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1 The group SL(2,R).
In this section we will investigate some basic properties of the group SL(2,R),which is the group
of real 2× 2 matrices of determinant 1. Thus, SL(2,R) consists of the matrices g = ga,b,c,d of the
form

g =

(
a b
c d

)
(1)

with det(g) = ad − bc = 1. It is readily checked that SL(2,R), equipped with matrix multipli-
cation, is a group. Furthermore, the set M(2,R) of all 2× 2 matrices with real entries, equipped
with entry-wise addition and scalar multiplication is a real linear space. Via the entries we may
identify this linear space with R4.

The determinant map det : M(2,R)→ R is continuous. Moreover, SL(2,R) equals preimage
det−1({1}) in M(2,R) of the closed subset {1} of R. It follows from these remarks that SL(2,R)
is a closed subset of M(2,R).

We can strengthen these statements as follows. The determinant map det : M(2,R) → R is
C∞ differentiable, and its total derivative at a matrix g ∈ SL(2,R) is given by

Ddet(g)X =
d

dt

∣∣∣∣
t=0

det(g + tX) =
d

dt

∣∣∣∣
t=0

det(g)det(I + tg−1X) = det(g) tr(g−1X).

In particular it follows that Ddet(g) is a surjective linear map M(2,R) → R for every g ∈
SL(2,R).By application of the submersion theorem it thus follows that SL(2,R) is 3-dimensional
submanifold of M(2,R). Furthermore, the group multiplication map m : (x, y) 7→ xy is the
restriction of a bilinear map M(2,R) × M(2,R) → M(2,R) hence C∞. The inversion map
i : SL(2,R) 7→ SL(2,R), x 7→ x−1 is also C∞, since it is the restriction of the linear endomor-
phism of M(2,R) given by (

a b
c d

)
7→
(

d −b
−c a

)
.

This makes that SL(2,R) is a Lie group.

Definition 1.1 A Lie group is a group G equipped with a manifold structure such that the group
operation G×G→ G, (x, y) 7→ xy and the inversion map G→ G, x 7→ x−1 are smooth maps.
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In a similar fashion, SL(2,C) is defined to be the set of matrices g = ga,b,c,d as in (1), with
a, b, c, d ∈ C such that detg = 1. By a similar argumentation as above, but with differentia-
tion replaced by complex differentiation, it follows that SL(2,C) is a three dimensional complex
submanifold of M(2,C), the complex linear space of complex 2 × 2-matrices. Matrix multipli-
cation induces a group structure on SL(2,C) for which it becomes a complex Lie group, i.e., a
group with a complex manifold structure such that the group operation and the inversion map are
complex differentiable maps. We note that SL(2,R) is a subgroup and submanifold of SL(2,C)
(viewed as a real Lie group).

2 Fractional linear transformations
The group SL(2,C) acts on C2 by matrix multiplication,(

a b
c d

)(
z1
z2

)
=

(
az1 + bz2
cz1 + dz2

)
Clearly, the complement C2 \ {0} of the origin is an invariant subset for this action. Let P1(C)
denote one dimensional complex projective space and let π : C2 \ {0} → P1(C) be the natural
map z = (z1, z2) 7→ Cz. We will write [z1 : z2] for the line Cz. The action of SL(2,C) on
C2 \ {0} preserves the fibers of π, hence induces the action on P1(C) given by

g[z1 : z2] = [az1 + bz2 : cz1 + dz2].

Let ϕ : C 7→ P1(C) be the embedding given by ϕ(z) = [z : 1]. It is easy to see that the image
of ϕ has a complement consisting of the single point [1 : 0]. Writing Ĉ := C ∪ {∞} (disjoint
union), we see that ϕ has a unique extension to a bijection ϕ̂ : Ĉ 7→ P1(C); it maps∞ to [1 : 0].

We equip Ĉ with the structure of complex manifold by requiring that ϕ̂ is a bi-holomorphic
isomorphism. The resulting manifold Ĉ is called the Riemann sphere. Under ϕ̂, the action of
SL(2,C) on P1(C) transfers to an action on Ĉ by bi-holomorphic transformations.

Lemma 2.1 Let g = ga,b,c,d ∈ SL(2,C) be as in (1). Then the biholomorphic transformation
Tg : Ĉ→ Ĉ, z 7→ g · z is given by the following rules.

(a) If z ∈ C and cz + d 6= 0, then

Tg(z) =
az + b

cz + d
.

(b) If z ∈ C, cz + d = 0 then Tg(z) =∞.

(c) Tg(∞) = c−1a; in particular, if c = 0, then Tg(∞) =∞.

