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1 Lie groups
Definition 1.1 A Lie group is a group (G, ·, e) equipped with the structure of a smooth (i.e.,
C∞) manifold, such that the maps

(a) µ : G×G→ G, (x, y) 7→ xy,

(b) ι : G→ G, x 7→ x−1

are smooth maps between the indicated manifolds.

If a ∈ G we define left multiplication by a to be the map

la : G→ G, x 7→ ax.

Since la = µ(a, · ), we see that la : G → G is a smooth map. Furthermore, it is readily verified
that le = IG and that la−1 is a two-sided inverse to la. In particular, la is a smooth bijection with
smooth inverse, i.e., a diffeomorphism from G onto itself. This means that the smooth structure
of G is determined by any given local coordinate system on a neighborhood U of a. Indeed,
assume that (U, χ) is a chart at e. By this we mean that U is an open neighborhood of e in G,
and χ is a diffeomorphism from U onto an open subset of Rn, where n = dimG. For a given
a ∈ G, the set la(U) = aU is an open neighborhood of a in G and χ ◦ la−1 : aU → χ(U) is a
diffeomorphism, hence a chart at a.

Likewise, if a ∈ G then ra : G→ G, x 7→ xa is a diffeomorphism from G onto itself.

Definition 1.2 A homomorphism of Lie groups is a map ϕ : G→ H with G and H Lie groups
and such that

(a) ϕ is a group homomorphism;

(b) ϕ is a smooth map of manifolds.

Example 1.3

(a) (Rn,+, 0) is a Lie group.

1



(b) (R∗, ·, 1) is Lie group (here R∗ = R \ {0}).

(c) The circle group R/Z is a Lie group, and so is any product of the form (R/Z)r (the r-
dimensional torus).

(d) Let M(n,R) denote the linear space of n × n matrices with real entries. Then the set
GL(m,R) of invertible elements of M(n,R), equipped with matrix multiplication, is a
group (called the general linear group). We note that

GL(n,R) = {A ∈ M(n,R) | detA 6= 0}.

Since det : M(n,R) → R is smooth, hence in particular continuous, whereas R \ {0}
is an open subset of R, it follows that GL(n,R) is an open subset of M(n,R). On the
other hand, M(n,R) is a n2 dimensional linear space, hence a manifold of dimension n2,
and we see that GL(n,R) is an n2-dimensional manifold as well. Furthermore, since the
matrix multiplication map m : M(n,R) ×M(n,R) → M(n,R) is bilinear, it is smooth,
and it follows that its restriction µ to GL(n,R)× GL(n,R) is a smooth map GL(n,R)×
GL(n,R) → GL(n,R). By application of Cramer’s rule, one sees that the inversion map
ι : GL(n,R)→ GL(n,R) is smooth. Accordinlgy, GL(n,R) is a Lie group.

(e) Since the determinant map M(n,R) → R is polynomial in the matrix entries, it follows
that det : GL(n,R)→ R∗ is a homomorphism of Lie groups.

A given Lie group G possesses a particular coordinate system at its identity element e, given
by the exponentional map, which we shall characterize below.

Definition 1.4 A one-parameter subgroup of G is defined to be a Lie group homomorphism
α : (R,+, 0)→ G.

The condition on α means that α : R → G is a smooth map such that α(0) = e and
α(s+ t) = α(s)α(t) for all s, t ∈ R.

The following result can be proved by using the local existence and uniqueness theorem for
ordinary differential equations in Rn. For details we refer to a regular course on Lie groups, see
[4], [5].

Proposition 1.5 Let G be a Lie group. For every tangent vector X ∈ TeG there exists a unique
one parameter subgroup α : R→ G such that α′(0) = X.

We write αX = αGX for the unique one parameter subgroup of G specified in Proposition 1.5

Example 1.6 Since GL(n,R) is an open subset of M(n,R), the tangent space of TIGL(n,R)
may be canonically identified with M(n,R). In fact, if X ∈ M(n,R) then the corresponding
tangent vector X of GL(n,R) is given by

X =
d

dt

∣∣∣∣
t=0

(I + tX).
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From now on, we shall identify X with X and accordingly write TIGL(n,R) = M(n,R). It is
now a straightforward exercise to show that for X ∈ M(n,R) we have

αX(t) = etX =
∞∑
k=0

1

k!
tkXk.

Definition 1.7 For a Lie group G, the exponential map exp : TeG→ G is defined by

exp(X) = αX(1).

Lemma 1.8 The exponential map exp : TeG → G is smooth and maps 0 to e. In accordance
with the identification T0TeG = TeG, its tangent map at 0 is given by T0 exp = I : TeG→ TeG.
In particular, exp is a local diffeomorphism at 0.

The final assertion of the above lemma means that there exists an open neighborhood Ω of 0 in
TeG such that exp maps Ω diffeomorphically onto an open neighborhoodU of e inG.Accordinly,
the inverse (exp |Ω)−1 : U → TeG defines a chart of G at e.

