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O. Introduction 

Let X = G/K be a Riemannian symmetric space of non-compact type, and let 
D(X)  be the algebra of invariant differential operators on X. In a previous paper 
[1] we developed a theory of asymptotic expansions for joint eigenfunctions of 
D(X)  of at most exponential growth. In the present paper we show that local 
asymptotic data determine the eigenfunctions completely. We also develop a 
theory of asymptotic expansions "along walls". Both results are of importance for 
the theory of the discrete series of a semisimple symmetric space. 

Let a be a maximal abelian split subspace of the Lie algebra 9 of G, and denote 
by a* its complexified dual. Let E be the restricted root system of a in g, and W 
the associated Weyl group. Then Harish-Chandra's isomorphism D ( X ) ~  S(a) w 
determines a bijection 2~--~Z~ from a*/W to the set D(X) ^ of algebra homo- 
morphisms D ( X ) ~ C .  Given 2ca* ,  let ga(X) denote the joint eigenspace of 
functions f e  C o~ (X) satisfying: 

Of  = zz(O)f ( D e D ( X ) ) .  

A funct ionfon X is said to be of at most exponential growth if there exist r e R and 
C > 0 such that 

I f (x) l -< Ce "a~') ( x e X ) .  

Here d(x) denotes the Riemannian distance of x to the origin. The space of 
functions in ga(X) of at most exponential growth is denoted by g*(X). In [1] we 
proved that every f ~  g~(X) admits an asymptotic expansion of the form 

f ( x  exp tH),,~ ~. pc(x, tn )g  r (1) 
~x(~, )  

for xr Hr + as t ~ o o .  Here X ( 2 ) = { w 2 - p - # ;  weW,  # r  and 
H~-~pr H) is a polynomial function on a with values in the space ~ ' ( G )  of 
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distributions on G. The expansion has to be interpreted in a distribution sense: after 
testing both sides with a compactly supported C ~ function it becomes a genuine 
asymptotic expansion. Let now U be a non-empty open subset of G and suppose 
that Pc = 0 on U • a for all r W2 - p. Then a main result of this paper is t h a t f  
must vanish identically on X (Corollary 4.10, see also Corollary 4.2). This unique- 
ness result could be expected in view of the analogous result Theorem 4.4 in [10]. 
The nature of the theory in [10] is different however; boundary values are defined 
by means of microlocal analysis fi la [14] rather than by asymptotic methods. This 
makes it difficult to compare the results in a direct way, especially for "degenerate" 
values of the parameter 2. 

Example. If G = SU(1, 1), K = S(U( I )  • U(I)) ,  then X is the unit disk D in C 
endowed with the Poincar6 metric. Moreover, g , (D)  is the space of harmonic 
functions on D. In this case the coefficients pc(x, H) are independent of H. 
Moreover, for a functionf~ g*(D) which extends smoothly to/) ,  one can show that 
the pc(x) depend smoothly on x, and that (1) holds pointwise. This gives rise to an 
expansion 

f ( e i ~  ~.=o~ P"(ei~ (2) 

for 0 e R, as t ~ ~ .  Here p, is a smooth function on c~D. A formal computation 
(which can be made rigorous) then shows that 

po( e i~ = f ( ei~ , 

Pl (ei~ = - 2 ~(e i~  , 

where r denotes the Euclidean distance to the origin. Now suppose that Po and Pl 
vanish on a non-empty open subset U of c~D. Then our uniqueness theorem asserts 
tha t fvanishes  identically on D. In the present case this can also be seen as follows. 
By the reflection principle f can be extended to a harmonic function on a 
neighbourhood of U, and then it follows from the Cauchy-Kowalewski theorem 
t h a t f  = 0 on a neighbourhood of U. By real analyticity this implies that fvanishes  
on the entire disk D. 

Sections 1-3 of this paper are devoted to the development of asymptotic 
techniques needed for the proof  in Sect. 4 of the uniqueness result. In Sect. 5 we 
show that these techniques are also strong enough to replace the microlocal 
analysis used in Oshima and Matsuki's fundamental paper [11] on the discrete 
series for semisimple symmetric spaces. 

Let us finally say something about the nature of our proof of the uniqueness 
result. The basic idea is to use induction on the rank of G/K. For the rank one case 
the uniqueness result can be obtained by using the Poisson transformation. The 
induction step is based on a property of transitivity of asymptotic expansions 
(Theorem 3.1), resembling the transitivity of the constant term in Harish-Chandra 's  
work [5]. 

Our  result on transitivity essentially amounts to the following. An eigenfunc- 
t i o n f w h i c h  is a smooth vector for the left regular representation of G in g* (X)  
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admits an asymptotic expansion along a wall of type Av (the usual notation for the 
split component of a standard parabolic). Each coefficient Pe., of this expansion is a 
smooth function on G, and it is annihilated by an ideal in D ( M l v / K F )  with finite 
codimension. By similar methods as in [1] we then obtain asymptotic expansions 
for Pv., along open chambers in Mlv. Again its coefficients are functions on G. 
Theorem 3.1 relates these coefficients with the Pc of (1). 

We are grateful to Professor Oshima for suggesting the validity of Corollary 2.4, which led to a 
significant simplification of our original arguments. 

1. Asymptotics along the walls 

Let G be a real reductive Lie group of Harish-Chandra's class, K a maximal 
compact subgroup, and 0 the associated Cartan involution. Let D(G/K)  denote 
the algebra of invariant differential operators on the Riemannian symmetric space 
G/K. The purpose of this section is to derive asymptotic expansions along walls for 
functions on G/K which behave finitely under D(G/K).  When comparing with [1], 
we are thus generalizing in three directions: (1) The asymptotic theory is "along 
walls", (2) we deal with D (G/K)-finite functions instead of plain eigenfunctions and 
(3) G is of Harish-Chandra's class. 

We adopt the usual notational conventions. Thus, Lie groups are denoted by 
Roman capitals, and their Lie algebras by the corresponding lower case Gothic 
letters. Moreover, .q = f �9 p is the Cartan decomposition defined by 0. We fix a 
maximal abelian subspace a of p, and a choice I;" + of positive roots for the restricted 
root system Z = X(.q, a) of a in g; the associated fundamental system is denoted by 
A. Finally, n denotes the sum of the positive root spaces, ft = 0(rt), N = exp(n), 
/V = exp(f0, and M denotes the centralizer of a in K. 

Given a real Lie algebra I, we denote the universal enveloping algebra of its 
complexification by ~#(l), and the latter's centre by ~ (1). Elements of q/(1) will be 
viewed as left invariant differential operators on any Lie group with Lie algebra 1, 
unless specified otherwise. 

Let I ~ D(G/K)  be a cofinite ideal (that is, an ideal of finite complex codimens- 
ion). The infinitesimal right regular representation naturally induces an algebra 
homomorphism /~ from 0#(.q)K onto D(G/K).  Let J be the left ideal of ~ (g )  
generated by 0//(g)f and the preimage # -  1(1) o f / i n  ~,(g)K. Then ~ i  = ~l(g)/J is a 
left (.q, K)-module. 