Proof. Let z ∈ C; then

ϕ̂(Tg(z)) = ϕ̂(g · z) = gϕ̂(z) = g[z : 1] = [az + b : cz + d]. (2)
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Thus, if cz + d 6= 0 then the expression at the extreme right side of (2) equals

[
az + b

cz + d
: 1] = ϕ̂(

az + b

cz + d
).

Since ϕ̂ is bijective, this implies (a).
If cz + d = 0 then the expression at the extreme right side of (2) equals

[az + b : 0] = [1 : 0] = ϕ̂(∞)

and (b) follows. Finally,

ϕ̂(Tg(∞)) = ϕ̂(g · ∞) = g[1 : 0] = [a : c] = [c−1a : 1] = ϕ̂(c−1a)

and the final assertion follows. In particular, since (a, c) 6= (0, 0), c = 0 implies that g ·∞ =∞.
�

The biholomorphic transformations Tg, for g ∈ SL(2,C), are generally known as fractional
linear transformations.

Exercise 2.2 Show that the fractional linear transformations Tg for g = ga,b,c,d, ad − bc 6= 0

form a group G of bijective transformations of Ĉ. Show that the map SL(2,C) → G given by
g 7→ Tg is a surjective group homomorphism onto G with kernel {±I}. Determine the kernel of
the similar homomorphism GL(2,C)→ G. Remark: The group G is also denoted by PGL(2,C).

Definition 2.3 By a circle in Ĉ we mean a subset which is either a circle C of the real Euclidean
space C ' R2 or a set of the form L ∪ {∞} with L an affine real line in C ' R2.

We will show that the fractional linear transformations of Ĉ preserves the collection its cir-
cles. Before doing so, we need a suitable description of them. For this we use the standard
sesquilinear inner product 〈 · , · 〉 on C2 given by

〈 (z1, z2), (w1, w2) 〉 = z1w1 + z2w2.

Let α ∈ C and r > 0, then the circle Cα,r in C of center α and radius r is given by the
equation

|z − α|2 = r2.

By (sesquilinear) homogenization this equation may be written as

(z1 − αz2)(z1 − αz2) = rz2rz2

with the requirement that (z1, z2) = (z, 1). The above homogeneous form may be rewritten as

〈 z,Hα,rz 〉 = 0, z = (z1, z2), (3)

where

Hα,r =

(
1 −α
0 0

)∗(
1 −α
0 0

)
−
(

0 0
0 r2

)
=

(
1 −α
−ᾱ |α|2 − r2

)
.
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Here the star indicates that the Hermitian conjugate of the matrix is taken. Obviously, detHα,r =
−r2.

Clearly, the equation (3) determines a subset of P1(C)\{[0 : 1]}. The corresponding image in
Ĉ equals precisely Cα,r. This observation motivates the following definition. For H a Hermitian
matrix with detH < 0 we define the subset CH ⊂ P1(C) by

[z1 : z2] ∈ CH ⇐⇒ 〈 z,Hz 〉 = 0.

Furthermore we define ĈH := ϕ̂−1(CH).

Lemma 2.4 The collection of circles on Ĉ is the collection of subsets of the form ĈH , for
H ∈M(2,C) a Hermitean matrix with detH < 0. Furthermore,

ĈH 3 ∞ ⇐⇒ H11 = 0.

Proof. We have already shown that any circle not containing∞ is of the form CH with H11 = 1.
Conversely, letH11 6= 0. ThenH ′ := H−111 H is Hermitean of negative determinant withH ′11 = 1,
and CH = CH′ . Hence CH is a circle not containing∞.

Let now C be a circle in Ĉ containing∞. Then C = L ∪ {∞} with L an affine real line in
C ' R2. There exists ζ ∈ C with |ζ| = 1 and s ∈ R such that L = ζ(iR + s). If z ∈ C then

z ∈ L ⇐⇒ ζ̄z ∈ iR + s ⇐⇒ Re(ζ̄z) = s ⇐⇒ ζ̄z + ζz̄ = 2s.

Homogenization of the above equation leads to the equation

ζ̄z1z̄2 + ζz2z̄1 − 2sz1z̄2 = 0,

or, equivalently [z1 : z2] ∈ CHζ,s , where

Hζ,s =

(
0 ζ̄
ζ −2s

)
.

The point [1 : 0] belongs to CHζ,s , so that

ĈHζ,s = L ∪ {∞}.

