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1. Introduction

Let G/H be a semisimple symmetric space; that is, G is a connected
semisimple real Lie group with an involution o, and H is an open subgroup
of the group of fixed points for ¢ in G. The fundamental problem in har-
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monic analysis on G/H is to obtain an explicit direct integral (‘Plancherel’)
decomposition

(1.1) L~ /;3 My 7 dp()

of the regular representation L of G in L?(G/H) into irreducible unitary rep-
resentations. The principal result of this paper is the determination of such a
decomposition for the part of L?(G/H) which corresponds to the ‘most con-
tinuous part’ of the spectrum.

In order to explain what is meant by the ‘most continuous part’, let us
consider for a moment the important particular case of the group G itself con-
sidered as a symmetric space for the left times right action of G x G (the
‘group case’). As is well known, in this case an explicit decomposition of the
form (1.1) was determined by Harish-Chandra ([25]-[27]). The components
of L?(G) fall in a (finite) number of ‘series’, each of which corresponds to a
particular (class of a) cuspidal parabolic subgroup P and is a direct integral
of representations mp¢ \ ® 77}3757 y- Here mp¢ » belongs to the principal series
induced from P = M AN, £ is in the discrete series of M, and A is a contin-
uous parameter ranging in the imaginary linear dual ia* of a (the Lie algebra
of A). By definition, the most continuous part of L?(G) is the component
part associated with a P with maximal a-part, that is, a minimal parabolic
subgroup.

Returning to the general case of G/H, let g be the Lie algebra of G, and
let g = b @ q be its decomposition into +1-eigenspaces for o (so that b is
the Lie algebra of H). Furthermore, let 6 be a Cartan involution commuting
with o. By analogy with the group case one expects L?(G/H) to decompose
into a finite number of parts, each attached to a particular parabolic subgroup
P satisfying 06(P) = P. The part attached to P = M AN has the form of a
direct integral of generalized principal series representations m¢ » = Tpg¢ x, with
data essentially as follows. The parabolic subgroup P = M AN has o-stable
M and A parts, £ is in the discrete series for the symmetric space M /(M NH),
and A € ia* vanishes on a Nh. The ‘most continuous part’ would then be
the part corresponding to the parabolic subgroup P = M AN as above for
which a N g is maximal, which is the so-called o-minimal parabolic subgroup.
For this parabolic subgroup the space M /(M N H) is compact, and hence only
finite dimensional £’s occur. In this paper we determine explicitly such a direct
integral

@
(1:2) L memeadute, )

for this parabolic subgroup, together with an equivariant embedding into the
space L?(G/H) (the multiplicity m, = mg of m¢ )\, explicitly given below,
happens to be independent of A\). The most continuous part of L?(G/H),
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denoted by L2 (G/H), is then by definition the image of (1.2). We realize
the inverse map from L2,.(G/H) to (1.2) explicitly by means of the Fourier
transform f — f defined in [13]. We also prove that the orthocomplement
L3(G/H) of L% (G/H) is ‘small’ in a certain spectral sense (see below). In
particular, if G/H has split rank one, that is if the maximal abelian subspace
aNg of pNq is one-dimensional, then L3(G/H) decomposes discretely.

The discrete series for L?(G/H) (which is obtained in the above scheme
with P = G) has been extensively studied, and is by now quite well under-
stood (see [20], [36]). In particular, in the above-mentioned case of split rank
one, where the discrete series is complementary to L2 (G/H), one can now
determine the full decomposition of L?(G/H) by combination of these results
with the present work. Previously such an explicit decomposition was known
for spaces of rank one (which means that aN g in addition to being one dimen-
sional is maximal abelian in q); see for example [19], [18], [34]. In [35], top of
p. 604, T. Oshima announced the determination of the Plancherel formula for
G/H. For the symmetric spaces GL(n,C)/U(p, q) a Plancherel decomposition
has been obtained in [15]; note that these symmetric spaces are of type G¢/Gg;
a complex reductive group modulo a real form.

Besides the group case, another important particular case is when G/H is
a Riemannian symmetric space of the noncompact type, where H is compact.
In this case there is a well-developed theory of harmonic analysis, primarily due
to Harish-Chandra and Helgason ([22], [23], [24] and [29]). We shall see that
L% (G/H) = L*(G/H) in this case. Thus we retrieve in (1.2) the Plancherel
decomposition of L?(G/H). A major simplification of the proof of this de-
composition was found by Rosenberg [37], who used techniques inspired by
Helgason’s Paley-Wiener theorem (see also [30, IV, §7]).

For the present generalization to arbitrary G/H we use ideas inspired by
those of Rosenberg. In fact, we also obtain a Paley-Wiener theorem for G/H
(that is, we determine the Fourier image of the space C°(G/H )k of K-finite
compactly supported smooth functions), but only in the case where G/H has
split rank one. For the group case a similar theorem was obtained in [16] for
groups of split rank one, and in [2] for groups of arbitrary split rank. For
spaces G/H of general rank we prove the injectivity of our Fourier transform
on compactly supported functions and pose a conjectural image space.