Sketch of proof: By the theory of ordinary differential equations, the curve αX depends
smoothly on the parameter X. This implies that TeG × R → G, (X, t) 7→ αX(t) is smooth.
Restricting to t = 1 we see that exp is smooth. To prepare for the assertion about the tangent
map, we note that for X ∈ TeG and s ∈ R the map t 7→ αX(st) is a one-parameter subgroup.
Furthermore, by the chain rule,

d

dt

∣∣∣∣
t=0

αX(st) = sα′X(0) = sX,

hence αX(st) = αsX(t) by the uniqueness part of Proposition 1.5. It follows that

αX(t) = αtX(1) = exp tX,

for all X ∈ TeG and t ∈ R. Therefore,

T0(exp)(X) =
d

dt

∣∣∣∣
t=0

exp(tX) =
d

dx

∣∣∣∣
t=0

αX(t) = X.

This implies T0 exp = I. The final assertion follows by application of the inverse function theo-
rem. �

The exponential map behaves well with respect to Lie group homomorphisms.

Lemma 1.9 Let g : G → H be a homomorphism of Lie groups. Then the following diagram
commutes:

G
ϕ−→ H

expG ↑ ↑ expH

TeG
Teϕ−→ TeH.
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Proof. The proof is natural. Let X ∈ TeG. Then ϕ ◦αGX is a one parameter subgroup ofH, hence
of the form αHY for Y ∈ TeH given by

Y =
d

dt

∣∣∣∣
t=0

ϕ ◦αGX(tX) = Teϕ
d

dt

∣∣∣∣
t=0

αGX(tX) = Te(ϕ)X.

Evaluation at t = 1 leads to ϕ(exp tX) = expY = exp(TeϕX). �

With the notions introduced above we can now define the so-called adjoint action of G on
TeG.

Definition 1.10 Given an element g ∈ G we define the map Ad(g) : TeG→ TeG by

Ad(g)X =
d

dt

∣∣∣∣
t=0

g exp tXg−1.

Example 1.11 Let G = GL(n,R); then TeG = M(n,R). It is now readily seen that

Ad(g)X =
d

dt

∣∣∣∣
t=0

g exp tXg−1 =
d

dt

∣∣∣∣
t=0

exp(tgXg−1) = gXg−1.

In general, Ad(g) : TeG → TeG may be viewed as conjugation by g ∈ G in the following
sense.

Lemma 1.12 Let g ∈ G and X ∈ TeG. Then

g(expX)g−1 = exp(Ad(g)X).

Proof. Since Cg := lg ◦ rg−1 : G→ G, x 7→ gxg−1 is a Lie group automorphism, it follows that
Cg ◦αX is a one-parameter subgroup of G. Hence,

Cg ◦αX = αY , (1)

where

Y =
d

dt

∣∣∣∣
t=0

Cg ◦αX(t) =
d

dt

∣∣∣∣
t=0

Cg(exp tX) = Ad(g)X.

The result now follows by evaluation of (1) at the identity at 1. �

Lemma 1.13 For every g ∈ G, the map Ad(g) : TeG → TeG is an invertible linear map.
Furthermore,

Ad : G→ GL(TeG)

defines a homomorphism of Lie groups.
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Proof. For g ∈ G, let Cg : G→ G be defined as above. Then, for X ∈ TeG,

Ad(g)X =
d

dt

∣∣∣∣
t=0

Cg ◦ exp(tX) = Te(Cg)X.

Hence, Ad(g) = Te(Cg) and we see that Ad(g) : TeG→ Te(G) is linear. From Cgh = Cg ◦Ch it
follows by taking tangent maps at e and application of the chain rule that

Ad(gh) = Ad(g) ◦Ad(h).

From Cg = IG it follows that Ad(e) = ITeG. Hence, Ad : G → GL(TeG) is a group homomor-
phism. Finally, let X ∈ TeG. Since G× R→ G, (g, t) 7→ g exp tXg−1 is smooth, it follows by
differentiation at t = 0 that g 7→ Ad(g)X is smooth. This implies that Ad : G → GL(TeG) is
smooth. The result follows. �

The map Ad behaves naturally with respect to Lie group homomoprhisms.

Lemma 1.14 Let ϕ : G → H be a homomorphism of Lie groups. Then for all g ∈ G the
following diagram commutes

TeG
Teϕ−→ TeH

AdG(g) ↑ ↑ AdH(ϕ(g))

TeG
Teϕ−→ TeH.

Proof. Again the proof is natural. We leave it to the reader. �

We can now define a bracket structure on TeGwhich turns this linear space into a Lie algebra.

Definition 1.15 A Lie algebra (over the field R) is a real linear space L, equipped with a bilinear
map L× L→ L, (X, Y ) 7→ [X, Y ], such that, for all X, Y, Z ∈ L,

(a) [X, Y ] = −[X, Y ] (anti-symmetry);

(b) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 (Jacobi-identity).

We define [ · , · ] : TeG× TeG→ TeG by

[X, Y ] :=
d

dt

∣∣∣∣
t=0

Ad(exp tX)Y. (2)

Example 1.16 Consider the standard example G = GL(n,R). Then TeG = M(n,R). For
X, Y ∈ TeG, we have

[X, Y ] =
d

dt

∣∣∣∣
t=0

etXY e−tX =
d

dt

∣∣∣∣
t=0

etXY +
d

dt

∣∣∣∣
t=0

Y e−tX = XY − Y X,

by straightforward application of the Leibniz rule. Thus, in this example, [ · , · ] is given by the
so-called commutator bracket. One readily verifies that Mn(n), equipped with the commutator
bracket, is a Lie algebra.
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Example 1.17 More generally, if A is an associative algebra (over R or more generally over a
field k), then A equipped with the bracket [X, Y ] = XY − Y X is a Lie algebra (over k).