Fix a subset F of A, and let Pv denote the associated standard parabolic 
subgroup with Langlands decomposition MvArNv  (cf. [15], II, Ch. 6). We write 
Mlr  = MrAr,  Nv = O( Nv), and denote the centralizer of a r in K by K e. Then M1F 
is of Harish-Chandra's class, and K F is a maximal compact subgroup. 

Lemma 1.1. The (mlr,  Kv)-module ~i / f tF~t  is finitely 9enerated and admissible, 
for every F ~ A. In particular, ~ l is an admissible (g, K)-module. 

Proof By the Poincar6-Birkhoff-Witt theorem we have 

~ ( g )  = ~ ,~' (~)  | qz(mlF) + ~(~)~. 
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From this we see that 1 + f i v ~  is a cyclic vector for the ( m l F  , Kv)-module 
~J1/ fi v~ l. 

Now observe that 

dime Y(g ) ( l  + fiV@'l) _< dimc~li(g)r/(Jc~ll(g) K) 

= codimc(I) < ~ , (3) 

and consider the algebra homomorphism Z:~e(g)--.Se(mlF) defined by 
Z - z(Z)  ~ ftFq/(g). Since ~ ( m l v  ) is a finite Z(~(g))-module (cf. [15] IIp.  52), we 
infer from (3) that 

d imc~(mlv ) (1  + fiv~t) < ~ �9 

The result now follows by application of [16], Lemma 2.10. [] 
Consider the ~ (z 1, y i )  of ~ l / f i r ~ ,  generated by 

1 + fiFqit. From ya ~ (~i/f ivql~)r, ,we see that ya is finite dimensional, hence its 
set Sv(I) of av-weights is finite. But Y1 generates the (nlaF , Kr)-module ~a/ f iv~t  
and aV commutes with mar and K v. Therefore Sv(I) is the set of av-weights of 
qlx/fivqll as well. We write 

X(F,  I) = Sr(I)  -- NAIaF, (4) 

where NA = { Z ni~i; nl = 0, 1, 2 . . . .  and al ~ A }. 

Lemma 1.2, For k >  1, the (ma~, Kv)-module ~ i / f i ~ l  is finitely generated 
and admissible. Its av-weights are contained in X(F,  I). The dll(m~v) K ~-submodule 
(z k, Y*) generated by 1 + fi~ ~ i is finite dimensional. Moreover, for each q ~ X ( F, I) 
there exists d~ ~ N such that the multiplicity of  q in (z k, yk) is at most d, for every 
k = l ,  2 . . . .  

Proof Consider, for k >_ 2, the short exact sequence of (m~F, Kv)-modules 

0 ~ fi~- a ~ , ( f i v ) / ~ ( % )  | ~ i /%~/ ,  -~ ~ / i / f i ~ ,  - .  ~ , l f i~-  a ~ ,  ~ 0 (5) 

and apply induction to infer the first two claims. Then, by admissibility, 

dime(yk) < d i m c ( ~ i / f i ~ y r  oo . 

Since the canonical map y k ~  yk-a  is onto, the multiplicity of rl in (r k, yk) 
increases with k. However, it follows from the exactness of the sequence (5) that the 
set of weights of the kernel of yk__, yk-a is contained in 

2 -  ~" ocjlav; 2 e S r ( l ) , e l  . . . .  , e k e - Y + \ h F  , 
j = a  

hence does not contain q for k sufficiently large. From this the final claim 
follows. [] 

In order to generalize the theory of [1] to groups of Harish-Chandra's class, we 
need to define a distance function [l']l on G, as in [1], Sect. 2. We equip ,q with a 
Ad(K)-invariant inner product ( . , . )  for which f and p are orthogonal, and denote 
the associated norm by [" I. Let ~ be defined as in [15], II, p. 20, and put 

a z = { H ~ a ;  ~r  for all ~ Z } .  
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Then G ~- ~ • exp(a~). We now define the function iI'IE :G ~ R+ by 

II x exp n[I = 14 Ad(x)[lop erm , 

for x e ~  and Hear.  Here ]1 IIo~ denotes the operator norm. One readily checks 
that Lemma 2.1 in [1] is valid in the present situation as well. 

For any function f :  G ~ C and r e R we define 

]lflP, = sup I lxl l - ' [ f (x) l  . 
xe:G 

A function f :  G--, R is said to increase at most exponentially if there exists r e  R 
such that I{ f lit < ~ .  The Banach space of continuous functions f :  G --, R satisfying 
Llfllr < ~ is denoted by Cr(G). It is invariant under both the left regular action L 
and the right regular action R of G. 

As in [1] we denote the Banach space of Cq-vectors, respectively the Fr6chet 
space of C~176 for L on Cr(G) by Cq(G), respectively C,~(G). The norm on 
Cq(G) is denoted II �9 IIq, r ,  It is straightforward to check that the estimates (2.2-7) of 
[1] go through without change. Moreover, the crucial property t'hat matrix 
coefficients of finite dimensional representations are of at most exponential growth 
(cf. [1], Example 2.2 (ii)), also holds for groups of Harish-Chandra's class. 

Let g t (G/K)  denote the Fr6chet space of right K-invariant smooth functions 
f :  G ~ C annihilated by the cofinite ideal I of D(G/K)  (we view this space as a 
generalized joint eigenspace for D(G/K); when I is the ideal I~ defined in [1], p. 119 
(2ca*),  gI(G/K)  is the eigenspace g~(G/K) of [1]). For r e R ,  and q e N ,  we put 

8 q, r(G/K) = C~(G) n o~,(G/K). 

Since I contains an elliptic differential operator, this intersection is a closed 
subspace of C~(G), hence a Banach space. Moreover, the space 

r~,r(G/K ) = C~(G) ~ 8t (G/K)  

is a closed subspace of C~(G), hence FrOchet. 
Write 

a ~ ' = { X e a r ;  a ( X ) > 0 f o r a e A \ F } ,  

and fix H o e a ~  and r eR .  The following is similar to [1], Proposition 6.1, but 
"along the walls". 

Proposition 1.3 There exist, for each N e R, 
(a) an open neighbourhood U of rio in a~ , 
(b) constants k, q e N, r' > r and C, e > O, 
(c) a continuous map ~P: U ~ B(Cq,(G), y k |  C,,(G)), and 
(d) a linear form tle( yk)*, 
such that 

(1) ~ ( H )  intertwines the left actions of G on C~ and Cr,,for all H e  U, and 
(2) [IRexptnf- (r/oexp zk( tH) |  1) [TJ (H) f ]  II,, < C[]fllq, re (~-~)t for 

f eg~ , r  (G/K), H e U  and t > O. 
all 
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If f � 9  ) then the map Y/(g)~  C~ y~--~Ryf factorizes to a map 
~ --* C~(G). For the proof of Proposition 1.3 it will be convenient to specify a 
representative in ~//(g) for each element of ~ i  = ~ll(g)/1 as follows: 

Recall from [1], Proposition 5.1, that the natural linear map 

F : ~ ( f i )  | E | D ( G / K )  ~ q/ (g) /~(g) f  

is an isomorphism of J#(fi)-modules. Here E is a finite dimensional linear subspace 
of ~(a) .  The map F factorizes to an isomorphism of ~ 

F: ~ | E |  D ( G / K ) / I  --* Y/ , .  