We shall now describe our results in more detail. Let P = MAN be
a o-minimal parabolic subgroup as above, let £ be a finite dimensional uni-
tary representation of M, and let A\ € aj., where aq = a N q. Furthermore,
let C*°(£: A) and C~°°(£: ) denote the spaces of smooth, respectively gen-
eralized, vectors for m¢ ), and let C~°(¢: A\)¥ be the space of H-fixed el-
ements in C~°(£: A). In [6], [13] a certain finite dimensional space V' (€)
(independent of \) was defined together with a natural family of linear maps
G A) =3°(P: € N): V(€) = C~°(¢: A\)H, depending meromorphically on
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A € ag. and bijective for generic A. The definition involved a normalization pro-
cedure which guarantees that A — j°(£: \) is regular at the imaginary points
A € dag (cf. [13]). This is crucial for the definition of the Fourier transform
associated with (1.2). For f € C°(G/H) one defines

(13)  fe:n) = /G T (gHIme 2 (0)1°(E: ) d(gH)
€ Hom(V(f),C"o(fz —)\)) ~ C°°(§: —)\) ® V(f)*

for A € dag.

Our main result, stated in Theorems 18.8 and 18.9, now asserts that if one
sets du(§, A) = dim(&) d), where d) is Lebesgue measure (suitably normalized)
on iag, then f — f extends to a partial isometry of L?(G/H) onto the space
given by (1.2), with specified domains for £ and \.

In the group case as well as in the Riemannian case the Plancherel theorem
is proved by reduction to K-finite functions on G/H, and so is our theorem
here (in the Riemannian case one may even reduce to K-invariant functions
on G/K, but for general G/H other K-types than the trivial one are needed).
For functions on G/H transforming according to a given K-type 7, a Fourier
transform closely related to the one above can be defined with the use of nor-
malized Eisenstein integrals E°(¢: A\) on G/H. These are generalizations of
Harish-Chandra’s normalized Eisenstein integrals associated with a minimal
parabolic subgroup in the group case. In the Riemannian case a K-invariant
normalized Eisenstein integral is essentially equal to c(\) 1y, an elementary
spherical function divided by the associated c-function. The Eisenstein in-
tegrals as well as their normalized versions were defined and studied in the
paper [7], on which the present paper heavily relies. They are linear combi-
nations of matrix coefficients of K-finite vectors of type 7 with the H-fixed
vectors j°(&: A\)n, n € V(€), and they depend meromorphically on the param-
eter A € ag, and linearly on the parameter ¢ € °C(7). Here °C(7) is a certain
finite dimensional space depending on 7 (see Section 5 for its definition). The
Eisenstein integrals behave finitely under the algebra D(G/H) of invariant dif-
ferential operators on G/H, and they can be represented by converging series
expansions describing their asymptotic behavior at infinity. From the leading
terms of these expansions normalized c-functions related to G/H were obtained
in [7].

In the present paper we need the normalized Eisenstein integral rather
than the unnormalized one, because of the crucial fact (established in [13])
that A — E°(4: A) is regular at points A € iaj. This is closely related to the
regularity of the j°(£: \) at imaginary values of \.

In Section 7 we give a converging expansion for the Eisenstein integral and
a uniform estimate for its coefficients. In the Riemannian case this specializes
to the estimate of [21] which is crucial for Helgason’s Paley-Wiener theorem as
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well as for Rosenberg’s proof of the Plancherel theorem. Likewise the estimate
plays a crucial role in the present paper. It will be proved in [14].

The Fourier transform Ff()\) of a (Schwartz) function f on G/H trans-
forming according to the K-type 7 is defined by integration of f against
E°(¢: A); it is a °C(7)-valued Schwartz function on ia}. If f is compactly

q
supported, then Ff has a meromorphic extension to a’_; in Section 8 we de-

s
rive an estimate of Paley-Wiener type for Ff. As inqthe classical case the
precise estimate is controlled by the size of the support of f. In comparison
with the Riemannian case it is a serious complication that the Eisenstein inte-
grals are obtained only by analytic continuation in A from a region in ag, which
is smaller than the region one wants to cover (for instance, ia; is in general
not contained in the initial region). This problem was overcome in [7], and we
base our Paley-Wiener estimate on an initial estimate from there.