Lemma 1.18 Let G be a Lie group. The bracket defined by (2) is bilinear. Furthermore, it
behaves well with respect to Lie group homomorphisms in the following sense. If ϕ : G→ H is
a Lie group homomorphism, then

Teϕ([X, Y ]G) = [Teϕ(X), Teϕ(Y )]H . (3)

Proof. We first address the bilinearity. The linearity in the second component is obvious. Con-
sider the map Φ : TeG→ TeG given by

Φ(Z) := Ad(expZ)Y.

Then Φ is differentiable and Φ(0) = Y. It follows that

[X, Y ] =
d

dt

∣∣∣∣
t=0

Φ(tX) = T0Φ(X),

which is linear in X. This establishes the bilinearity. The rest of the proof is natural and left to
the reader. �

Corollary 1.19 Let G be a Lie group. Then for all g ∈ G and X, Y ∈ TeG we have

Ad(g)[X, Y ] = [Ad(g)X,Ad(g)Y ].

Proof. Use that Ad(g) : TeG→ TeG is the tangent map of Cg : G→ G at the point e. �

Theorem 1.20 Let G be a Lie group. Then the bracket [ · , · ] turns TeG into a Lie algebra.

Proof. It remains to establish the Jacobi-identity. Let Y, Z ∈ TeG. Then for all X ∈ TeG we
have

Ad(exp tX)[Y, Z] = [Ad(exp tX)Y,Ad(exp tX)Z].

Differentiating at t = 0 and using the bilinearity of the bracket, we find that

[X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]].

The Jacobi identity now follows by invoking the anti-symmetry of the bracket. �

From now on, we shall write g for TeG, equipped with the bracket (2). Then, g is called the
Lie algebra of the Lie group G. Furthermore, we shall write ad for the linear map g → End(g)
given by ad(X)Y = [X, Y ], for X, Y ∈ g.

Let ϕ : G→ H be a Lie group homomorphism. Then by using (3) we infer that ϕ∗ := Teϕ :
g→ h is a Lie algebra homomorphism in the obvious sense.

The following result, for which we refer to a basic course of Lie groups is truly remarkable.
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Lemma 1.21 Let G be a Lie group, and let H be a subgroup of G which is closed in the sense
of topology. Then H is a submanifold of G. This manifold structure turns H into a Lie group
such that the inclusion map i : H → G is a Lie group homomorphism.

In the setting of the above theorem, the tangent map i∗ := Tei : h → g is an injective
homomorphism of Lie algebras, realizing h as the Lie subalgebra i∗(h) of g. We shall identify
theses Lie algebras via the map i∗.

Lemma 1.22 In the above setting,

h = {X ∈ g | expRX ⊂ H}.

Exercise 1.23 We consider the following subsets of GL(n,R),

SL(n,R) := {x ∈ GL(n,R) | detx = 1},
O(n) := {x ∈ GL(n,R) | xT = x−1},

SO(n) := SL(n,R) ∩O(n).

Show that all these are closed subgroups of GL(n,R). Show that their Lie algebras, realized as
Lie subalgebras of Mn(R), equipped with the commutator bracket are given by

sl(n,R) = {X ∈ M(n,R) | trX = 0},
o(n) = {X ∈ M(n,R) | XT = −X},
so(n) = {X ∈ M(n,R) | XT = −X}.

For the first identity you may use that det eX = etrX for all X ∈ M(n,R).
Show that O(n) and SO(n) are compact. Using the 2× 2 block decomposition of element in

O(n) it is fairly easy to show that SO(n) is connected.

Exercise 1.24 Observe the

GL(n,C) = {x ∈ M(n,C) | detCx 6= 0}

may be viewed as a real Lie group. Show that its Lie algebra is Mn(n,C), equipped with the
commutator bracket. Show that

SL(n,C) := {x ∈ GL(n,C) | detx = 1},
U(n) := {x ∈ GL(n,C) | x∗ = x−1},

SU(n) := SL(n,C) ∩ U(n).

are closed subgroups of GL(n,C), hence real Lie groups of their own right. Here ∗ indicates
that the Hermitean conjugate has been taken. Show that their Lie algebras may be realized as the
following Lie subalgebras of M(n,C),

sl(n,C) = {X ∈ M(n,C) | trCX = 0},
u(n) = {X ∈ M(n,C) | X∗ = −X},
su(n) = {X ∈ M(n,R) | X∗ = −X and trCX = 0}.
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2 Kostant’s convexity theorem
In this section, we assume that G is a (connected) compact Lie group.

Lemma 2.1 The Lie algebra g carries a positive definite inner product for which Ad(G) ⊂
GL(g) consists of orthogonal transformations.

