7(p)v. Then it follows from (11)
that T intertwines L with . Therefore it maps L—isotypical vectors of type 6 to m—isotypical
vectors of type 6. Now use Exercise 10.6. a
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Proposition 10.8 The space R(() is dense in C'(G) with respect to the sup-norm.

Proof. Fix f € C(G), and let ¢ > 0. Then by Lemma 6.8 there exists a ¢ € C(G) such
that || f — ¢ * f|lec < €. By Lemma 9.1 there exists a ¢ € R(() such that ||¢ — ]|z < €, hence
o * f—1* flloo < el fll2, by Lemma 10.4. Combining these estimates we infer that

1F = flleo < (Ifll2 + De.

Using Exercise 10.6 we see that ¢« f = L(¢)f € R(G). Since ¢ was arbitrary this establishes
density of R(G) in C(G). O

Corollary 10.9 The space Vg of G—linite vectors is dense in V.

Proof. Let v € V and let p be a continuous seminorm on V. Let ¢ > 0. Then by Lemma 6.8
there exists a ¢ € C'(G) such that p(v — 7(¢)v) < . By Lemma 9.1 there exists a left G—finite
¥ € C(G) such that ||¢ — ¥||ec < €. One now readily verifies that p(7w(¢)v — 7(2)v) < ep(v),
so that p(v — 7(¢¥)v) < e(p(v) + 1). But 7(+)v is G-finite by Lemma 10.7, and we see that
p(v, Vi) = 0. This establishes density. O

Corollary 10.10 If 7 is irreducible, then V is finite dimensional.

Proof. By the previous corollary we may select a non-trivial element v € V. The linear span
W of 7(G)v is a non-trivial invariant subspace, whcih is finite dimensional hence closed. Since
7 is irreducible we must have W = V. a

Corollary 10.11 V =l (®5€§ Vg) .
Proof. This follows from combining (14) with Corollary 10.9. o

We will end this section by characterizing the projections onto components of the above
decomposition. If § € G, we denote its representation space by Hs.

Lemma 10.12 Let 6,p € G. Then the following holds.
(a) 67 p = pl(dss) = 0.
(b) 6 ~p = p(dsxs) = Iu,.
Proof. Let H,, be the representation space of p, and put 7' = p(Xs). Then from the conjugation

invariance of s and the bi-invariance of dz it follows that 7' : H, — H, is equivariant. Hence
T = Ay, for some A € C, by Schur’s lemma. From this we find that

4, A =1(T) = [ sl (pla)) do = (/).

Now apply Lemma 5.5. a
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Exercise 10.13 let é,p € G. Show that the following holds.
(a) If 6 o p, then dsxs * x, = 0.

(b) If 6 ~ p, then ds x5 * X, = X,-

Theorem 10.14 Let § € . Then V; is a closed subspace of V. Moreover,

V=Vsdd(d V)

pEG\ {0}
and Ps := dsm(Xs) is the associated projection operator V' — Vs. Finally, Ps is equivariant.

Proof. From the above lemma it follows that Py is the identity on Vi, and annihilates every V,,
p % 6. By continuity of Ps it follows that Ps = I on cl Vs. On the other hand Ps maps into Vs by
Lemma 10.7. It follows that cl Vs = Vi, hence Vi is closed. Moreover, Ps is a projection operator
with image Vs. Hence V- = W @ Vi with W = ker Fs. Since xs is conjugation invariant, it follows
that Psis equivariant and therefore W is a G—invariant complete locally convex space. It follows
from Corollary 10.9 that Wg is dense in W. On the other hand, obviously Ws C W N Vs = 0.

Hence W equals the closure of @pea\{5}vp. O

We can now completely describe the structure of every unitary representation of the compact
group (7 in terms of irreducibles.

Corollary 10.15 Let (7, H) be a unitary representation of GG. Then for every 6 € G the space
Hs is closed, and w(dsXs) is the orthogonal projection H — Hs. Moreover we have the following
Hilbert decomposition:

Proof. The only thing that remains to be verified is the orthogonality of the summands. If
0 € G, let Ps denote the orthogonal projection H — Hs. Then Pjs is equivariant since 7 is unitary,
and Hs is invariant. Let 6,p € G, 6 ot p. Then the restriction of Ps to H, is an intertwining
operator H, — Hs. Using Lemma 3.12 we see that Ps|H, = 0, whence Hs L H,. a

Exercise 10.16 Let G be a compact group, and dz the normalized Haar measure on . Show
that for every f € L*(G) we have
f=>" dsxs*
§eG

with convergence in the L?-norm.

We complete the description of unitary representations by describing the isotypical ones.
Let 6 € G, V¢ its representation space, and let S be a set provided with the counting measure.
Then we define the representation 172(sy @ é of G on L3S, V?) by

[Lrz(sy @ 6)(2)f (s) = 8(x)o f(s),  (s€ S, 2€q)
for f € L% S5, V®).
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Proposition 10.17 Let (7, H) be an isotypical unitary representation of G, i.e. there exists a
0 € G such that Hs = ‘H. Then there exists a set 5, such that

T~ 1L2(S) ® 6.

Proof. If v € H we put H(v) for the linear span of the 7(z)v, 2 € G. Note that H(v) is
finite dimensional by the assumption, and the first assumption of Theorem 10.14. Let & be the
collection of subsets S C H \ {0} satisfying:

(a) if v € 5, then H(v) is irreducible;
(b) if v,w € S, v # w then H(v) L H(w).

We order § by inclusion. Let C C § be a completely ordered subset. Then UC belongs to & and
dominates C. By Zorn’s lemma the set & has a maximal element 5. For every s € 5 we may fix
an intertwining operator 7T : V¥ — H with imT, = H(s). We now define 7' : L2(5,V®) — H by

Tf=> Tif(s)

SES

Then one readily verifies that T is an equivariant isometry. It remains to prove that T is
surjective. Assume not. Then im(7)* is a non-trivial G—invariant subspace of H, hence contains
an element sy such that H(sq) is irreducible. Obviously H(sq) L im7’, so H(s1) L H(s) for every
s € 5. This contradicts the maximality of 5. a

11 Class functions

By a class function on a locally compact group G we mean a function f : G — C which is
conjugation invariant, i.e. LyR,f = f for all # € GG. The space C'(G, class) of continuous class
functions is a closed subspace of C'(G).

Now assume that G is compact. Then the projections Ps : C(G) — C(G)s (6 € G) map
class functions to class functions, by equivariance. Hence

PsC(G, class) C C(G)s N C(G, class) = Cys.
It follows from this that the space R(G, class) = C'(G, class) N R(G) of bi-G-finite class functions
is the linear span of the characters ys, 6 € G.

Lemma 11.1 Let f € C(G, class). Then
F=3" (flxs) xs,

§eG
with convergence in the L*-norm. Moreover, the space R(G,class) is dense in C(G, class),

equipped with the sup-norm.

Proof. By the Peter-Weyl theorem we have f = Zée@ Psf in L?*-sense. Now Psf € Cys,
and hence:

Psf = (Psflxs) xs = (fIxs) xs-
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The second result is proved as follows. Let f € R(G,class), and € > 0. Then there exists a
function g € R(G) such that || f — ¢]|s < €. The function ¢ is contained in a finite direct sum W
of spaces of the form C(G)s. The same is true for the function § = [ L, R,g dy. By invariance
of the Haar measure, § is a continuous class function; thus ¢ € R(G, class). Finally, if 2 € G,
then

@) =g = | [ 5@ =gl o)
= | [ Utey™) = gy~ ey dy
€
< [ =gl dy <.
This shows that || f — g|| < ¢, and establishes density. ]

12 Abelian groups

We now consider the case that the compact group G is abelian (i.e. 2y = ya for all 2,y € G). By
a multiplicative character of G we mean a continuous group homomorphism £ : G — C*, where
C* = C\ {0} is equipped with complex multiplication. Notice that every compact subgroup of
C* must be contained in the unit circle |z| = 1. Therefore, if £ is a multiplicative character, then

@) =1,2 €.

Lemma 12.1 Let G be a compact abelian group. If (6,V?) is a finite dimensional irreducible
representation of G, then dim V° = 1. Moreover, é(z) = xs(z)Iys. The map ¢ — x5 induces a
bijection from GG onto the set of multiplicative characters of (.

Proof. If x € G, then 6(y)é(z) = 6(yz) = é(zy) = 6(2)é(y) for all z,y € G, hence é(x) is
equivariant, and it follows that

() = (@)1, (15)

for some £(x) € C, by Schur’s lemma. It follows from this that every linear subspace of V¢ is
invariant. Therefore, the dimension of ¥ must be one. From the fact that é is a representation
it follows immediately that = — £(z) is a character. Applying the trace to (15) we see that
& = xs, the character of 6. Thus 6§ — xs induces a map from the space G of equivalence classes
(!) of finite dimensional irreducible representations to the set of multiplicative characters of G.
If £ is a multiplicative character then (15) defines an irreducible representation 6 of GG in C, and
& = xs. Therefore the map 6 — ys is onto the multiplicative characters. a

Corollary 12.2 Assume that G is compact and abelian. Then the set of multiplicative char-
acters xs, 6 € (i is a complete orthonormal system for L*(G).

Proof. This follows immediately from the previous lemma combined with the theorem of
Peter and Weyl (Theorem 7.3). ]
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Corollary 12.3 Assume that G is compact and abelian. Then the linear span of the set of
multiplicative characters is dense in C(G') (for the sup-norm).

Proof. This follows from Proposition 10.8. a

In the present setting we define the Fourier transform f : G — C of a function f e L*G) by

J(6) = (fIxs)-

Let G be equipped with the counting measure. Then the associated L2-space is lQ(G), the space
of functions ¢ : G — C such that }°, _~ |0(6)]* < oo, equipped with the inner product:

(ele) = D w(6) v(8).

el

Corollary 12.4 (The Plancherel theorem). Let G be a compact abelian group. Then the

~

Fourier transform f — f is an isometry from L%(G) onto I2(G). Moreover, if f € L*(G), then

F=3" f(8)xe.

§eG
Proof. Exercise for the reader. a

The purpose of the following exercise is to view the classical theory of Fourier series as a
special case of the Peter-Weyl theory.

Exercise 12.5 Let G = R"/2xZ™. If m € Z", show that

Xm 1T €

defines a multiplicative character of GG. (Here m -2 = mqa1 4+ --- + m,z,.) Show that every
multiplicative character is of this form. Thus G ~7". Accordingly for f € L?(G) we view the
Fourier transform f as a map Z" — C.

Show that the normalized Haar integral of G is given by

1 2m 2m
I(f):W/o /0 fler, .., zn) day .. day,.
Show that for f € L*(G), m € Z" we have:
. 1 2T 2T .
f(m) = W‘/o .. /0 f($1, RPN $n) €_Z(m1$1+m+m"x") dzy...dzx,.

Moreover, show that we have the inversion formula

flz) = Z f(m)etm=) (x € R"/27Z")

meL™

in the L%—sense.
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13 The group SU(2)

Recall the definition of the representation 7, of SU(2) in the space V,, = P,,(C?) of homogeneous
polynomials of degree n from Section 3. In Proposition 3.10 it was shown that w7, is irreducible.
Moreover, the associated character is determined by the formula:

sin(n 4+ 1)
sin ¢

Xn(ly) = (peR) (16)

(see Exercise 5.4). The purpose of this section is to prove the following result:

Proposition 13.1 Every finite dimensional irreducible representation of SU(2) is equivalent to
one of the m,.

We recall that every element of SU(2) is conjugate to an element of 7. Therefore a class
function on SU(2) is completely determined by its restriction to 7. This restriction to 7" is obvi-
ously invariant under the substitution ¢ — ¢=1. Thus, if C'(T)e, denotes the space of continuous
functions f : T — C satisfying f(t7!) = f(¢) for all ¢ € T, then restriction to T defines an
injective linear map r : C'(G, class) — C(T)ey.

Lemma 13.2 The map r: C(G, class) — C(T)ey is a bijective isometry (for the sup-norms).

Proof. That r is isometric follows from the observation that the set of values of a function
[ € C(G, class) is equal to the set of values of its restriction r(f). Thus it remains to establish
the surjectivity of 7. Let ¢ € C(T)ey. An element 2 € SU(2) has two eigenvalues ¢#(*) and
e~¢(@) which may locally be chosen such that z — ¢(z) depends continuously on z. Define
J(z) = g(ty@)). Then f is well defined, and independent of the particular choice of ¢(x).
Moreover, f € C(G,class) and r(f) = g. a

Corollary 13.3 The linear span of the characters x,,, n € N is dense in C(G,class).

Proof. By Lemma 13.2 it suffices to show that the linear span S of the functions x,|7T is
dense in C(T)ey. From formula (16) we see that x,(t,) = S.7_y ¢ ("=28)¢ Hence S equals the
linear span of the functions 7, : t, — €™ + e~ (n € N). The latter span is dense in C(7T ey,
by classical Fourier theory (see Section 12). o

Corollary 13.4 FEvery finite dimensional irreducible representation of SU(2) is equivalent to
one of the ,,, n € N.

Proof. The representations w, are irreducible, and mutually inequivalent. Therefore their
characters y,, constitute an orthonormal system in L*((G, class). If f € C(G, class), and (f]x,) =
0 for all » € N, then (f|g) = 0 for all ¢ € C'(G, class). Let ¢ € C(G). Then by the fact that dy

is normalized and f is a class function, one obtains:

(o= [ S 5@ de = [ [ rgey™) 70w dyde.
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Applying Fubini’s theorem to interchange the order of integrations, and bi-invariance of the
measure dz, one sees that the above integral equals:

| 1@ A Tey) dedy = [ f(a) @ yTag) dyda = (1)
G G

where ¢ = [ Ly Ry dy is a continuous class function. Here Fubini’s theorem has been applied
once more. The inner product at the extreme right of the latter equation vanishes, and therefore
f L C(G). Hence f = 0. It follows that the orthonormal system {x, ; n € N} is complete.
But this must imply that the 7,, exhaust the irreducible representations of @, by the Peter-Weyl
theorem. a

From the fact that every element of SU(2) is conjugate to an element of 7' it follows that
there should exist a Jacobian J : T"— [0, oo[ such that for every continuous class function f on

SU(2) we have
/SU(Z) flz)de = /0 F(to) J(t,) de.

It is possible to compute this Jacobian by a substitution of variables. We shall obtain it by other
means:

Lemma 13.5 For every continuous class function f:SU(2) — C we have:

27 12
B sin“ ¢
Jo Jr e = [ 000 = (1)

0

Proof. Consider the linear map L which assigns to f € C'(G, class) the expression on the left
hand side minus the expression opn the right hand side of the above equation. Then we must
show that L is zero.

