Geometry and analysis of $\operatorname{SL}(2, R)$

E.P. van den Ban

Summer School UU, August, 2018

1 The group $\mathrm{SL}(2, \mathbb{R})$.

In this section we will investigate some basic properties of the group $\mathrm{SL}(2, \mathbb{R})$, which is the group of real 2×2 matrices of determinant 1 . Thus, $\mathrm{SL}(2, \mathbb{R})$ consists of the matrices $g=g_{a, b, c, d}$ of the form

$$
g=\left(\begin{array}{ll}
a & b \tag{1}\\
c & d
\end{array}\right)
$$

with $\operatorname{det}(g)=a d-b c=1$. It is readily checked that $\mathrm{SL}(2, \mathbb{R})$, equipped with matrix multiplication, is a group. Furthermore, the set $\mathrm{M}(2, \mathbb{R})$ of all 2×2 matrices with real entries, equipped with entry-wise addition and scalar multiplication is a real linear space. Via the entries we may identify this linear space with \mathbb{R}^{4}.

The determinant map det : $\mathrm{M}(2, \mathbb{R}) \rightarrow \mathbb{R}$ is continuous. Moreover, $\mathrm{SL}(2, \mathbb{R})$ equals preimage $\operatorname{det}^{-1}(\{1\})$ in $\mathrm{M}(2, \mathbb{R})$ of the closed subset $\{1\}$ of \mathbb{R}. It follows from these remarks that $\operatorname{SL}(2, \mathbb{R})$ is a closed subset of $\mathrm{M}(2, \mathbb{R})$.

We can strengthen these statements as follows. The determinant map det : $\mathrm{M}(2, \mathbb{R}) \rightarrow \mathbb{R}$ is C^{∞} differentiable, and its total derivative at a matrix $g \in \mathrm{SL}(2, \mathbb{R})$ is given by

$$
D \operatorname{det}(g) X=\left.\frac{d}{d t}\right|_{t=0} \operatorname{det}(g+t X)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{det}(g) \operatorname{det}\left(I+t g^{-1} X\right)=\operatorname{det}(g) \operatorname{tr}\left(g^{-1} X\right) .
$$

In particular it follows that $\operatorname{Ddet}(g)$ is a surjective linear map $\mathrm{M}(2, \mathbb{R}) \rightarrow \mathbb{R}$ for every $g \in$ $\mathrm{SL}(2, \mathbb{R})$. By application of the submersion theorem it thus follows that $\mathrm{SL}(2, \mathbb{R})$ is 3-dimensional submanifold of $\mathrm{M}(2, \mathbb{R})$. Furthermore, the group multiplication map $m:(x, y) \mapsto x y$ is the restriction of a bilinear map $\mathrm{M}(2, \mathbb{R}) \times \mathrm{M}(2, \mathbb{R}) \rightarrow \mathrm{M}(2, \mathbb{R})$ hence C^{∞}. The inversion map $i: \mathrm{SL}(2, \mathbb{R}) \mapsto \mathrm{SL}(2, \mathbb{R}), x \mapsto x^{-1}$ is also C^{∞}, since it is the restriction of the linear endomorphism of $\mathrm{M}(2, \mathbb{R})$ given by

$$
\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \mapsto\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) .
$$

This makes that $\mathrm{SL}(2, \mathbb{R})$ is a Lie group.
Definition 1.1 A Lie group is a group G equipped with a manifold structure such that the group operation $G \times G \rightarrow G,(x, y) \mapsto x y$ and the inversion map $G \rightarrow G, x \mapsto x^{-1}$ are smooth maps.

In a similar fashion, $\operatorname{SL}(2, \mathbb{C})$ is defined to be the set of matrices $g=g_{a, b, c, d}$ as in (1), with $a, b, c, d \in \mathbb{C}$ such that $\operatorname{det} g=1$. By a similar argumentation as above, but with differentiation replaced by complex differentiation, it follows that $\mathrm{SL}(2, \mathbb{C})$ is a three dimensional complex submanifold of $\mathrm{M}(2, \mathbb{C})$, the complex linear space of complex 2×2-matrices. Matrix multiplication induces a group structure on $\mathrm{SL}(2, \mathbb{C})$ for which it becomes a complex Lie group, i.e., a group with a complex manifold structure such that the group operation and the inversion map are complex differentiable maps. We note that $\mathrm{SL}(2, \mathbb{R})$ is a subgroup and submanifold of $\mathrm{SL}(2, \mathbb{C})$ (viewed as a real Lie group).

2 Fractional linear transformations

The group $\operatorname{SL}(2, \mathbb{C})$ acts on \mathbb{C}^{2} by matrix multiplication,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{z_{1}}{z_{2}}=\binom{a z_{1}+b z_{2}}{c z_{1}+d z_{2}}
$$

Clearly, the complement $\mathbb{C}^{2} \backslash\{0\}$ of the origin is an invariant subset for this action. Let $\mathbb{P}^{1}(\mathbb{C})$ denote one dimensional complex projective space and let $\pi: \mathbb{C}^{2} \backslash\{0\} \rightarrow \mathbb{P}^{1}(\mathbb{C})$ be the natural $\operatorname{map} z=\left(z_{1}, z_{2}\right) \mapsto \mathbb{C} z$. We will write $\left[z_{1}: z_{2}\right]$ for the line $\mathbb{C} z$. The action of $\operatorname{SL}(2, \mathbb{C})$ on $\mathbb{C}^{2} \backslash\{0\}$ preserves the fibers of π, hence induces the action on $\mathbb{P}^{1}(\mathbb{C})$ given by

$$
g\left[z_{1}: z_{2}\right]=\left[a z_{1}+b z_{2}: c z_{1}+d z_{2}\right] .
$$

Let $\varphi: \mathbb{C} \mapsto \mathbb{P}^{1}(\mathbb{C})$ be the embedding given by $\varphi(z)=[z: 1]$. It is easy to see that the image of φ has a complement consisting of the single point $[1: 0]$. Writing $\widehat{\mathbb{C}}:=\mathbb{C} \cup\{\infty\}$ (disjoint union), we see that φ has a unique extension to a bijection $\widehat{\varphi}: \widehat{\mathbb{C}} \mapsto \mathbb{P}^{1}(\mathbb{C})$; it maps ∞ to $[1: 0]$. We equip $\widehat{\mathbb{C}}$ with the structure of complex manifold by requiring that $\widehat{\varphi}$ is a bi-holomorphic isomorphism. The resulting manifold $\widehat{\mathbb{C}}$ is called the Riemann sphere. Under $\widehat{\varphi}$, the action of $\mathrm{SL}(2, \mathbb{C})$ on $\mathbb{P}^{1}(\mathbb{C})$ transfers to an action on $\widehat{\mathbb{C}}$ by bi-holomorphic transformations.

