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Introduction

Let X = G/H be a homogeneous space of a Lie group G, and let D:

C~(X) ~ C~(X) be a non-trivial G-invariant differential operator. One of the
natural questions one can ask for the operator D is whether it is solvable, in
the sense that DC~(X) = C"(X). If G is the group of translations of X = Rn and
H is trivial, then D has constant coefficient, and it is a well known result of
Ehrenpreis and Malgrange that hence D is solvable.
Assume for simplicity that G/H carries an invariant measure. This measure

induces a bilinear pairing of C~c(X), the space of compactly supported smooth
functions on X, with itself. Let D* denote the adjoint of D with respect to this
pairing. The strategy employed by Ehrenpreis and Malgrange was essentially
to use the following properties of D:

(i) There exists a fundamental solution for D, that is, £5 E DD’(X)H, where £5 is
the Dirac measure at the origin, and D’(X)H is the space of left-

H-invariant distributions on X.

(ii) For each compact set Q c X there exists a compact set Q’ c X such that

In fact, for X = R" one can take as S2’ the convex hull of Q. For this reason the

support property (ii) has become known as the D-convexity of X. It follows
from (i)-(ii) that D is solvable.
The strategy has been applied in other cases as well, for example by

Helgason in [14], where surjectivity is established for all non-trivial invariant
differential operators on a Riemannian symmetric space. In a variant of the
strategy (i) is replaced by the following weaker property (semi-global solvabil-
ity) :
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(i’) For each compact set Q c X and each function g E C(X)(X) there exists a
function f~C~(X) such that Df = g on Q.

The conjunction of (i’) and (ii) is equivalent with the solvability of D (see
Theorem 1). This is used by Rauch and Wigner in [19] where it is proved that
the Casimir operator on a semisimple Lie group is solvable, and more generally
by Chang in [6] where the Laplace-Beltrami operator on a semisimple
symmetric space is shown to be solvable.
The purpose of the present paper is to give, also for a semisimple symmetric

space X = G/H, a sufficient condition on an invariant differential operator D
to imply (ii), the D-convexity of X. When G/H has rank one, our result follows
from the above mentioned result of Chang, since the algebra D(G/N) of all
invariant differential operators in this case is generated by the Laplace-
Beltrami operator. In general this is not so, and our result shows the

D-convexity for a significantly larger class of operators D. In particular, when
G/H is split (that is, it has a vectorial Cartan subspace), all non-trivial elements
of D(G/N) satisfy our condition.
Though we do not consider the properties (i) or (i’) in this paper, we notice

that in the above-mentioned references, an important step towards obtaining
(i’) is to prove that D* acts injectively on, say C~c(X) (see for example [6]). In
fact the injectivity of D* is an immediate consequence of (i’). In the present case
of a semisimple symmetric space, the sufficient condition that we give for (ii) is
also sufficient for D* to be injective.
We also give a condition on D, which is necessary for both the D-convexity

and the injectivity. When G/H is not split, there exists a non-trivial operator
in D(G/H), which does not satisfy this condition. In particular, we conclude
that D-convexity holds for all non-trivial elements of D(G/H) if and only if G/H
is split. This provides a large class of spaces G/H for which there exist

non-solvable non-trivial invariant differential operators. Unfortunately, our
necessary condition is weaker than the sufficient condition, and the complete
classification of all D~ D(G/H), for which D-convexity holds, remains open (for
non-split G/H).

In the special case where the semisimple symmetric space is Riemannian

(that is, when H is compact), we have that G/H is split and thus our condition
reduces to the requirement that D is non-trivial. In this case our result is part
of the above-mentioned proof by Helgason that D is surjective (see [14,
p. 473]). Helgason’s proof is based on his inversion formula and Paley-Wiener
theorem for the Fourier transform on the Riemannian symmetric space X.
These results in turn rely heavily on the work of Harish-Chandra. Simplifica-
tions avoiding these strong tools were given by Chang [7] and Dadok [8]. In
another special case, that of a semisimple Lie group considered as a symmetric
space, our result was obtained by Duflo and Wigner [9].
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All of the references mentioned above, except [14], use the uniqueness
theorem of Holmgren to derive the D-convexity of X, and so do we. The main
difficulty in the present generalization lies in the handling of the more

complicated geometry of X. Our main tool to overcome this difficulty is the
convexity theorem of [1].

In [3] (see also [4]) the result of the present paper will be applied to obtain
injectivity of the Fourier transform on C~c(X). Our reasoning will thus be the
opposite of the original reasoning of Helgason in the Riemannian case: we shall
deduce properties of the Fourier transform from the D-convexity.