Obviously L is continuous linear, so that it suffices to show that Ly, = 0 for every n € N.
The function xp is identically one; therefore left and right hand side of (17) both equal 1 if one
substitutes f = yo. Hence Lyg = 0. On the other hand, if n» > 1, and f = x,,, then the left hand
side of (17) equals (xn|xo) = 0. The right hand side of (17) also equals 0, hence Lx,, = 0 for all
n. O

14 Manifolds

Notations and preliminaries

Let V.V’ be finite dimensional real linear spaces, and let © be an open subset of V. We recall
that a map ¢ : Q — V' is called differentiable at a point @ € Q in the direction v € V if

dupla) = %[ﬁp(a + 10)]io

exists.
The map f is called differentiable at a €  if there exists a linear map D f(a): V — V' such
that

fla+h) = fla)=Df(@)h+1(h)  (h—0).
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The linear map D f(a), which is unique when it exists, is called the derivative of f at a. If f is
differentiable in @, then 9, f(a) exists for every v € V' and we have

Opfla) =D f(a)v.

When V = R™, V/ = R™, then the above formula may be used to express the matrix of D f(a)
in terms of the partial derivatives 0; f; = 0., fi (the Jacobi matrix).

If f is differentiable in (any point of) Q, then Df is a map from Q to the space Hom(V, V")
of linear maps V' — V', If this map is differentiable, then f is called twice differentiable. The
derivative of Df is denoted by D?f. It is now clear how to define the notion of an p-times
differentiable function and its p—th derivative D?f. A function f is called p—times continuously
differentiable, or briefly C'?, if it is p—times differentiable and D? f is continuous. We recall that
fis CP on Q if all mixed partial derivatives of f order at most p exist and are continuous on .
Let C?(Q, V') denote the linear space of CP-maps Q@ — V'. Then the effect of any sequence of
at most p—partial derivatives applied to C?(£, V") is independent of the order of the sequence.

A map f:Q — V'is called smooth (or C*) if it is CP for every p > 0. We put

Co(Q, V') = Up>oCP(, V)

for the space of smooth maps Q — V.

Let e1,...,e, be a basis of V, and abbreviate d; = 0.,. Then 0; is a linear operator on the
space C°(Q,V’). By the above mentioned result on the order of mixed partial derivatives we
have that 9; and d; commute (1 < 4,j < n). Hence, as an endomorphism of C'°(Q, V") every
mixed partial derivatives of order at most p is of the form:

9% = 9o,

with |a| == a1+ -+ a, <p.
We briefly write C?(Q) for C?(Q,C) (0 < p < 00). By a linear partial differential operator
with C'*—coefficients on © we mean a linear endomorpism P of C*(Q) of the form:

P:Z:caacY

with finitely many non-trivial functions ¢, € C°°(). The number k = max{|a|; ¢, # 0} is
called the order of P.

Manifolds

Let ¢ : © — Q' be a bijection between open subsets of finite dimensional real linear spaces. Then
¢ is called a CP—diffeomorphism (0 < p < o) if ¢ and ¢~ are CP. Note that by the inverse
function theorem this is equivalent to the requirement that ¢ € C? and D¢(a) is bijective for
every a € Q.

We shall now develop the theory of C'*°~manifolds (we leave it to reader to keep track of
what can be done in a CP—context, for further reading we suggest the references [La]®, [Wa]”

®[La]: S. Lang, Differential Manifolds, Addison Wesley, Reading Massachusetts 1972
7[VVa]: F. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman and Co., Glenview
Ilhinois 1971.
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Let X be a Hausdorff topological space. A pair (U, x), consisting of an open subset U C X
and a homeomorphism y from U onto an open subset of R™ is called an n—dimensional chart
of X. If (U',Y) is a second n—dimensional chart of X, such that U N U’ # (, then the map
X' ox~! is a homeomorphism from x(U N U’) onto x/(U N U’). This homeomorphism is called
the transition map from the chart y to the chart y’.

A set {(Us, Xa); a € A} of n-dimensional charts is called a C* (or smooth) n-dimensional
atlas of X, if

(a) Useals = X;
all transition maps 784 = Xgo X, are smooth (l.e. .
b) all it] 5o = X5 X3! h (ie. ¢

Remark. Note that since 73, is the inverse of 7,4, it actually follows that all transition
maps are diffeomorphisms.

An n-dimensional smooth (or C*) manifold is a Hausdorff topological space X equipped
with a smooth n-dimensional atlas {(U,, xa); @ € A}. An n-dimensional chart (U, x) of the
manifold X is called smooth if all the transition maps y, o x~' are diffeomorphisms. The com-
ponents Y1,..., X, Will then be called a system of local coordinates of X. The collection of all
smooth charts of X is an atlas by its own right, called the maximal atlas of the smooth manifold

X.

Remark. Any open subset of a finite dimensional linear space is a smooth manifold in a
natural way, its dimension being the dimension of the linear space. More generally any open
subset of an n—dimensional smooth manifold X is a smooth manifold of dimension n in a natural
way.

A map f: X — Y of smooth manifolds (of possibly different dimensions) is called C? at a
point € X if there exist smooth charts (U, x) and (V,4) of X and Y respectively, such that
z e U, f(U)CV and 1o fox tisa CP map from x(U) to (V). (Similarly one may define the
concept of a k times differentiable map between smooth manifolds.)

One readily checks that the composition of C” maps between smooth manifolds is C?, etc.

Themap f: X — VY is called a (C*°) diffeomorphism if it is bijective, and if f and its inverse
/7! are smooth (i.e C°°). Note that diffeomorphic manifolds have the same dimension. The
present notion generalizes that of a diffeomorphism of open subsets of finite dimensional real
linear spaces.

Our next objective is to generalize the notion of derivative of a differentiable smooth map
between manifolds. The key to this is the concept of a tangent vector. Since our manifold is not
contained in an ambient linear space, it may seem strange that tangent vectors can be defined
at all. The basic idea is that it makes sense to say that two curves are tangent at a point. A
tangent vector of a manifold is then defined as an equivalence class of tangential curves. More
precisely, let X be smooth manifold of dimension n. Then by a differentiable curve in X, we
mean a differentiable map ¢ : I — X, where I C R is some open interval containing 0. The
point ¢(0) is called the initial point of ¢. Let 2 € X be a fixed point. Then two differentiable
curves ¢,d with initial point z are said to be tangent at z if there exists a smooth chart (U, x)
containing x, such that

d d

FXeeDlizo = L xod(Dlizo. (18)
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Suppose now that (V1) is another smooth chart, and let 7 = 1o x ! is the associated transition

map. Then by the chain rule we have:

d

Sboe(Dlis = D)) 55 Xe el (19)

From this we see that if (18) holds in one chart containing x, then it holds in any other chart
containing x. Let C, denote the set of all differentiable curves in X with initial point x. Define
the equivalence relation ~ on C, by ¢ ~ d if and only if ¢ and d are tangential at . We define

T.X :=C;/ ~.

The class of an element ¢ € C,, is denoted by ¢(0). The elements of T, X are called the tangent
vectors of X at z.

Let (U, x) be a chart containing z. Then for every ¢ € C,, the vector d/dt[yoc](0) only
depends on the equivalence class ¢(0). We denote it by T,y ¢(0) (this notation will be justified
at a later stage).

Lemma 14.1 The map T,x : T, X — R" is bijective.

Proof. The injectivity of T,y is an immediate consequence of the definitions. To establish
its surjectivity, let v € R™ and fix any differentiable curve ¢ in x(U), with initial point x(z), and
with d/dt[c](0) = v. Let ¢ = x"!c. Then ¢ € C,, and by definition we have T,y ¢(0) = v. o

Let now (V, 1) be another chart containing z. Then by (19) we have that

To) = D[zbox_l](x(x))oTxX on T.X.

This implies the following.

Corollary 14.2 The set T, X has a unique structure of real linear space such that for every
chart (U, x) containing « the map T,y : T, X — R" is linear.

The set T,.X, equipped with the structure of linear space described in the above corollary,
is called the tangent space of X at z.
The tangent map

We can now generalize the concept of derivative to manifolds. Let f: X — Y be a map between
smooth manifolds, and suppose that f is differentiable at the point z € X. If ¢,d € C,, then
Joc, fod €Cypy. Let (U, x), and (V, 1) be charts of X and YV such that « € U, f(U) C V. Then

the map F' = o fox™! is differentiable. Moreover, if ¢(0) = d(O), then by definition we have

Cled()= SIxedo)

If we apply DF(x(z)) to this expression we obtain
d d
- o] o] = — o o d
Lo focl(0) = e fod)(0),
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by the chain rule. It follows from this that foc and fod are equivalent elements of Cy(,). This
shows that the map C; — Cy(y),¢ — foc induces a map T; X — Ty, Y, which we denote by
T.f.

Note that it is immediate from the above discussion that the following diagram commutes:

T,X RAZA Ty(m)Y
Tox | b Ty (20)
oJo -1 xT
gr PWesexThHixe) R

Hence it follows from Lemma 14.1 and Cor. 14.2 that the map T f : Ty, — T}, is linear; it
is called the tangent map of f at z.

Theorem 14.3 (The chain rule). Let f: X — Y and g : Y — Z be maps, such that f is
differntaible at © € X and g is differentiable at f(z). Then go f is differentiable at x, and

Tx(g ° f) = Tf(x)g o1y f.

Proof. This follows from the ordinary chain rule by using the commutative diagram (20)
three times, once for f: X — Y at z, once for ¢ : Y — Z at f(z), and once for go f : X — Z
at x. a

Let U be an open subset of X. Then if # € U one readily checks that the tangent map
Tt of the inclusion map ¢ : U — X is an isomorphism T,U — T, X. Via this isomorphism we
shall identify T,U ~ T, X. In particular, if U is an open subset of R®, then T, U ~ T,R". The
latter space is identified with R™ as follows. For v € R", define the curve ¢, : [0,1] — R" by
¢y(t) =  + tv. Then we identify R” ~ T,R" via the map v — ¢,(0). We leave it to the reader
to check the following. If f : U — V is a map between open subsets V C R® and V C R™
then via the identifications discussed above, the tangent map 7. f : T,U — Ty,)V (z € U)
corresponds to the derivative D f(z) : R — R™. Also, if (U, x) is a chart of a smooth manifold
X containing the point z € X, then the map T,x : T, X — R" of Lemma 14.1 corresponds to
the map T,x : T, X — T,R". Finally, observe that when ¢ € C,, then the element ¢(0), defined
as the ~ class of ¢, equals Toe(1).

Remark. In the literature one also finds the notations df(«) and D f(z) for T, f.

Submanifolds

Let X be a n—dimensional smooth manifold. A subset ¥ C X is called a smooth submanifold
of dimension k if for every y € Y there exists a chart (U, x) containing y, such that x(UNY) =
X(U) NRE. Here we agree to identify R* with the subspace {z € R"; z; =0 (j > k)}.

Suppose that Y is a submanifold of X, and let ¢y : Y — X denote the inclusion map. Then
one readily verifies that for every y € Y the map T2y is an injective linear map. Via this map
we shall identify 7Y with a linear subspace of T}, X.

Notice that the notion of submanifold as defined above generalizes the notion of smooth
submanifold of R™. Notice also that a subset Y C X is a submanifold of X if it looks like a
submanifold of R” in any set of local coordinates. More precisely, Y is a submanifold if for every
smooth chart (U, x) of X the set x(UNY')is a smooth submanifold of R” (which may be empty).
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Let X,Y be smooth manifolds. A map f: X — Y is called an immersion at a point z € X
if the tangent map 7. f : T, X — Ty,)Y is injective. It is called a submersion at « € X if for all
the tangent map T, f is surjective.

One now has the following useful result, which is a consequence of the implicit function
theorem for R™.

Lemma 14.4 (Immersion Lemma). Let f: X — Y be a smooth map, and let € X. Then f
is an immersion at z if and only if dim X — dimY = p > 0 and there exist open neighourhoods
XDU3zandY DV > f(z) and a diffeomorphism ¢ of V onto a product U x Q with 5 0
an open subset of RP, such that the following diagram commutes:

U — V
Iy | ' | e
U L UxQ

Here iy denotes the inclusion x — (z,0).

Lemma 14.5 (Submersion Lemma). Let f : X — Y be a smooth map between smooth
manifolds. Then f is submersive at x € X if and only if diim X —dimY = p > 0, and there exist
open neighourhoods X DU >z and Y DV 5 f(2) and a diffeomorphism ¢ : U — V x Q with
Q an open subset of RP, such that the following diagram commutes

v Ly

¢ | Iy
Vxao 2LV
Here pry denotes the projection on the first component.

In particular it follows from the above lemmas that an immersion is locally injective, and
that a submersion always has an open image. From the definitions given before combined with
the two lemmas above we now obtain:

Theorem 14.6 Let X be a smooth manifold, and let Y C X be a subset. Then the following
conditions are equivalent.
(a) Y is a smooth submanifold;

(b) Y is locally closed in X, and for every y € Y there exists an open neighbourhood U D y
such that U NY is the image of an injective immersion;

(c) for every y € Y there exists an open neighourhood X D U 5 y and a submersion ¢ of U
onto a smooth manifold 7 such that Y NU = ¢~z for some z € Z.
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15 Vector fields

If X is a smooth manifold, we write T'X for the disjoint union of the tangent spaces T,., = € X.
The set TX is called the tangent bundle of X.* We define the map # : TX — X by the
requirement that 7(7,X) C {z} for every z € X.

A map v: X — TX with v(z) € T, X for every z € X is called a vector field on X. The
set of vector fields on X is denoted by I'(7°X). By defining addition and scalar multiplication of
vector fields pointwise, we turn I'(7'X') into a linear space.

Recall that if U C R™ is open, and z € U, then we have a natural identification v, :
T,U-—=-R". We identify TU with U x R" via the map v given by v(£) = (z,v,(£)), for z €
U, £ € T,U. Via this identification a vector field on U may be viewed as a map v : U — U x R",
with v(2) € {2} x R" for all 2 € U. Thus v(z) = (2, f(¢)) for a uniquely defined function
U — R". In this way we may identify I'(7'U) with the linear space of maps U — R". We now
agree to call a vector field v € I'(U) of class C?, if it is C? as a map U — R".

If f: X — Y is a differentiable map then we define the map T'f : TX — TY by Tf=1T,f
on T,X.

A smooth map f: X — VY is a diffeomorphism if and only if Tf : TX — TY is bijective.
Moreover, if this is the case then we have an induced bijective map f. : I'(TX) — I(TY),
defined by the formula:

[fol(f(2)) = Tefo(z).

After these preliminaries we can introduce the notion of a C? vector field. On open subsets
of R this has been done already. If X is a smooth manifold, then a vector field v € I'(T'X)
is said to be C? if for every € X there exists a chart (U, x) containing z so that x.(v|U) is
smooth. By what we said above the latter assertion can also be rephrased as: the map

X (0]r) o x &= Tox [v(2)] (21)

is C'?. By the chain rule it follows that if » is a C'? vector field on X, then for any smooth chart
(U, x) the map (21)is CP. The set I'"(T'X ) of C? vector fields on X is obviously a linear subspace
of I'(TX).