Lemma 2.1 Let $g=g_{a, b, c, d} \in \operatorname{SL}(2, \mathbb{C})$ be as in (1). Then the biholomorphic transformation $T_{g}: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}, z \mapsto g \cdot z$ is given by the following rules.
(a) If $z \in \mathbb{C}$ and $c z+d \neq 0$, then

$$
T_{g}(z)=\frac{a z+b}{c z+d}
$$

(b) If $z \in \mathbb{C}, c z+d=0$ then $T_{g}(z)=\infty$.
(c) $T_{g}(\infty)=c^{-1} a$; in particular, if $c=0$, then $T_{g}(\infty)=\infty$.

Proof. Let $z \in \mathbb{C}$; then

$$
\begin{equation*}
\widehat{\varphi}\left(T_{g}(z)\right)=\widehat{\varphi}(g \cdot z)=g \widehat{\varphi}(z)=g[z: 1]=[a z+b: c z+d] . \tag{2}
\end{equation*}
$$

Thus, if $c z+d \neq 0$ then the expression at the extreme right side of (2) equals

$$
\left[\frac{a z+b}{c z+d}: 1\right]=\widehat{\varphi}\left(\frac{a z+b}{c z+d}\right) .
$$

Since $\widehat{\varphi}$ is bijective, this implies (a).
If $c z+d=0$ then the expression at the extreme right side of (2) equals

$$
[a z+b: 0]=[1: 0]=\widehat{\varphi}(\infty)
$$

and (b) follows. Finally,

$$
\widehat{\varphi}\left(T_{g}(\infty)\right)=\widehat{\varphi}(g \cdot \infty)=g[1: 0]=[a: c]=\left[c^{-1} a: 1\right]=\widehat{\varphi}\left(c^{-1} a\right)
$$

and the final assertion follows. In particular, since $(a, c) \neq(0,0), c=0$ implies that $g \cdot \infty=\infty$.

The biholomorphic transformations T_{g}, for $g \in \mathrm{SL}(2, \mathbb{C})$, are generally known as fractional linear transformations.

Exercise 2.2 Show that the fractional linear transformations T_{g} for $g=g_{a, b, c, d}, a d-b c \neq 0$ form a group \mathcal{G} of bijective transformations of $\widehat{\mathbb{C}}$. Show that the map $\operatorname{SL}(2, \mathbb{C}) \rightarrow \mathcal{G}$ given by $g \mapsto T_{g}$ is a surjective group homomorphism onto \mathcal{G} with kernel $\{ \pm I\}$. Determine the kernel of the similar homomorphism $\operatorname{GL}(2, \mathbb{C}) \rightarrow \mathcal{G}$. Remark: The group \mathcal{G} is also denoted by $\operatorname{PGL}(2, \mathbb{C})$.

Definition 2.3 By a circle in $\widehat{\mathbb{C}}$ we mean a subset which is either a circle C of the real Euclidean space $\mathbb{C} \simeq \mathbb{R}^{2}$ or a set of the form $L \cup\{\infty\}$ with L an affine real line in $\mathbb{C} \simeq \mathbb{R}^{2}$.

We will show that the fractional linear transformations of $\widehat{\mathbb{C}}$ preserves the collection its circles. Before doing so, we need a suitable description of them. For this we use the standard sesquilinear inner product $\langle\cdot, \cdot\rangle$ on \mathbb{C}^{2} given by

$$
\left\langle\left(z_{1}, z_{2}\right),\left(w_{1}, w_{2}\right)\right\rangle=z_{1} \bar{w}_{1}+z_{2} \bar{w}_{2}
$$

Let $\alpha \in \mathbb{C}$ and $r>0$, then the circle $C_{\alpha, r}$ in \mathbb{C} of center α and radius r is given by the equation

$$
|z-\alpha|^{2}=r^{2}
$$

By (sesquilinear) homogenization this equation may be written as

$$
\left(z_{1}-\alpha z_{2}\right) \overline{\left(z_{1}-\alpha z_{2}\right)}=r z_{2} \overline{r z_{2}}
$$

with the requirement that $\left(z_{1}, z_{2}\right)=(z, 1)$. The above homogeneous form may be rewritten as

$$
\begin{equation*}
\left\langle z, H_{\alpha, r} z\right\rangle=0, \quad z=\left(z_{1}, z_{2}\right) \tag{3}
\end{equation*}
$$

where

$$
H_{\alpha, r}=\left(\begin{array}{cc}
1 & -\alpha \\
0 & 0
\end{array}\right)^{*}\left(\begin{array}{cc}
1 & -\alpha \\
0 & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & 0 \\
0 & r^{2}
\end{array}\right)=\left(\begin{array}{cc}
1 & -\alpha \\
-\bar{\alpha} & |\alpha|^{2}-r^{2}
\end{array}\right)
$$

Here the star indicates that the Hermitian conjugate of the matrix is taken. Obviously, $\operatorname{det} H_{\alpha, r}=$ $-r^{2}$.

Clearly, the equation (3) determines a subset of $\mathbb{P}^{1}(\mathbb{C}) \backslash\{[0: 1]\}$. The corresponding image in $\widehat{\mathbb{C}}$ equals precisely $C_{\alpha, r}$. This observation motivates the following definition. For H a Hermitian matrix with $\operatorname{det} H<0$ we define the subset $C_{H} \subset \mathbb{P}^{1}(\mathbb{C})$ by

$$
\left[z_{1}: z_{2}\right] \in C_{H} \Longleftrightarrow\langle z, H z\rangle=0
$$

Furthermore we define $\widehat{C}_{H}:=\widehat{\varphi}^{-1}\left(C_{H}\right)$.
Lemma 2.4 The collection of circles on $\widehat{\mathbb{C}}$ is the collection of subsets of the form \widehat{C}_{H}, for $H \in M(2, \mathbb{C})$ a Hermitean matrix with $\operatorname{det} H<0$. Furthermore,

$$
\widehat{C}_{H} \ni \infty \Longleftrightarrow H_{11}=0
$$

Proof. We have already shown that any circle not containing ∞ is of the form C_{H} with $H_{11}=1$. Conversely, let $H_{11} \neq 0$. Then $H^{\prime}:=H_{11}^{-1} H$ is Hermitean of negative determinant with $H_{11}^{\prime}=1$, and $C_{H}=C_{H^{\prime}}$. Hence C_{H} is a circle not containing ∞.