Sketch of proof. There exists a positive left invariant regular Borel measure dx on G. This
so called left Haar measure is unique up to a positive scalar factor. The measure allows one to
integrate continuous functions f ∈ C(G) over G. The associated integral is denoted by

I(f) :=

∫
G

f(x) dx.

Positivity of the measure means that f ≥ 0 ⇒ I(f) ≥ 0 and f ≥ 0, I(f) = 0 ⇒ f = 0. Left
invariance of the measure means that∫

G

f(gx) dx =

∫
G

f(x) dx,

for all f ∈ C(G) and g ∈ G. We may fix the measure uniquely by requiring it to be normalized
in the sense that

∫
G
dx = 1.

Let ( · , · ) be a choice of positive definite inner product on G. Then by averaging over G one
may define the following symmetric bilinear form 〈 · , · 〉 on g,

〈v , w〉 :=

∫
G

(Ad(x)−1v,Ad(x)−1w) dx. (4)

We leave it as an exercise to the reader to verify that 〈 · , · 〉 is a positive definite inner product,
and that Ad(G) ⊂ O(g) with respect to this inner product. By connectedness of G we even have
Ad(G) ⊂ SO(g). �

Exercise 2.2 Complete the final part of the above proof.

We now fix a maximal torus t ⊂ g. By this we mean a subspace t ⊂ g which is maximal
subject to the condition that [X, Y ] = 0 for all X, Y ∈ t. Furthermore, we denote the orthogonal
projection g→ t by Pt.

Given an element X ∈ g we consider the adjoint orbit

Ad(G)X := {Ad(g)X | g ∈ G}.

Lemma 2.3 The orbit Ad(G)X is a smooth compact submanifold of g.

In the next section on actions, this result will be explained in more detail. We mention the
following result without proof.
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Lemma 2.4 The intersection Ad(G)X ∩ t is a non-empty finite subset of t.

The following remarkable result, known as Kostant’s convexity theorem, first appeared in
[8].

Theorem 2.5 Let X ∈ g and let Ad(G)X be the adjoint orbit through X. Then the image of
Ad(G)X under P is given by

P (Ad(G)X) = conv (Ad(G)X ∩ t).

In particular, P (Ad(G)) is a convex polyhedral subset of t.

The intersection Ad(G)X ∩ t has an interesting description, which can be proven by using
the detailed structure theory of connected compact Lie groups (in terms of root spaces). It can be
shown that T = exp(t) is a compact subgroup of G, hence a Lie group of its own right, which is
is a compact torus, i.e., isomorphic to a finite product of circles, (R/Z)r, where r = dimt.

Lemma 2.6 The intersection Ad(G)X ∩ t equals the set [Ad(G)X]T of fixed points for the
natural action of T on Ad(G)X. In particular, this set of fixed points is finite.

Proof. It suffices to show that t equals the set gT of fixed points for Ad(T ) in g. We will first
prove that t ⊂ gT . LetX ∈ t. Then it follows that [Y,X] = 0 for all Y ∈ t. Consider the function
c : R→ g given by c(t) := Ad(exp tY )X. Then it follows that

c′(t) =
d

ds

∣∣∣∣
s=0

c(t+ s) = Ad(tX)[Y,X] = 0,

hence c(t) = c(0) = X for all t. We infer that X ∈ gT .
For the converse inclusion, let X ∈ gT . Then Ad(exp tY )X = 0 for all Y ∈ t and t ∈ R.

Differentiating at t = 0 we see that [t, X] = 0. Since t is maximal abelian, we conclude that
X ∈ t. �

Thus, Kostant’s result may also be reformulated as

P (Ad(G)X) = conv ([Ad(G)X]T ).

This formulation has the virtue that it corresponds to a similar result in g∗ = HomR(g,R),
where it can be given a natural interpretation in the context of symplectic geometry. This will be
discussed in the remainder of these notes.

Finally, we mention that the set [Ad(G)X]T can be described in terms of the so called Weyl
group W of t in G. This group may be defined by

W := NG(t)/ZG(t),

where NG(t) stands for {g ∈ G | Ad(g)t ⊂ t}, the normalizer of t in G and ZG(t) for {g ∈
G | Ad(g)|t = It}, the centralizer of t in G. The Weyl group is finite and naturally embeds
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into GL(t) as the reflection group associated with the root system of t in g. Let X ∈ g, then
Ad(G)X ∩ t 6= ∅, hence Ad(G)X = Ad(G)Y for a suitable element Y ∈ t. The set [Ad(G)X]T

can now be described as the image of the map W → Ad(G)Y, induced by NG(t) → Ad(G)Y,
g 7→ Ad(g)Y. Since obviously this image is contained in t, we obtain the following version of
Kostant’s convexity theorem, for Y ∈ t,

P (Ad(G)Y ) = conv (WY ).

Actually, this is the theorem Kostant originally formulated in [8].

Exercise 2.7 We consider the group G = U(n). From exercise 1.24 we recall that u(n) consists
of the anti-Hermitian matrices in M(n,C).

(a) Show that U(n) is compact.

(b) By using diagonalization, show that U(n) is connected.

(c) Given x ∈ Rn we writeHx for the diagonal matrix with diagonal entries ix1, . . . , ixn.Here
i denotes the imaginary unit. Show that t := {Hx | x ∈ Rn} is a maximal torus in u(n).