From now on we assume that 1 < p < oo, that X is a smooth manifold, and that v € I'?(X).
Let € X. Then by an integral curve for » with initial point & we mean a differentiable map
c¢: I — X, with I an open interval containing 0, such that

c(0) = =z
ét) = w(e(t)) (tel).

Here we have written é(t) for %e(t) = Tic - 1. We now come to a nice reformulation of the
existence and uniqueness theorem for systems of first order ordinary differential equations (use
local coordinates to see this).

Theorem 15.1 Let v € I'’(T'X), 2 € X. Then there exists an open interval I 5 0 such that:
(a) there exists an integral curve ¢ : I — X for v with initial point x;

(b) ifd:J — X is a second integral curve for v with initial point x, then d = c on I N J.

®usually one reserves this name for T7X equipped with a canonical structure of vector bundle

39



Lemma 15.2 Let ¢ : I — X be an integral curve for v with initial point z. Fix ty € I, let
Iy = I — 11 be the translated interval, and let ¢y : [y — X be defined by ¢1(t) = ¢(t + t1). Then
c1 is an integral curve for v with initial point x;.

Proof. By an easy application of the chain rule it follows that
Gqt)y=¢t+t)=r(c(t+ 1)) = v(c(t)).

Moreover, ¢1(0) = z1 by definition. ]

Corollary 15.3 Let ¢,d: I — X be integral curves for v with initial point z. Then ¢ = d.

Proof. Let J be the set of t € [ for which ¢(¢) = d(t). Then J is a closed subset of I
by continuity of ¢ and d. On the other hand, if ¢; € J, then ¢(t 4+ ¢1) = d(t + t1) for ¢ in a
neighbourhood of 0, in view of Lemma 15.2 and Theorem 15.1. This implies that .J is open in
I as well. Hence J is an open and closed subset of I containing 0, and we see that J = [I. a

From this corollary it follows that there exists a maximal open interval I, > 0 for which
there exists an integral curve ¢ : I, — X for v with initial point z. Indeed [, is the union of all
the intervals which are domain for an integral curve with initial point z.

The associated unique integral curve I,, — X is called the maximal integral curve with initial
point x.

Exercise 15.4 Let v be a C'' vector field on a compact manifold X, and let z € X. Show that
I, = R. Hint: assume that [, is bounded from above, and let s be its sup. Let a : [, — X
be the maximal integral curve. Show that there exists a sequence s, € I, with s, — s so that
a(s,) — x1. Now apply the existence and uniqueness theorem to v and the starting point ;.

The following results will be of crucial importance in the theory of Lie groups.

Corollary 15.5 Let v be a C? vector field on a smooth manifold X. Let x € X, and let
a I, — X be the associated maximal integral curve. Let t; € I, and let ay be the maximal
integral curve with initial point 1 = a(ty). Then I, equals the translated interval I, — ;.
Moreover, for t € I,, we have:

Oél(t — tl) = Oé(t)

Proof. 1t follows from Lemma 15.2 that ¢ : [, —t; — X, t — a(t1+1) defines an integral curve
with initial point z;. Hence I, —¢; C I,. Moreover, ¢ = a; on I, — ¢;. In particular it follows
that —t; € I,,,. Applying the same argument to a; and @ = a(—t1) we see that I, +t; C I,.
Hence I,, = I, —t;. The desired equality now follows from ¢ = a; on I, —t;. a

The following result, which is stated without proof, expresses that the integral curve depends
smoothly on the initial value. Let © be the union of the subsets I, x {2} of R x X. For 2 € X,
let e, : I, — X be the maximal integral curve of » with initial point z. Then we define the flow
of the vector field v to be the map ® : Q — X given by ®(¢,2) = ®(x) = a,(1).

Theorem 15.6 Let v be a C'? vectorfield on X. Then ) is an open subset of R x X, and the
flow @ : Q0 — X is a C? map.
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16 Lie groups

A Lie group is a smooth manifold G equipped with a group structure so that the maps m :
(z,y)— 2y, G x G —Gand t:2— 27, G — G are smooth.

Fzample. An important example of a Lie group is the group GL(V') of invertible linear
endomorphisms of a finite dimensional real linear space V. Indeed GL(V') is the subset of elements
in End(V) with determinant non-zero, hence an open subset of a linear space, and therefore
a smooth manifold. Moreover, the group operations are obviously smooth for this manifold
structure.

If « € G, then the map [, : y — zy, G — G is a smooth bijective map, whose inverse
[,—1 is also smooth. Therefore, [, is a diffeomorphism from G onto itself. Likewise the right
multiplication map 7, : y — yz is a diffeomorphism of G onto itself, and therefore so is the
conjugation map Ad(z) = l,r;1 : y — aya~!. The latter map fixes the neutral element e;
therefore its tangent map

Ad(2):=T.Ad(z)
is a linear automorphism of T.G. From the fact that z,y — zyz~" is smooth, it follows that
z — Ad(2) is a smooth map from G to GL(T.G). From Ad(e) = Ig it follows that Ad(e) =
I7.. Moreover, differentiating the relation Ad(zy) = Ad(2)Ad(y) at e, we find: Ad(2y) =
Ad (2)Ad(y) for all z,y € G. A smooth map from a Lie group G to a Lie group G'3 which is a
homomorphism of groups is called a Lie group homomorphism. Thus we have proved:

1

Lemma 16.1 Ad : G — GL(T.G) is a Lie group homomorphism.

Fzample. We return to the example of GL(V'), with V' a finite dimensional real linear space.
Since GL(V') is an open subset of the linear space End(V') we may identify its tangent space
at I with End(V). If € GL(V), then Ad(z) is the restriction of the linear map C, : A —
zAz™1, End(V) — End(V). Hence Ad (z) = (. is conjugation by .

A vector field v € I'(T'G) is called left invariant, if (I.).v = v for all z € G, or, equivalently
if

v(zy) = Ty(l:)v(y) (2,9 € G). (22)
From the above equation with y = e we see that a left invariant vector field is completely
determined by its value v(e) € T.G at e. Conversely, if X € T.G/, then we may define a vector
field vx on G by vx(z) = T.(l;)X, for 2 € (. Differentiating the relation [, = [;0l, and
applying the chain rule we see that T.(l,) = Ty(I;)Te(ly). Applying this to the definition of vx
we see that vx satisfies (22), hence is left invariant. Thus we see that X — vy is a bijection
from T.G onto the left invariant vector fields on . Notice that vx is smooth by smoothness of
the group structure.

If X € T.GG, we define ay to be the maximal integral curve of vx with initial point e.

Lemma 16.2 Let X € T.G. Then the integral curve ax has domain R. Moreover, we have
ax(s+1) =ax(s)ax(t) for all s,t € R. Finally the map (t,X)— ax(t), R — T.G is smooth.

Proof. Let o be any integral curve for vx, let y € G, and put ay(t) = ya(t). Differentiating
this relation with respect to ¢ we obtain:

d d

2010 = Tomly ax (t) = Tomlyvx(ax (1)) = vx(aa(t)),
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by left invariance of vx. Hence a; is an integral curve for vy as well.

Let now I be the domain of ax, fix {1 € I, and put 21 = ax(t1). Then ay(t) = z1ax(?) is
an integral curve for vy with starting point x;, hence has domain contained in I — ty, in view
of Corollary 15.5. On the other hand from its definition we see that the domain of oy is I, so
that I C I — ty. Since this holds for any ¢y € I this implies that s + ¢ € I for all s,t € I. Hence
I =R.

Fix s € R, then by what we saw above ¢ : t — ax(s)ax(t) is the maximal integral curve
for vx with initial pont ax(s). On the other hand, the same holds for d : t — ax(s + 1), cf.
Corollary 15.5. Hence ¢ = d.

The final assertion follows from Theorem 15.6. a

We now define the exponential map exp : T.G — G by

exp(X) = ax (1),

Lemma 16.3 For all s,t € R, X € T.G we have
(a) exp(sX) = ax(s)
(b) exp(s+ )X = expsX exptX.
Moreover, the map exp : T.G — G is a local diffeomorphism at 0. Its tangent map at the origin
is given by Toexp = IT.q.
Proof. Consider the curve ¢(t) = ax(st). Then ¢(0) = e, and

4 1) = s (s1) = s ox(eex(s1) = vix (e

Hence ¢ is the maximal integral curve of vsx with initial point e, and we conclude that ¢(t) =
a,x(t). Now evaluate at ¢ = 1 to obtain the equality.
Formula (b) is an immediate consequence of (a) and Lemma 16.2 Finally we note that

d .
To(exp)X = %exp(tX)h:o =ax(0) =vx(e) = X.
Hence Ty(exp) = Ir.x, and from the inverse function theorem it follows that exp is a local
diffeomorphism at 0, i.e. there exists an open neighbourhood U of 0 in T.G such that exp maps
U diffeomorphically onto an open neighbourhood of e in G. a

Fzample. We return to the example of the group GL(V'), with V' a finite dimensional real
linear space. If 2 € GL(V), then [, is the restriction of the linear map L, : A — 2z A, End(V) —
End(V), to GL(V), hence T.(l,) = L., and we see that for X € End(V) the invariant vectorfield
vx is given by vx(z) = 2.X. Hence the integral curve ax satifies the equation:

d
%a(t) = a(t)X.

Since t — e is a solution to this equation with the same initial value, we must have that

ax(t) = e!*. Thus in this case exp is the ordinary exponential map X + eX, End(V) — GL(V).
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A smooth group homomorphism « : (R, +) — G is called a one parameter subgroup of G.

Lemma 16.4 If X € T.G, then t — exptX is a one parameter subgroup of GG. Moreover, all
one parameter subgroups are obtained in this way. More precisely, let o be a one parameter
subgroup in G, and put X = &(0). Then a(t) = exp(tX) (t € R).

The first assertion follows from Lemma 16.2. Let a : R — G be a one parameter subgroup.
Then a(0) = e, and

d

d .
Lat) = ol + )z = ~-a(t)o(s)|smo = Tula()a(0) = vx(a(1),
hence « is an integral curve for vy with initial point e. Hence @ = ax by Corollary 15.3. Now
apply Lemma 16.3. a

We now come to a very important corollary.

Corollary 16.5 Let ¢ : G — H be a homomorphism of Lie groups. Then the following diagram
commutes:

G RN o
exXpg T T eXpg
T.G L¢ T.H

Proof. Let X € T.G. Then a(t) = p(exps(tX)) is a one parameter subgroup of H. Differen-
tiating at £ = 0 we obtain &(0) = Te(¢)To(expq)X = T(¢)X. Now apply the above lemma to
conclude that a(t) = expy(T.(¢)X ). ]

Exercise 16.6 Let V' be a finite dimensional real linear space. Show that det : GL(V) — R* is
a Lie group homomorphism. Show that T7(det) = tr. Show that for all A € End(V') we have:

det(e?) = €4,

Applying the above corollary to the Lie group homomorphism Ad(z): G — G for z € G,
we obtain the following:

Corollary 16.7 Let x € G, then for every X € T.G we have
zexpXa' =exp(Ad(z) X).

Differentiating Ad at e we obtain a linear map
ad = T.Ad : T.G — End(1.G).

Moreover, applying Corollary 16.5 to the Lie group homomorphism Ad : ¢ — GL(T.G), we
obtain:

Corollary 16.8 For all X € T.G we have:
Ad (exp X) = 24X,
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Example. Let V' be finite dimensional real linear space. Then for 2 € GL(V) the linear
map Ad(z) : End(V) — End(V) is given by Ad(z)Y = 2Yz~L. ] Substituting 2 = ¥ and
differentiating this with respect to ¢ at ¢t = 0 we obtain:

(ad X)Y = %[etXYe_tX]tzo = XY -YX.

Hence in this case (ad X )Y is the commutator bracket of X and Y.

In general we put
(X,Y]:=(ad X)Y for X, Y eT.G.
Then (X,Y) — [X,Y] defines a bilinear map 7.G' x T.G — T.G. This map is anti-symmetric:

Lemma 16.9 For all X,Y € T.G we have [X,Y] = —[Y, X].
Proof. Let Z € T.G. Then for all s,t € R we have
exp(tZ) = exp(sZ)exp(tZ) exp(—sZ) = exp(tAd (exp(sZ)) Z),
by Lemma 16.3 and Corollary 16.7. Differentiating this relation with respect to ¢t at { = 0 we
obtain:
7 = Ad (exp(s2)) Z (s €R).
Differentiating this with respect to s at s = 0 we obtain:
0=ad(2)Z =[Z,7].

Now substitute Z = X + Y and use the bilinarity to arrive at the desired conclusion. a

Let ¢ : G — H be a homomorphism of Lie groups. Then one readily verifies that ¢ o Ad ¢(2) =
Ad p(p(z))op. Taking the tangent map of both sides of this equation at e, we obtain that the
following diagram commutes:

T.G Le¢ T.H
Adg(z) | 1 Ad g(e(z))
T.G Le¢ T.H

Differentiating once more at = e, in the direction of X € T.(, we obtain that the following
diagram commutes:

T.G Tee T.H
adg(X) T 1 ad g (TepX)
T.G Tee T.H

We now agree to write [X,Y] = ad(X)Y. Then by applying T.poadgX to Y € T.G the
commutativity of the above diagram yields

Tep[X.Y]a = [Tep X, Tep Y]n. (23)
Applying the above relation to Ad : G — GL(T.G') we obtain
ad ([X,Y]) =ad XadY —adYad X.
Applying the latter relation to Z € T.G, we obtain
([X,Y], 2] = [X,[Y, Z]] - [, [X, Z]] (24)
forall X,Y,7Z € T.G.
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A real Lie algebra is a real linear space a equipped with a bilinear map [+, -] : a X a — a, such
that for all X,Y,Z € a we have:

(a) [X,Y]=-[Y,X] (anti-symmetry);
b) [X, Y, 2|+ [Y,[Z, X]]+ [Z,[X,Y]] =0 (Jacobi identity).

Remark. Note that condition (a) may be replaced by the equivalent condition (a’): [X, X] =0
for all X € a.

Lemma 16.10 Let G be a Lie group. Then T.G equipped with the bilinear map (X,Y) —
[X,Y]:=(ad X)Y is a Lie algebra.

Proof. The anti-linearity was established before. The Jacobi identity follows from (24) com-
bined with the anti-linearity. a

A homomorphism of Lie algebras ¢ : a — b is a linear map a — b such that ¢([X,Y]s) =
[(X), o(Y)]e, for all X,V € a.

Exercise 16.11 Let A be an associative real algebra. Show that [z,y] = 2y — ya (z,y € A)
defines a Lie algebra structure on A.