Let now C be a circle in $\widehat{\mathbb{C}}$ containing ∞. Then $C=L \cup\{\infty\}$ with L an affine real line in $\mathbb{C} \simeq \mathbb{R}^{2}$. There exists $\zeta \in \mathbb{C}$ with $|\zeta|=1$ and $s \in \mathbb{R}$ such that $L=\zeta(i \mathbb{R}+s)$. If $z \in \mathbb{C}$ then

$$
z \in L \Longleftrightarrow \bar{\zeta} z \in i \mathbb{R}+s \Longleftrightarrow \operatorname{Re}(\bar{\zeta} z)=s \Longleftrightarrow \bar{\zeta} z+\zeta \bar{z}=2 s
$$

Homogenization of the above equation leads to the equation

$$
\bar{\zeta} z_{1} \bar{z}_{2}+\zeta z_{2} \bar{z}_{1}-2 s z_{1} \bar{z}_{2}=0
$$

or, equivalently $\left[z_{1}: z_{2}\right] \in C_{H_{\zeta, s}}$, where

$$
H_{\zeta, s}=\left(\begin{array}{cc}
0 & \bar{\zeta} \\
\zeta & -2 s
\end{array}\right)
$$

The point $[1: 0]$ belongs to $C_{H_{\zeta, s}}$, so that

$$
\widehat{C}_{H_{\zeta, s}}=L \cup\{\infty\}
$$

Thus, every circle in \widehat{C} containing ∞ is of the required form. Finally, let H be Hermitian with $H_{11}=0$ and $\operatorname{det} H<0$. Then $\left|H_{12}\right|^{2}=H_{12} H_{21}=-\operatorname{det}(H)>0$, so that $H^{\prime}=\left|H_{12}\right|^{-1} H$ is of the form

$$
H^{\prime}=H_{\zeta, s}
$$

with $|\zeta|=1$ and $s \in \mathbb{R}$. It follows that

$$
\widehat{C}_{H}=\widehat{C}_{H^{\prime}}=\widehat{C}_{H_{\zeta, s}}
$$

which by the above equals the circle C in $\widehat{\mathbb{C}}$ containing ∞ and with $C \backslash\{\infty\}=\zeta(i \mathbb{R}+s)$.

Now that we have given a precise description of the set of circles on $\widehat{\mathbb{C}}$ in terms of linear algebra, we can prove the following result.

Lemma 2.5 Let H be a Hermitean 2×2 matrix of negative determinant. Then for each $g \in$ SL($2, \mathbb{C}$),

$$
g \cdot C_{H}=C_{g^{-1 *} H g^{-1}}
$$

In particular, for every $g \in \mathrm{SL}(2, \mathbb{C})$, the transformation T_{g} maps all circles of $\widehat{\mathbb{C}}$ to circles of $\widehat{\mathbb{C}}$.
Proof. Let H be as asserted. Then the image of $C_{H} \subset \mathbb{P}^{1}(\mathbb{C})$ under g consists of the points $\left[z_{1}: z_{2}\right] \in \mathbb{P}^{1}(\mathbb{C})$ such that

$$
g^{-1}\left[z_{1}: z_{2}\right] \in C_{H}
$$

or, equivalently,

$$
0=\left\langle g^{-1} z, H g^{-1} z\right\rangle
$$

As the latter expression may be rewritten as $\left\langle z, g^{-1 *} \mathrm{Hg}^{-1} z\right\rangle=0$ we see that

$$
g \cdot C_{H}=C_{H^{\prime}},
$$

where $H^{\prime}=g^{-1 *} H g$. It is readily verified that H^{\prime} is Hermitian and that $\operatorname{det} H^{\prime}=\operatorname{det} H<0$. This establishes the first assertion. By applying $\widehat{\varphi}^{-1}$ we obtain

$$
T_{g}\left(\widehat{C}_{H}\right)=\widehat{C}_{g^{-1 *} H g^{-1}}
$$

and the final assertion follows.

Exercise 2.6 Let \mathcal{C} denote the collection of circles on $\widehat{\mathbb{C}}$. Let \mathcal{H} be the collection of Hermitian 2×2 matrices of determinant -1 .
(a) Show that the map $\mathcal{H} \rightarrow \mathcal{C}, H \mapsto \widehat{C}_{H}$ is surjective.
(b) Show that the action of $\operatorname{SL}(2, \mathbb{C})$ on \mathcal{C} given by $(g, C) \mapsto T_{g}(C)$ is transitive.
(c) Show that the action of $\mathrm{SL}(2, \mathbb{C})$ on \mathcal{H} given by $(g, H) \mapsto g^{-1 *} H g^{-1}$ is transitive.
(d) Show that the stabilizer of $\widehat{\mathbb{R}}$ in $\operatorname{SL}(2, \mathbb{C})$, denoted

$$
\mathrm{SL}(2, \mathbb{R})_{\widehat{\mathbb{R}}}=\left\{g \in \mathrm{SL}(2, \mathbb{R}) \mid T_{g}(\widehat{\mathbb{R}})=\widehat{\mathbb{R}}\right\}
$$

is given by

$$
\operatorname{SL}(2, \mathbb{R})_{\widehat{\mathbb{R}}}=\operatorname{SL}(2, \mathbb{R}) \cup\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \mathrm{SL}(2, \mathbb{R})
$$

(e) Show that the stabilizer in $\operatorname{SL}(2, \mathbb{C})$ of the matrix

$$
M:=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

equals $\operatorname{SL}(2, \mathbb{R})$, i.e., show that

$$
\mathrm{SL}(2, \mathbb{R})=\left\{g \in \mathrm{SL}(2, \mathbb{C}) \mid g^{*} M g=M\right\}
$$

(f) Show that the map of (a) is 2-1. More precisely, show that for $H, H^{\prime} \in \mathcal{H}$ we have $\widehat{C}_{H}=\widehat{C}_{H^{\prime}} \Longleftrightarrow H= \pm H^{\prime}$.

3 Orbits for the action of $\operatorname{SL}(2, \mathbb{C})$

We will now investigate the action of $\mathrm{SL}(2, \mathbb{C})$ on \mathbb{C} in some further detail. Recall that $\mathrm{SU}(2)$ is the group of unitary matrices in $\operatorname{SL}(2, \mathbb{C})$, i.e., $g \in \operatorname{SL}(2, \mathbb{C})$ such that $g^{*}=g^{-1}$. For $g=g_{a, b, c, d}$ the equation becomes $a=\bar{d}$ and $b=-\bar{c}$, hence $\mathrm{SU}(2)$ consists of the matrices

$$
\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right), \quad \alpha, \beta \in \mathbb{C},|\alpha|^{2}+|\beta|^{2}=1 .
$$

For a given $\varphi \in \mathbb{R}$ we write

$$
t_{\varphi}=\left(\begin{array}{cc}
e^{i \varphi} & 0 \\
0 & e^{-i \varphi}
\end{array}\right)
$$

Then $T=\left\{t_{\varphi} \mid \varphi \in \mathbb{R}\right\}$ is a subgroup of $\mathrm{SU}(2)$. We denote by B the group of upper triangular matrices $g=g_{a, b, c, d}, c=0$ with $\operatorname{det}(g)=a d=1$, and by \bar{B} the group of lower triangular matrices $g_{a, b, c, d}, b=0$ with $\operatorname{det}(g)=a d=1$. Then both B and \bar{B} are subgroups of $\operatorname{SL}(2, \mathbb{C})$.
Lemma 3.1 The actions of $\mathrm{SU}(2)$ and $\mathrm{SL}(2, \mathbb{C})$ on $\widehat{\mathbb{C}}$ are transitive. The stabilizer of 0 in $\mathrm{SL}(2, \mathbb{C})$ equals \bar{B} and the stabilizer of 0 in $\mathrm{SU}(2)$ equals T. The inclusion map $\mathrm{SU}(2) \rightarrow$ $\mathrm{SL}(2, \mathbb{C})$ and the action map $g \mapsto T_{g}(0)$ induces bijections

$$
\mathrm{SU}(2) / T \simeq \mathrm{SL}(2, \mathbb{C}) / \bar{B} \simeq \widehat{\mathbb{C}}
$$

Proof. For $\varphi \in \mathbb{R}$ we write

$$
r_{\varphi}=\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right)
$$

Then $R=\left\{r_{\varphi} \mid \varphi \in \mathbb{R}\right\}$ is readily seen to be a subgroup of $\operatorname{SU}(2)$. Furthemore, $r_{\varphi} \cdot 0=-\tan \varphi$, from which we see that $R \cdot 0=\widehat{\mathbb{R}}:=\mathbb{R} \cup\{\infty\}$.