In particular we see that ~ is a free ~ of finite rank. Let e l , . .  �9 ep be a 
linear basis for E, and select finitely many elements u~ . . . . .  uq of d//(9)r whose 
canonical images 6~ . . . . .  6q constitute a linear basis for D(G/K) / I .  By the 
Poincar6-Birkhoff-Witt theorem, there exist v~�9176 such that v~ 
= u~ mod ~//(8)f, for 1 < l < q. Let 

be the homomorphism of ~'(fi)-modules defined by 

jo i f ( l |  ek | Ut) = ekV, , 

for all k, l. Then j followed by the canonical projection ~ (9 ) -~  ~ yields the 
identity of ~ that is, j ( y )  is a representative in ~'(fl) of y. 

I f f � 9  then y f = j ( y ) f f o r  Y � 9  We now define Rrf, or y f f o r  short, 
for any f � 9  C~(G) by: 

y f = j ( y ) f  ( y E ~ I ) .  

After the above we can formulate the analogue of [1], Lemma 6.2. Define 
fly : ar  ~ R by: 

fly(H) = min ~(H). 
u~A\F 

Lemma 1.4. Let k �9 N, and put 

~(H) = Irlc21HI - kflv(H) , 

for H � 9  where c2 is the constant o f [ l ] ,  Lemma 2.1 (iv). 
For each Y � 9  there exist constants q e N ,  r' >_ r, and C > 0 such that for all 

H �9 a~ we have: 

II Rexpn R y f  lit' < C [1 f I[q,, e ~(u) 

for f � 9  C~(G). 

Proof Using that y f = j ( y ) f  and j ( y ) �9  proceed as in [1], 
Lemma 6.2. [] 

Proof of Proposition 1.3. Given N e R ,  select k e N  such that 7(Ho) < N, with ~ as 
in Lemma 1.4. Fix elements x, . . . . .  xp of ~Jt with x, = 1 + J, such that their 
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canonical images in yk constitute a basis of yk over C. For H e (IF, let B(H) be the 
matrix of zk(H) with respect to this basis. Then 

P 
yi(H) = H x i -  ~, B(H)jlxiefikF~i , 

j = l  

for 1 < i < p, and yi(H) depends linearly on H. Hence the yi(H), H e a r  span a 
finite dimensional subspace of fik yr NOW for H ~ (I~, t > 0, define bounded linear 
maps from C~(G) into C,,(G) as in [1], p. 126 by 

F(H, t)i = Rexp tH Rx, , 

G(H,  T)i = Rexpta Ry,tu) , 

for 1 < i < p .  
I f f 6g ' l , r (G /K)  then as in [1], p. 127, one has the C,,(G)-valued differential 

equation: 

d 
dt F(H, t ) f  = [B(H)F(H,  t) + G(H, t ) ] f  . 

The proof is now completed by the same arguments as in [1]. [] 
Let 

o ~ ( G / K )  = [_) o~ . , (G/K) .  
r~R 

Then we have the following consequence of Proposition 1.3. It generalizes [1], 
Theorem 3.5. 

Theorem 1.5. (i) For each f e  ~ ~ ( G / K ), x ~ G and tl E X ( F, I ), there exists a unique 
continuous function Pv, ~ ( f, x) on (I + which is radially polynomial of degree at most d~ 
such that 

f ( x  exp tH)  ~ ~ Pv, ~(f, x, tH)e '"tn) (t ~ ~ )  (6) 
q 

at every H ~ (I~-. 
(ii) Let r e R and rl~ X ( F, I ). Then for Ho ~ a~ there exist an open neighbourhood 

U of rio in a~ and a constant r ' eR  such that ( f  H)~--~pv,,(f . ,  H) is a continuous 
map from o~t~,(G/K) • U into C~(G), which is linear and G-equivariant in f 

Remarks. (a) That Pv, , ( f  x) is radially polynomial of degree at most d, means that 
for each He(I~,  the map t~--~pv,,(f x, tH) ( t e R + )  extends to a polynomial of 
degree < d, on R. Here d, refers to the constant given in Lemma 1.2. In Corollary 
3.2 we shall see that Pr, ,(f, x) actually extends to a polynomial on a v. 

(b) For the meaning of ~ in (6) we refer to [1], Sect. 3. The definition given 
there is easily generalized to the present situation. 

(c) By the definition of the topology of the spaces C~(G), the continuity of the 
map ( f  H) ~ Pv, , ( f . ,  H) in (ii) amounts to the following: For  each p there exists a 
q such that the map has a continuous extension 

8 'L , (G/K ) x U ~ C~,(G). (7) 
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Proof of Theorem 1.5. This follows from Proposition 1.3. The details present no 
difficulties which go beyond those of [1]. The bound on the polynomial degree of 
t~-~pF,,(f, X, tH)  comes from (2) in Proposition 1.3 and Lemma 1.2. [] 

2. Properties of the coefficients 

The purpose of this section is to study properties of the coefficients PF,, in the 
asymptotic expansion (6) of Theorem 1.5. We first derive differential equations for 
the PF, , ( f  x, H) as functions of x. 

For reeK F, we have f ( x m e x p  t H ) = f ( x e x p t H ) ,  hence by uniqueness of 
asymptotics we see that 

pF, , ( f  xm, H ) =  p v , , ( f  x, H) ( m 6 K F )  . 

Consequently the right action of q/(mlF)K~ on Pv, , ( f , . ,  H)  induces an action of 
D(MIF/KF)  on PF,,( f  ", H). 

If D e D ( G / K ) ,  then D may be represented by some ueql (g)  K (determined 
modulo o//(g)f). By the Poincar6-Birkhoff-Witt theorem there exist ur ~q/(mlF) K~ 
and w~fiE~'(fi | a) such that 

u~ur  + w + ~ ( g ) f  . 

The image of u F in D ( M l r / K F )  only depends on D and is denoted by 6F(D ). 
Moreover, w only depends on D and can be written as a finite sum w = ~ w i ,  with 
w ~ q / ( f i t ~ a )  such that ad(aF) acts on w~ by a non-zero weight - # i ,  with 
!ai~Ndla . 

In the following, it will be convenient to adopt the convention that PF,, = 0 if 
qq~X(F, I). 

Proposition 2.1. Let D ~ I. Then 

fiF(O)pr,,(f, . ,  H) = - ~i wiPr'~+u'(f' "' H ) ,  (8) 

for all f~o~]~(G/K), q ~ X ( F ,  I), H E a ; .  