From now on we will adopt the convention that Roman capitals denote Lie groups. The
corresponding Gothic lower case letters will denote the associated Lie algebras. If ¢ : G — H
is a Lie group homomorphism then the associated tangent map T.¢ will be denoted by ¢,. We
now have the following.

Lemma 16.12 Let ¢ : H — G be a homomorphism of Lie groups. Then the associated tangent
map @ : g — b is a homomorphism of Lie algebras. Moreover, the following diagram commutes:

G A H
eXPG T T eXPH
@ x
g — b
Proof. The first assertion follows from (23), the second is Corollary 16.5. a
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17 Intermezzo: partial differentiations

Let X,Y be smooth manifolds of dimensions m and n respectively. Then X XY is a manifold in
a natural way (for the charts one may take products of X— and Y -—charts). Fix 29 € X, yo € Y,
and consider the maps tx : X — X XY, o — (2,y0) and ¢ty : Y — X x VY, y — (z9,y). Then
the associated tangent maps are injective linear maps:

Trgtx + Ty — T( X XY) and Tyory : Ty — T} X xY).

1’071/0)( 1’071/0)(

Using local coordinates one sees that their images have zero intersection. Via the above tangent

maps we identify 7,, X and T, Y with linear subspaces of T(,, ,)(X X Y) : thus we see that

Towo)( X X Y) = Tuy X & T, Y.

Z0,Y0

If f: X xY — Zis a differentiable map to a smooth manifold Z we write Téo yo)f for the
tangent map of 2 — f(z,y0) at @ = x¢ and T(1;0 yo)f for the tangent map of y — f(xg,y) at
Y = Yo-

Lemma 17.1 Let { € T, ,,n € Ty,. Then

T(l’o,yo)f (57 77): Té07y0)f£+T();’07y0)f 77

Proof. It is immediate from the definitions that Téo yo)f = Tyo[fotx]. Applying the chain

rule we see that Témyo)f = Tlwoyo)S © Totx - The identification of T, X with a subspace of

Tz,40) (X X Y') means that:

X
T(9007y0)f £= T(ﬂb’o,yo)f (57 0)'
Now apply a similar reasoning, but with interchanged roles of X and Y, to finish the proof. O

Corollary 17.2 Let m : G x G — G be the multiplication map (x,y) — zy. Then for all
X,Y € T.G we have:
T(w)m (X,Y) =X+Y.

Another useful application is the following.
Corollary 17.3 Let f:R?* — X be differentiable at (0,0). Then
J J J
gf(ta )]i=0 = gf(ta 0)]i=0 + gf(oa t)]i=0-
Proof. Define () = (t,t) and apply the chain rule to f(¢(t)). Then one sees that
J J
gf(tvt)h:o = T(o,o)f ° g@(o) = T(o,o)f (1,1) = T(o,o)f(lv 0)+ T(o,o)f (0,1).

The right side of this equation equals the right side of the desired equation. a
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Note that in the above proof we have made use of the following lemma in a special case:

Lemma 17.4 Let f = (f1,f2) : Z — X x Y be differentiable at the point zy € Z, and put
(20, 90) = f(20). Then
TZof = (TZOflvTZOfQ)'

Proof. Left to the reader. a

Exercise 17.5 Let GG be a Lie group, g its Lie algebra. Show that for XY € g we have:

a0

[XaY]Iaa

exp(sX ) exp(tY ) exp(sX ) Lexp(tY )™ |s=i=0.

18 Commutativity of a Lie group

A Lie algebra [ is said to be abelian (or commutative) if [X,Y] = 0 for all X, Y € [. Obviously
the Lie algebra of an abelian Lie group is abelian. The converse is true if the group is connected.
We will finish this section by establishing this result.

Lemma 18.1 Let G be a Lie group, and assume that X,Y € g. Then

[(X,Y]=0 = expX expY =exp(X+YVY).

Remark. If X,Y € g satify the hypothesis of the above lemma, we say that X and Y
commute.

Proof. Assume that X,Y € g commute. It follows from the above assertion that exp X and
exp Y commute. We will begin by proving this result, and then we will deduce the lemma from
it.

By Corollaries 16.7 and 16.8 we have:

exp X expY (exp X) ™' = exp[Ad (exp X)Y ] = exp[e*XY ] = exp Y.

Hence exp X and exp Y commute. Applying the same reasoning to t X and tY we see that exp tX
and exptY commute for all ¢ € R. Hence a(t) = exptX exptY is a 1 parameter subgroup of G.
It follows that a(t) = exptZ, where

d d d
7 = E[exp tX exptYli—o = %[exp tX im0 + E[exp Vmo= X +V
(see also Corollary 17.3). _
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If G is a Lie group, then the connected component of GG containing e is denoted by G.. This
component is called the identity component of G. Obviously e € G.. Moreover, if + € G, then
x(G. is connected and open and closed in (7, and it contains # = xe. Hence G, = G.. We see
that GG, is a subgroup of G.

Exercise 18.2 Show that (7. is a normal subgroup, i.e. zG.2~! = G, for all z € G.

Lemma 18.3 The identity component G, of a Lie group G equals the subgroup generated by
the elements exp X, X € g.

Remark. Thus G. is the subgroup consisting of elements of the form
exp X1 exp Xy - --exp X (X1,..., Xk €9).

Proof. Let H be the subgroup of GG generated by the elements exp X, X € g. Since obviously
expRX C G, for all X € g, we see that H C G.. To prove that this inclusion is an equality, it
suffices to show that H is open and closed in G. Let © C g be an open neighbourhood of 0 in g
such that exp is a diffeomorphism of £ onto an open subset U C (. Let h € H. Then hexp () is
an open neighbourhood of i contained in H. Hence H is an open subgroup of G. Now use the
lemma below to conclude that H is closed as well. a

Lemma 18.4 Let G be a topological group. Then any open subgroup of GG is closed as well.

Proof. Let H be an open subgroup of G. Select, for every coset @ € G/H a representative
gr € G. Then G is the disjoint union of the sets g,H, * € G/H. Left translation being a
homeomorphism, these cosets are all open. The complement of H in G equals the union of the
cosets g, H, © € G/H, x # eH. Thus we see that this complement is open so that H is closed.
O

Proposition 18.5 Let (G be a connected Lie group. Then G is commutative if and only if its
Lie algebra g is commutative.

Proof. If G is commutative then Ad (x) = I for all 2 € G. Differentiation yields Ad (z) = I,
for all z € GG, and differentiating this at @ = e, we see that ad = 0. Hence g is commutative.

Conversely, assume that g is commutative. Then exp X and exp Y commute, for all X,Y € g.
Hence the subgroup G. generated by exp g is commutative. But this subgroup equals G, since
G is connected. a

19 Subgroups

Let G be a Lie group. Then a subgroup H which is a submanifold is called a Lie subgroup of G.
Obviously a Lie subgroup H is a Lie group in a natural way, and the inclusion map ¢ : H — G
is a homomorphism of Lie groups. The associated tangent map ¢, : h — g is an injective
homomorphism of Lie algebras. Via this map we view §) as a subalgebra g. The commutative
diagram of Lemma 16.12 now means that the exponential map of H is the restriction of the
exponential map of G to .
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Remark. If H is a Lie subgroup of GL(V), then b is a linear subspace of End(V') such that
X, Yeh= XY -YX €b,and for all X € h we have exp X = eX. Many Lie groups may be
realized as Lie subgroups of a general linear group: such Lie groups are called linear.

Lemma 19.1 Let Il be a Lie subgroup of a Lie group . Then its Lie algebra b is given by

h={Xecg|expRX CH}.

Proof. This is immediate from the above remarks. a

Lemma 19.2 Let H be a subgroup of a Lie group G. Then H is a Lie subgroup if and only if
H is closed.

Proof. If H is a Lie subgroup, then it is a submanifold, hence locally closed. Hence there exists
a compact neighbourhood U of e in GG such that U N H is closed. Select an open neighbourhood
V of e in G such that VV =1 C U.

Let h,, be a sequence in H converging to an element g € (. Then there exists a N > 0 such
that p > N = h,g~' € V. Hence p,q > N = hphq_l € VV~! C U. In particular this implies that
hNhgl € UNH for all n > N and taking the limit for n — oo we see that hyg~' € U N H. This
implies that ¢ € H. Hence H is closed.

The proof of the converse implitcation is deeper. We do not give its proof here, but refer to
[BD], Theorem 3.11? instead. 0

Corollary 19.3 Let Hy, H, be Lie subgroups of a Lie group GG. Then H = Hy N Hy is a Lie
subgroup of G with Lie algebra ) = by N bs.

Proof. This is an easy consequence of the previous results. a

We will now illustrate how to use the above tools to determine Lie groups and there Lie
algebras. Let V be a complex linear space. Then V viewed as a real linear space is denoted by
Vr. Let J € End(Vg) be the linear map v +— v (multiplication by ¢). Then End(V'), the space of
complex linear maps V' — V, may be viewed as the space of A € End(Vg) such that AJ = JA.
Similarly GL(V') is the group of ¢ € GL(Vr) such that gJ = Jg. From this it is obvious that
GL(V) is a closed subgroup of GL(Vg), hence a Lie subgroup. We claim that its Lie algebra
equals End(V). To see this, let X € End(V). Then Jexp XJ™! = JeXJ=1 = /X7 = X,
Hence exp maps End(V') into GL(V'). On the other hand, if X € End(Vg) and expRX C GL(V),
then

exptX = JexptXJ ! = et X

Differentiating this expression at ¢ = 0, we find that X commutes with J, hence belongs to
End(V). In view of Lemma 19.1 the claim has now been established. Use similar techniques to
make the following exercises.

°[BD]: T. Brocker, T. tom Dieck, Representations of Compact Lie Groups, Graduate Texts in Math. 98,
Springer-Verlag 1985.
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Exercise 19.4 Let V be a real linear space, and define SL(V') to be the group of g € GL(V)
with determinant 1. Show that SL(V') is a Lie subgroup of GL(V'), with Lie algebra

siiV)y={X € End(V)|tr X =0}.

Let V be equipped with an inner product, and for X € End(V') let X* denote the adjoint of X
with respect to the given inner product. Let O(V') be the associated group of orthogonal maps,
i.e.

O(V)={z € GL(V)| 2" =27'}.
Show that O(V) is a Lie subgroup of GL(V') with Lie algebra

oV)={XeEnd(V)| X" =-X}.
Show that SO(V) = O(V) N SL(V) is a Lie subgroup with Lie algebra so(V) = o(V).
Exercise 19.5 Let V' be a complex linear space, and define SL(V') to be the group of g € GL(V)
with determinant 1. Show that SL(V') is a Lie subgroup of GL(V'), with Lie algebra
siiV)y={X € End(V)|tr X =0}.

Let V be equipped with a Hermitean inner product, and for X € End(V') let X* denote the
Hermiten adjoint of X with respect to the given inner product. Let U(V) be the associated
group of unitary maps, i.e.

UV)={z e GL(V)|z*=2""}.
Show that U(V) is a Lie subgroup of GL(V') with Lie algebra

w(V)={XeEnd(V)| X" =-X}.
Show that SU(V) = U(V)NSL(V) is a Lie subgroup with Lie algebra

su(Vy={X € End(V)| X" =-X and trX =0}.

20 The groups SU(2) and SO(3)

In the previous section we saw that SU(2) is a Lie subgroup of GL(2,C). The Lie algebra of
the latter group is the algebra M(2,C) of complex 2 x 2 matrices. The Lie algebra su(2) is the
algebra of X € M(2,C) with

X*=—X, trX =0.

From this one sees that as a real linear space su(2) is generated by the elements
{7 0 ({0 -1 {0 2
7 o i) 2T 0) BT Ld0 )
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One readily verifies that o109 = —0901 = 03, and 0903 = —0309 = 01. Hence the commutator
brackets are given by

[01,09] = 203, [02,03] =201, [03,01] = 205.

From this it follows that the endomorphisms ado; € End(su(2)) have the following matrices
with respect to the basis o1, 09,03 :

00 0 0 0 2 0 -2 0
matadey =] 0 0 =2 |, matados = 0 0 0], matades=1] 2 0 0
0 2 0 -2 00 0 00

The above elements belong to
so(3)={X € M(3,R)| X" = -X},

the Lie algebra of the group SO(3).
If a € R®, then the exterior product map X — a x X, R® — R® has matrix

0 —das as
Ra = as 0 —a
—ay ay 0

with respect to the standard basis ey, e, €3 of R>. Clearly R, € so(3).

Lemma 20.1 Let ¢t € R. Then exptR, is the rotation with axis ¢ and angle t|a|.
Proof. Let r € SO(3). Then one readily verifies that R, = 70 R,—1,0771, and hence

exptR, = 10 exp[tR,—1,] o7 .

Selecting r such that r~la = |a|e;, we see that we may reduce to the case that @ = |ale;. In that
case one readily computes that:

1 0 0
exptR, = | 0 costla] —sint|a]
0 sintla] cost|al
O
Write R; = R, for j = 1,2,3. Then by the above formulas for matad (o;) we have
matad (o;) = 2R; (j=1,2,3). (25)

We now define the map ¢ : SU(2) — GL(3,R) by ¢(z) = mat Ad (), the matrix being taken
with respect to the basis o1, 09,035. Then ¢ is a homomorphism of Lie groups. Moreover, from

QO(GXPX) — mat 6adX — 6matadX

we see that ¢ maps SU(2). into SO(3). Since SU(2) is obviously connected, we have SU(2) =
SU(2)., so that ¢ is a Lie group homomorphism from SU(2) to SO(3). The tangent map of

51



@ is given by ¢, : X +— matad X. It maps the basis {o;} of su(2) onto the basis {2R;} of
s0(3), hence is a linear isomorphism. It follows that ¢ is a local diffeomorphism at I, hence
its image im¢ contains an open neighbourhood of I in SO(3). Hence im¢ is an open connected
subgroup of SO(3), and we see that img = SO(3).. The latter group equals SO(3), by the lemma
below. From this we conclude that ¢ : SU(2) — SO(3) is a surjective group homomorphism.
Hence SO(3) = SU(2)/ kerg. The kernel of ¢ may be computed as follows. If z € ker ¢, then
Ad(z) = I. Hence 2z0; = o;2 for j = 1,2,3. From this one sees that + € {—1,I}. Hence
kero = {—1,1}.

Proposition 20.2 The map ¢ : SU(2) — GL(3), 2 — mat Ad () is a surjective group homo-
morphism onto SO(3), and induces an isomorphism:

SU(2)/{£I} ~ SO(3).

For k € N the representation my; of SU(2) factorizes to a representation To of SO(3). The

representations mgy are mutually inequivalent and exaust SO(3).