On the other hand, $t_{\varphi} \cdot z=e^{2 i \varphi} z$, so that $T z=\{w \in \mathbb{C}| | w|=|z|\}$. We thus see that $T R \cdot 0=\widehat{\mathbb{C}}$.

Since $\operatorname{SL}(2, \mathbb{C})$ contains $\operatorname{SU}(2)$, the action of $\operatorname{SL}(2, \mathbb{C})$ on $\widehat{\mathbb{C}}$ is transitive as well. An element $g=g_{a, b, c, d} \in \operatorname{SL}(2, \mathbb{C})$ stabilizes 0 iff $b=0$, or, equivalently $g \in \bar{B}$. It is readily seen that $B \cap \mathrm{SU}(2)=T$, so that T is the stabilizer of 0 in $\mathrm{SU}(2)$. It now readily follows that the sequence of maps $\mathrm{SU}(2) \rightarrow \mathrm{SL}(2, \mathbb{C}) \rightarrow \mathbb{C}$ induces the required sequence of bijections.

4 Orbits for the action of $\operatorname{SL}(2, \mathbb{R})$

To prepare for this section, we start with the following useful lemma, which uses that the matrices of $\operatorname{SL}(2, \mathbb{R})$ have real entries.

Lemma 4.1 Let $z \in \mathbb{C}$ and $\operatorname{Im}(z) \neq 0$. Then for $g=g_{a, b, c, d} \in \operatorname{SL}(2, \mathbb{R})$, we have

$$
\operatorname{Im}(g \cdot z)=|c z+d|^{-2} \operatorname{Im}(z)
$$

Proof. From $\operatorname{Im} z \neq 0$ it follows that $c z+d \neq 0$. Hence,

$$
\begin{aligned}
g \cdot z & =\frac{a z+b}{c z+d} \\
& =\frac{(a z+b)(c \bar{z}+d)}{|c z+d|^{2}} \\
& =\frac{\left(a d z+b c \bar{z}+a c|z|^{2}+b d\right)}{|c z+d|^{2}} .
\end{aligned}
$$

Taking imaginary parts, we find

$$
\operatorname{Im}(g \cdot z)=\frac{(a d-b c) \operatorname{Im}(z)}{|c z+d|^{2}}=|c z+d|^{-2} \operatorname{Im}(z) .
$$

It follows from the above that the action of $\operatorname{SL}(2, \mathbb{R})$ is not transitive on $\widehat{\mathbb{C}}$. In fact, let H^{+} denote the upper half plane in \mathbb{C}, consisting of $z \in \mathbb{C}$ such that $\operatorname{Im} z>0$ and let H^{-}denote the lower half plane $-H^{+}$. Then it follows from the above lemma that both H^{+}and H^{-}are invariant under $\operatorname{SL}(2, \mathbb{R})$.

Lemma 4.2 The action of $\operatorname{SL}(2, \mathbb{R})$ on $\widehat{\mathbb{C}}$ has three orbits: the open orbits H^{+}and H^{-}and the closed orbit $\widehat{\mathbb{R}}:=\mathbb{R} \cup\{\infty\}$ (a circle).

Proof. We first observe that $g \cdot 0 \in \widehat{\mathbb{R}}$ for $g \in \mathrm{SL}(2, \mathbb{R})$. Since the rotation group R is a subgroup of $\operatorname{SL}(2, \mathbb{R})$ it follows that $\mathrm{SL}(2, \mathbb{R}) \cdot 0 \supset R \cdot 0=\widehat{\mathbb{R}}$. We conclude that $\mathrm{SL}(2, \mathbb{R}) \cdot 0=\widehat{\mathbb{R}}$. It follows that $H^{+} \cup H^{-}=\widehat{\mathbb{C}} \backslash \widehat{\mathbb{R}}$ is invariant under the action of $\operatorname{SL}(2, \mathbb{R})$. We now observe that for $x \in \mathbb{R}$ the element

$$
n_{x}=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)
$$

belongs to $\mathrm{SL}(2, \mathbb{R})$ and that $n_{x} \cdot w=w+x$ for all $w \in \mathbb{C}$ and $x \in \mathbb{R}$. Furthermore, for $t \in \mathbb{R}$ put

$$
a_{t}:=\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right) .
$$

Then $a_{t} \cdot w=e^{2 t} w$ for all $w \in \mathbb{C}$ and $t \in \mathbb{R}$. Let N and A be the subgroups of $\operatorname{SL}(2, \mathbb{R})$ given by

$$
N=\left\{n_{x} \mid x \in \mathbb{R}\right\}, \quad A=\left\{a_{t} \mid t \in \mathbb{R}\right\} .
$$

Then from the above we see that $A \cdot i=i \mathbb{R}^{+}$and $N A \cdot i=H^{+}$. It follows that H^{+}is contained in a single $\mathrm{SL}(2, \mathbb{R})$-orbit. On the other hand, we noticed already that H^{+}is invariant under the action of $\operatorname{SL}(2, \mathbb{R})$. It thus follows that H^{+}is a single $\mathrm{SL}(2, \mathbb{R})$-orbit. By applying complex conjugation, we see that H^{-}is a single $\operatorname{SL}(2, \mathbb{R})$-orbit as well.

Lemma 4.3 The map $\Psi: N \times A \times \mathrm{SO}(2) \rightarrow \mathrm{SL}(2, \mathbb{R}),(n, a, k) \mapsto$ nak is a bijection.
Proof. The maps $\mathbb{R} \rightarrow A, t \mapsto a_{t}$ and $\mathbb{R} \rightarrow N, x \mapsto n_{x}$ are bijective, so it suffices to show that the map

$$
\psi: \mathbb{R} \times \mathbb{R} \times \mathrm{SO}(2) \rightarrow \mathrm{SL}(2, \mathbb{R}), \quad(x, t, k) \mapsto n_{x} a_{t} k
$$

is a bijection. To see this, note that

$$
\psi(x, t, k) \cdot i=e^{2 t} i+x
$$

from which it readily follows that ψ is injective. On the other hand, if $g \in \operatorname{SL}(2, \mathbb{R})$, then $g \cdot i \in H^{+}$. Write $g \cdot i=x+i y \in H^{+}$, then there exists $t>0$ such that $y=e^{2 t}$. Therefore, $\psi(x, t, e) \cdot i=g \cdot i$ and it follows that $g^{-1} \psi(x, t)$ stabilizes i, from which $g^{-1} \psi(x, t)=k^{-1} \in$ $\mathrm{SO}(2)$. This implies $\psi(t, x, e)=g k^{-1}$ hence $\psi(t, x, k)=g$ and we see that ψ is surjective.