Motivation

As mentioned in the introduction the main motivation for studying D-
convexity is the following theorem. Here G is a Lie group (with at most

countably many connected components) and H is a closed subgroup, of which
we only assume that G/H carries an invariant measure (this assumption is only
used for defining D*).

THEOREM 1. Let D~D(G/H) be an invariant differential operator. Then D is
solvable f and only if (i’) and (ii) hold.

Proof. This follows from [22, Ch. I, Thm. 3.3], using regularization by C~c(G)
to prove the equivalence of our definition of D-convexity with that of [22, Ch. I,
Def. 3.1]. Note also the final remark of that section in loc. cit. D

Notation

From now on, let G be a real reductive Lie group of Harish-Chandra’s class,
i an involution of G, and H an open subgroup of the fixed point group G".
Then X = G/H is a reductive symmetric space of Harish-Chandra’s class

(see [2]). Let K be a r-stable maximal compact subgroup of G, and let 0 be the
associated Cartan involution. Let g = b + q = f + p be the eigen-decomposi-
tions of the Lie algebra g induced by T and 0, then b and 1 are the Lie algebras
of H and K, respectively. Let B be a non-degenerate, G- and r-invariant
bilinear form on g which extends the Killing form on [g, g], and which is

negative definite on f and positive definite on p. Then the above-mentioned
eigen-decompositions are orthogonal with respect to B.

Fix a maximal abelian subspace a of p n q, and a maximal abelian subspace
(a Cartan subspace) a, of q, containing a. Then a = a, n p. Let m be the

orthocomplement (with respect to B) of a in its centralizer ga, and let

am = a 1 n m. Via the orthogonal decomposition a = am + a we view a;c and
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a* as subspaces of a*1c. Let E and 03A31 denote the root systems of a and al in gc,
respectively, then 1 consists of the non-trivial restrictions to a of the elements
of Yi. Denote by W and W1 the Weyl groups of these two roots systems, then
W is naturally isomorphic to NW1(a)/ZW1(a), the normalizer modulo the

centralizer of a in Wl, and to NK(a)/ZK(a), the normalizer modulo the

centralizer of a in K. Let WKnH be the canonical image of NK,H(a) in W.
Recall that G = KAH, and that if g = kah according to this decomposition,

then the orbit WKnH log a is uniquely determined by g. For a WKnH-invariant
set S c a, we denote the subset K exp(S)H of X by Xs. Then

S = (log a |aH~XS}, and every K-invariant subset of X is of the form Xs.

Invariant differential operators

Let D(G/H) be the algebra of invariant differential operators on G/H. Let U(g)
be the enveloping algebra of gc and U(g)H the subalgebra of H-invariant
elements, then there is a natural isomorphism of the quotient U(g)H/
(U(g)H n U(g)4c) with D(G/H), induced by the right action R of U(g) on C°°(G)
(see [15, p. 285]).

Let 03A3+1 be a positive system for 03A31, and let n1 be the sum of the

corresponding positive root spaces g’ (03B1~03A3+1). We have the following direct
sum decomposition

Using this decomposition and Poincare-Birkhoff-Witt, a map y : U(g) - U(al)
is defined by u ~ ’03B3(u) modulo "1 U(g) + U(g)bc. From this map an algebra
isomorphism y of D(G/H) ~ U(g)H/(U(g)H ~ U(g)bc) onto S(a1)W1, the set of

Wl-invariant elements in the symmetric algebra of ale (which is isomorphic to
U(a1) because ai 1 is abelian), is obtained by letting 03B3(u)(03BB) = ’03B3(u)(03BB + 03C11) for
u E U(g)H, ÂE are (see [ 11, p. 15, Thm. 3]). Here p 1 E aTe is given by half the trace
of the adjoint action on ni. Thus D(G/H) is identified as a polynomial algebra
with dim ai independent generators.
Assume that 03A3+1 is chosen to be compatible with a, that is, the set of nonzero

restrictions to a of elements from 03A3+1 is a positive system 03A3+ for 1. Let n be
the sum of the corresponding positive root spaces gel (a ~ 03A3+), then we also have
the following direct sum decomposition

Let p E a* and 03C1m~a*mc be given by half the trace of the adjoint actions on n,
and on n 1 n mc, respectively.
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Using the decomposition (2) a map ’~: U(g) - U(a) is defined by u ~ ’~(u)
modulo (nc+mc)U(g)+U(g)bc, and we obtain by restriction to U(g)’ a

homomorphism, also denoted q, from D(G/H) ~ U(g)H/(U(g)H~U(g)bc) into
S(a). Let il(D) E S(a) be defined by ~(D)(03BB) = ’~(D)(03BB + p).