Proof. By the preceding discussion it suffices to prove the assertions about the representa-
tions. One readily verifies that mox(2) = I for z € {£[}. Hence 7y, factorizes to a representation
Tar of SO(3). Every invariant subspace of the representation space Vi, of oy is m2x(SU(2)) in-
variant if and only if it is T9x(SO(3)) invariant. A non-trivial SO(3)-equivariant map Va — Vi
would also be SU(2)-equivariant. Hence the 7y are mutually inequivalent. Finally, to see
that they exhaust 86(\3), assume that (7, V) is an irreducible representation of SO(3). Then
@*T 1= mois an irreducible representation of SU(2), hence equivalent to some 7,,, n € N. From

¢*1 = I on ker ¢ it follows that m,, = I on {+/}, hence n is even. 0

Lemma 20.3 The group SO(3) is connected.

Proof. Let x € SO(3). There exists an orthogonal matrix m such that mam™ = exptR;.

The curve ¢(t) = m™ ' exptRym (0 < ¢ < 1) lies in SO(3) and connects I with . o

Exercise 20.4 Let n > 2. Show that SO(n) = O(n)..

21 Invariant differential operators

Let X be a smooth manifold and v a smooth vector field on X. If f € C*(G), then we define
the function vf € C*°(G) by:
vf(x) =T, fv(x).

If ¢ is an integral curve for v, then using the chain rule one sees that

of(elt) = feln).
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If (U,z)is a (n—dimensional) chart for X, then the component functions z; are called local
coordinates for X. We define the vector fields 0/0x; on U by:

%)p:(n Jle;.

Here e; denotes the j-th standard basis vector of f. We now see that

d

dz;

(p) = 0;(fox™")(x(p));

thus the left side of the above equality corresponds indeed to a partial derivative of f in the
local coordinates z;. From the fact that partial differentiations in R™ commute when applied
to smooth functions we now conclude that for 1 < ¢, < n the endomorphisms 8%1' and % of
C*(U) commute.

For a multi-index a € N” we define the following endomorphism of C*°(U) :

o* _ (i)al..( 9 )a"
dze  \ Oz oz, '

A (linear) differential operator (with C'*°—coefficients) of order at most m € N is a linear
map P : C%(X) — C®(X), such that for every chart (U,z) of X there exist finitely many
¢y € C®(U), a € N", |a| < m such that

Phl = ea g l0)

for all fe C™(X).

In particular it follows that if v € I'°(TX) then 9, : f — vf is a first order differential
operator on X which annihilates the constant functions. Using local coordinates one sees that
the linear map v — 0, is injective. Using local coordinates one also sees that any first order
differential operator on X which annihilates the constant functions arises from a unique vector
field in this way.

Using local coordinates one sees that for v, w € I'*(7T'X ) the differential operator [3,,0,] =
0y Oy — 00y is first order and annihilates constants. Hence [d,,0,,] = 9, for a unique smooth
vector field w. This vector field, denoted by [v, w], is called the Lie bracket of the vector fields »
and w. From the definitions one readily sees that I'>°(7'X ) equipped with the Lie bracket is (an
infinite dimensional) Lie algebra.

Let GG be a Lie group. Then one readily sees that a vector field v € I'*°(T'G) is left invariant
iff

(Lo f) = Lo(vf) forall feC™G), zed,
i.e. iff @, commutes with every left translation L., # € GG. From this one sees that the bracket
of left invariant vector fields is left invariant again. Thus the space £ of left invariant vector

fields is a Lie subalgebra of I'*(T'G).

Lemma 21.1 The map X — vy is a Lie algebra isomorphism from g onto L.

Proof. Let XY € g. Then [vx,vy] is left invariant hence equals vy for some Z € g. Thus, if
[ € C*(G), then
T.f 7Z = [vx,vy]f(e) = vxvy f(e) — vy vx f(e).
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Now

0
oy flexp s X )lozo

vxvy f(e)

g 0
E af(exp sX exptY)|s=i=0

a 0
= af(eXp(SetadXY) eXp(tX))|s:t:0
ot
0
= a?}etad xy f(€)t=o0 + aUXf(eXP sY)s=0
0
= aTef [etadXYHt:o + vy vx f(e)
= T.fIX,Y]+ vyvx f(e).

Hence T.f Z = T.f[X,Y] for every f € C*™((), and it follows that Z = [X,Y].

ds
_ %g[f(exp(setadXY )+ [(exp(s) exp(tX))]|s=r=0
0
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22 The algebra of invariant differential operators
A differential operator P on a Lie group G is called left invariant if for all € G we have:
onPIPoLx on COO(G)

Here L denotes the left regular action of GG on C°(() : L, f(y) = f(z~'y). The space U(G) of

left invariant differential operators is an algebra. From now on we shall use the notation dx for
vy, X € g. Then the map X — 0Ox is a linear embedding of g into U(G'). We have seen that

VXY
for all X,Y € g we have:

Ox 0y — Oy dx = 8[X7y]. (26)
From now on, let X4,...,X,, be afixed linear basis for g. If @ € N”, we shall use the multi-index

notation
o Qq On
0° = 8X1 .. -aXn.

Here it should be noted that the order of the operators dx, is important, since they do not
commute.

Lemma 22.1 Let o € N". Then for all f € C*(G) we have:

8 a1 8 Qn
8cy]8(90) = (8_151) ce (@) f(w exp iy Xy---exp tan)|t1:...:tn:0-

Proof. Let f € C*(G) and X € g. Then we recall that for every z € GG we have

%[f(x exp sX)|s=0 = Ix f().

Hence
EHU e 1X)]cs = (F T explt + 91X amolimo
= (%)k_l[a)(f (z exptX)]i=o.
By induction we thus see that
(D exp 1 im0 = (95)°f () (21)

The lemma follows from repeatedly applying the latter equation with (X, k) equal to (X, a,,), ..., (X1, a1),
respectively. a

Proposition 22.2 The elements 0%, o« € N" constitute a basis for the complex linear space

U(G).
Proof. The smooth map

@ity . ty)—exptiXy...expt, X,, R" =

55



has tangent map Tpp : R — g given by:
(7—17---77—71) = Tle + ‘|’TnX

Hence there exists an open neighbourhood €2 of 0 in R™ such that ¢ maps Q diffeomorphically
onto an open neighbourhood U of e in G'. Any m-th order differential operator P on U is given
by:

Pf(e(t)) =Q(fop)t) (f € C™(U)),

with @ = 3 ja1<m co(t)(2)* a differential operator on Q. Write p, = ¢,(0). Then in particular
we see that

Pfle) = Z Pal(=2) flexptai Xy ...expt, X,,)
|o|<m
= > pal0°fl(e)
o] <m

by repeated application of (27). If we assume, in addition, that P is left invariant, then

Pf(z) = [Ly-1Pfl(e)=P(L —1f)()
= Y L fle) = Y pald®]
ol <m o <m

Hence P = 7 j<m Pod” and we see that the 9 span U(G). To see that they are linearly
independent, let m > 0, and assume that p, € C are such that

Z paaa =
o] <m
Then in particular it follows that for all f € C°°(G) we have
S v (g) Uedlititall = 3 padf(e) =
lor|<m lo|]<m
From the fact that ¢ is a diffeomorphism it follows that f can be found such that fo has any

prescribed Taylor expansion at 0. Therefore all p,, || < m must be zero. a

From now on it will be convenient to view g as a subspace of the algebra U(G), via the
injective map 0 : X — dx. Thus, if X,Y € g then we have [X,Y] = XY — Y X in the algebra
U(G). Moreover, we have:

= P cxpre X (28)
aeN”
as a linear space. Since the Xi,..., X, do not commute in general, the product in U(G) does

not well behave with respect to the above decompostion. Write [ X}, X;] = > ¢}, X;. Then we
have for instance

(X1X2)? = Xi(XoX1)Xo = Xi(X1Xo = > ¢, X)) Xo
i=1
XPX5 - 1y X7 Xy — 61, X1 X5 = ) el X1 X X5,
i<3
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The terms of the last sum can be rewritten as:
XX, X, = X0 X0X, + XX, X = X1 XX + Z c?z X1Xp.
k=1

This indicates how to rewrite a general product 9°9” as a linear combination of the 87, by
using commutation relations. The decomposition (28) and the commutation relations XY =
Y X + [X,Y] completely determine the structure of the algebra U((G). This is best formulated
by means of the following universal property.

Proposition 22.3 Let (¢ be a Lie group, and A an associative algebra (over C and with unit
element). Assume that ¢ : g — A is a linear map such that

P([X,Y]) = o(X)p(Y) = o(Y)p(X)  forall X,Y €g.
Then there exists a unique algebra homomorphism ¢ : U(G') — A such that ® = ¢ on g.

Uniqueness follows from the fact that g generates U(G') as an algebra, by (28). In this proof
it will be convenient to use the notation

X=0"= X" - X
We may define a linear extension of ® of ¢ by setting
(X)) = p(X0)™ - Xn),

for all & € N*. The problem is then to show that ® is a homomorphism of algebras. This can
be done by a double induction argument, involving commutator relations. The first induction
occurs in the proof of the following lemma. If m € N, let U,,(G) denote the (finite dimensional)
subspace of operators of order at most m in U(G).

Lemma 22.4 Let X € g, P € U, (G). Then ®(X P) = ¢(X) &(P).

Proof. We prove this by induction on m. For m = 0 the result is obvious. So, let m > 0 and
assume the result has been proved already for smaller values of m. By linearity of ® it suffices
to prove the result for X = X, with 1 < j < n. By linearity of ® and the induction hypothesis
we may as well assume that P = X, where o € N, |a| = m. Let k be the smallest index for
which aj, # 0. Then XP = X; X% X2 If j <k, then the result follows from the definition
of ®. So assume that j > k. Let o be the multi-index a — e, where e is the n-tuple with zeros
in all coordinates except for the k-th, which is 1. Then X = Xz X*'. Hence:

XP=X;X; X = X3 X; X + [X;, X)] X"
From the definition and the linearity of ®, and using the induction hypothesis, we now find:
B(XP) = o(X3) B(X;X) + ([ X, Xe]) S(X )
= P(Xp) p(XHP(XT) 4 ([X, Xp)B(X).
Using the rule o([X,Y]) = ¢(X)e(Y) — o(Y )p(X) we may rewrite the above as:
B(XP) = (X))o Xe) (X ).

The expression on the right side of this equation equals ¢(X;)®(X ), in view of the definition
of . ]
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To complete the proof of Proposition 22.3 it suffices to show:
O(PrQ)=2(P)2(Q), P eUn(G)QeU(G). (29)

We prove (29) by induction on m. For m = 0 the result is obvious from the definition of ®.
Thus assume that m > 0 and that the result has been proved already for smaller values of m.
By linearity of ® and the induction hypothesis we may as well assume that P = P, X, with
Py € U,(G), X € g. Then by the induction hypothesis we have:

O(PQ)=P(P)P(XQ).

From the previous lemma we have (X Q) = ¢(X)®(Q) = ¢(X)P(Q)), and using the induction
hypothesis once more we now find:

O(PQ) = ¢(P1)(X)(Q) = ¢(PX)8(Q) = 2(F)2(Q).

a

The universal property described in the above proposition determines the algebra U(G) up
to isomorphism. Moreover, if Gy and G5 are Lie groups with isomorphic Lie algebras, then
U(G1) and U(Gy) are isomorphic. In fact we have:

Lemma 22.5 Let G1,G5 be Lie groups, and assume that ¢ : gy — g2 is a homomorphism of
their Lie algebras. Then ¢ has a unique extension to an algebra homomorphism ¢ : U(G1) —
U(Gy). If ¢ is an isomorphism of Lie algebras, then ® is an isomorphism of associative algebras.

Proof. As a map g1 — U(Gy), the map ¢ satisfies o([X,Y]) = [¢(X), o(Y)] = o(X)e(Y) —
@(Y)e(X). By the universal property ¢ has a unique extension to an algebra homomorphism
¢ : U(G1) — U(Gy). This proves the first assertion. Now assume that ¢ is an isomorphism, and
let % : go — g1 be its inverse. Then by the first part of the lemma % has a unique extension
to an algebra homomorphism ¥ : U(Gy) — U(G4). The composition Wo® extends o = Iy,
hence must equal the identity of U(G1), by uniqueness. Likewise ® oW = I, and we see that
is an isomorphism with inverse V. a

Because of the universal property of Proposition 22.3 the algebra U((G) is called a universal
enveloping algebra for g. In view of the above remark its isomorphism class only depends on
the isomorphism class of the Lie algebra g, and therefore it is natural to construct the universal
enveloping algebra in terms of g, without reference to a group. The construction is as follows.

Let ge be the complexification of g and

Tge = DreN ®k fc

its tensor algebra. Let I be the two-sided ideal in T'ge generated by the elements X @ Y — Y ®
X —[X,Y], X,Y € g. Then U(gc) is defined as the quotient algebra of T'ge by I. It is not hard
to show that the map g — U(gc) fulfills the universal property of Proposition 22.3. For details,
see e.g. [Hum]'®, Section 17.2. In particular if g is the Lie algebra of a Lie group &, then we
map g — U(ge) induces a natural isomorphism U(G) ~ U(ge).

°[Hum]: J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York
Heidelberg Berlin, 1972
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23 Bi-invariant differential operators

Let # € G. Then the map Ad(z) : g — g is a Lie algebra isomorphism, hence by Lemma 22.5
extends to an algebra automorphism of U((G'), which we also denote by Ad (). By the uniqueness
part of that lemma it follows that Ad defines a linear representation of G in U(G).

Lemma 23.1 For 2 € G, let R, denote the right translation C*(G) — C°°((G) defined by
R.f(y) = f(yx) for all f € C*(G),y € G. Then for all D € U(G) we have:

Ad($)D = RxoDoRx—l.

Proof. Since g generates the algebra U((G) it suffices to prove this for D = X € g. Let
feC>(G), y€ G, Then

Ro[X (R f))(y) = Ox[Ro— fl(yz)

0
= aqu flyzexptX )|i=o

0 _
= o f(ya(exptX)a™ iz

J
= af(y exptAd (z)X)]i=o
= 8Ad(x)Xf(y) = [Ad (2)X]f(y).
O
An operator P € U(G) is called bi-G—invariant if for all € G we have R,o Po R;! = P.
The algebra of such operators is denoted by D(G'). By the above lemma it equals the algebra
U(G)Y of Ad(G)-invariants in U(G).

If X € g, then the map v — Xu — uX extends the endomorphism ad X of g. Therefore we
write ad X for this linear endomorphism of U(G).

Lemma 23.2 Let X € g. Then ad X is a derivation of U(G), i.e. it is a linear endomorphism
such that
ad X (wv) =(ad X u) v+ u (ad X v) for all w,ve U(G).

Proof. This is immediate from the definitions. a

Remark. Notice that any derivation of U(G') is completely determined by what it does on
the generating space g.

Lemma 23.3 The map ad : g — End(U(G)) is a Lie algebra homomorphism.