Proof By equivariance it suffices to establish this identity of functions on G at the 
identity element e. Let uF represent fiF(D) as above. Then u F commutes with at ,  
hence 

uef(exp t n )  = L(~r ) f (ex  p t n ) ,  

where L denotes the infinitesimal left regular representation, and u~-*~ the 
canonical anti-automorphism of q/(g). By left equivariance of the map 
f~'* PF, ~ (f, ., tH ) we now obtain: 

urf(ex p tH ) ~ ~ [ fir( D )pv, ~ (f, ., tH ) ] (e)e 'ram . 
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Similarly: 

wif(ex p tH ) ~ ~, [wipv, , ( f  ., tH)](e)e I"-u')('n) 
q 

and the identity follows by uniqueness of asymptotics. [5 
The following two lemmas are well known. 

Lemma 2.2. Let I be a cofinite ideal in D( G / K). Then 6F( I) generates a cofinite ideal 
in D(Mlv/KF).  

Proof See [4] Lemma 15. [] 
Notice, that if Wis a (g, K)-module,  then there is a natural action of D(G/K)  

on the set W r of K-fixed vectors in W, defined via the canonical map 
~(~)K _~ D(G/K).  

Lemma 2.3. Let I be a cofinite ideal in D(G/K),  and let F be a finite dimensional 
g-module. There exists a cofinite ideal I' in D ( G / K )  with the following property: 

Let W be any (.q, K)-module which is generated by W K, and assume that W K is 
annihilated by I. Then I' annihilates ( F | W) K. 

Proof This result follows from [8], Theorem 5.1, since the canonical image of ~(.q) 
is cofinite in D(G/K).  For  completeness we give an independent proof. 

Let I;. be the ideal of codimension 1 defined in [1], p. 119. It is easily seen that 
�9 . , / I n n  we can assume I = 14 for some 2 ~ o* (if I = (lz,)m' c~ c~ (~ , )  , then by using a 

suitable D(G/K)-stable filtration of W/~ it is seen that we can take 
I' = (l'z,)" c~ . . .  c~ (I ' j"").  Moreover,  we may assume that dim W K = 1, and that 
the real part of  2 is dominant.  By a theorem of Kostant  ([7]), W is equivalent to a 
quotient of the space C(G/P, L_a)K of K-finite vectors in the spherical principal 
series C(G/P, L-k)  induced from 1 | e z (cf. [1], Remark 5.1). Hence we may 
assume that W = C(G/P, L_~) K, It is now easily seen that F | W h a s  a filtration, 
of length at most  dim F, in which each subquotient  is equivalent to a principal 
series representation induced from ~ | e z+~ where ~ | e ~ occurs in the MA- 
decomposit ion of  F. Hence the intersection I ~ of  the ideals I~ + ~, where each v is an 
a-weight of F ~, annihilates the K-fixed vectors in each of these subquotients. Let 
I '  = (I O)dim F [] 

Corollary 2.4. Let q6X(F ,  I). There exists a cofinite ideal I~ in the algebra 
D(Mlr /Kv) ,  which annihilates Pv,,(f, ., H) for all f and H. 

Proof Consider the partial ordering -< v on a v defined by 

r/, ~vq2 r - th ENA[a~\{O } . (9) 

We prove the corollary by downward  induction along <;v. Fix q~X(F ,  I)  and 
DeI ,  and assume the result holds for all elements in X(F,  I)  greater than q. Then 
we claim that the right hand side of equation (8) is annihilated by a cofinite ideal 
I ' c  D(M~v/Kv). To see this, notice that the w~ generate a finite dimensional 
Ad(M~v)-invariant subspace F of  0g(g), and that the p~, ~ + ~,, ( f , . ,  H ), which by the 
induction hypothesis are annihilated by a cofinite ideal, generate a (rote, Kv)- 
module W c C~(G). Then the right hand side of(8) lies in the image o f ( F  | W) K 
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under  the morph i sm of (mlF, Kr)-modules F |  given by 
u | ~o ~ Ru~o, and the claim follows from the previous lemma. Moreover ,  I '  
depends only on r /and D, but  since I is finitely generated, we can actually choose I '  
independently of D. Let I ,  be the product  of the cofinite ideals I '  and fir(l), then it 
follows from (8) that  I ,  annihilates P r , , ( f , . ,  H).  [] 

Corollary 2.5. For every f ~ ( G / K ) ,  q ~ X ( F ,  I), H~a~  and x~G,  the function 
m~---~pF,~(f, xm, H)  is real analytic on MIF. 

Proof In view of Corol lary  2.4 the above function is annihilated by the cofinite 
ideal I ,  in D(M~e/KF), which contains an elliptic differential opera tor  with real 
analytic coefficients. N o w  apply the elliptic regularity theorem. [] 

We shall now see that  this real analytic function on M~v has at most  exponen-  
tial growth. For  this purpose,  we need some lemmas. Let II " IIF denote  the distance 
function on M~F as defined in the previous section. 

L e m m a  2.6. There exists a constant ~ >_ 1, such that 

Ilmll~/~ -< Ilmll -< tlmll~, m~M1F �9 

Proof. In view of [1], L e m m a  2.1 (iii), it suffices to prove  the inequalities for 
m = e x p Y ,  with Y ~ m ~ v n  p. Both inequalities then follow from [1], L e m m a  
2.1 (iv). [] 

L e m m a  2.7. Fix constants r > 0 and p ~ N, and let s = ar (where a is 9iven in Lemma 
2.6). There exist constants g~ R and C > 0 such that for all q9 ~ CP(G) and x ~ G, the 
function m w-~ q~(xm) belonys to C~( MIF ) with the followin9 bound on the norm 

II~o(x')[M~ ~I1,,~ -< Cllxll~ll~o[l~,r 

Proof. It  suffices to prove  the bound  on the norm. By [1], equat ion (2.4) we may  
assume x = e. Fix a basis I11 . . . . .  Yk for re:v,  and write 

y r  = Y~' . . .  Yy,~ 

for ~ = (~/1 . . . . .  yk )~N ~. Then by the definition of I1" I1.,~ on MI~  

ll~OlM,~llp,~= max sup IImll;~lL(Yr)cp(m)l, 
[y[ <_p m ~ M  ~ F 

and hence by the definition of II'][ p,r on G 

IIq~lM,~llp, s ~ C sup Ilmlt~SllmllrlP~011p, r .  
m~M1 F" 

Now the result follows from L e m m a  2.6. [] 
Fix rI~X(F, I) ,  a relatively compac t  open subset U o f a ~  and a constant  r > 0. 

Then by Theorem 1.5 (see also (7)) there exists a constant  r '  > 0, and for each p ~ N 
a number  q ~ N  and a constant  C > 0 such that  Pv,,( f , . ,  H)  belongs to C~,(G) for 
all H e  U andfES~1,r(G/K), with the following bound  on the norm: 

IIPF,,(f, . , n ) l r p , , ,  < CIIf/Iq, r �9 

Combin ing  this with L e m m a  2.7, we obtain the following result: 
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Proposition 2.8. Fix rl, U and r, and let s = ar as above. For each p ~ N there exist 
q~N,  ge R  and C > 0  such that the function m~--~pe,,(f xm, H) belongs to 
C~(M1F/KF)for all H ~ U, x ~ G and f~o~[, ~(G/K), with the following bound on the 
n o r m :  

]IPF, ~(f, X ", H)IM, ~ll p, ~ --< CIIxll'~llfllq,, �9 

In conclusion, we have: 

Theorem 2.9. Fix r l~X(F , I ) .  There exists a cofinite ideal I,  in the algebra 
D( M l v /  KF) such that the function m~-* pr, ,(  f xm, H) belongs to ?Y ~( M lv/ KF) for 
all f e g f ( G / K ) ,  x e G  and H s a ~ .  Moreover, for each r e R  and U c a~ relatively 
compact there exists s e R such that ( f  H ) ~-~ Pv, , ( f  x ' ,  H )l M, ~ maps 
g~,~(G/K) x U continuously into g~,s(M1F/Kv)for all x e G. 