Thus, every circle in Ĉ containing∞ is of the required form. Finally, let H be Hermitian with
H11 = 0 and detH < 0. Then |H12|2 = H12H21 = −det(H) > 0, so that H ′ = |H12|−1H is of
the form

H ′ = Hζ,s,

with |ζ| = 1 and s ∈ R. It follows that

ĈH = ĈH′ = ĈHζ,s

which by the above equals the circle C in Ĉ containing∞ and with C \ {∞} = ζ(iR + s). �
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Now that we have given a precise description of the set of circles on Ĉ in terms of linear
algebra, we can prove the following result.

Lemma 2.5 Let H be a Hermitean 2 × 2 matrix of negative determinant. Then for each g ∈
SL(2,C),

g · CH = Cg−1∗Hg−1 .

In particular, for every g ∈ SL(2,C), the transformation Tg maps all circles of Ĉ to circles of Ĉ.

Proof. Let H be as asserted. Then the image of CH ⊂ P1(C) under g consists of the points
[z1 : z2] ∈ P1(C) such that

g−1[z1 : z2] ∈ CH ,

or, equivalently,
0 = 〈 g−1z,Hg−1z 〉.

As the latter expression may be rewritten as 〈 z, g−1∗Hg−1z 〉 = 0 we see that

g · CH = CH′ ,

where H ′ = g−1∗Hg. It is readily verified that H ′ is Hermitian and that detH ′ = detH < 0.
This establishes the first assertion. By applying ϕ̂−1 we obtain

Tg(ĈH) = Ĉg−1∗Hg−1 ,

and the final assertion follows. �

Exercise 2.6 Let C denote the collection of circles on Ĉ. Let H be the collection of Hermitian
2× 2 matrices of determinant −1.

(a) Show that the mapH → C, H 7→ ĈH is surjective.

(b) Show that the action of SL(2,C) on C given by (g, C) 7→ Tg(C) is transitive.

(c) Show that the action of SL(2,C) onH given by (g,H) 7→ g−1∗Hg−1 is transitive.

(d) Show that the stabilizer of R̂ in SL(2,C), denoted

SL(2,R)R̂ = {g ∈ SL(2,R) | Tg(R̂) = R̂}

is given by

SL(2,R)R̂ = SL(2,R) ∪
(
i 0
0 −i

)
SL(2,R).
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(e) Show that the stabilizer in SL(2,C) of the matrix

M :=

(
0 −i
i 0

)
equals SL(2,R), i.e., show that

SL(2,R) = {g ∈ SL(2,C) | g∗Mg = M}.

(f) Show that the map of (a) is 2 - 1. More precisely, show that for H,H ′ ∈ H we have
ĈH = ĈH′ ⇐⇒ H = ±H ′.

3 Orbits for the action of SL(2,C)
We will now investigate the action of SL(2,C) on C in some further detail. Recall that SU(2) is
the group of unitary matrices in SL(2,C), i.e., g ∈ SL(2,C) such that g∗ = g−1. For g = ga,b,c,d
the equation becomes a = d̄ and b = −c̄, hence SU(2) consists of the matrices(

α −β̄
β ᾱ

)
, α, β ∈ C, |α|2 + |β|2 = 1.

For a given ϕ ∈ R we write

tϕ =

(
eiϕ 0
0 e−iϕ

)
.

Then T = {tϕ | ϕ ∈ R} is a subgroup of SU(2). We denote by B the group of upper triangular
matrices g = ga,b,c,d, c = 0 with det(g) = ad = 1, and by B̄ the group of lower triangular
matrices ga,b,c,d, b = 0 with det(g) = ad = 1. Then both B and B̄ are subgroups of SL(2,C).

Lemma 3.1 The actions of SU(2) and SL(2,C) on Ĉ are transitive. The stabilizer of 0 in
SL(2,C) equals B̄ and the stabilizer of 0 in SU(2) equals T. The inclusion map SU(2) →
SL(2,C) and the action map g 7→ Tg(0) induces bijections

SU(2)/T ' SL(2,C)/B̄ ' Ĉ.

Proof. For ϕ ∈ R we write

rϕ =

(
cosϕ − sinϕ
sinϕ cosϕ

)
.