Proof. We must show that ad[X,Y] = ad XadY — adYad X. Now this is an immediate
consequence of the definition. a
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In the following sense the map ad is the tangent map of Ad. Let m € N. Then obviously for
all z € G the map Ad (2) leaves the finite dimensional subspace U,,(G) of U((G) invariant. Let
Ad(2) :== Ad (2)|U,(G). Then Ad ,, : G — GL(U,,,(G)) is readily seen to be a homomorphism
of Lie groups.

Lemma 23.4 The tangent map of Ad ,,, : G — GL(U,,(G)) at e is given by X +— ad (X)|U,,(G).
Proof. Let Y1,....Y, € g, 0 < k < m. Then it suffices to show that for all X € g we have:

Ad pu(X)Y7 -+ Vi = ad (X)Y; -+ - Vi

Now this is seen as follows:
d
Ad e (X)(Y1---Yy) = %Ad (exptX)Y1 Yk |it=0

d
= d—(Ad (exp £X)¥1) - Ad (exp £X)Vi) |eo

= ZthI Y1 [Ad (exptX)Y;] Y41+ Yili=o

= zm ad X (V)] Vg Vi

Since ad X is a derivation, the last member of this equation equals ad X (Y7 ---Yy). O

Lemma 23.5 Let u € U(G). Then the following statements are equivalent.
(a) wis Ad(G)-invariant;
(b) w is ad g-invariant;

(c) u belongs to the center of the algebra U(G).

Proof. (a) = (b): suppose that v € U, (G) is Ad(G.) invariant. Then it follows that
Ad ;s (X)u =0 for all X € g. Now use that ad (X)u = Ad (X )u.

(b) = (c¢): suppose that u is ad X-invariant. Then Xu — uX = ad Xu = 0 for all X € g.
Hence u commutes with a set of generators of the algebra U(() so that it must belong to the
center.

(c) = (a): Suppose that u € U(G) is a central element. Fix m € N such that u € U, (G).
Then Ad ,,..(X) = ad X u = 0 for all X € g. Hence Ad (exp X )u = eAdm+Xy = 4 for X € g (here
we have used Lemma 16.12). It now follows that Ad (z)u = u for all z € G.. 0

We shall now use the above to determine a particular bi-invariant differential operator of

SU(2).
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Lemma 23.6 The element
Y =0} + 0%+ 02

belongs to D(SU(2)).

Proof. Since SU(2) is connected, it suffices to show that ad (su(2)) annihilates ¥. For this it
suffices to show that ¥ commutes with oy, 09, 03.
Since ad gy is a derivation, it follows that

3
[01,%] = Z([O‘l, o;lo; + oj[o1,0;]) = 0+ (0302 + 0203) + (—0302 — 0203) = 0.

J=1

Likewise one sees that ¥ commutes with o3 and os. a

The element

1 1
€= 1% = (o} + 03+ 03) € D(SU(2))

is called the Casimir operator of SU(2).

The algebra isomorphism ¢ = mat ocad from su(2) onto so(3) induces an algebra isomor-
phism U(SU(2)) — U(SO(3)) which we also denote by ¢. The image of the Casimir operator
under this isomorphism is also denoted by C. From (25) it follows that in U(SO(3)) we have:

C = (R} + R} + R3).

This element belongs to the center of U(SO(3)). In view of Lemma 23.5 it therefore is a bi-
invariant differential operator on SO(3).

24 Smooth functions with values in a locally convex space

Let Q@ C R™ be an open subset and V' a complete locally convex space. A map f:Q — V is said
to be differentiable at a point a € Q if there exists a linear map D f(a): R® — V such that

J(a+ k)= f(a) = Df(a)h = ofh) (h—0).

The linear map D f(a), which is uniquely determined by the above property, is called the deriva-
tive of f at a. Here the ‘small oh’ notation is defined as follows. If ¢ is a V—valued function
defined on an open neighbourhood of 0 in R™ then

o(h) = olh) (h—0)

means that limy_.¢ % = 0. Equivalently, this means that for every continuous seminorm p on

V we have lim,_g ||h|| " p(¢(h)) = 0.
The function f : @ — V is said to have a directional derivative at @ € € in the direction

v € R\ {0} if

0.f = lim fla+ tvt) — f(a)

exists. The function is said to be partially differentiable in a with respect to the j-th variable if
e, f(a) exists (here ¢; is the j—th standard basis vector of R"). We write d; f for 0., .
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In a natural way Hom(R", V), the space of linear maps R® — V, may be equipped with
the structure of a locally convex space. If p is a continuous seminorm of V, then we have an
associated seminorm || - ||, on Hom(R", V') defined by

T, = ”51ﬁp p(Tx) (T € Hom(R", V)).
r||l=1

Thus ||Tz||, < ||T]|p||z]] for all z € R™. The space Hom(R", V'), equipped with the seminorms
| - ||, is a complete locally convex space of its own right.

A differentiable map f: Q@ — V is said to be Ct if Df : Q@ — Hom(R", V) is continuous. It
is said to be twice differentiable if D f is differentiable. Using recursion we define f to be C? if
its derivative D f is CP~1. We write C?(Q, V) for the space of C? maps Q — V, and put

Co(Q,V) =[] CPQ,V).
PeEN

Lemma 24.1 Let I C R be an open interval and f € CY(I,V). Then for all a,h € R with
a,a+ h € I we have:

p(fla+h) = fla) = f'(a)h) < || sup p(f'(a+th)— f'(a)).

0<t<1

Proof. We claim that

flat 0= f@) = @b =h [+ th) = Fla (30)

It suffices to prove the equation which arises if one applies a continuous linear functional n € V'*
to the above equation. The functional 7 passes through the differentiation and the integration
(use Proposition 6.3). Therefore the claim follows from elementary calculus.

The proof is completed by applying the estimate (9) to (30). O

Using the above estimate one can prove the following result in the same fasion as in the finte
dimensional case:

Lemma 24.2 Let p € NU {oc}. Then the function f:Q — V is of class C? if and only if for
all sequences ji,...,jp € {1,...,n} of length k < p the partial derivative:

Oy -+ 05.f

exists and defines a continuous function ) — V.

It is now straightforward to define the notion of a differentiable map and of a C? map X — V,
for X a smooth (finite dimensional) manifold (use local coordinates). Moreover, if f: X — V
is differentiable at a point @ € X then we define an associated tangent map T, f : T, X — V by

T,7(0) = S0
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for ¢ a differentiable curve in X with initial point a. Notice that this tangent map is linear and
uniquely characterized by the property that

77°Taf = Ta(nof)

for every continuous linear functional  on V. By using local coordinates one may now prove the
following versions of the chain rule:

Lemma 24.3 Let X,Y be smooth manifolds, and V, W complete locally convex spaces. Assume
that the map f : X — Y is differentiable at @ € X and that the map g:Y — V is differentiable
at b= f(a). Then the composition go f is differentiable at a, and its tangent map is given by:

Ta(go f) = Tbg oTaf.

Assume that f: X — V is diflerentiable at a € X and that A:V — W is a continuous linear
map. Then Ao f is differentiable at « € X and

To(Aof) = AoT,f.

Proof. Left to the reader a

Let PDO(X) denote the algebra of all smooth differential operators on X. The elements of
PDO(X) are linear endomorphisms of C'°°(X ). Let P € PDO(X ). Then by using local coordi-

nates we see that we may define an endomorphism P of C*(X,V) by

n(Pf)=P(nof)

for all f € C*°(X,V) and every continuous linear functional 1 on V. From now on we shall
suppress the tilde in the notations.

25 Smooth vectors in a representation

In this section we assume that G' is a Lie group and that 7 is a continuous representation of ¢
in a complete locally convex space V. A vector v € V' is called smooth if 2 — 7(z)v is a smooth
(i.e. C*°) map from G to V. The space V> of smooth vectors is a linear subspace of V' which
is readily seen to be G'—invariant.

We shall first discuss some examples of smooth vectors.

Example. Let X be a smooth manifold, equipped with a (continuous) action of the Lie group
(. We assume the action to be smooth, i.e. the map (¢,2) — gz, G x X — X is C*°. This
action naturally induces the following representation L in the space C(G). If ¢ € C*°(X),
g € G, then Lyp(x) = ¢(g ).

The space C*°(X') can be equipped with the structure of a locally convex space. If K’ C X
is a compact subset and P C PDO(X) a finite set of differential operators, then we define the
seminorm vp i by

vp k(p) = K sup | Pe(a)]-
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The set of seminorms defined in this way is complete, and thus C°°(X') becomes a locally convex
space.

Let us consider the particular case that X is an open subset of R”. For K C X compact and
m € N we define the seminorm vg ., on C*°(X) by

i = max sup | (5=) fio)l

lo|<m zei \OT

The set of seminorms v ,,, thus obtained is already complete, so that it determines the topology
of C°°(X). It is well known (and not hard to prove) that the space C'°°(X) is complete.

One may limit the set of seminorms to a countable set, by restricting K to a sequence K; of
compact subsets with K; C K ;41 and U;K; = X. Thus one sees that C'°°(X ) is a Fréchet space.

We now return to the case of an arbitrary smooth manifold X. Then by using local co-
ordinates one can show that the locally convex space C°°(X) is complete. Moreover, if X is
o-compact, i.e. X allows a countable covering by compact sets, then one can show that C*°(X)
is Fréchet.

Lemma 25.1 Let GG act smoothly on the smooth manifold X. Then the natural representation
L of G in the complete locally convex space C*°(X ) is continuous. Moreover, every function of
the space C*°(() is a smooth vector for L.

Proof. See appendix. a

Another example of smooth vectors in a representation is provided by the following. Let dz
be left Haar measure on (7, and L'(G) the associated Banach space of integrable functions. The
left regular representation L of ¢ in L'((¥) is continuous.

Lemma 25.2 Let ¢ € C°(G). Then ¢ is a smooth vector for the left regular representation
(L, LH(G)).

Proof. See appendix. a

The following result garantees the existence of many smooth vectors in a representation.

Lemma 25.3 Let f € C°(G). Then 7(f) maps V to V.

Proof. Fix v € V and consider the continuous linear map: A : ¢ — w(p)v, L1(G) — V. Let
f € CX(G). Then F: f — L,f is a smooth map G — LY(G), by the previous lemma. The
composition Ao F': G — V is smooth by Lemma 24.3. But:

Aol (z)=A(Lof)=n(Lyf)v=7(a)r(f)v
by Lemma 6.7, and it follows that z — 7(2)7(f)v is smooth. Hence 7(f)v € V™. 0
Remark. A smooth vector of the form n(f)v, with f € C*(G), v € V, is called a Garding

vector in V. A famous result of Dixmier and Malliavin, cf. [DM] !, asserts that if V' is a Fréchet

space, then every smooth vector is a Garding vector.

1[DM]: J. Dixmier, P. Malliavin: Factorisations de fonctions et de vecteurs indéfiniment différentiables. Bull.
Sci. Math. 102 (1978), 307 — 330.
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Corollary 25.4 The subspace V= of smooth vectors is dense in V.

Proof. This follows from combining the previous lemma with Lemma 6.8. a

Corollary 25.5 If 7 is a finite dimensional representation then all of its vectors are smooth:
V = V. Moreover, 7 is a Lie group homomorphism as a map G — GL(V').

Proof. The first assertion is an immediate consequence of the previous corollary. As for the
second one, if v € V, € V* then 2 — n(7(z)v is a smooth function G — C. This implies that
the coefficients of 7(#) with respect to a fixed basis of V' depend smoothly on « € GG. Hence 7
is smooth as a map G — End(V). Since GL(V) is an open subset of End(V'), this implies that
7 is smooth as a map G — GL(V). o

The algebra U(G) acts in a natural way on the space of smooth V—valued functions on G.
This allows us to define, for P € U(G) and v € V> :

T(P)v:= P(a — 7m(2))|r=e-
One readily verifies that 7(P) belongs to End(V*), the space of linear endomorphisms of V.
Moreover, the map P +— w(P) is a homomorphism of algebras U(G) — End(V>°). The space
V*is a U(G)-module in this way.
If X € g, v € C, then retracing the definitions we see that

(X )= %ﬂ(exth)vh:o. (31)

From (26) and the fact that 7 : U(g) — End(V*°) is an algebra homomorphism it follows that
for all X,Y € g we have:

T([X,Y]) =a(X)n(Y) —n(Y)r(X) on Ve

Example. Let R be the right regular representation of G on C*°(G'). All vectors of this represen-
tation are smooth, so we have an associated algebra homomorphism R : U(G) — End(C*(G)).
Let f € C*(G), X € g, then from (31) we see that

R(X)f(x) = %f(ac exptX)i=o = Ix f(z) = X f(z).

Thus we see that R = I on g. Since g generates the algebra U(g) this implies that for all
D € U(G) we have:
R(D)=D on C(G). (32)

26 Lie algebra representations

Let W be a complex linear space. Then by a representation of g in W we mean a Lie alge-
bra homomorphism p : g — End(W), i.e. pis a linear map such that for all X,Y € g we have:
p([X,Y]) = p(X)p(Y)—p(Y)p(X). By the universal property p extends to an algebra homomor-
phism U(ge) — End(W), turning W into a U(ge)-module. Conversely, if W is a U(ge)-module,
then we may define a representation 6 of gin W by 6(X) : w — Xw, W — W for X € g.
Thus we see that g representations are in one to one correspondence with U(ge)-modules. In
the literature it also customary to speak of g-modules instead of U(g)-modules. Likewise, if
(m,V) is a (continuous) representation of (7, then the topological linear space V' together with
the map G x V. — V, (2,v) — m(z)v is called a G-module.
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Finite dimensional representations

If 7 is a finite dimensional representation, then by Corollary 25.5 7 is a Lie group homomorphism
G — GL(V). Let 7, : g — End(V') be the associated homomorphism of Lie algebras. Then from
(31) we readily deduce that 7(X) = m.(X). Hence in a setting like this we will from now on
suppress the star in the notations.

Thus we see that a finite dimensional G-module V' is automatically a g—module. Let 7 denote
the associated representations of GG and gin V. Since 7 : g — End(V') is the tangent map of the
Lie homomorphism 7 : G — GL(V), it follows from Lemma 16.12 that for all X € g we have:

mlexp X) = X, (33)
When G is connected this equation allows us to compare the G— and the g-—module structures
on V.
Lemma 26.1 Assume that GG is connected, and let V, V' be two finite dimensional G—modules.
(a) Let W be a linear subspace of V. Then W is G—invariant if and only if W is g-invariant.
(b) The G-module V is irreducible if and only V is irreducible as a g—module.

(¢c) LetT :V — V' be alinear map. Then T is G—equivariant if and only if T is g—equivariant.

Proof. Write © and 7’ for the representations of G in V and V'’ respectively.

(a): If W is g-invariant, then it follows from (33) that W is invariant under the group G,
which is generated by expg. But G. = G, since GG is connected. The converse implication is
proved by differentiating 7(exp(¢X)) at ¢ = 0.