LEMMA 1. We have

four all D~(G/H), 03BB~a*c. Moreover ~(D)~S(a)W, and ~(D) is independent of the
choice of E + .

Proof. We first prove the following equation:

We have

Let

then it is clear that p = p on a. On the other hand, since the set of 03B1~03A3+1 with
03B1|a ~ 0 is 03C303B8-invariant, we get that 03C303B803C1 = p, and hence p = 0 on a., so that in
fact p = p.

Since m, = me n n1 + ame + mc~bc it follows from (1) and (2) that

’~(D)(03BB) = ’y(D)(Â). From this and (4) we get (3).
The proof will be completed by using the following observation: Every

element w e W can be represented by an element w E NW1(a); this element also
normalizes a., and can be chosen so that wpm = P.-
The W-invariance of ~(D) now follows from (3) and the Wl-invariance of y(D),

in view of the above observation. By using this observation once more, it

follows from (3) and the fact that y is independent of the choice of the positive
system Li, that ~ is independent of the choice of 03A3+. D

Let s : S(g) ~ U(g) be the symmetrization map, then the restriction of s to the
set S(q)H of H-invariants in S(q) gives rise to a linear bijection (also denoted by
s) of S(q)’ with D(G/N) (see [15, p. 287, Thm. 4.9]). A differential operator
De D(G/N) is called homogeneous if it is the image of a homogeneous element
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of S(q)H. For P E S(q)H let r(P) E S(a) denote the restriction of P to a. Here P is
identified with a polynomial on q by means of the Killing form.

LEMMA 2. Let D E B(GIH) be non-constant and let D = s(P), P E S(q)H. Then

In particular, if D is homogeneous then deg ~(D) = order D if and only if r(P) ~ 0.

Proof. That order D = deg P follows from the explicit expression for s(P) in

[15, p. 287, Thm. 4.9]. Let r 1(P) denote the restriction of P to a1, then it follows
from [15, p. 305, Eq. (38)] that

It follows from (3) that I1(D) - r(P) and the restriction of y(D) - rl(P) to a have
the same degree, and hence (5) follows from (6). If P is homogeneous, then
either deg r(P) = deg P or r(P) = 0, and the final statement follows from (5). D

Notice that r1(P) has the same degree as P (to see this, let P be homogeneous,
then deg r 1 (P) = deg P unless r1(P)=0. But r1(P)=0 implies P = 0 by the
H-invariance, because Ad(H)(al) contains an open subset of q). Hence it follows
from (6) that also y(D) has this degree (which equals the order of D). Thus y is
a degree preserving isomorphism of D(G/H) onto S(a1)W1.
However, a similar statement is not valid for I1(D); its degree can be strictly

smaller than that of D. In fact ~ is not injective in general: Since D(G/N) and
S(a) W are polynomial algebras in dim ai and dim a algebraically independent
generators, respectively, q is not injective if a ~ ai (otherwise it would cause
the existence of an injection of the quotient field of D(G/N) into the quotient
field of S(a)W, which is impossible, since their transcendence degrees over C are
dim ai and dim a, respectively (see [23, Ch. II, §12])). On the other hand, if
a, = a, in which case the symmetric space G/H is called split, then 11 is injective
since it equals y. Examples of split symmetric spaces are the Riemannian
symmetric spaces and the symmetric spaces of KE-type (see [18]). In the special
case (the ’group case’) of a semisimple Lie group G’ considered as a symmetric
space, where G is G’ x G’ and H is the diagonal, the notion of split for the space
G/H coincides with the notion of split (also called a normal real form) for G’.
Notice also that 11 in general is not surjective. This can be seen already in

the group case mentioned above, where D(G/N) is naturally isomorphic with
Z(g’), the center of U(g’), and where 11 by transference under a suitable

isomorphism can be identified with the natural homomorphism of Z(g’) into
D(G’/K’). It is known from [13,16] that this homomorphism is surjective when
G’ is classical, but not surjective for certain exceptional groups G’.
For v E S(al) or v E S(a) we define v* by v*(v) = v( - v), where v E aTc or v E a*c.
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LEMMA 3. Let De D(G/N). Then y(D*) = y(D)* and il(D*) = il(D)*.
Proof. Choose u E U(g)H such that D = Ru, and let v ~ 9 be the antiautomor-

phism of U(g) determined by v = - v for v E g. Using [15, Ch. I, Thm.1.9 and
Lemma 1.10] it is easily seen that D* = Ru . The equality for y will follow if we
prove that yeu) = y(u)* for U E U(g)H. Using [11, p. 16, Cor. 4] it is now seen that
it suffices to consider the case of a Riemannian symmetric space, that is, we
may assume that H is compact. In this special case, the statement is proved in
[15, p. 307]. This proves that y(D*) = y(D)*.
From (3) we now get that