Exercise 4.4 Show that the map Ψ of Lemma 4.3 is a homeomorphism. Show that the mentioned map is in fact a diffeomorphism, i.e., both Ψ and its inverse are C^{∞} maps (between manifolds).

Remark 4.5 The above decomposition is known as the Iwasawa decomposition. Note that it follows from this decomposition that $\operatorname{SL}(2, \mathbb{R})$ is homeomorphic (even diffeomorphic) to $\mathbb{R}^{2} \times S^{1}$.

For the sake of completeness, we mention another important decomposition for $\operatorname{SL}(2, \mathbb{R})$. Let \mathfrak{s} denote the space of symmetric matrices in $\mathrm{M}(2, \mathbb{R})$ of trace zero. Then $\exp \mathfrak{s}=\left\{e^{X} \mid\right.$ $X \in \mathfrak{s}\}$ equals the set of positive definite symmetric matrices of determinant one. The following decomposition is known as the polar or Cartan decomposition.

Lemma 4.6 The map $\mathfrak{s} \times \mathrm{SO}(2) \rightarrow \mathrm{SL}(2, \mathbb{R}),(X, k) \mapsto e^{X} k$ is a homeomorphism (even a diffeomorphism).

Proof. We will first show that the mentioned map, f, is a bijection. Let $g \in \mathrm{SL}(2, \mathbb{R})$. Then $x:=$ $g g^{\mathrm{T}}$ belongs to $\mathrm{SL}(2, \mathbb{R})$, and is positive definite symmetric. It follows that $x=\exp \left(2 X_{s}\right)$ for a symmetric matrix in $\mathrm{M}(2, \mathbb{R})$. As det $x=1$, it follows by an argument involving diagonalisation of X_{s} that X_{s} has trace zero.

Consider the element $k=\exp \left(-X_{s}\right) g$, This element belongs to $\operatorname{SL}(2, \mathbb{R})$ and

$$
k k^{\mathrm{T}}=\exp \left(-X_{s}\right) g g^{\mathrm{T}} \exp \left(-X_{s}\right)=I
$$

hence $k \in \mathrm{SO}(2)$ and we see that $k \in \mathrm{SO}(2)$. We conclude that $g=f\left(X_{s}, k\right)$ and have shown that f is surjective.

On the other hand, for injectivity, assume that $f\left(X_{s}, k\right)=g=f\left(X_{s}^{\prime}, k^{\prime}\right)$, then $\exp 2 X_{s}=$ $g g^{\mathrm{T}}=\exp 2 X_{s}^{\prime}$. By a straightforward argument involving eigenspaces, one sees that $X_{s}=X_{s}^{\prime}$. It then readily follows that $k=k^{\prime}$ and so f is injective.

Clearly the map f is continuous (in fact C^{∞}). We will show that f^{-1} is continuous as well.
We write $f^{-1}(g)=\left(X_{s}(g), k(g)\right)$ and will show that both components depend continuously on $g \in \operatorname{SL}(2, \mathbb{R})$.

It is sufficient to prove the claim that $X_{s}(g)$ depends continuously on g, for then obviously $k(g)=\exp \left(-X_{s}\right)(g) g$ depends continuously on g.

To see that the claim is valid, we note that $x(g):=g g^{\mathrm{T}}$ depends continuously on g and that $x(I)=I$. The matrix $x(g)$ has determinant one, and is positive definite symmetric, hence it has two eigenvalues $\lambda(g) \geq 1$ and $\mu(g)=\lambda(g)^{-1} \leq 1$. If $x(g) \neq I$ it follows that the eigenvalues of $x(g)$ as well as the corresponding eigenspaces are distinct and depend continously (even C^{∞}) on g. Hence also $X_{s}(g)$ depends continuously (in fact C^{∞}) on g

Let $g_{0} \in \mathrm{SL}(2, \mathbb{R})$ be such that $x\left(g_{0}\right)=I$, or, equivalently, $g_{0} \in \mathrm{SO}(2)$. If $g \rightarrow g_{0}$, then it follows that $x(g) \rightarrow I$, from which it readily follows that $X_{s}(g) \rightarrow 0$. Thus, the map $g \mapsto$ $X_{s}(g)$ is continuous on all of $\operatorname{SL}(2, \mathbb{R})$ and it follows that f^{-1} is continuous. Hence, f is a homeomorphism.

With a bit more work we can show that f^{-1} is C^{∞}. From the above argument it should be clear that this is true at elements $g_{0} \in \mathrm{SL}(2, \mathbb{R}) \backslash \mathrm{SO}(2)$.

Let \mathfrak{p} be the set of all symmetric matrices in $\mathrm{M}(2, \mathbb{R})$ and let P be the set of matrices in \mathfrak{p} which are positive definite. Then $\exp : \mathfrak{p} \rightarrow P$ is a smooth map. Its total derivative at 0 is readily seen to be the identity map $\mathfrak{p} \rightarrow \mathfrak{p}$. By the inverse function theorem it follows that there exists an open neighborhood $U \ni 0$ in \mathfrak{p} such that $\epsilon:=\left.\exp \right|_{U}$ is a diffeomorphism onto an open neighborhood V of I in P. Returning to the above setting, let W be the set of elements $g \in \mathrm{SL}(2, \mathbb{R})$ such that $g g^{\mathrm{T}} \in V$. Then W is an open neighborhood of $\mathrm{SO}(2)$ in $\mathrm{SL}(2, \mathbb{R})$. Moreover, $\epsilon^{-1}\left(g g^{\mathrm{T}}\right)$ depends C^{∞} on $g \in W$. On the other hand, $\epsilon^{-1}\left(g g^{\mathrm{T}}\right)=X_{s}(g)$ and the smoothness of X_{s} on W follows.

5 Hyperbolic geometry

We will now use the bijection $\mathrm{SL}(2, \mathbb{C}) / \mathrm{SO}(2) \simeq H^{+}$to equip H^{+}with the structure of a smooth $\mathrm{SL}(2, \mathbb{C})$-invariant Riemannian metric.

A smooth Riemannian metric on H^{+}is defined to be a smooth map $H^{+} \rightarrow\left(\mathbb{R}^{2} \otimes \mathbb{R}^{2}\right)^{*}$, $\beta: z \mapsto \beta_{z}$, with values in the set of positive definite inner products. By an isometry of $\left(H^{+}, \beta\right)$ we mean a diffeomorphism $\varphi: H^{+} \rightarrow H^{+}$such that $D \varphi(z): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is isometric relative to the metrics β_{z} and $\beta_{\varphi(z)}$, for every $z \in H^{+}$. The metric β is said to be invariant under the action of $\operatorname{SL}(2, \mathbb{R})$ on H^{+}if T_{g} is an isometry, for every $g \in \operatorname{SL}(2, \mathbb{R})$.