We view u(n), equipped with the commutator bracket, as a real Lie algebra, hence in particular
as a real linear space. For X, Y ∈ u(n) we define 〈X , Y 〉 = tr(Y ∗X).

(d) Show that 〈 · , · 〉 is a symmetric real bilinear form, which is positive definite. Show that
for all g ∈ U(n) and X, Y ∈ u(n) we have 〈Ad(g)X , Ad(g)Y 〉 = 〈X , Y 〉, i.e., Ad(g) is
orthogonal with respect to the given inner product.

(e) Describe the orthogonal projection P : u(n)→ t with respect to this inner product.

(f) Show that there exists a natural action of the permutation group Sn on t such that for all
H ∈ t,

[Ad(U(n))H] ∩ t = Sn ·H.

(g) Let A be a Hermitian matrix in M(n,C) with eigenvalues λ = (λ1, . . . , λn), viewed as a
vector in Rn. Let a := (a1, . . . , an) ∈ Rn be the diagonal part of the matrix A. Show that
a ∈ conv (Sn · λ). This result is due to I. Schur. Show the converse result, due to A. Horn,
that that every point a in the convex hull of Sn ·λ is the diagonal part of a Hermitian matrix
with eigenvalues λ.

(h) Show that su(n) is a codimension one real subspace of u(n) which is invariant under the
adjoint action of U(n). Determine the orthocomplement of su(n) on u(n). Show that this
orthocomplement is invariant under the adjoint action of U(n) as well.

(i) Show that t0 := t∩ su(n) and that its orthocomplement in t is invariant under the action of
Sn.

(j) Take n = 2 and show that the orbits for the adjoint action of U(2) on su(2) are two
dimensional spheres and the point 0. In this case, verify Kostant’s convexity theorem.
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(k) We now consider the case n = 3. By using the cosine rule for the inner product, determine
the angle between the elements a := H(1,−1,0) and b := H(0,1,−1). Using a, b as a basis for
t0, express the orbit S3 · a in terms of linear combinations of a and b.

(l) Define an orthogonal isomorphism ϕ from t0 onto R2 (equipped with the standard inner
product) such that ϕ(a) = (1, 0), and draw the image S3 · a. Show that under ϕ the action
of S3 corresponds to the action of a finite subgroup of GL(2,R), generated by reflections.

(m) Make a sketch which represents the image under ϕ of the generic S3 orbit in t.

3 Actions and orbits
Kostant’s convexity theorem was later put in a symplectic context. The natural setting turns out
to be the co-adjoint action of G on the dual space g∗ = Hom(g,R), rather than the adjoint action
of the compact group G.

We recall that a (left) action of a groupG on a setM is a map α : G×M →M, (g,m) 7→ gm
such that the following conditions are fulfilled, for all g1, g2 ∈ G and m ∈M,

(a) em = m,

(b) g1(g2m) = (g1g2)m.

If we write α(g) = α(g, · ), then the above conditions mean that g 7→ α(g) is a group homomor-
phism to the group of bijections of M. If G is a Lie group and M a smooth manifold, then the
action α is said to be smooth if the map α : G×M →M is smooth.

Assume that α : G×M →M is a smooth action and a a point of M. Then the stabilizer

Ga := {g ∈ G | ga = a}

is readily verified to be a closed subgroup of G, hence a Lie group, by Lemma 1.21. It is clear
that the map αa : G → M, g 7→ ga factors through an injective map ᾱa : G/Ga → M, with
image equal to the orbit Ga.

For the following lemma, we refer the reader to [4].

Lemma 3.1 If H is a closed subgroup of a Lie group G, then G/H carries a unique structure
of manifold such that the natural projection π : G→ G/H is smooth and submersive.

The condition of submersiveness means that for every g ∈ G the tangent map Tgπ : TgG →
Tπ(g)(G/H) is surjective. By the local structure of submersions it follows that Teπ : g →
Tπ(e)(G/H) has kernel equal to Teπ[e] = TeH = h, hence induces a linear isomorphism

Teπ : g/h
'−→ T[e](G/H),

where we have written [e] = π(e). We will always use this linear isomorphism to identify
T[e](G/H) with g/h.
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We return to the setting of a smooth action α : G×M →M of a Lie group G on a manifold
M. The action of G on M induces a linear map X 7→ XM from g to the space X(M) of vector
fields on M given by

XM(m) =
d

dt

∣∣∣∣
t=0

exp tX ·m.

It can be shown that the mapX 7→ XM is an anti-homomorphism of Lie algebras, i.e. [X, Y ]M =
−[XM , YM ], for X, Y ∈ g.

Let a ∈M and consider the map αa : G→M, g 7→ ga.

Lemma 3.2 The tangent map Teαa : g→ TaM is given by X 7→ XM(a). Its kernel equals ga.

Proof. Let X ∈ g. Then for t ∈ R we have

αa(exp tX) = exp tX · a.

Differentiating with respect to t at t = 0 and applying the chain rule, we find

Teαa(X) = XM(a).