3. Expansions for the coefficients 

Consider a f u n c t i o n f s g f ( G / K ) .  From Theorem 1.5 with F = ~ we know t h a t f  
has an asymptotic expansion along a+: 

f ( x e x p t H ) ~  ~. p~(f,x, tH)e '~(m ( t ~ o e ) ,  (10) 
~eX(1) 

for HE a +, x~ G (when the special choice of the empty set for F is made, we 
suppress the symbol ~ in our notations, thus X(I )  = X((25, I )  = S - NA where 
S = Se( l ) ) .  

On the other hand, for any F we have the following expansion along a~: 

f ( x e x p t H o ) ~  ~ pr . , ( f ,x ,  tHo)e t"Cn~ ( t ~ o o ) ,  (11) 
~I~X(F,I) 

for H0e a,g, x e G .  
Let Xv = X n Z F  be the restricted root system of a in m~v. The positive system 

2;~ = Se ~ S + determines a positive Weyl chamber in a: 

a + ( f ) = { X e a ;  c~(X)>0 for ~ e f } .  

Now let q s X ( F ,  I), Hoea~ ,  and xeG.  Then by Theorem 2.9 the function 
m ~-* PF, ~(.s xm, Ho) on Ml r  is annihilated by a cofinite ideal I ,  in D(MIF/Kr) ,  and 
hence by Theorem 1.5 it has asymptotic expansions along rays in a+(F). The 
following theorem determines the coefficients of these expansions in terms of the 
coefficients p~ of (10). Put 

x ( / ,  n) = { r e x ( / ) ;  ~1~ = ~ } 

Theorem 3.1. Let f e g ? ( G / K ) ,  xeG,  and r l sX(F,  I). 

(c~) For every H o e a~ and H1 e a + ( F) the following asymptotic expansion holds: 

pv,,(f, x e x p t H 1 , H o ) ~  ~ pr Ho + tH1)e 'r ( t - - .oo) .  (12) 
~EX (I, n) 
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(fl) For all ~ e X ( l ) with r I a di X ( F, I) we have pr f x) = O. 

Notice that if the set X(I ,  ~l) contains some element 4, then it contains the set 
- NF,  so that (12) is actually an infinite expansion. On the other hand if X(I,  q) is 

empty, we define the right hand side of (12) to be the trivial expansion with all 
coefficients vanishing. 

Proof Since both Pv, ~ and pc are equivariant for the left G-action we may assume 
that x = e. 

By Theorem 1.5 there exists a finite set T ( q ) =  S ( I , ) ~  a*, and for each 
r  m e M l e  and ff~ T(~/ ) -  N F  a continuous function q;(q~, m) on 
a § (F) such that we have the asymptotic expansion 

q~(m exp tHx) ..~ ~ q;(tp, m, tH1)e 'r (t ~ oc).  

We apply this result to the function tp = P r , , ( f . ,  Ho)IM, ,.at m = e, and denote the 
coefficients q;(q), e, t i l l )  by q r , . ; ( f  Ho, tHe): 

p F , . ( f e x p t H 1 , H o ) ~  ~ qF,, ,~(fHo, tH1)e ';~H~) ( t ~ ) .  (13) 
~ET(~I) -- N F  

To establish part (~) of the theorem, it suffices to prove the following: 

(i) I f  r  q ) \ (T (q )  - NF),  then p~(f e) = O. 
(ii) I f ( e ( T ( q )  - N F ) \ X ( I ,  tl), then qr , , , ; ( f )  = O. 

(iii) l f ( e ( T ( q )  - N F )  c~ X(I ,  rl), then 

qF,,,r Ho, t i l l )  = P;( f  e, H o + tHe) ,  

for all H o e a  +, Ha ea  + (F) and t > O. 
We will concentrate on proving (i}-(iii); part (fl) of the theorem will be obtained 

along the way. 
Since PF, , ( f ' ,  Ho) and q~(q~, e, t i l l  ) depend continuously and linearly o n f a n d  

~o, respectively, the coefficient qv, n, ;(f, Ho, tH~ ) depends continuously and linearly 
o n f  Similarly for every ~ e X(1), and H e a +, pr e, H) depends continuously and 
linearly o n f  Hence by density we may assume tha t f i s  K-finite. This assumption 
will allow us to apply the results of [3]. 

For H e a  + we define z ( H ) e C  ~ by 

z (n)~  = e -'<H) (o~A) . 

Let D denote the unit disk in C, centred at the origin. Then by I-3] there exists a 
finite set S ' =  a* such that the canonical map S ' ~  a*/ZA is injective, and 
moreover an integer d > 0 and finitely many holomorphic functions q~s, m: Da ~ C 
such that: 

f ( e xp  H) = ~ H i e  s~m q~., m(z(H)) ,  (14) 
s e S ' , l m l  <_ d 

for H e a  +. Here the summation involves m e N  a with {ml = ~ m~ < d, and we 
have used the notation H ' =  1-Ie~ a(H) m'. Being holomorphic, ~s,,.(z) has a 



Eigenfunctions on a Riemannian symmetric space 651 

power  series expansion 

~ . r , ( Z ) =  ~ C~-,,,,,Z u (zeD'~), 
t.zeNA 

where z" = ~-L~(z~)~,. F o r  convenience, let cr ~ = 0 whenever ~ ~ S'  - NA. 
By uniqueness of the coefficients in (10) we draw the following two conclusions: 

(a) If ~ X ( I )  = S -  NA then 

pr e, H) = ~ cr m . (15) 
I,nt <_ d 

(b) If ~ e ( S '  - N A ) \ ( S  - NA), then cr = 0 for all m. 
Now fix H ~ a a + ( F )  for the moment .  I f R  > 0 we put 

a~ (R) = {HoeaF; a(Ho) > R for all a e A \ F }  . 

We may  fix R > 0 such that  

H o ~ a ~ ( R ) ~ H l  + HoEa + . 