Remark 5.1 In general, a Riemannian metric on a manifold M is a family of positive definite inner products β_{m} on $T_{m} M$, for $m \in M$, which depends smoothly on $m \in M$. An isometry of M is then a diffeomorphism $\varphi: M \rightarrow M$ such that the derivative or tangent map $T_{m} \varphi: T_{m} M \rightarrow$ $T_{\varphi(m)} M$ is isometric with respect to the given inner products β_{m} and $\beta_{\varphi(m)}$, for all $m \in M$.

Lemma 5.2 The space H^{+}has a unique $\mathrm{SL}(2, \mathbb{R})$-invariant Riemannian metric β such that the associated inner product β_{i} at i equals the standard inner product on \mathbb{R}^{2}. The metric is given by

$$
\begin{equation*}
\beta_{z}=y^{-2}\langle\cdot, \cdot\rangle_{\mathrm{st}}=y^{-2}\left(d x^{2}+d y^{2}\right) . \tag{4}
\end{equation*}
$$

for $z=x+i y \in H^{+}$. The subscript st indicates that the standard inner product on \mathbb{R}^{2} is taken.
Proof. Let $g=g_{a, b, c, d} \in \mathrm{SL}(2, \mathbb{R})$. Then $T_{g}: H^{+} \rightarrow H^{+}$is holomorphic. By a straightforward calculation it is seen that its complex derivative at $w \in H^{+}$is given by

$$
\left(T_{g}\right)^{\prime}(w)=\frac{a(c w+d)-(a w+b) c}{(c w+d)^{2}}=\frac{1}{(c w+d)^{2}} .
$$

It follows from this that the total derivative $D\left(T_{g}\right)(w): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ corresponds to the map $\mathbb{C} \rightarrow \mathbb{C}, \zeta \mapsto(c w+d)^{-2} \zeta$.

This multiplication map decomposes as a rotation (over the argument of $(c w+d)^{-2}$) and the real scalar multiplication by $|c w+d|^{-2}$.

Let $\beta_{s t}$ denote the standard inner product on \mathbb{R}^{2}. Then it follows that the pull-back

$$
D\left(T_{g}\right)(w)^{*} \beta_{s t}:=\beta_{\mathrm{st}} \circ\left(D\left(T_{g}\right)(w) \times D\left(T_{g}\right)(w)\right)
$$

is given by

$$
\begin{equation*}
D\left(T_{g}\right)(w)^{*} \beta_{\mathrm{st}}=|c w+d|^{-4} \beta_{\mathrm{st}} . \tag{5}
\end{equation*}
$$

We will now establish uniqueness. Let β be as asserted. Then by using the above formula to compare β_{z} with $\beta_{i}=\beta_{\text {st }}$, we see that

$$
\beta_{z}=C(z) \beta_{\mathrm{st}},
$$

for a uniquely determined function $C: H^{+} \rightarrow(0, \infty)$. There exists $g=g_{a, b, c, d}$ such that $g \cdot i=z$. From Lemma 4.1 we see that

$$
y=\operatorname{Im}(g \cdot i)=|c i+d|^{-2} .
$$

Now by invariance and using (5) with $w=i$ we find

$$
\beta_{\mathrm{st}}=D\left(T_{g}\right)(i)^{*} \beta_{z}=C(z) D\left(T_{g}\right)(i)^{*} \beta_{\mathrm{st}}=C(z) y^{2} \beta_{\mathrm{st}},
$$

so that $C(z)=y^{-2}$. This establishes uniqueness and the necessity of formula (4). We will now establish existence. For this we note that it suffices to show that the metric β defined by (4) is $\mathrm{SL}(2, \mathbb{R})$-invariant.

We write $C(z)=\operatorname{Im}(z)^{-2}$, for $z \in H^{+}$. Then $\beta_{z}=C(z) \beta_{\mathrm{st}}$. It suffices to show that for $g \in \operatorname{SL}(2, \mathbb{R})$ and $z \in H^{+}$we have $D\left(T_{g}\right)(z)^{*} \beta_{g \cdot z}=\beta_{z}$. This is equivalent to

$$
C(g \cdot z) D\left(T_{g}\right)(z)^{*} \beta_{\mathrm{st}}=C(z) \beta_{\mathrm{st}} .
$$

In view of (5) with $w=z$ the latter equation is equivalent to

$$
C(g \cdot z)=|c z+d|^{4} C(z),
$$

which in turn is a consequence of Lemma 4.1.

In the following we agree to denote by $|\cdot|_{z}$ the norm on \mathbb{R}^{2} determined by the inner product β_{z}, for $z \in H^{+}$. Then

$$
\|\zeta\|_{z}=\sqrt{y^{-2}\langle\zeta, \zeta\rangle_{\mathrm{st}}}=y^{-1}\|\zeta\|_{\mathrm{st}}
$$

For a piecewise C^{1}-curve $\gamma:[p, q] \rightarrow H^{+}$we define the length by

$$
L(\gamma)=\int_{p}^{q}\left\|\gamma^{\prime}(t)\right\|_{\gamma(t)} d t
$$

It is readily seen that the length of a curve is invariant under C^{1} reparametrization, so that we may reduce to the situation $p=0$ and $q=1$.

Given two points $z, w \in H^{+}$we define the Riemannian distance $d\left(z_{1}, d_{2}\right)$ to be the infimum of $L(\gamma)$ where γ ranges over the piecewise C^{1}-curves $[0,1] \rightarrow H^{+}$with $\gamma(0)=z$ and $\gamma(1)=w$.
Exercise 5.3 Show that d is a distance function in the sense of metric spaces.
Exercise 5.4 Show that if $\varphi: H^{+} \rightarrow H^{+}$is an isometry, then $d(\varphi(z), \varphi(w))=d(z, w)$, for all $z, w \in \mathbb{C}$.
Lemma 5.5 Let $s, t \in \mathbb{R}, s \leq t$. Then the distance between $e^{s} i$ and $e^{t} i$ equals $|t-s|$.
Proof. We consider the curve $\gamma:[0,1] \rightarrow H^{+}$given by

$$
\gamma(\tau)=e^{s+\tau(t-s)} i
$$

Then $\gamma^{\prime}(\tau)=(t-s) \gamma(\tau)$, so that

$$
\left\|\gamma^{\prime}(\tau)\right\|_{\gamma(\tau)}=(t-s), \quad(0 \leq \tau \leq 1)
$$

It follows that $L(\gamma)=t-s$. Hence, $d\left(e^{s} i, e^{t} i\right) \leq t-s$. It remains to establish the converse inequality.

By the exercise below, for any piecewise C^{1}-curve $\gamma:[0,1] \rightarrow H^{+}$with initial point $e^{s} i$ and final point $e^{t} i$ we have $L(\gamma) \geq t-s$. By definition of the distance function, this implies $d\left(e^{s} i, e^{t} i\right) \geq t-s$.