Using the fact that there exists an element w in the Weyl group of the root
system of am in m such that wp. = - pm, and that this Weyl group is a

subgroup of Wl, we get that

proving the equality for il. D

In the final section of this paper we relate q(D) to the radial part of D with
respect to the KAH decomposition. In particular we shall prove that the
condition il(D) = 0 has the following strong consequence:

LEMMA 4. Let De D(G/R) and assume that il(D) = 0. Then Df = 0 for all
K-invariant smooth functions f on G/H.

Convexity

We are now ready to state our main theorem:

THEOREM 2. Let De B(GIH) be non-zero.
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Proof. We first prove (i). The implication of supp Df c Xs from supp f c Xs
is obvious. Assume supp Df c X.. Expanding f as a sum of K-finite functions,
we have, since XS is K-invariant, that f is supported in XS if and only if all
the summands are supported in Xs. Moreover, D can be applied termwise
to the sum, and hence we see that we may assume f to be K-finite.

Then the support of f is K-invariant, and it suffices to prove that

supp f n AH c exp(S)H.
Let m = order D, then m = deg il(D) by the assumption on D. Let uo denote

the homogeneous part of q(D) of degree m, then u0 ~ 0. Notice that uo is also
the homogeneous part of ’il(D) of degree m = deg ’il(D) for any choice of 03A3+.
Assume that supp f n AH ~ exp(S)H, and write

Then supp,, f is compact and not contained in S. By the convexity of S there
exists a non-empty open set of linear forms 03BB E a* with the property that

Since Uo =1= 0 there exists a 03BB~a* with u0(03BB) ~ 0, and satisfying (7). Let

Yo E SUPPA f be a point where the value on the right side of (7) is attained. Then
Yo e S and we have that

Let ao = exp Yo, then

by the assumption on supp Df, and

Choose a positive system E + such that 03BB is antidominant, and let n and N
be given correspondingly. Let Q denote the open (see [21, Prop. 7.1.8]) subset
Q = NMAH of X = G/H, and define g E C~(03A9) by g(nmaH) = Â(1og a) for n~ N,
m E M, a E A. We claim that

To prove (11) let x = nmaH E S2 n supp f Then we must show that g(x)  g(ao),
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or equivalently, that 03BB(log a)  03BB(Y0). To see that this holds, write

according to the G = KAHe decomposition; here H, denotes the identity
component of H. Then

and by the convexity theorem of [1, Thm. 3.8] it follows that log a = U + K
where U is contained in the convex hull of WKnHZ, and V belongs to a certain
subcone of the closed convex cone {V~a|V,Y&#x3E;0, Y~a+}, which is dual to
the positive Weyl chamber a +. In particular, À(V) S 0 by the antidominance of
03BB, and hence

Now exp(wZ)H = w exp(Z)H = wk-1xH for w~ WK,H, and from x E supp f and
the K-invariance of the support we then see that exp(wZ)H E supp f Hence
wZ E suppa f, and we conclude by (8) that

This implies (11).
Let 03C3(D) be the principal symbol of D. We have

It follows immediately from the definition of g that Rug = 0 for u E U(g)bc.
Moreover, since g is left NM-invariant, and since n and m are normalized by
A, we also have that Rug(a) = 0 for a E A, u~(n+m)cU(g). Hence

Dg(a) = R’~(D)g(a). Applying the same reasoning to the function (g - g(a0))m we
obtain that

Combining (12) and (13) we obtain that 03C3(D)(dg(a0)) = uo(î) and hence

by the assumption on 03BB.
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From (9), (11) and (14) it follows by Holmgren’s uniqueness theorem ([17,
Thm. 5.3.1]) that f = 0 on a neighbourhood of aoH, contradicting (10). This
completes the proof of the first biimplication in (i). From Lemma 3 we get that
D* also satisfies the assumption of (i), and hence the remaining statements in
(i) follow.
We now prove (ii). Let S be the ball of radius R centered at the origin, and

let ~~C~(R) be positive on [0; R2[ and zero on [R2;~[. Define

f(kaH) = ~(~log a~2) for k~K, a~A. Then f e C*(X) by [10, Thm. 4.1], and we
clearly have supp f = XS. Now (ii) follows from Lemma 4. D

COROLLARY 1

(i) If X = G/H is split, then X is D-convex and D is injective on C’(X) for
all non-trivial invariant differential operators D.