(b): This is now an immediate consequence of (a).

(c): Suppose that T is g-equivariant. Then for all X € g we have: 7/(X)oT = 7n(X)oT,
hence 7/(X)"oT = 7(X)"o T for all n € N, and it follows that

67T/(X) o' =To €7T(X).

From this it follows that 7'(2) T = Tom(z) for all € exp g, and hence for € GG, = G. The
reverse implication follows by a straightforward differentiation argument as in part (a) of this
proof. a

Lemma 26.2 Let GG be a connected compact Lie group, and let © be a representation of G in
a finite dimensional Hilbert space V. Then 7 is unitary if and only if

(X)) = —n(X) (34)

for all X € g.

Proof. We recall that 7 : G — GL(V) is a Lie group homomorphism. Hence for all X €

g, t € R we have:
m(exptX) = !X,
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If 7 is unitary, then w(exptX )* = w(exp(—t.X)), hence

t?T(X)* — e—t?T(X)‘ (35)

€

Differentiating this relation at ¢ = 0 we find (34). Conversely, if (34) holds, then (35) holds for
all X,t and it follows that 7(2) is unitary for € exp g. This implies that =(z) is unitary for
r€G. =G, m|

27 The action of bi-invariant differential operators

We now come to an important aspect of harmonic analysis on a Lie group G, involving the
action of D(G) on the space V' of m-smooth vectors in the complete locally convex space V.

Lemma 27.1 Let D € U(G). Then for all x € G we have:
m(z)r(D)r(z™) = 7(Ad (2)D) on Ve

In particular, it D € D(G), then 7(D) commutes with the action of G on V.

Proof. 1t suffices to prove the first assertion for the generating elements D = X € g. On V*°
we have:

m(z)om(X)om(z™h) = 7(a)o [%ﬂ(exp tX)|t=o] om(z™1)

= [%ﬂ'($) om(exptX)om(z™")]i=o0

= %ﬂ(exp(tAd (2)X))lt=0 = m(Ad (2)X).

Corollary 27.2 Let (7,V) be finite dimensional and irreducible. Then the algebra D(G') acts
by scalars on V.

Proof. This follows from the previous lemma in combination with Schur’s lemma (Lemma
3.9). O

Let 7 be finite dimensional and irreducible. Then it follows from the above lemma that there
exists an algebra homomorphism x, : G — C such that 7(D) = x(D) Iy. The homomorphism
Y is called the infinitesimal character of .

Relation to the Peter-Weyl theorem

For the rest of this section we assume that G is a compact Lie group. Our goal is to relate the
action of D(G') on C'*°(G) to the Peter-Weyl decomposition

~

L3(G) = By CG)s.
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If 6 € G, then the elements of C(G)s are finite linear combinations of matrix coefficents of
6, hence smooth functions (cf. Corollary 25.5). The C'(G)s are finite dimensional and right
invariant; hence if ¢ € C'(G)s, then @ : 2 — R(z)p is a smooth map G — C(G)s (use Corollary
25.5 once more). Since C(G)s is finite dimensional this implies that & is smooth as a map
(G — L*((G). Thus we see that the spaces C'((i)s consist of smooth vectors for (R, L*(G)).

Let D € U(G). Then from the discussion in the final example of Section 25 we have that
R(D) = D on C(G)s. In particular we see that C(G)s is invariant under the left invariant
differential operators.

Proposition 27.3 Let § € (. Then C(G)s is a finite dimensional subspace of C°°((), consisting
of smooth vectors for (R, L*(G)). Moreover, C(G)s is invariant under the action of all left
invariant differential operators. Finally if D € D(G), then D acts by the scalar xs(D) on C(G)s.

Proof. By the above discussion it remains to establish the last assertion. The right regular
representation restricted to C(G)s splits as a finite direct sum of copies of 6. From this it follows

that R(D) acts by the scalar ys(D) on C(G)s. Now use that R(D) = D on C*(G), by (32). O

Thus we see that the algebra D(G') admits a simultaneous diagonalization over the Peter-
Weyl decomposition. The eigenvalues are given by the infinitesimal characters ys,6 € G.

28 Representations of su(2)

Let C be the Casimir operator of SU(2). Then we shall compute the scalar x,,(C) := x»,(C) by
which C acts on the representation space of the irreducible representation ,, of SU(2) introduced
in Section 3.

We recall that the representation space of 7, is the space P,(C?) of polynomial functions
C? — C which are homogeneous of degree n. The action of SU(2) on this space is given by

mn(2)p(2) = p(a™'2).
Let X = (X;;) be a matrix in su(2). Then the associated infinitesimal representation 7, of su(2)
is given by

ra(X)p(2) = (e 2]

dt
Applying the chain rule to the right side of the above equation we obtain:
d _ 0 d _ J
m0p) = e M emoz] S+ [T emoz| S
J J
= —[Xu=n + Xlzzz]—p(z) — [Xo121 + X2222]—p(2)- (36)
0z 07

This equation allows us to compute the action of the generators oy, 02, o3 of the algebra U(SU(2)).
However, for reasons that will become apparent in a moment, it will be more convenient to use
- _1

the generators o and X* = 5(£02 +i03), ie.

_ (o000 L (01
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Recall that the polynomials
pr(21,29) = 2078 26 (0<k<n)
constitute a basis for P,(C?). Using (36) one sees that the action of oy on this basis is given by:
aipr = i(n = 2k)py (37)

Here we have suppressed the 7, in the notation; we will continu to do so.
The action of the other two basis elements is described by

ap _ ap
Xtp=—z—— X" p=—z-—.
P zZ2 82’17 P Eal 82’2
Hence
Xtpr=(k=n)pes1, X pu=—kpe_1. (38)

These equations hold for all 0 < k£ < n if we agree to write py = 0 for £ < 0 and k& > n.
We are now ready to compute the scalar x,(C).

Lemma 28.1 Let n € N. Then )
Xn(C) = Zn(n +2). (39)

Proof. 1t suffices to compute the action of C on pg. One readily verifies that in U(SU(2)) we
have:
03 +oi=-2X"XT+XTX").

In view of (38) the above element maps py to —2npg. Using this in combination with (37) we
see that ¥ = 37, 0]2 acts by the scalar —n% — 2n = —n(n +2) on po. Hence C = —1/4 % acts by
the scalar (39). o

The invariant inner product

We end this section with the computation of a SU(2)-invariant inner product on P,(C?). In
view of Lemma 3.13 this inner product is determined up to a positive factor. Thus it is uniquely
determined if we require that ||po|| = 1. Applying Lemma 26.2 to the representation m, of SU(2),
we see that the action of oy is anti-Hermitian with respect to the inner product. This implies
that its eigenspaces are mutually orthogonal. Hence the pg constitute an orthogonal basis for
P,(C?), and it remains to compute their lengths. Put ¢ = ||px||>. Then c¢g = 1 by assumption.
The element 09 = X~ — X T acts anti-symmetrically, hence for all £ > 0 we have:

(X~ =X, peg1) = (i, (X1 = X7 )ppga)-

Using that (X~ =X T)pr = —kpr—1+(n—Fk)pry1 and (X T =X "prr1 = (k+1—n)pra+(k+1)py,
we see that this leads to:

(n—k)egsr = (k4 1)cg (0 <k <n).
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This enables us to solve the ¢ recursively from ¢ = 1, and we find:
-1
n
cp = .

Lemma 28.2 Let P,(C?) be equipped with an inner product for which the representation 7,
of SU(2) is unitary. Then the polynomials

We have proved:

pr(z) =272 (0<k <n)

are mutually orthogonal, and

1/2

sl

The following corollary will be used at a later stage.

Corollary 28.3 The polynomials (X ~)*p, constitute an orthogonal basis for P, (C?). Moreover,

1/2
Xl (n) ”
o] K

Proof. From repeated application of (38) it follows that

n'

= 0 () o

Now use the above lemma to complete the proof. a

(X_)kpn = (_1)k

29 Harmonic analysis on a homogeneous space

In this section we assume that G is a compact topological group, and that H is a closed subgroup.
Then GG/ H is a compact topological space. Let p: G — G/H be the canonical projection. Then
the pull-back map p* : f — fop maps C(G/H) injectively into C(G). The image of this map
equals the space C(G) of right H-invariant continuous functions on . Via the topological
linear isomorphism p* we shall identify C(G/H) with C(G)H.

Let I be the normalized Haar integral on . Then one readily verifies that the restriction
I of I to C(G/H) is a positive Radon integral on G/ H which is invariant for the left regular
representation L of G on C(G/H). Moreover, I(1) = 1.

Let L*(G'/H) be the completion of C'(G'/H ) with respect to the L?~inner product associated
with 7. Then the left regular representation extends to a unitary representation of G on L?(G/H).
Thus the theory of Section 10 may be applied, and we see that we have the left invariant Hilbert-
decomposition

LAG/H)= G, g LG/ H)s. (40)
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Here L?((G/H)s denotes the space of isotypical left Gfinite vectors of type 6 in L?(G/H).

Notice that the L? structure is defined in such a way that the map p* extends to an isometric
and equivariant embedding of L*(G/H) into L*(G), the image being the subspace of right H-
invariant functions. Let L%(G) denote the space of isotypical left G—finite vectors of type é in
L*(G). Then L%(G) = C(G)sx, cf. Exercise 10.6. By equivariance we have that

LA(G/H)s = L3 (G)Yn L*(G/H). (41)
If 6 € ¢, define the map S5 : End(Hs) — C(G) by
Ss(A)(x) = tr(8(x)"tA).

Then one readily verifies that Ss intertwines the representations 6 @ 6* and L x R of G x G. In
analogy with Corollary 4.4 we now have:

Lemma 29.1 The map \/d(8)Ss is an equivariant isometry from End(Hs) onto L3 ().

Proof. It remains to verify that \/d(6)9s is an isometry. For this we compare with the map
Ts of Corollary 4.4. The map v : A — A’ is an isometry from End(Hs) onto End(H}). Moreover,
one readily verifies that Ss = Tsorv. The result now follows from Corollary 4.4. a

By equivariance 55_1 maps the space (41) bijectively onto the space V' of endomorphisms
A € End(Hg) with Ao é(z)~! = Aforall # € H. By unitarity of § this condition on A is equivalent
to the condition that A = 0 on (HX)L. Therefore, restriction to HY induces a bijective linear
map V =~ Hom(HZ, Hs). We thus view the latter space as a subspace of End(Hs). It follows that
Ss restricts to a linear isomorphism

Ss : Hom(HY  Hg)=-L%(G/H)s.

Let 6 ® 1 be the representation of G on Hom(H¥, Hs) defined by 6 @ 1(2)A = §(x)A. Then the
above map S5 intertwines § @ 1 and the left action L of G on L*(G/H )s.

In particular it follows that L?((//H )s is non-trivial if and only if § has non-trivial H-fixed
vectors. Hence the decomposition (40) ranges over the set Gy of 6 € ¢ for which HE £ 0.

For 6 € GH let ns denote the dimension of the space Hgl. Then ng > 1. Let uq,...,u,, bea
basis of HH. Then from the natural (equivariant) isomorphisms

Hom(H}', Hg) ~ "%, Hom(Cu;, Hs) ~ ¢72, Hy

one sees that 6 ® 1 is a multiple of ¢ : in fact 6 ® 1 ~ ngd. Thus ns = dim Hgl may be interpreted
as the multiplicity of the representation é in L?(G/H).

Of particular interest is the case that dim Hgf =1forall § € Gy. We say that the decompo-
sition (40) is multiplicity free in this case. For every ¢ € Gy fix a non-trivial element us € Hgf
of unit length and define the map ss : Hs — L2(G/H) by ss(v)(x) = /d(8) (v|6(x)us). Then it
follows from the above discussion that ss is an equivariant isometry from Hs onto LQ(G/H)g.

We now consider the particular case that GG is a compact Lie group. Then by Lemma 19.2 the
group H is a Lie subgroup. One can show that G/H carries the structure of a smooth manifold
such that the action map G x G/H — G/H is smooth, and such that p* maps C°(G/H)
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bijectively onto C*°(G)H (for details we refer the reader to [BD]'?, Section 1.4. Thus, by the
above discussion and the results of Section 27 we have that

LXG/H)s C C=(G/H) C C(G).

Moreover, the algebra g acts from the left by first order differential operators on L*(G/H )s.
This action lifts to an action L of U(G). If D € D(G), then L(G) is a left invariant differential
operator on C°(G//H), which diagonalizes over the decomposition (40). On L*(G/H)s the
action is given by the scalar ys(D).

30 Harmonic analysis on the sphere

In this section we study harmonic analysis on the two dimensional sphere from the viewpoint of
group theory. We shall compare our results with the classical theory of spherical harmonics.
The relation to group theory is rooted in the fact that S2, the unit sphere in R3, is an orbit
for the natural action of SO(3) on R®. Let €1 be the first standard basis vector in R®. Then the
stabilizer of e in SO(3) is the image of SO(2) under the injective group homomorphism

L S0(2) — SO(3), AH(é 2)

Via this homomorphism we view SO(2) as a closed subgroup of SO(3). Thus we see that the
map a : SO(3) — S%, @ — x e; factorizes to an isomorphism

a:S0(3)/S0(2)==52.

Equip S? with the rotation invariant Radon measure of total measure 1, and let L%(5?) be the
corresponding L?-space. Then via the left action L the group SO(3) acts unitarily on L*(S?).
Moreover, the map a* : f — foais an equivariant isometry from L?(.5%) onto L%(SO(3)/SO(2)).
Applying the theory of Section 29 we thus obtain the decomposition:

L*(8%) = Dmen L*(5%)m, (42)

where L?(5?%),, denotes the space of functions of left type 7g,,. The latter space consists of
smooth functions, and is equivariantly isomorphic to Hom(P,,,(C?)5°(), P, (C?)). Note that
SO(2) = expRR;. Hence the preimage of SO(2) under the epimorphism ¢ : SU(2) — SO(3) of
Proposition 20.2 equals T. It follows that

Py, (CH50Q) = p, (C?)T. (43)

We recall that the action of T diagonalizes over the polynomials px = zfm_kzé“, which constitute

a basis of Pgm(CQ). The action of T' on pyg is trivial if and only if & = m. Hence the dimensions
of the spaces in (43) equal 1. Thus we see that L%(S?%),, is isomorphic to the SO(3)-module
P2 (C?) (for every m € N). In particular it follows that the decomposition (42) is multiplicity
free, and that its m—th componentis 2m + 1-dimensional.

The left action induces an algebra homomorphism from U(SO(3)) to the differential operators
on 52. The image L(C) of the Casimir under this map is a second order differential operator which
diagonalizes over the decomposition (42); in particular it acts by the scalar y2,,(C) = m(m +1)
on the component L%(5%),,.