Exercise 5.6 Show that for any piecewise C^{1}-curve $\gamma:[0,1] \rightarrow H^{+}$with initial point z and final point w we have

$$
L(\gamma) \geq|\log \operatorname{Im}(w)-\log \operatorname{Im}(z)|
$$

Hint: first do this in case γ is C^{1}.
Definition 5.7 A geodesic in H^{+}is defined to be a C^{1}-curve $\gamma: I \rightarrow H^{+}$with $I \subset \mathbb{R}$ an interval, such that
(a) for every subinterval $[p, q] \subset I$ the curve $\left.\gamma\right|_{[p, q]}$ has length $d(\gamma(p), \gamma(q))$ (length minimalizing property);
(b) the function $t \mapsto\left\|\gamma^{\prime}(t)\right\|_{\gamma(t)}$ is constant on $[p, q]$ (constant velocity property).

A complete geodesic is a geodesic as above with domain $I=\mathbb{R}$.
Exercise 5.8 Show that for every $\xi \in \mathbb{R}$ the curve

$$
\mathbb{R} \rightarrow H^{+}, t \mapsto e^{t \xi} i
$$

is a (complete) geodesic in H^{+}.

6 Caley transform and Poincaré disk

We may use the action of $\operatorname{SL}(2, \mathbb{C})$ to find another representation of the hyperbolic Riemannian structure on H^{+}on the open unit disk $D=\{z \in \mathbb{C}| | z \mid<1\}$. The disk, equipped with this other representation of the metric is called the Poincaré disk.

Lemma 6.1 There exists a unique $\kappa \in \mathrm{SL}(2, \mathbb{C}) /\{+I,-I\}$ such that $\kappa \cdot i=0, \kappa \cdot \infty=1, \kappa \cdot 0=$ -1 . This element κ sends the upper half plane H^{+}biholomorphically onto the open unit disk D. It is given by

$$
\kappa=\left(\begin{array}{cc}
a & -a i \\
a & a i
\end{array}\right), \quad a= \pm \frac{1+i}{2} .
$$

Proof. We will first establish uniqueness. Write $\kappa=g_{a, b, c, d} \in \operatorname{SL}(2, \mathbb{C})$. Then $\kappa \cdot 0=1$ implies $b=d$ and $\kappa \cdot \infty=-1$ implies $a=-c$. Finally, $g \cdot i=0$ implies $a i+b=0$, so that $b=-a i=c i=d$. Conversely, the latter condition implies $\kappa \cdot i=0, \kappa \cdot 0=1$ and $\kappa \cdot \infty=i$. The condition $\operatorname{det} g=1$ is now equivalent to $1=a d-b c=-2 a^{2} i=1$ so that $a^{2}=\frac{i}{2}$ and existence and uniquess of κ follows, as well as the final assertion.

The element κ is readily seen to send \mathbb{R} into the unit circle. Since it sends $\widehat{\mathbb{R}}$ onto a circle of $\widehat{\mathbb{C}}$, we see that κ must send $\widehat{\mathbb{R}}$ diffeomorphically onto the unit circle $\mathbb{T}:=\partial D$. Now κ sends $H^{+} \cup H^{-}$ homeomorphically onto $\widehat{\mathbb{C}} \backslash \mathbb{T}$ and since $\kappa \cdot i=0$, we see that κ maps H^{+}bi-holomorphically onto D and H^{-}bi-holomorphically onto $\widehat{\mathbb{C}} \backslash \bar{D}$.

The associated transform $T_{\kappa}: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ is given by

$$
T_{\kappa}(z)=\frac{z-i}{z+i}
$$

and known as the Caley-transform. The sets $D, \partial D$ and $\widehat{\mathbb{C}} \backslash \bar{D}$ are the images of $H^{+}, \widehat{\mathbb{R}}$ and H^{-}under T_{κ} respectively, and therefore equal to the orbits of the conjugate group $G^{\prime}=$ $\kappa \operatorname{SL}(2, \mathbb{R}) \kappa^{-1}$.

Let $\langle\cdot, \cdot\rangle$ be the standard Hermitian inner product on \mathbb{C}^{2} and let J be the 2×2 diagonal matrix, with $J_{11}=1$ and $J_{22}=-1$. Then $\operatorname{SU}(1,1)$ is defined to be the stabilizer in $\operatorname{SL}(2, \mathbb{C})$ of the sesquilinear form $\left(z, z^{\prime}\right) \mapsto\left\langle z, J z^{\prime}\right\rangle$ on \mathbb{C}^{2}. That is, an element $g \in \mathrm{SL}(2, \mathbb{C})$ belongs to $\operatorname{SU}(1,1)$ if and only if

$$
\left\langle g z, J g z^{\prime}\right\rangle=\left\langle z, J z^{\prime}\right\rangle \quad\left(\forall z, z^{\prime} \in \mathbb{C}^{2}\right)
$$

The above is equivalent to $g^{*} J g=J$, hence to

$$
g^{-1}=J g^{*} J
$$

Lemma 6.2 The conjugate group $\kappa \mathrm{SL}(2, \mathbb{R}) \kappa^{-1}$ equals $\operatorname{SU}(1,1)$.
Proof. Let $g \in \mathrm{SL}(2, \mathbb{C})$. Then $\kappa g \kappa^{-1}$ belongs to $\mathrm{SU}(1,1)$ if and only if

$$
\kappa g^{-1} \kappa^{-1}=J \kappa^{-1 *} g^{*} \kappa^{*} J
$$

which in turn is equivalent to

$$
g^{-1}=L^{-1} g^{*} L
$$

where

$$
L=\kappa^{*} J \kappa=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

A simple calculation now leads to

$$
L^{-1} g_{a, b, c, d}^{*} L=\left(\begin{array}{cc}
\bar{d} & -\bar{b} \\
-\bar{c} & \bar{a}
\end{array}\right)
$$

We thus see that $\kappa g_{a, b, c, d} \kappa^{-1}$ belongs to $\mathrm{SU}(1,1)$ if and only if $a, b, c, d \in \mathbb{R}$, or equivalently, $g_{a, b, c, d} \in \mathrm{SL}(2, \mathbb{R})$.