For  Ho ~ a~(R) we write H = H~ + Ho. Then in view of conclusion (b) above, the 
expansion (14) f o r f c a n  be rewritten as follows: 

f ( e x p H )  = ~ cr ~m 
~ S - N  A 

Iml<_d 

= ~ I ~ cr162162176 (16) 
~eS- N(A\~F) la~NF L A 

Iml<_d 

Since the functions ~ ,  m are ho lomorphic  on D ~, the series between brackets  in (16) 
converges absolutely. Moreover ,  again by ho lomorphy  we obtain an asymptot ic  
expansion 

~eS-  A\F) # F 
[ral <_ d 

as t ---~ ~ .  
N o w  put 

X(r/) = { ~ S -  N ( A \ F ) ;  r = 1/} , (17) 

By uniqueness of  the coefficients in (I 1) we infer the following. 
(c) Fo r  all H o ~ n~ (R) one has 

pF,,r(f, expH1,Ho)= ~ I ~, cr +Ho)"eCtH". (18) 
CeX(~l) geNF 
[m[<_d 

(d) I f  ~ X ( I )  = S -  NA and ~[~F~X(F, I )  then cr m = 0 for all m. 
In  view of (15) part  (fl) of the theorem now follows f rom (d). 
Clearly (17) is a finite set, so that the summat ion  in (18) over the r is finite. 

Since Pv,n(f,, exp H~, Ho)  is cont inuous and radially polynomial  in the variable H o 
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it follows that  (18) holds for all H 1 c o  + ( F )  and all H o ~ a ; .  Moreover ,  we have an 
asympto t ic  expansion: 

p v , , ( f  exp tH1, Ho) ~ ~ cc,,(H o + tH1)'~ d ~(H') , (19) 
I,.I-~U 

~eX01) NF 

as t -~  av, for H o e a ; ,  H l e a + ( F ) .  
Finally uniqueness of asymptotics ,  this t ime in (13), allows us to conclude: 

(1) If ~ e (X(q)  - N F ) \ ( T ( q )  - N F  ) then cr ,, = 0 for all m. Hence pe = 0 by (15). 
(2) I f ~ e ( T ( q ) -  N F ) \ ( X ( q ) -  N F ) ,  then qv, , , ; ( f )  = O. 
(3) I f ~ e ( T ( q )  - N F )  c~(X(r/) - N F ) ,  then 

qv. , , ; ( f  Ho, t i l l )  = ~ c;, ,.( H o + t i l l ) " ,  
m 

for H o e a [ ,  H 1 e a + (F) .  Hence qr, ~, ~(f Ho, t i l l )  = P;( f  e, Ho + tH~ ) by (15). 
Since X(q)  - N F  = X(I ,  q), this finishes the proof  of (i), (ii) and (iii). [] 

Corollary 3.2. Let f 6 o~ ( G / K ), x ~ G and 11 �9 X(  F, I ). The function Pv, ,( f, x) on a + 
extends to a polynomial on a v of degree at most d,, where d, is the constant of Lemma 
1.2. Moreover, if q ~ X(l)la~, this polynomial vanishes identically. 

Proof By equivariance we m a y  as well assume that  x = e. For  K - f i n i t e f w e  know 
already that  p v , , ( f  e) is polynomial  (see (18)), but  also that  it is radially poly- 
nomial  of degree at most  d, (cf. Theorem 1.5, (i)). Therefore Pv,, (f, e) belongs to the 
finite dimensional linear space P of polynomial  functions on ae of  degree at most  
d,. It follows by density that  Pr,,(f, e) belongs to P for f arbitrary.  

If r/~ X(I)I ,~ ,  then the set (17) is empty  so that  (18) vanishes for every K-finite 
f u n c t i o n f  Now we again apply  density. [] 

4. Local boundary data 

This section contains the main result abou t  asymptotics .  As in [ l ]  Sect. 8, we define 
the set of exponents  o f f~g]~(G/K)  at x~  G along xA + by 

E ( f x ) =  {~6X( l ) ;  x e s u p p p ~ ( f , . ) }  . (20) 

Here  we have regarded Pc(f) as a function on G with values in a finite 
dimensional  space of  polynomials  (cf. Corol lary  3.2 with F = ~ ) .  

Theorem 4.1. There exists a finite set R( I ) c X ( I) such that the following holds: Let 
f ~ e ~ ( G / K ) ,  l f  E ( f  x)c~R(1) = (~ for some x~G,  then f =  O. In particular, if l 
= lafor some 2~a*, then we can take R(I)  = W,~ - p. 

Corollary 4.2. Let f e S T ( G / K )  and assume that there exists an open nonempty set 
U c G such that p~(f  x) = O for all ~ X ( I )  and x~U.  Then f =  O. 

The corollary is an immediate  consequence of the theorem. Thus  a function in 
g T ( G / K )  is uniquely determined by its asympto t ic  coefficients on any fixed 
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nontrivial open subset of G. This uniqueness result is of a similar nature as 
Proposition 2.15 in [12] and Theorem 4.4 in [10], the proofs of which are based on 
Holmgren's uniqueness principle for hyperfunctions as formulated in [14-1, Ch. III, 
Theorem 2.2.1. 

The proof of Theorem 4.1 proceeds by induction on the rank of the root system 
Z, but first we construct R(I) and show that it suffices to prove the result for ! = Ix, 
that is, for simultaneous eigenfunctions of D(G/K). 

Lemma 4.3. For each D ~ D (G/K) and f~  ~ (G/K) we have Df~ o~f(G/K). More- 
over, there exists a finite set T ~ NA such that 

E(Of, x) ~ { ~ - It; ~ ~ E(f, x), It ~ T} (21) 

for all D ~ D ( G / K ) , f ~ ( G / K )  and x~G. 

Proof. Let f~ST,  s(G/K). Since D ( G / K ) f i s  of finite dimension, it is contained in 
o~F,s,(G/K) for some s' >_ s by [1], formula (2.7). Let g = Dfwhere D E D(G/K). We 
can represent D by a finite sum ~ = 1  vj in ~(g) ,  where each v j ~ ( f i  Gct) is a 
weight vector for ad(a) with weight - It)~ - NA. It follows that 

k 

g(exp tH) = ~ e - t~m[L(b j ) f ]  (exp tn)  
j = l  

k 

",~ ~ ~, pr tH)e *~r (t ~ oo) 
j = 1 ~ x ( 1 )  

and since p~(L(~j)~ e) = L(~j) [p~(f)-1 (e) = [R(vj)p~(f)] (e) we get by uniqueness 
of asymptotics that p~(g, e) = ~j[R(vj)pr +.j(f)] (e). By left equivariance we now 
infer that 

k 

pr S [g(vj)p~§ (x~G), 
j = l  

whence 

E(g ,e )~  { ~ - # i ;  ~ E ( f , e ) ,  j =  1 . . . . .  k} .  

Since I is cofinite, it suffices to consider finitely many D's and the lemma 
follows. [] 

Since I is cofinite, D(G/K) / I  is a finite dimensional module for the algebra 
D(G/K). Let ~F(I) be the finite set of all homomorphisms D ( G / K ) ~  C to which 
there corresponds a simultaneous eigenvector in D(G/K)/1. Via Harish-Chandra's  
isomorphism, It(I) corresponds to a W-invariant subset A(I) of a*. Let T c NA be 
as described in Lemma 4.3 and let 

R(I) = ( ) , -  p + #; 2~A(I) ,  #~ T} . 

Notice that if I = 14, then A(I) = W2, and we can take T = ~ in Lemma 4.3. 
Hence R(I) = W2 - p. 