ThenR = {rϕ | ϕ ∈ R} is readily seen to be a subgroup of SU(2). Furthemore, rϕ ·0 = − tanϕ,

from which we see that R · 0 = R̂ := R ∪ {∞}.
On the other hand, tϕ · z = e2iϕz, so that Tz = {w ∈ C | |w| = |z|}. We thus see that

TR · 0 = Ĉ.
Since SL(2,C) contains SU(2), the action of SL(2,C) on Ĉ is transitive as well. An element

g = ga,b,c,d ∈ SL(2,C) stabilizes 0 iff b = 0, or, equivalently g ∈ B̄. It is readily seen that
B∩SU(2) = T, so that T is the stabilizer of 0 in SU(2). It now readily follows that the sequence
of maps SU(2)→ SL(2,C)→ C induces the required sequence of bijections. �
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4 Orbits for the action of SL(2,R)
To prepare for this section, we start with the following useful lemma, which uses that the matrices
of SL(2,R) have real entries.

Lemma 4.1 Let z ∈ C and Im(z) 6= 0. Then for g = ga,b,c,d ∈ SL(2,R), we have

Im(g · z) = |cz + d|−2Im(z).

Proof. From Im z 6= 0 it follows that cz + d 6= 0. Hence,

g · z =
az + b

cz + d

=
(az + b)(cz̄ + d)

|cz + d|2

=
(adz + bcz̄ + ac|z|2 + bd)

|cz + d|2
.

Taking imaginary parts, we find

Im(g · z) =
(ad− bc)Im(z)

|cz + d|2
= |cz + d|−2Im(z).

�

It follows from the above that the action of SL(2,R) is not transitive on Ĉ. In fact, let H+

denote the upper half plane in C, consisting of z ∈ C such that Imz > 0 and let H− denote the
lower half plane−H+. Then it follows from the above lemma that bothH+ andH− are invariant
under SL(2,R).

Lemma 4.2 The action of SL(2,R) on Ĉ has three orbits: the open orbits H+ and H− and the
closed orbit R̂ := R ∪ {∞} (a circle).

Proof. We first observe that g · 0 ∈ R̂ for g ∈ SL(2,R). Since the rotation group R is a subgroup
of SL(2,R) it follows that SL(2,R) · 0 ⊃ R · 0 = R̂. We conclude that SL(2,R) · 0 = R̂. It
follows that H+ ∪H− = Ĉ \ R̂ is invariant under the action of SL(2,R). We now observe that
for x ∈ R the element

nx =

(
1 x
0 1

)
belongs to SL(2,R) and that nx · w = w + x for all w ∈ C and x ∈ R. Furthermore, for t ∈ R
put

at :=

(
et 0
0 e−t

)
.

Then at ·w = e2tw for all w ∈ C and t ∈ R. Let N and A be the subgroups of SL(2,R) given by

N = {nx | x ∈ R}, A = {at | t ∈ R}.

7



Then from the above we see that A · i = iR+ and NA · i = H+. It follows that H+ is contained
in a single SL(2,R)-orbit. On the other hand, we noticed already that H+ is invariant under
the action of SL(2,R). It thus follows that H+ is a single SL(2,R)-orbit. By applying complex
conjugation, we see that H− is a single SL(2,R)-orbit as well. �

Lemma 4.3 The map Ψ : N × A× SO(2)→ SL(2,R), (n, a, k) 7→ nak is a bijection.

Proof. The maps R → A, t 7→ at and R → N, x 7→ nx are bijective, so it suffices to show that
the map

ψ : R× R× SO(2)→ SL(2,R), (x, t, k) 7→ nxatk

is a bijection. To see this, note that

ψ(x, t, k) · i = e2ti+ x,

from which it readily follows that ψ is injective. On the other hand, if g ∈ SL(2,R), then
g · i ∈ H+. Write g · i = x + iy ∈ H+, then there exists t > 0 such that y = e2t. Therefore,
ψ(x, t, e) · i = g · i and it follows that g−1ψ(x, t) stabilizes i, from which g−1ψ(x, t) = k−1 ∈
SO(2). This implies ψ(t, x, e) = gk−1 hence ψ(t, x, k) = g and we see that ψ is surjective. �

Exercise 4.4 Show that the map Ψ of Lemma 4.3 is a homeomorphism. Show that the men-
tioned map is in fact a diffeomorphism, i.e., both Ψ and its inverse are C∞ maps (between
manifolds).

Remark 4.5 The above decomposition is known as the Iwasawa decomposition. Note that it
follows from this decomposition that SL(2,R) is homeomorphic (even diffeomorphic) to R2×S1.

For the sake of completeness, we mention another important decomposition for SL(2,R).
Let s denote the space of symmetric matrices in M(2,R) of trace zero. Then exp s = {eX |
X ∈ s} equals the set of positive definite symmetric matrices of determinant one. The following
decomposition is known as the polar or Cartan decomposition.

Lemma 4.6 The map s × SO(2) → SL(2,R), (X, k) 7→ eXk is a homeomorphism (even a
diffeomorphism).