We will now determine the Riemannian structure β^{D} on D for which the inverse Caley transform $T_{\kappa}^{-1}: D \rightarrow H^{+}$(and hence also the Cayley transform $T_{\kappa}: H^{+} \rightarrow D$) becomes an isometry. This means that

$$
\beta_{z}^{D}=D\left(T_{\kappa^{-1}}\right)(z)^{*} \beta_{T_{\kappa}^{-1}(z)}, \quad(z \in D)
$$

We observe that

$$
T_{\kappa}^{-1}(z)=\frac{z+1}{i z-i} .
$$

The expression on the right may be rewritten as

$$
\frac{z+1}{i z-i}=\frac{(z+1)(\bar{z}-1)}{i|z-1|^{2}}=\frac{\bar{z}-z+|z|^{2}-1}{i|z-1|^{2}}
$$

from which we see that

$$
\operatorname{Im}\left(T_{\kappa}^{-1}(z)\right)=\frac{1-|z|^{2}}{|z-1|^{2}}
$$

It follows that

$$
\beta_{z}^{D}=\frac{|z-1|^{4}}{\left(1-|z|^{2}\right)^{2}}\left|T_{\kappa^{-1}}^{\prime}(z)\right|^{2} \beta_{\mathrm{st}}
$$

Since the derivative of the inverse Cayley transform is given by

$$
-i \frac{d}{d z} \frac{z+1}{z-1}=\frac{2 i}{(z-1)^{2}},
$$

it follows that

$$
\beta_{z}^{D}=4\left(1-|z|^{2}\right)^{-2} \beta_{\mathrm{st}} .
$$

The Poincaré disk is defined to be the unit disk D equipped with this metric.
As before, the Riemannian metric β_{z}^{D} induces a distance function on D which we denote by d^{D}.

Exercise 6.3 Show that for every isometry $\varphi: H^{+} \rightarrow D$ we have $d^{D}(\varphi(z), \varphi(w))=d(z, w)$, for all $z, w \in H^{+}$.

The notion of geodesic in D may be defined in a fashion analogous to Definition 5.7.
Exercise 6.4 Let $\varphi: H^{+} \rightarrow D$ be an isometry. Let $I \subset \mathbb{R}$ be an interval and $\gamma: I \rightarrow H^{+}$a C^{1}-curve. Show that γ is a geodesic in H^{+}(for the metric β) if and only $T_{\kappa} \circ \gamma: I \rightarrow D$ is a geodesic in D (for the metric β^{D}).

Exercise 6.5 Let $s, t \in \mathbb{R}, s \leq t$.
(a) Show that the Caley-transform maps the line segment $\left[e^{s}, e^{t}\right] i$ onto $\left[\tanh \frac{s}{2}\right.$, $\left.\tanh \frac{t}{2}\right]$, which is a line segment contained in D.
(b) Show that the curve $c: \tau \mapsto \tanh (s+\tau(t-s))$ has length $e^{t}-e^{s}$ relative to the hyperbolic metric β^{D}.
(c) For $\varphi \in \mathbb{R}$ we define the diagonal matrix

$$
d_{\varphi}:=\left(\begin{array}{cc}
e^{-i \varphi} & 0 \\
0 & e^{i \varphi}
\end{array}\right) .
$$

(d) Show that

$$
d_{\varphi} \cdot w=e^{-2 i \varphi} w, \quad(\varphi \in \mathbb{R}, w \in D)
$$

Argue that for every $\varphi \in \mathbb{R}$ the curve

$$
t \mapsto e^{i \varphi} \tanh t
$$

is a geodesic in D.
(e) Show that the (images of the) complete geodesics in D are all intersections of D with circles in $\widehat{\mathbb{C}}$ that intersect ∂D perpendicularly. The images of these geodesics are also called: the straight lines of the Poincaré disk.

Exercise 6.6 The Poincaré disk is a model for hyperbolic geometry. Argue that the following assertions of hyperbolic geometry are valid.
(a) Given a hyperbolic line l in D and a point $a \in D \backslash l$ show that there is an infinite collection of lines $m \ni a$ with $m \cup l=\emptyset$ (such m is called parallel to l).
(b) Show that this collection of lines can be characterized by two extreme 'parallel' lines through a.
(c) Show that the hyperbolic metric determines a notion of angle between lines. Show that in present setting this notion coincides with the Euclidean notion of angle.
(d) Convince yourself that the sum of the angles in a geodesic triangle in D is strictly smaller than π.

Exercise 6.7 Let r_{φ} be the matrix of the rotation around 0 in \mathbb{R}^{2} by angle φ.
(a) Show that for every $\varphi \in \mathbb{R}$ we have

$$
\kappa r_{\varphi} \kappa^{-1}=d_{\varphi}
$$

where d_{φ} is the diagonal matrix defined in Exercise 6.5 (c). In particular, this means that $\kappa \mathrm{SO}(2) \kappa^{-1}$ equals the group $\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(1))$ of diagonal unitary matrices in $\mathrm{SL}(2, \mathbb{C})$.
(b) By using the Caley transform, conclude that the orbit $\mathrm{SO}(2) \cdot\left(e^{t} i\right)$ is a Euclidean circle C contained in H^{+}.
(e) Show that the circle C has center $(\cosh t) i$ (in the sense of Euclidean geometry). Hint: show that C is symmetric with respect to the imaginary axis, and determine the intersection $C \cap i \mathbb{R}$.

We are now in the position to prove that every two distinct points in the Riemannian manifolds D and H^{+}can be connected by a unique geodesic.

Theorem 6.8 Let $z, w \in D$ be two distinct points. Then there is a unique geodesic $\gamma:[0,1] \rightarrow$ D with initial point z and end point w.

Proof. If $z, w \in(-1,1) \subset D$ this result follows from Exercise 6.5. For arbitrary $z, w \in D$ we note that by transitivity of the action of $\mathrm{SU}(1,1)$ on D there exists $g_{0} \in \mathrm{SU}(1,1)$ such that $g_{0} \cdot z=0$. Now the group $\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(1))$ fixes the point 0 , and acts on D by rotations about 0 , see Exercise 6.7 (b). It follows that there exists a $\varphi \in \mathbb{R}$ such that $d_{\varphi} g_{0} \cdot w \in D=[0,1)$. We note that $d_{\varphi} g_{0} \cdot z=0$.

Put $g:=d_{\varphi} g_{0}$, then $g \in \mathrm{SU}(1,1)$ so $T:=T_{g}: D \rightarrow D$ is an isometry such that $T(z)=0$ and $T(w) \in[0,1)$. Let $c:[0,1] \rightarrow D$ be a C^{1}-curve connecting $T(z)$ and $T(w)$. Then $\gamma=T^{-1} \circ c$ is a C^{1}-curve connecting z and w. Since T is isometric, γ is a geodesic if and only if c is a geodesic. The result now follows from the special case mentioned at the beginning of the proof.

Exercise 6.9 Show that the geodesic connecting two elements z and w of D has as image the arc with boundary points z and w of a circle in $\widehat{\mathbb{C}}$ which intersects ∂D perpendicularly.

Exercise 6.10 Show that for any two points $z, w \in H^{+}$there exists a unique geodesic γ : $[0,1] \rightarrow H^{+}$such that $\gamma(0)=z$ and $\gamma(1)=w$. Show that $\gamma([0,1])$ is the arc of a circle in \widehat{C} which intersects $\widehat{\mathbb{R}}$ perpendicularly.

Exercise 6.11 Let C be any circle in \mathbb{C} which intersects \mathbb{R} perpendicularly in a point z. Show that C intersects \mathbb{R} perpendicularly in a second point $z^{\prime} \in \mathbb{R}$. Show that there exists an element $g \in \operatorname{SL}(2, \mathbb{R})$ such that $C=T_{g}(i \mathbb{R})$.