12[BD]: T. Brocker & T. tom Dieck, Representations of compact Lie groups. Springer-Verlag, 1985

72



31 Spherical harmonics

In this section we compare the results of the previous section with classical spherical harmonics.
The natural action of SO(3) on R® induces a representation L of U(SO(3))in C°°(R?) by means
of differential operators. Let a € R®, and let R € so(3) be the matrix of the map z — a X .
Then the first order differential operator L(R) is given by:

d .
A Ra)li=o = Df(x)(—Ra)

= gradf(z)-(z X a) = det(grad f(z), z,a).

Substituting @ = ey, 3, e3 respectively one thus finds:

L(R)f(x)

0 0
LiRy) = wag = @2,
0 0
(Rz) = 8$3 R 8$1
0 0
L = Z9— — 44
(R3) T2 Dy T15— 8962 ( )
We now recall that the Casimir is given by C = —(R% + R% + R%) Hence
3
— Y L(R;)* = —2’A+ E(E+1), (45)

i=1

where A is the ordinary Laplacian, where z? denotes multiplication by z? = > x?, and where
FE denotes the FEuler operator:

0 0

0
E—wl 82+$38—$3.

D2, + s

For m a non-negative integer let P, (R®) denote the (finite dimensional) space of homogeneous
polynomial functions R*> — C of degree m. Then E acts by the scalar m on P,,(R?). Let

the space of harmonic polynomials in P,,(R?). This space is non-trivial, since it obviously con-
tains the function: Y(z) = (22 4 i23)™

Moreover, the space ), is invariant under the action L of SO(3). In particular L(C) leaves
this space invariant, and by using (45) we see that L(C) acts by the scalar m(m+1) on it. From
general theory we know that the finite dimensional SO(3)-module %, splits as a direct sum of
irreducibles. If 7o, € SO(3)" occurs in $,, then we must have y5(C) = m(m + 1). This implies
that & = m. Thus $,, is equivalent to a multiple of the irreducible module Pgm(CQ). In fact we
have:

Lemma 31.1 Restriction to S? induces an equivariant isomorphism of $),, onto L*(S?),,. In
particular the SO(3)-module $,, is equivalent to the irreducible module P,,,(C?).

Proof. Consider the restriction map

P S — C2(5%), f— fIS*.
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It maps $,, equivariantly and injectively into ('°°(S?). By the above discussion its image is a
non-trivial subspace of L%(5%),,, and since the latter module is irreducible, it follows that the
image of p equals L%(S?),,. ]

We shall now use our insight in the structure of the representations 73, to compute the
elements of L2(5?),, explicitly in terms of spherical coordinates ¢,8 on $?. These coordinates
are determined by the relations:

x = (cosf,sin f e¥) (0<e<2r,0<6<7).

Here we identify the zy,z3-plane with the complex plane via (zg,23) — 22 + iw3.13

In spherical coordinates the function Y = Y52 is given by:
Y = (sin )™ e"™. (46)

It follows that the rotation exp(tyRq) acts by the scalar e~ on Y. Via the epimorphism
¢ : SU(2) — SO(3) defined in Proposition 20.2 we may view C*°(R®) as a SU(2)-module. Recall
that o(t,) = exp(2¢Ry). Hence t,, acts by the scalar e=2% on Y.

By the results of Section 30 there exists an equivariant isomorphism

T : L*(85%),,—=> Py, (C?) (47)

of SU(2)-modules. The image T(Y) of Y is a non-trivial element of Py,,(C?) on which ¢y, € T
acts by the scalar e=2™%. This implies that T(Y) is a non-trivial multiple of py,, = 22™. Each
polynomial Fzm(iX_)kpzm (0 <k <2m)is a non-trivial multiple of py,,—x. These polynomials
constitute a basis for P,,,(C?). The corresponding functions

Yk = X FY  (0<k < 2m)

therefore constitute a basis for L%(.5?),,.

We recall that ¢, acts by the scalar ¢! h=2m)¢ oy o 1. Hence the rotation exp(1Ry) acts
by the scalar e/*=")¥ on ¥, . This implies that in spherical coordinates Y; must be of the
form:

Yy = €% £1.(6) (—=m <k <m). (48)

Notice that the function Y, is invariant under rotations around the x;—axis. Its level curves
thus divide the sphere into spherical zones. The function Y{ is therefore called a zonal spherical
function.

The p-image of X~ = (03 — io3) in so(3) equals Ry — iR3. Hence we obtain:

Yok = (iRy + R3)*Y  (0<k < 2m). (49)
Using (44) and a substitution of variables, one finds that in terms of spherical coordinates the
operator (iRy 4+ Rs) is given by

.0 J
1Ry + Ry = —e7"(— —icotfd —).
2T (59 899)

13Usually a cyclic permutation of these coordinates is used, but the present choice is more convenient for our
purposes

74



Combining this with (46), (48) and (49) we see that
fm = (sin @)™ (50)

and the fi are related by the formula

d
—%—kcot@szfk—l (|k] < m).

We now substitute s = cos . This substitution is allowed, since 8 — cos# is a monotonically
decreasing function on [0, w]. If we write py(s) for fi(#) viewed as a function of s, the above

dp ks
(1—s%)1/2 ( ko = pk) = pp_q.

relation becomes:
ds
This relation may be simplified by putting ug(s) = (1 — s2)*/2 pi(s). It then becomes:

du
ds

From (50) we see that

Hence

and it follows that

m—k

() = (1= 2 ey (< m).

dsm—k

One normally uses a different normalization for the pg. Put

_ 82)—k/2 dm—k

koo
Pr(s) = 2momt  dsm—k

(s* =)™ ([k[ < m).

Then P, = PY is called the m—th Legendre polynomial and the P (|k| < m) are called
its associated Legendre functions. Notice that the chosen normalization has the effect that
P,(1)=1.

It follows from the above discussion that the functions

YF = e* PF (cosd)
constitute a basis for L?(.5%),,. This basis is not yet orthonormal. Put

B (2m + 1)(m+ k)2
Vo= (=1 dr(m — k)! i

m

(51)
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Proposition 31.2 The functions Y,*, m € N, |k| < m constitute a complete orthonormal sys-
tem for L*(5%). Here S? is equipped with the rotation invariant measure for which S? has surface

47.

Proof. The spaces L%(5?) are orthogonal. Thus it suffices to show that for a fixed m the VX
constitute an orthonormal basis for L*(5%),,.

From the above discussion it follows that V¥ = (i X ~)™~kY,”*. We recall that the isomorphism
T of (47) maps YTZL onto a multiple of py,,. After composing with a suitable scalar multiplication
we may as well assume that T(Y,™) = py,,. Then T(Y*¥) = (iX )" *p,,,, by equivariance.

The image of the inner product on L%(S?),, under 7 is an inner product on Py, (C?) for
which mg,, is unitary. Thus by Corollary 28.3 we see that the Yﬂ’fb are mutually orthogonal, and
their lengths are given by:

IVE1? _ X" o 2 [ 2m
= = =[(m— k) . (52)
Dedllk P20 |2 m—k
The function Y = (sin #)™e!™% has L%*norm
2w ™ M on 12
_ 2 _ gamtl g, (27m))
Y2 = /0 /0 |Y (0, ¢)|“sinf dode = 27r/0 (sin 6) do = 4Fm.
Hence A
- T
Yol = ———.

By combining the last equality with (52) it now follows that the Y% have length 1.

Final comments

The Casimir of SO(3) is closely related to the spherical Laplacian A*. If f € C°°(52), let f
denote its extension to R® defined by setting: f(tac) = f(x), * € $?,t > 0. Then the spherical
Laplacian is defined by
A*f = (Af)|S%

It is a second order differential operator on $? which annihilates the constants and is formally
self-adjoint. In addition, it is rotation invariant. (By these properties it is in fact characterized up
to a constant factor.) From (45) we immediately see that L(C) = —A*. A function f € C*°(5%)
which is an eigenfunction for the spherical Laplacian is called a surface spherical harmonic.
According to the theory developed above, the Hilbert space L%(S?) has a complete orthonormal
system of surface spherical harmonics. Explicitly such a system is given by (51). The eigenvalues
of the spherical Laplacian are A,, = —m(m+ 1), and the eigenvalue A,, occurs with multiplicity

2m + 1. For more details, background material and information about applications we refer the
reader to [BD]'*, Section I1.10, [T] 15, Chapter II and [HC].1

4[BD]: T. Brocker & T. tom Dieck, Representations of compact Lie groups. Springer-Verlag, 1985
13[T]: A. Terras, Harmonic Analysis on symmetric spaces and applications I. Springer-Verlag, 1985
1S[CH]: R. Courant & D. Hilbert, methoden der Mathematischen Physik I. Edition 3. Springer-Verlag, 1968.
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32 Appendix

In this appendix we give the proofs of Lemmas 25.1 and 25.2. We start with the following
lemma.

Lemma 32.1 Let X,Y be smooth manifolds, and let f € C*°(X xY'). Then the map F': X —
C*(Y) defined by F(z)(y) = f(z,y) is smooth.

Proof. The assertion is local in the z—variable. Hence we may as well assume that X is an
open susbset of R™.

By using smooth partitions of unity over compact subsets of ¥ we see that it suffices to
prove the assertion for functions f with suppf C X x U, where U is a chart in Y. Thus we may
as well assume that Y is an open subset of R”. A complete set of seminorms for C*°(Y') is then
given by

(o) = AN
vick(e) = max[l(5) el
Here k € N, K is a compact subset of Y, and || - ||k denotes the sup-norm over K.

We will first show that F is continuous. Fix a¢ € X. By uniform continuity of the partial

derivatives (aa—y)ﬁf over compact subsets of X x Y we have

. 0 J
lim [(5,)"F(@) = (5. F@)llx = 0.
for K C Y compact. From this it follows that lim, ., vi x(F(2) — F(a)) = 0, whence the
continuity of F in a.
Next we show that F' has first order partial derivatives. Let a € X and v € R™. Then by
the mean value theorem we have

UG et 10.9) = (P ()] = 05 (P fla+ 7(t.p)eny)

with 7(¢,y) between 0 and ¢. If y is restricted to a compact subset of Y then the above expression
tends uniformly to (aa—y)ﬁ@ff(a, y) as t — 0. From this it follows that

i Fla+tv)— F(a)

t—0

= 35(]‘((1,)

in C*°(Y'). Hence I has the directional derivative 8, F(a): y — 02X f(z,y).
The directional derivatives 9, F are continuous by the first part of the proof. Hence F is C'.
By using an obvious induction one may now complete the proof. a

Proof of Lemma 25.1. Let ¢ € C*(X). Then f(g,2) = Lyp(z) = p(g~'z) is a smooth
function on ' X X. Applying the above lemma we obtain that ¢ — F(g) = L,¢ depends
smoothly on ¢ € G. a

It remains to prove Lemma 25.2.
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Proof of Lemma 25.1. Let ¢ € C°((G), and define the map F : G — LY(G) by F(z) = L.
Replacing ¢ by a left translate if necessary we see that it suflices to establish the smoothness
of F'in a neighbourhood of e. This can be done as follows. Fix a function ¢ € C2°(G) such
that ©» = 1 on an open neighbourhood of supp¢. Select an open neighbourhood U of e such that
1 =1 on supp L,y for every o € U.

The map T : C°(G) — LY(G), ¢ — y is continuous linear. Using Lemma 25.1 and Lemma
25.3 we now see that T o F' is a smooth map G — LY(&). In particular this map is smooth on
U. But for # € U we have: T'o F(2) = T(Lyp) = LopF (). a

33 Erratum A

In Section 2, p.2 it is asserted that every homogeneous G-space is a coset space, i.e. of the form
G/H with H a closed subgroup of GG. This is true if G is compact, but in general one needs an
additional requirement on the action.

All the topological spaces occurring in this section are assumed to be HausdorfT.

A continuous map f : X — Y between topological spaces is called proper if the preimage
f7H(C) of every compact subset C' C Y is compact.

Lemma 33.1 Let f : X — Y be proper, and assume that Y is locally compact. Then f is
closed, i.e. the image of any closed subset of X is a closed subset of Y.

Proof. Let S C X be closed. Let t be a point in the closure of f(.9). Then there exists
a compact neighbourhood C of ¢ in Y. Its preimage f~1C is closed in X. Hence f~1C' N S is

compact in X. The image of this set under f is compact in Y. But this image equals C' N f(9).
Hence C'N f(.9) is closed. This implies that ¢ € f(.9), hence f(5) is closed. 0

Let X be a topological space and GG a locally compact topological group acting on X. The
action is called proper if the action map G X X — X is proper.

Lemma 33.2 Suppose that the action of G on X is proper and transitive. Let x € X, and let
G, be the stabilizer of x in G. Then the natural bijection G/G, — X is a homeomorphism.

Proof. Let p : G — G /G, denote the canonical projection. The map a : g — gz,G — X
is surjective, by transitivity of the action. Hence X is locally compact. The induced map
b:G/G, — X is a bijection. If U C X is open then a™1(U) is open and right G,—invariant,
hence b=1(U) = p(a=!(U)) is open. Thus we see that b is continuous. To prove that it is a
homeomorphism, it suffices to show that b is closed. For this it suffices to show that a is closed.
Now this is a consequence of the properness of a.

Remark. If a compact group G acts continuously on a topological space, then the action is
automatically proper. Hence if the action is transitive, then X is homeomorphic to a quotient
of G by a compact subgroup.

34 Erratum B

The final argument in the proof of Lemma 16.2 is not complete. The purpose of this section is
to complete it.
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Let X,Y be smooth manifolds, and v, a smooth vectorfield on X, depending smoothly on a
parameter y € Y. We shall investigate how the flow of v, depends on y.

We first explain what smoothness of the parameter dependence means. For every z €
X,y € Y we have vy(z) € T, X. Recall that we have a canonical identification T(, ,)(X x V) ~
T, X & T,Y. Via this identification we view w(z,y) = (v,(7),0) as an element of T{, ,,(X x V).
Thus w: X XY — T(X xY)is a vectorfield on X x Y. The smoothness requirement on v now
means that w is a smooth vector field.

Let v = (11,72) : I — X X Y be an integral curve of w with initial point (z,y). Then from

F(1) = (v (11(1)) , 0)

we see that §5(¢) = 0, hence v5(t) = y for all ¢t € I. Moreover, we now see that 7y is an integral
curve of v, with initial point z.

Let @ CR X X x Y be the (open) domain of the flow ® of w. Then it follows that for every
y € Y the flow &, of v, is given by ®,(¢,2) = ®(¢,z,y). Moreover, its domain £, is given by
Qy x{y} = QANR x X x {y}. Thus we see that ®, depends smoothly on y € Y.

We now consider the particular case of a Lie group . Then the left invariant vector field vx
on (G depends linearly, hence smoothly, on X € g. Its flow is given by (¢,2) — zax(t),RxG — G.
From the above discussion we see that the map (¢,2,X)— zax(t), R x G X g — G is smooth.
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