Proof. We will first show that the mentioned map, f, is a bijection. Let g ∈ SL(2,R). Then x :=
ggT belongs to SL(2,R), and is positive definite symmetric. It follows that x = exp(2Xs) for a
symmetric matrix in M(2,R). As detx = 1, it follows by an argument involving diagonalisation
of Xs that Xs has trace zero.

Consider the element k = exp(−Xs)g, This element belongs to SL(2,R) and

kkT = exp(−Xs)gg
T exp(−Xs) = I

hence k ∈ SO(2) and we see that k ∈ SO(2). We conclude that g = f(Xs, k) and have shown
that f is surjective.
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On the other hand, for injectivity, assume that f(Xs, k) = g = f(X ′s, k
′), then exp 2Xs =

ggT = exp 2X ′s. By a straightforward argument involving eigenspaces, one sees that Xs = X ′s.
It then readily follows that k = k′ and so f is injective.

Clearly the map f is continuous (in fact C∞). We will show that f−1 is continuous as well.
We write f−1(g) = (Xs(g), k(g)) and will show that both components depend continuously

on g ∈ SL(2,R).
It is sufficient to prove the claim that Xs(g) depends continuously on g, for then obviously

k(g) = exp(−Xs)(g)g depends continuously on g.
To see that the claim is valid, we note that x(g) := ggT depends continuously on g and that

x(I) = I. The matrix x(g) has determinant one, and is positive definite symmetric, hence it has
two eigenvalues λ(g) ≥ 1 and µ(g) = λ(g)−1 ≤ 1. If x(g) 6= I it follows that the eigenvalues of
x(g) as well as the corresponding eigenspaces are distinct and depend continously (even C∞) on
g. Hence also Xs(g) depends continuously (in fact C∞) on g

Let g0 ∈ SL(2,R) be such that x(g0) = I, or, equivalently, g0 ∈ SO(2). If g → g0, then
it follows that x(g) → I, from which it readily follows that Xs(g) → 0. Thus, the map g 7→
Xs(g) is continuous on all of SL(2,R) and it follows that f−1 is continuous. Hence, f is a
homeomorphism.

With a bit more work we can show that f−1 is C∞. From the above argument it should be
clear that this is true at elements g0 ∈ SL(2,R) \ SO(2).

Let p be the set of all symmetric matrices in M(2,R) and let P be the set of matrices in p
which are positive definite. Then exp : p → P is a smooth map. Its total derivative at 0 is
readily seen to be the identity map p → p. By the inverse function theorem it follows that there
exists an open neighborhood U 3 0 in p such that ε := exp |U is a diffeomorphism onto an
open neighborhood V of I in P. Returning to the above setting, let W be the set of elements
g ∈ SL(2,R) such that ggT ∈ V. Then W is an open neighborhood of SO(2) in SL(2,R).
Moreover, ε−1(ggT) depends C∞ on g ∈ W. On the other hand, ε−1(ggT) = Xs(g) and the
smoothness of Xs on W follows. �

5 Hyperbolic geometry
We will now use the bijection SL(2,C)/SO(2) ' H+ to equipH+ with the structure of a smooth
SL(2,C)-invariant Riemannian metric.

A smooth Riemannian metric on H+ is defined to be a smooth map H+ → (R2 ⊗ R2)∗,
β : z 7→ βz, with values in the set of positive definite inner products. By an isometry of (H+, β)
we mean a diffeomorphism ϕ : H+ → H+ such that Dϕ(z) : R2 → R2 is isometric relative to
the metrics βz and βϕ(z), for every z ∈ H+. The metric β is said to be invariant under the action
of SL(2,R) on H+ if Tg is an isometry, for every g ∈ SL(2,R).

Remark 5.1 In general, a Riemannian metric on a manifold M is a family of positive definite
inner products βm on TmM, form ∈M, which depends smoothly onm ∈M. An isometry ofM
is then a diffeomorphism ϕ : M → M such that the derivative or tangent map Tmϕ : TmM →
Tϕ(m)M is isometric with respect to the given inner products βm and βϕ(m), for all m ∈M.
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Lemma 5.2 The space H+ has a unique SL(2,R)-invariant Riemannian metric β such that the
associated inner product βi at i equals the standard inner product on R2. The metric is given by

βz = y−2〈 · , · 〉st = y−2(dx2 + dy2). (4)

for z = x+ iy ∈ H+. The subscript st indicates that the standard inner product on R2 is taken.