This establishes the first assertion. We turn to the second.
By Lemma 1.22 the Lie algebra ga equals the space of X ∈ g for which expRX ⊂ Ga. Let

X ∈ g. Then X ∈ ga implies exp tX · a = a for all t ∈ R. By differentiation at t = 0, the
latter condition implies XM(a) = 0. Conversely, assume XM(a) = 0. Then the integral curve
of XM with initial point a is stationary with image {a}. On the other hand, it is readily verified
that t 7→ exp tXa describes the integral curve. By uniqueness of integral curves it follows that
exp tX · a = a for all t, hence X ∈ ga. �

Using Lemma 3.1, Lemma 3.2 and basic manifold theory one may prove the following
lemma.

Lemma 3.3 Let G be a compact Lie group, M a smooth manifold, and α : G × M → M
a smooth action. Then for every a ∈ M the orbit Ga is a compact smooth submanifold of M
and the induced map ᾱa : G/Ga → Ga is a diffeomorphism. Finally, the map Te(αa) : g →
TaM, X 7→ XM(a) has kernel ga and image Ta(Ga).

Proof. By application of the submersion theorem one sees that the smooth map αa : G → M
factors trough a smooth map ᾱa : G/Ga → M. Hence, αa = ᾱa ◦ π so that Teα = T[e]ᾱa ◦Teπ
by the chain rule. Since Teαa and Teπ both have kernel ga, it follows that T[e]ᾱa is injective. By
homogeneity it follows that the tangent map of ᾱa is injective everywhere. Since ᾱa is injective,
and G compact, it follows by application of standard manifold theory that ᾱa is an embedding
of G/Ga into M. Therefore, its image Ga is a submanifold of M and ᾱa : G/Ga → M is a
diffeomorphism onto Ga. It follows that Ta(Ga) equals the image of T[e]ᾱa, which is also the
image of Teαa. As we have seen, the latter map is given by g→ TaM, X 7→ XM(a). �
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Let nowG be a compact connected Lie group. Then it follows from the above lemma that the
adjoint orbits Ad(G)X, for X ∈ g, are compact smooth submanifolds of g. From the perspective
of symplectic geometry it turns out to be more natural to look at the co-adjoint action Ad∨ of G
on the dual space g∗ = Hom(g,R). This action is given by

g · ξ = Ad∨(g)ξ = ξ ◦Ad(g)−1 (g ∈ G, ξ ∈ g∗)

Here the inverse is needed for this to be a left action. It is readily seen that the given action is
smooth. Its orbits, the co-adjoint orbits in g∗, are connected compact submanifolds.

Exercise 3.4 Let 〈 · , · 〉 be an Ad(g)-invariant inner product on g defined as in (4).

(a) Show that the map ϕ : g → g∗ given by ϕ(X) = 〈X , · 〉 is a linear isomorphism which
maps the adjoint orbit Ad(G)X , for X ∈ g, diffeomorphically onto the co-adjoint orbit
Ad∨(G)ϕ(X) in g∗.

(b) The inclusion map ι : t→ g naturally induces the surjective linear map ι∗ : g∗ → t∗ given
by ξ 7→ ξ ◦ ι = ξ|t. Show that the following diagram commutes:

g
ϕ−→ g∗

P ↓ ↓ ι∗

t
ϕt−→ t∗

Here ϕt denotes the linear isomorphism t→ t∗ induced by the restriction of 〈 · , · 〉 to t.

(c) Show that Kostant’s convexity theorem may be reformulated as

ι∗(Ad∨(G)ξ) = conv ([Ad∨(G)ξ]T )

4 Symplectic structure of co-adjoint orbits
We recall that a differential two form on M is a smooth assignment M 3 x → ωx, where
ωx : TxM × TxM → R is an anti-symmetric bilinear form. In local coordinates x1, . . . , xm on
M (defined on an open set U ), such a form has a local expression

ω =
∑
i<j

ωijdx
i ∧ dxj,

with ωij uniquely defined smooth functions on U. The form ω is said to be closed if its exterior
derivative dω vanishes. In local coordinates withU contractible, this is equivalent to the existence
of a one form λ on U such that dλ = ω. In turn, this is equivalent to the existence of functions
λ1, . . . , λm on U such that

ωij = ∂jλi − ∂iλj (i < j).

The 2-form ω is said to be non-degenerate if for all x ∈ M the bilinear form ωx on TxM is non-
degenerate. The latter means that for every v ∈ TxM we have ωx(v, · ) = 0 ⇒ v = 0. In turn,
this is equivalent to the assertion that v 7→ ωx(v, · ) defines a linear isomorphism TxM → T ∗xM.
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Definition 4.1 A symplectic form on a manifold M is a two form ω which is closed and non-
degenerate. A symplectic manifold is a manifold equipped with such a symplectic form.

We will now show that the co-adjoint orbits in g∗ can all be equipped with a natural sym-
plectic structure. Let O be a co-adjoint orbit and let ξ ∈ O and X ∈ g. Then from the above
discussion with M = g∗ we see that

XM(ξ) =
d

dt

∣∣∣∣
t=0

exp tX · ξ =
d

dt

∣∣∣∣
t=0

ξ ◦Ad(exp(−tX)) = −ξ ◦ ad(X).

This implies that

gξ = {X ∈ g | ξ ◦ ad(X) = 0} = {X ∈ g | ξ = 0 on [X, g]}.