The reduction to eigenfunctions will now be a consequence of the following 
lemmas. 
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L e m m a  4.4. Let f~r176  x ~ G  and suppose that E ( f  x ) c ~ R ( l ) =  ;25. I f  
9 ~ D ( G / K ) f n  g ~ ( G / K ) ,  2~ a*, then there exists an open neighbourhood U of  x 
such that E(g, y) = ~ for all y ~ U. 

Proof If 9 = 0 there is nothing to prove. Assume g :~ 0. Then 2 ~ A ( I ) ,  and by 
definition of R(1) we have W2 - p + T c R(I). Hence E ( f  x) n ( W2 - p + T) 
= ~ ,  and it follows f rom L e m m a  4.3 that  E(g, x) n ( W2 - p) = ;ZL 

Since W2 - p is finite, E(9, y) n ( W2 - p) = ~ for all y in a ne ighbourhood  U 
of x, and the result now follows from [1], Corol lary  8.2. [] 

L e m m a  4.5. Let f ~ g ] ~  I f D ( G / K ) f ~  g ~ ( G / K ) =  O for every )tea*, then 
f = 0 .  

Proof. If f +  0, then the finitely generated commuta t ive  algebra D ( G / K )  has a 
non-trivial joint  eigenvector in the finite dimensional  space D ( G / K ) f  [] 

As a corol lary we can now obtain  a 'global '  version of Theorem 4.1. 

Corollary 4.6. Let feoC•(G/K). I f  p~(f x) = O for all ~ R ( I )  and all xEG, then 

f = 0 .  

Proof Let g ~ D ( G / K ) f n  8~ where 2 c a * ,  Re). dominant .  According to 
L e m m a  4.5 it suffices to show tha t  9 = 0. By L e m m a  4.4 we have that  E(O, x)  = 0 
for all x ~ G. Hence  the bounda ry  value f ix(f )  (cf. [1], p. 136) vanishes identically, 
and the result follows f rom [1], Theorem 10.1. [] 

Proof of  Theorem 4.1 (induction step). Let n = r ank (Z)  > !, and assume that  the 
theorem holds for all spaces whose root system is of  strictly smaller rank. By the 
same reasoning as in the proof  of  Corol lary  4.6 we may reduce to the case tha t  
fE  ~ ~ ( G / K )  for some )~ ~ a*, and tha t  the set { y ~ G: E (f, y) = ~ } has a non-empty  
interior U. 

Let  F be a proper  subset  of A, and fix x o ~ U. Select an open subset  V of M1F 
such tha t  xo V c U. Now let ~ ~ X ( I ). Then pe(f, Xom) = 0 for m E V. We  claim tha t  
actually p~(f, xom ) = 0 for all m ~ M l v .  Put  q = ~1,~. By Theo rem 3.1 part  (fl) we 
may as well assume tha t  q e X ( F ,  I). By Theorem 3.1 par t  (a) the function 
m ~ Pv. ,(f ,  Xo m, Ho) on M iv has an asymptot ic  expansion in which all coefficients 
vanish on V, for all H o e  a ; .  By the induction hypothesis (apply Corol lary  4.2 to 
the space g ~ ( M ~ e / K v ) )  it now follows that  

Pr , ,  (f, x0m, Ho) = 0 

for all meM~v .  Applying Theorem 3.1 pa r t  (~) again, we obtain  ou r  claim by 
uniqueness of asymptot ics .  Thus we infer tha t  U = UM~v. In  view of [ 1], Theorem 
8.4, it even follows that U = UM~FP = UP v. 

Since F was an arbi t rary  p roper  subset of  A, it follows f rom the l emma below 
that U = G, and then the theorem follows from Corol lary  4.6 [] 

L e m m a  4.7. Let F~, F 2 c A be such that Fa u F 2 = A. Then G is the closure of  the 
s e t  

f2 = { x 1 . . . Xk; k e N ,  x1 . . . . .  Xk~PF~ u Pv~} . 
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Proof The closure f2 of  I2 is a closed subgroup of  G containing the minimal 
parabolic subgroup P. Therefore it equals a standard parabolic subgroup P~, 
E c A. We must have F~ c E for i = 1, 2, hence E = A. [] 

To prove Theorem 4.1 it remains to deal with the case of  rank(S)  = 1. Before 
doing this, we prove the following result, which actually holds for arbitrary rank. 
Let tr G ~ K and H: G ~ a denote the maps defined by the formula 

x ~ ( x ) e x p ( H ( x ) ) N  , 

for x e G. Fix a representative w E N~(ct) for the longest element in the Weyl group 
W o f S .  Define ~_:A ~ C  ~ by ~(a) = ( a - ' ;  eeA) ,  and for e > 0 let D(e) = { z e C ;  
[zl < e} and A(e) = { a e A ;  g(a)eD(e)  ~ }. Fix 26a* ,  and let 9 ~  denote the Poisson 
transform C ( K / M )  ~ g x ( G / K )  (cf, [1], (1.8)). 

Theorem 4.8. Let r  and assume that suppcp c w~c(lq)M. Then there 
exists ~ > 0 and a holomorphic function ~O : D(e) A ~ C such that for a ~ A (e) we have 

(~r (a) = a ~ - " t p ( g ( a ) ) .  

Proof We have 

,~z~0(a) = ~ e<-'~-P,H(o 'k)> r 
K 

= ~ e(-~.-p,H(a 'w~)-Ht~)> @(w~c(~))e zPH{~)dr~ 
E 

= ?t- z -p  ~ e(-)~-p,H(~a-,)>e<Z-p,t4(~)> r (22) 
Ig 

where ~ = (aW) -1. Since supp~o c w~:(I~)M, the function h~--,~o(wx(~)) is sup- 
ported by a compact  subset C of/q.  Fix a bounded open subset f2 of ~7 containing 
C. F rom a straightforward calculation of the action of Ad(~) on fi involving the 
root space decomposit ion,  one sees that there exists an e > 0 and a real analytic 
function z :D(e )  ~ x f2---, C, holomorphic  in the D(~)~-variable such that 

e (-~-p'H(~a ')> = Z(g(a), Fi). 

This implies the result. []  

Proof of  Theorem 4.1 (start of the induction). Let  r ank(S)  = 1. By the same 
reasoning as in the p roof  of Corol lary 4.6 we can reduce to the case that  
f ~ ( G / K )  for some 2Ea*  with Re2  dominant  and that E(f ,  x) = ~ for all x in 
an open nonempty  set U c G. 

We will prove that x ~  U impl ies f (x )  = 0. S i n c e f i s  real analytic it will then 
follow that f =  0, It suffices to prove our claim for x = e, because by equivariance 
we can then apply it to L x - , f  Thus we assume e~ U. 

By [1], Theorem 1 0 . 1 , f =  ~zq~, where r176 is a constant  times the 
boundary  value fix(f). Identifying K / M  ~- G/P canonically it follows from the 
definition of f i x ( f ) t ha t  suppq~ n UP = ~ .  