Proof. Let g = ga,b,c,d ∈ SL(2,R). Then Tg : H+ → H+ is holomorphic. By a straightforward
calculation it is seen that its complex derivative at w ∈ H+ is given by

(Tg)
′(w) =

a(cw + d)− (aw + b)c

(cw + d)2
=

1

(cw + d)2
.

It follows from this that the total derivative D(Tg)(w) : R2 → R2 corresponds to the map
C→ C, ζ 7→ (cw + d)−2ζ.

This multiplication map decomposes as a rotation (over the argument of (cw+ d)−2) and the
real scalar multiplication by |cw + d|−2.

Let βst denote the standard inner product on R2. Then it follows that the pull-back

D(Tg)(w)∗βst := βst ◦ (D(Tg)(w)×D(Tg)(w))

is given by
D(Tg)(w)∗βst = |cw + d|−4βst. (5)

We will now establish uniqueness. Let β be as asserted. Then by using the above formula to
compare βz with βi = βst, we see that

βz = C(z)βst,

for a uniquely determined functionC : H+ → (0,∞). There exists g = ga,b,c,d such that g ·i = z.
From Lemma 4.1 we see that

y = Im(g · i) = |ci+ d|−2.
Now by invariance and using (5) with w = i we find

βst = D(Tg)(i)
∗βz = C(z)D(Tg)(i)

∗βst = C(z)y2βst,

so that C(z) = y−2. This establishes uniqueness and the necessity of formula (4). We will now
establish existence. For this we note that it suffices to show that the metric β defined by (4) is
SL(2,R)-invariant.

We write C(z) = Im(z)−2, for z ∈ H+. Then βz = C(z)βst. It suffices to show that for
g ∈ SL(2,R) and z ∈ H+ we have D(Tg)(z)∗βg·z = βz. This is equivalent to

C(g · z)D(Tg)(z)∗βst = C(z)βst.

In view of (5) with w = z the latter equation is equivalent to

C(g · z) = |cz + d|4C(z),

which in turn is a consequence of Lemma 4.1. �
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In the following we agree to denote by | · |z the norm on R2 determined by the inner product
βz, for z ∈ H+. Then

‖ζ‖z =
√
y−2〈 ζ, ζ 〉st = y−1‖ζ‖st.

For a piecewise C1-curve γ : [p, q]→ H+ we define the length by

L(γ) =

∫ q

p

‖γ′(t)‖γ(t) dt.

It is readily seen that the length of a curve is invariant under C1 reparametrization, so that we
may reduce to the situation p = 0 and q = 1.

Given two points z, w ∈ H+ we define the Riemannian distance d(z1, d2) to be the infimum
of L(γ) where γ ranges over the piecewise C1-curves [0, 1]→ H+ with γ(0) = z and γ(1) = w.

Exercise 5.3 Show that d is a distance function in the sense of metric spaces.

Exercise 5.4 Show that if ϕ : H+ → H+ is an isometry, then d(ϕ(z), ϕ(w)) = d(z, w), for all
z, w ∈ C.
Lemma 5.5 Let s, t ∈ R, s ≤ t. Then the distance between esi and eti equals |t− s|.
Proof. We consider the curve γ : [0, 1]→ H+ given by

γ(τ) = es+τ(t−s) i.

Then γ′(τ) = (t− s)γ(τ), so that

‖γ′(τ)‖γ(τ) = (t− s), (0 ≤ τ ≤ 1).

It follows that L(γ) = t − s. Hence, d(esi, eti) ≤ t − s. It remains to establish the converse
inequality.

By the exercise below, for any piecewise C1-curve γ : [0, 1] → H+ with initial point esi
and final point eti we have L(γ) ≥ t − s. By definition of the distance function, this implies
d(esi, eti) ≥ t− s. �

Exercise 5.6 Show that for any piecewise C1-curve γ : [0, 1] → H+ with initial point z and
final point w we have

L(γ) ≥ | log Im(w)− log Im(z)|.
Hint: first do this in case γ is C1.

Definition 5.7 A geodesic in H+ is defined to be a C1-curve γ : I → H+ with I ⊂ R an
interval, such that

(a) for every subinterval [p, q] ⊂ I the curve γ|[p,q] has length d(γ(p), γ(q)) (length minimal-
izing property);

(b) the function t 7→ ‖γ′(t)‖γ(t) is constant on [p, q] (constant velocity property).

A complete geodesic is a geodesic as above with domain I = R.
Exercise 5.8 Show that for every ξ ∈ R the curve

R→ H+, t 7→ etξi

is a (complete) geodesic in H+.
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6 Caley transform and Poincaré disk
We may use the action of SL(2,C) to find another representation of the hyperbolic Riemannian
structure on H+ on the open unit disk D = {z ∈ C | |z| < 1}. The disk, equipped with this
other representation of the metric is called the Poincaré disk.