(ii) If X is not split there exists a non-trivial invariant differential operator D,
such that X is not D-convex and such that D is not injective on C~c(X).

REMARK 1. By regularization it follows that the statements of Theorem 2 and
its corollary hold with C~c(X) replaced by the space of compactly supported
distributions on X.

REMARK 2. An explicit example of an operator D as in part (ii) of Theorem
2 and its corollary is given in [5] (see also [20]), where it is shown that the
"imaginary part" CI’ of the Casimir operator on a complex semisimple Lie
group G’ is not solvable. Viewing G’ as a symmetric space for G’ x G’ it is easily
seen that ~(C’I) = 0 (see [5, p. X.8]).

The radial part

Let D E D(G/H). Choose a positive system 03A3+ and let A + ~ A be the correspond-
ing open chamber. Via the canonical map from G to G/H we identify A + with
a submanifold of X. According to [15, p. 259] there exists a unique differential
operator H(D) on A+ such that (Df)|A+ = 03A0(D)(f|A+) for all K-invariant smooth
functions f on X. II(D) is called the radial part of D. The following result
establishes a connection between rl(D) and ~(D). It is a generalization of [12,
p. 267, Lemma 26] (see also [15, p. 308, Prop. 5.23]).
Let R+ denote the ring of analytic functions ç on A+ which can be

expanded in an absolutely convergent series on A + with zero constant term:

where the sum is over the set A = NY-’ and where e-v is defined by
e-v(a)=e-v(log a).
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PROPOSITION 1. Let D E D(G/H). There exist a finite number of elements

vi E S(a) and functions giE9t+ such that

on A +. Moreover the order m of II(D) equals the degree of il(D), and we can
select the vi such that

for all i (where a negative degree of vi means that vi = 0). In particular, n(D) = 0
if and only if ~(D) = 0.

Proof. The existence of the vi and gi such that (15) holds follows from [2,
Lemma 3.9]. It remains to prove (16) (from the lemma of loc. cit. we only get
that deg vi  order(D), which is not sharp enough to conclude (16), because the
order of II(D) in general may be smaller than that of D).

Let

be the expansion of II(D) derived from (15), where vvES(a) and where vo is

given by v0(03BB) = ~(D)(03BB + p). We claim that

from which both the statement that order II(D) = deg ’1(D) and (16) follow. We
shall obtain (18) by means of a recursion formula for the vv, derived from the
relation LXD = DLX, where Lx is the Laplace-Beltrami operator on X given in
terms of the Casimir operator 03C9~ U(g)H by Lx = R03C9.
The radial part of Lx is easily computed (see [10, Eq. (4.12)]):

where LA is the Laplacian on A, and J=03A003B1~03A3+(e03B1-e-03B1)p03B1(e03B1+e-03B1)q03B1. Here p03B1
and q03B1 are certain integers given by root space dimensions, see [21, Thm. 8.1.1].
Put (D)=J1/203A0(D)03BFJ-1/2, then it follows from the commutation relation

[Lx, D] = 0 and (19) that n(D) commutes with LA - d, where d is the function
J-1/2LA(J1/2), Expanding d in a power series d(a) = 03A303B3~039B d03B3a-03B3 on A+ and
expanding n(D) in analogy with (17) as
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we obtain the following expression

Comparing coefficients to e-v we get

where the sum is finite. In this equation, if v ~ 0 and v ~ 0, the left side is a
differential operator on A + of order 1 + deg v, whereas the order of the
operator on the other side is less than the maximum of the degrees of all v-03B3,
03B3~039BB{0}. In particular, it follows by an easy induction that deg v  deg Vo - 2
for v~0.

In the series

it is seen that the only contribution in degree deg Do is obtained in the e’ term.
Hence vo and bo have the same degree (in fact it is easily seen that bo = ~(D)),
and vv has a lower degree for all other v. From this the claimed property (18)
of the v, follows.

The final statement of the proposition follows from the previous statements.
D

PROOF OF LEMMA 4. Assume l(D) = 0 and let f be smooth and K-
invariant. It follows from the final statement of Proposition 1 that Df = 0 on
A +. Since E + was arbitrary we conclude that Df = 0 on an open dense subset
of the submanifold AH of X. By G = KAH and the K-invariance of f we
conclude that Df = 0. D
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