The crucial feature o f  the rank 1 case needed here is the two cell Bruhat  
decomposition G = P u wlVP. This allows us to conclude that  supp r c w~(lq)M. 
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From Theorem 4.8 it now follows that the function t ~--~f(exp tH) has an exponen- 
tial asymptotic expansion, which actually converges to f (  exp tH) for t sufficiently 
big. By uniqueness of asymptotics this must be the zero expansion. Hence 
f ( e x p t H )  = 0 for t sufficiently big. Since f is real analytic it follows that 
f (e )  = O. [] 

Remark 4.9. Instead of using the above argument to prove Theorem 4.1 for the 
rank one case, we could also have referred to [2]. In the rank one case there is 
essentially only one differential equation, which comes from the Casimir operator. 
From [13], Sect. 4.2, it follows that this equation is such that Theorem 4 of [2] is 
applicable. 

Let 
8*(G/K)  = U g , ( G / K ) n  C,(G). 

By the same arguments as in [1], Sect. 13, for the case I = Ix, the functions in 
~*(G/K)  have distributional asymptotic expansions. For f ~ * ( G / K )  we also 
define the set of exponents at x e G by (20). 

Corollary 4.10. Let f e ( f * ( G / K )  and assume E ( f  x) c~ R(I) = ~ /or some x~ G. 
Then f =  O. 

Proof Since R(I) is finite there is an open neighborhood U of x such that 
E ( f  y ) n R ( I ) = ( 2 ~  for all yeU.  Choose a non-empty open subset Ua of U 
and a neighbourhood V of e in G such that VU~ c U. Let ~oEC~(G) with 
suppq~ ~ V, and let L~(~o)f be the function obtained by left convolution o f f  
with q~: 

L ~ (qo)f(x) = ~ q)(y)f(yx)dy.  
G 

Then L~(~o)f is contained in N[(G/K)  (cf. [ l ]  Lemma 11.l) and satisfies 
suppp~(L ~ (w)f)c~ U1 = ~ for all ~eR(1). From Corollary 4.2 it then follows 
that L~(~o) f=  0. This implies that f =  0. [] 

5. Existence of certain exponents 

L e t f e g * ( G / K ) ,  x e G  and assume that E ( f  x) 4: ~ .  Hence . f+  0 and it follows 
from Corollary 4.10 that E ( f  y) 4: f2~ for any yeG. The following Proposition is a 
generalization of this statement. 

Proposition 5.1. Let ~ e E ( f  x), F c A and moeM1F. Then there exists an element 
~ e E ( f  xmo) such that ~J,~ = ~1, . 

Proof Let U~ be a fundamental system of neighbourhoods at e in G. For  each i 
there exists a function ~oie C~(U~) such that 

pr v (~oi)f x) + 0 .  (23) 

Let r / =  ~l,~, and put Oi(m) = pv,,(LV(~oi)f xm) (meMlv). By Theorem 2.9 the 
function 0~ belongs to g((M~p/Kv) .  Hence this function has an asymptotic 
expansion along a + (F) at every m e Mlv. According to Theorem 3.1 its exponents 
are contained in the set X(I, q ) =  { ( e X ( I ) ;  (1~ = q} and its coefficients are 
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p;(LV (':Pi)f xm). In view of (23) the expansion for ~9i is non-vanishing  at m = e. 
Hence Oi * 0. Let R(I , )  be the set of Theorem 4.1 applied to g~(M1F/Kr  Then 
we conclude that E(~ i, too) ~ R( I , )  4= ~ .  Hence 

xmo e supp p~, (L  v ('Pi)f) 

for some ~ i s R ( I , ) ~ X ( I ,  rl). The latter being a finite set, we may pass to a 
subsequence and assume that the ~i are all equal to a fixed (~eX(I,  17). It follows 

that xm o ~supp p~(f). [] 

Remark 5.2. Proposi t ion 5.1 is similar to Lemma 1 in [11], p. 354. By combining  it 
with [1] Corollary 17.5 and the purely geometrical Lemma 3 of [11], p. 360 (see 
also [9], Lemma 1.2), one obtains a proof of Theorem 1 of [11], p. 359 which is 
independent  of the microlocal analysis of [14, 6] and [10]. In part icular this gives a 
proof of the necessity of the rank condit ion "rk(G/H)  = r k ( K / K  ~ H)" for the 
existence of the discrete series for a semisimple symmetric space. 

References 

1. Ban, van den, E.P., Schlichtkrull, H.: Asymptotic expansions and boundary values of 
eigenfunctions on a Riemannian symmetric space. J. Reine Angew. Math. 380, 108-165 (1987) 

2. Baouendi, M.S., Goulaouic, G.: Cauchy problems with characteristic initial hypersurface. 
Commun. Pure Appl. Math. 26, 455 475 (t973) 

3. Casselman, W., Mili~i6, D.: Asymptotic behaviour of matrix coefficients of admissible 
representations. Duke Math. J. 49, 869 930 (1982) 

4. Harish-Chandra: Spherical functions on a semisimple Lie group. Am. J. Math. 80, 241 310, 
553-613 (1958) 

5. Harish-Chandra: Harmonic analysis on real reductive groups 1. The theory of the constant 
term. J. Funct. Anal. 19, 103 204 (1975) 

6. Kashiwara, M., Oshima, T.: Systems of differential equations with regular singularities and 
their boundary values. Ann. Math. 106, 145-200 (1977) 

7. Kostant, B.: On the existence and irreducibility of certain series of representations. In: Lie 
groups and their representations (I.M. Gelfand, ed.) Proc. Budapest 1971, pp. 231 329. 
London: Hilger 1975 

8. Kostant, B.: On the tensor product of a finite and an infinite dimensional representation. J. 
Funct. Anal. 20, 257 285 (1975) 

9. Matsuki, T.: A description of discrete series for semisimple symmetric spaces II. Adv. Stud. 
Pure Math. 14, 531 540 (1988) 

i0. Oshima, T.: Boundary value problems for systems of linear partial differential equations with 
regular singularities. Adv. Stud. Pure Math. 4, 433-497 (1984) 

11. Oshima, T., Matsuki, T.: A description of discrete series for semisimple symmetric spaces. 
Adv. Stud. Pure Math. 4, 331 390 (1984) 

12. Oshima, T., Sekiguchi, J.: Eigenspaces of invariant differential operators on a semisimple 
symmetric space, lnvent. Math. 57, 1 81 (1980) 

13. Schlichtkrull, H.: Hyperfunctions and harmonic analysis on symmetric spaces. Boston: 
Birkh/iuser 1984 

14. Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and pseudo-differential equations. (Lect. 
Notes Math. Vol. 287, pp. 265-529). Berlin-Heidelberg-New York: Springer 1973 

15. Varadarajan, V.S.: Harmonic analysis on real reductive groups. (Lect. Notes Math. Vol. 576). 
Berlin-Heidelberg-New York: Springer 1977 

16. Wallach, N.: Asymptotic expansions of generalized matrix entries of representations of real 
reductive groups. (Lect. Notes Math. Vol. 1024, pp. 287 369). Berlin-Heidelberg-New York: 
Springer 1983 

Oblatum 27-XII-1988 & 26-V-1989 