Lemma 6.1 There exists a unique κ ∈ SL(2,C)/{+I,−I} such that κ ·i = 0, κ ·∞ = 1, κ ·0 =
−1. This element κ sends the upper half plane H+ biholomorphically onto the open unit disk D.
It is given by

κ =

(
a −ai
a ai

)
, a = ±1 + i

2
.

Proof. We will first establish uniqueness. Write κ = ga,b,c,d ∈ SL(2,C). Then κ · 0 = 1
implies b = d and κ · ∞ = −1 implies a = −c. Finally, g · i = 0 implies ai + b = 0, so that
b = −ai = ci = d. Conversely, the latter condition implies κ · i = 0, κ ·0 = 1 and κ ·∞ = i. The
condition detg = 1 is now equivalent to 1 = ad− bc = −2a2i = 1 so that a2 = i

2
and existence

and uniquess of κ follows, as well as the final assertion.
The element κ is readily seen to send R into the unit circle. Since it sends R̂ onto a circle of Ĉ,

we see that κmust send R̂ diffeomorphically onto the unit circle T := ∂D.Now κ sendsH+∪H−
homeomorphically onto Ĉ \ T and since κ · i = 0, we see that κ maps H+ bi-holomorphically
onto D and H− bi-holomorphically onto Ĉ \ D̄. �

The associated transform Tκ : Ĉ→ Ĉ is given by

Tκ(z) =
z − i
z + i

and known as the Caley-transform. The sets D, ∂D and Ĉ \ D̄ are the images of H+, R̂
and H− under Tκ respectively, and therefore equal to the orbits of the conjugate group G′ =
κSL(2,R)κ−1.

Let 〈 · , · 〉 be the standard Hermitian inner product on C2 and let J be the 2 × 2 diagonal
matrix, with J11 = 1 and J22 = −1. Then SU(1, 1) is defined to be the stabilizer in SL(2,C)
of the sesquilinear form (z, z′) 7→ 〈 z, Jz′ 〉 on C2. That is, an element g ∈ SL(2,C) belongs to
SU(1, 1) if and only if

〈 gz, Jgz′ 〉 = 〈 z, Jz′ 〉 (∀z, z′ ∈ C2).

The above is equivalent to g∗Jg = J, hence to

g−1 = Jg∗J.

Lemma 6.2 The conjugate group κSL(2,R)κ−1 equals SU(1, 1).

Proof. Let g ∈ SL(2,C). Then κgκ−1 belongs to SU(1, 1) if and only if

κg−1κ−1 = Jκ−1∗g∗κ∗J,
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which in turn is equivalent to
g−1 = L−1g∗L,

where

L = κ∗Jκ =

(
0 1
−1 0

)
A simple calculation now leads to

L−1g∗a,b,c,dL =

(
d̄ −b̄
−c̄ ā

)
.

We thus see that κga,b,c,dκ−1 belongs to SU(1, 1) if and only if a, b, c, d ∈ R, or equivalently,
ga,b,c,d ∈ SL(2,R). �

We will now determine the Riemannian structure βD on D for which the inverse Caley trans-
form T−1κ : D → H+ (and hence also the Cayley transform Tκ : H+ → D) becomes an isometry.
This means that

βDz = D(Tκ−1)(z)∗βT−1
κ (z), (z ∈ D).

We observe that
T−1κ (z) =

z + 1

iz − i
.

The expression on the right may be rewritten as

z + 1

iz − i
=

(z + 1)(z̄ − 1)

i|z − 1|2
=
z̄ − z + |z|2 − 1

i|z − 1|2
,

from which we see that

Im(T−1κ (z)) =
1− |z|2

|z − 1|2
.

It follows that

βDz =
|z − 1|4

(1− |z|2)2
|T ′κ−1(z)|2βst.

Since the derivative of the inverse Cayley transform is given by

−i d
dz

z + 1

z − 1
=

2i

(z − 1)2
,

it follows that
βDz = 4(1− |z|2)−2βst.

The Poincaré disk is defined to be the unit disk D equipped with this metric.
As before, the Riemannian metric βDz induces a distance function on D which we denote by

dD.

Exercise 6.3 Show that for every isometry ϕ : H+ → D we have dD(ϕ(z), ϕ(w)) = d(z, w),
for all z, w ∈ H+.
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The notion of geodesic in D may be defined in a fashion analogous to Definition 5.7.