From this it follows that the alternating bilinear form ω′ = ω′ξ : g× g→ R given by

ω′(X, Y ) = ξ([X, Y ])

factors through a bilinear form
ω′′ : g/gξ × g/gξ → R.

It is readily checked that ω′′ is non-degenerate.

Exercise 4.2 Show that ω′′ is non-degenerate.

We recall that the map X 7→ XM(ξ) induces a linear isomorphism from g/gξ onto Tξ(cO)
and define the two form ωξ on Tξ(O) by the requirement that

ωξ(XM(ξ), YM(ξ)) = ω′ξ(X, Y ).

From this definition it naturally follows that ω : ξ 7→ ωξ defines a smooth 2-form on O which is
everywhere non-degenerate. We claim that ω is G-invariant in the sense that

ωξ = ωgξ ◦ [Tξ(lg)× Tξ(lg)],

for all ξ ∈ O and g ∈ G.

Exercise 4.3 Prove that the two form ω is G-invariant.

Proposition 4.4 The two form ω on O is closed.

Sketch of proof: We will show that dω = 0. Fix ξ ∈ O and consider the map ϕ : G → Gξ
given by g 7→ gξ. Since this map is submersive, it suffices to show that ϕ∗dω = 0. Since
ϕ∗dω = dϕ∗ω it suffices to show that ϕ∗ω is closed. We will prove this by showing that the two
form ϕ∗ω on G is exact, i.e., there exists a one form λ on G such that dλ = ϕ∗ω.

From the G-invariance of ω and the fact that ϕ : G → Gξ intertwines the left actions of G,
i.e., lg ◦ϕ = ϕ ◦ lg for all g ∈ G, it follows that ϕ∗ω is left G-invariant. We will in fact define λ
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to be the left G-invariant one form on G given by λe = ξ ∈ g∗. By G-invariance it now suffices
to show that

ϕ∗(ω)e = (dλ)e. (5)

For X ∈ g we define the vector field vX on G by

vX(g) =
d

dt

∣∣∣∣
t=0

g exp tX.

This vector field is left G-invariant and has the value X at g = e. Let X, Y ∈ g; then

(dλ)e(X, Y ) = dλ(vX , vY )e = [vXλ(vY )− vY (λ(vX))− λ([vX , vY ])]e,

by a well known formula for the exterior derivative. We now use that λ(vX) and λ(vY ) are
left-invariant, hence constant functions. Furthermore, it can be shown that [vX , vY ] = v[X,Y ]. It
follows that

(dλ)e(X, Y ) = λe([X, Y ]) = ξ([X, Y ]) = (ϕ∗ω)e(X, Y ).

Hence, (5). �

5 Hamiltonian actions
We assume that (M,ω) is a symplectic manifold. Given a function f : M → R we define the
associated vector field Xf on M by

ω(Xf , · ) = df.

This definition is justified by the non-degeneracy of ω. It can be seen that Hf us smooth. The
above equation is also written as

ιXfω = df.

Lemma 5.1 LXfω = 0.

Equivalently, this means that ω is invariant under the flow of Xf .

Proof. From the definition of Xf it follows that dιXfω = ddf = 0. On the other hand, dω = 0,
and it follows by application of Cartan’s formula that

LXfω = dιXfω + ιXfdω = 0.

�
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Conversely, if X is a vector field such that LXω = 0 then it follows by Cartan’s formula that
dιXω = 0 so that locally at any given point one may find a function f such that Xf = X. If this
is possible for a global choice of f, then X is said to be a Hamiltonian vector field. The function
f is said to be a Hamiltonian for X.

We now assume that G has a smooth action on the symplectic manifold M preserving the
symplectic form ω; such an action will be called symplectomorphic (or canonical).

If all vector fields XM , for X ∈ g, are Hamiltonian, then there exists a linear map J : g →
C∞(M) such that

X8J(Z) = ZM

for all Z ∈ g (use a basis of g to see this). Such a map J gives rise to a map J : M → g∗

defined by 〈J(m) , Z〉 = J(Z)(m). The assignment J 7→ J defines a linear isomorphism
HomR(g, C∞(M)) ' C∞(M, g∗) via which we shall identify. Accordingly, we shall not dis-
tinguish between J and J anymore. A map of this type will be called a momentum map for the
symplectomorphic G-action.

Definition 5.2 Let G act smoothly by symplectomorphisms on the symplectic manifold G. A
momentum map for this action is defined to be a smooth map J : M → g∗ such that for every
Z ∈ g the function JZ : m→ J(m)(Z) is a Hamiltonian for the vector fieldZM , i.e.,XJZ = ZM .

Definition 5.3 A Hamiltonian action of G on the symplectic manifold M is an action by sym-
plectomorphisms for which there exists a momentum map J : M → g∗ which is equivariant in
the sense that

J(gm) = Ad∨(g)J(m) (g ∈ G,m ∈M).

If G is compact, then from a given momentum map one can always obtain an equivariant
momentum map by the process of averaging.

We now have the following beautiful convexity theorem for momentum maps of torus actions,
discovered by Atiyah [1] and Guillemin-Sternberg [6], independently.