Exercise 6.4 Let ϕ : H+ → D be an isometry. Let I ⊂ R be an interval and γ : I → H+ a
C1-curve. Show that γ is a geodesic in H+ (for the metric β) if and only Tκ ◦ γ : I → D is a
geodesic in D (for the metric βD).

Exercise 6.5 Let s, t ∈ R, s ≤ t.

(a) Show that the Caley-transform maps the line segment [es, et]i onto [tanh s
2
, tanh t

2
], which

is a line segment contained in D.

(b) Show that the curve c : τ 7→ tanh(s+τ(t−s)) has length et−es relative to the hyperbolic
metric βD.

(c) For ϕ ∈ R we define the diagonal matrix

dϕ :=

(
e−iϕ 0

0 eiϕ

)
.

(d) Show that
dϕ · w = e−2iϕw, (ϕ ∈ R, w ∈ D).

Argue that for every ϕ ∈ R the curve

t 7→ eiϕ tanh t

is a geodesic in D.

(e) Show that the (images of the) complete geodesics in D are all intersections of D with
circles in Ĉ that intersect ∂D perpendicularly. The images of these geodesics are also
called: the straight lines of the Poincaré disk.

Exercise 6.6 The Poincaré disk is a model for hyperbolic geometry. Argue that the following
assertions of hyperbolic geometry are valid.

(a) Given a hyperbolic line l in D and a point a ∈ D \ l show that there is an infinite collection
of lines m 3 a with m ∪ l = ∅ (such m is called parallel to l).

(b) Show that this collection of lines can be characterized by two extreme ‘parallel’ lines
through a.

(c) Show that the hyperbolic metric determines a notion of angle between lines. Show that in
present setting this notion coincides with the Euclidean notion of angle.

(d) Convince yourself that the sum of the angles in a geodesic triangle in D is strictly smaller
than π.

Exercise 6.7 Let rϕ be the matrix of the rotation around 0 in R2 by angle ϕ.
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(a) Show that for every ϕ ∈ R we have

κrϕκ
−1 = dϕ

where dϕ is the diagonal matrix defined in Exercise 6.5 (c). In particular, this means that
κSO(2)κ−1 equals the group S(U(1)× U(1)) of diagonal unitary matrices in SL(2,C).

(b) By using the Caley transform, conclude that the orbit SO(2) · (eti) is a Euclidean circle C
contained in H+.

(e) Show that the circle C has center (cosh t)i (in the sense of Euclidean geometry). Hint:
show thatC is symmetric with respect to the imaginary axis, and determine the intersection
C ∩ iR.

We are now in the position to prove that every two distinct points in the Riemannian manifolds
D and H+ can be connected by a unique geodesic.

Theorem 6.8 Let z, w ∈ D be two distinct points. Then there is a unique geodesic γ : [0, 1]→
D with initial point z and end point w.

Proof. If z, w ∈ (−1, 1) ⊂ D this result follows from Exercise 6.5. For arbitrary z, w ∈ D
we note that by transitivity of the action of SU(1, 1) on D there exists g0 ∈ SU(1, 1) such that
g0 · z = 0. Now the group S(U(1)× U(1)) fixes the point 0, and acts on D by rotations about 0,
see Exercise 6.7 (b). It follows that there exists a ϕ ∈ R such that dϕg0 · w ∈ D = [0, 1). We
note that dϕg0 · z = 0.

Put g := dϕg0, then g ∈ SU(1, 1) so T := Tg : D → D is an isometry such that T (z) = 0 and
T (w) ∈ [0, 1). Let c : [0, 1]→ D be a C1-curve connecting T (z) and T (w). Then γ = T−1 ◦ c is
a C1-curve connecting z and w. Since T is isometric, γ is a geodesic if and only if c is a geodesic.
The result now follows from the special case mentioned at the beginning of the proof.

Exercise 6.9 Show that the geodesic connecting two elements z and w of D has as image the
arc with boundary points z and w of a circle in Ĉ which intersects ∂D perpendicularly.

Exercise 6.10 Show that for any two points z, w ∈ H+ there exists a unique geodesic γ :
[0, 1] → H+ such that γ(0) = z and γ(1) = w. Show that γ([0, 1]) is the arc of a circle in Ĉ
which intersects R̂ perpendicularly.

Exercise 6.11 Let C be any circle in C which intersects R perpendicularly in a point z. Show
that C intersects R perpendicularly in a second point z′ ∈ R. Show that there exists an element
g ∈ SL(2,R) such that C = Tg(iR).
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