We start with an observation about the momentum map associated to the G-action on a co-
adjoint orbit O.

Theorem 5.4 Let G be a Lie group and O ⊂ g∗ a co-adjoint orbit, equipped with its natural
symplectic form. Then the co-adjoint action of G on O is Hamiltonian, with associated equiv-
ariant momentum map equal to the inclusion map j : O → g∗.

Proof. The action of G is by symplectomorphisms, and j is equivariant. Let Z ∈ g and let
jZ : O → R be defined by jZ(ξ) = 〈ξ , Z〉. Then it suffices to show that XjZ = ZO. We will do
this at a given point ξ ∈ O. We have

djZ(ξ) = 〈 · , Z〉 on TξO,

where the latter space is canonically identified with a linear subspace of g∗. The map g→ TξO,
Y 7→ YO(ξ) is surjective. Let Y ∈ g; then it follows that

djZ(ξ)YO(ξ) = −〈ξ ◦ ad(Y ) , Z〉 = −ξ([Y, Z]) = ωξ(ZO(ξ), YO(ξ)).
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We thus see that
djZ(ξ) = ωξ(ZO(ξ), · ).

Hence, XjZ = ZO, as required. �

We now assume that in the above setting H ⊂ G is a closed subgroup, and write ι for the
associated inclusion map h → g. Then ι interwines the adjoint action of H on h with the action
AdG|H on g. It follows that ι∗ : g∗ → h∗ intertwines the co-adjoint actions of H on h∗ and g∗.

Lemma 5.5 The restricted action of H on O is Hamiltonian with equivariant momentum map
J : O → h∗ given by J = ι∗ ◦ j.

Proof. Equivariance is obvious. If Z ∈ h, then JZ(ξ) = 〈J(ξ) , Z〉 = 〈j(ξ) , ι(Z)〉 = jι(Z)(ξ).
It follows that

XJZ = Xjι(Z)
= ι(Z)M = ZM .

�

The following result is due to M. Atiyah [1] and independently, V. Guillemin and S. Sternberg
[6].

Theorem 5.6 Let T be a torus, i.e., a Lie group isomorphic to (R/Z)r for some r ∈ N. Assume
that the symplectic manifoldM is equipped with a symplectomorphic action of T,with associated
momentum map J : M → t∗. If the action of T has a finite set MT of fixed points, then

J(M) = conv (MT ).

In particular, J(M) is a convex polyhedron.

We will now show that this result generalizes Kostant’s convexity theorem and in fact, gives
a natural explanation of it from the viewpoint of symplectic geometry.

Let G be a connected compact Lie group. Let t be a maximal (infinitesimal) torus in g and
T = exp(t) the associated torus in G. Let O ⊂ g∗ be a coadjoint orbit. Then it follows from
the previous lemmas that the action of T on O is Hamiltonian with momentum map J : O → t∗

equal to ι∗|O : O → t∗. Thus, J(O) = ι∗(O). It follows from Lemma and Exercise 3.4 that the
action of T on O has finitely many fixed points. The set of these is given by

OT = ϕt([Ad(G)X]T ) = ϕt(Ad(X) ∩ t).

By Theorem 5.6 it follows that

ι∗(O) = J(O) = conv (J(OT )) = conv ι∗(OT ).

This is the assertion of Kostant’s theorem.

6 Further convexity results
For further convexity results in Lie theory, we refer the reader to [7], [3], [2].
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Appendix: tangent map and chain rule
If M is a smooth n-dimensional manifold, and a ∈ M, we denote by TaM the tangent space of
M at a. This is real linear space of dimension dimM defined in such a way that the following
rules are valid.

If c : [0, 1]→M is a differentiable curve, then its velocity vector c′(t) at t ∈ [0, 1] is a vector
in the tangent space Tc(t)M. Furthermore, if differentiable curves c, d : [0, 1] → M have the
same initial point a = c(0) = d(0), then c and d have the same velocity vector in any coordinate
system at a if and only if c′(0) = d′(0) (in TaM ).

If f : M → N is a smooth map of manifolds and a ∈M, then there exists a uniquely defined
linear map Taf : TaM → Tf(a)N, which generalizes that notion of total derivative. This map is
called the tangent map of f at a.

If c : [0, 1]→M is a differentiable curve with initial point a ∈M then f ◦ c is a differentiable
curve in N with initial point f(a), and we have the following version of the chain rule:

(f ◦ c)′(0) = Taf(c′(0)). (6)

By using this rule one may derive the following chain rule.

Lemma 6.1 (Chain rule) Let f : M → N and g : N → R be smooth maps, a ∈M, then

Ta(g ◦ f) = Tf(a)(g) ◦Taf.

Remark 6.2 With notation as in the above lemma, let b = f(a) and c = g(b). Then we may
view f and g as smooth maps of pointed manifolds, f : (M,a) → (N, b) and g : (N, b) →
(R, c). To a pointed space (M,a) one may assign the tangent space TaM and to a morphism
f : (M,a) → (N, b) the tangent map Taf : TaM → TbN. The chain rule now amounts to
the assertion that taking tangent spaces and maps defines a functor from the category of pointed
manifolds to the category of finite dimensional linear spaces.
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