In Sections 9 and 10 we study ‘wave packets’. These are superpositions
of normalized Eisenstein integrals: The wave packet transform J¢ of a °C(7)-
valued function ¢ on ia; (with suitable decay) is given by integration of ¢
against E°; thus Jy is a function on G/H of type 7. It is easily seen that the
transforms F and J are the transposes of each other (that is, with L2-type
inner products on the respective function spaces one has (Ff | ¢) = (f | T¢)).
It is the wave packet transform that furnishes the imbedding of (1.2) into
L*(G/H), for functions of type 7; thus the part of L2 (G/H) that transforms
according to 7 is the closure in L%(G/H) of the space of all wave packets J¢
with a function ¢ of Schwartz decay. In the Riemannian case the inversion
formula for the spherical Fourier transform essentially asserts that J is the
inverse of F (in the formulation of Harish-Chandra the Plancherel measure
involves a factor |c(\)|~2, but in our description the factor is incorporated in
the normalizations). In the general case, where other series than the most
continuous are present, one can only expect J to be a partial inverse of 7. A
key step in Rosenberg’s proof for G/ K is the use of Helgason’s ‘shift argument’,
where the integration in the wave packet is moved away from 4ag in the direction
of the negative Weyl chamber. This allows one to detect the size of the support
of J¢ from a Paley-Wiener estimate of ¢ (see [30, IV, Thm. 7.3]). Carrying
out a similar shift for G/H ‘one would have to take residues into account,
because the normalized Eisenstein integrals are in general not holomorphic;
the presence of these residues would then be responsible for the other series
in L?(G/H). A priori it is however not clear that these residues correspond
to the other series. Instead of tackling the problem directly, we circumvent it
in the following way. The singularities met in the shift argument are located
on a finite number of hyperplanes, and it is possible to choose a (nontrivial)
invariant differential operator D so that all the singularities are cancelled by
its presence in the application of the shift to DJ¢. The outcome, given in

Theorem 10.2, is indeed that the size of the support of D 7y is governed by a
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Paley-Wiener estimate of ¢. Notice that the differential operator D depends
on T.

Since F f has already been shown to satisfy a Paley-Wiener estimate when
f is compactly supported, it follows that the size of the support of DJFf is
governed by the size of the support of f. In Section 11 we refine this result and
obtain in Theorem 11.1 that supp DJF f C supp f for all compactly supported
smooth functions f of type 7.

The goal of the following Sections 12, 13, 14 is to establish the ‘inversion
formula’, Theorem 14.1, which states that

(1.4) DJF =D

on compactly supported smooth functions of type 7. This formula is a corner-
stone in the proof of the main theorem. At this point the compactness of H is
crucially used in Rosenberg’s argument for the Riemannian case, and hence in
our generality we have to introduce a different method. We base the proof of
(1.4) on a theory of ‘asymptotic behavior of differential operators’ developed in
Section 12. It follows from the above mentioned support-preserving property
of DJF that this operator acts as a differential operator on functions of type
7. Moreover, from easy properties of J and F the operator DJF is seen to
belong to the commutant of D(G/H). We prove that the coefficients of any
differential operator that commutes with D(G/H) on functions of type 7 have
converging series expansions similar to that of E°(¢: A), and that the leading
terms in the expansions determine the operator uniquely. The formula (1.4)
then follows from a comparison of the asymptotic behavior of DJF with that
of D. The crucial part of the comparison is carried out in Section 13.

In Section 15 we establish injectivity of the Fourier transforms f — Ff
and f — f when f ranges over the compactly supported smooth functions (see
Theorems 15.1 and 15.5). This is deduced from (1.4) and a result in [12], which
states that the application of an invariant differential operator is injective on
C®(G/H), under a certain condition which is met by the D from above.

In Section 16 we invert the order of F and J and study the operator
FJ on °C(7)-valued Schwartz functions on iaj. We prove that this operator is
simply given by the projection onto the space of functions satisfying a certain
transformation property under a Weyl group. In particular, it follows that if
(&, A) is restricted to a fundamental domain for the action of this Weyl group,
then J gives rise to an isometric injection of (1.2) into L?(G/H), for func-
tions of K-type 7. At this stage our proof is reminiscent of an argument of
Harish-Chandra for the spherical Fourier transform on G/K (see [23, pp. 591-
592]), but the ‘inversion formula’ (1.4) enters crucially at a certain point. On
the Fourier transformed side the application of D corresponds to multiplica-
tion with a certain polynomial, and since we are dealing with meromorphic
functions we are allowed to divide it out.
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In Section 18 we take up the study of the Fourier transform f — f for
non- K -finite functions. Using the results of the previous sections we prove our
main theorem, Theorem 18.9, which was outlined above. We also obtain the
result mentioned earlier that the orthocomplement L3(G/H) of L2 .(G/H) is
‘spectrally small’. A K-finite function f of type 7 in L3(G/H) is contained in
the kernel of the differential operator D (notice however that D depends on 7).
Another manifestation of the spectral smallness is the result that L3(G/H) N
C*(G/H) = {0} (Theorem 18.11).

In Section 19 we discuss the dependence of Theorem 18.9 on various
choices made along the way.

In Section 20 we establish some results that will be needed in Section 21.

Finally, in Section 21 we derive the Paley-Wiener type result mentioned
above for spaces of split rank one. In analogy with the group case (see the ref-
erences mentioned above) the image by F of the space of compactly supported
smooth functions of type 7 is characterized by a growth condition (obtained
from the ‘Paley-Wiener type’ estimate mentioned before), a condition for the
transformation under the Weyl group, and an extra set of conditions (not
present in the Riemannian case) coming from relations among the Eisenstein
integrals. These conditions are set up without the assumption of split rank
one in order to give a conjecture for the general case. In comparison with the
group case and the Riemannian case the theory is more complicated, because
we have to deal with meromorphic functions on af. rather than holomorphic
functions.

As mentioned above, the present paper owes a great deal to the theory of
Helgason and Rosenberg on the spherical Fourier transform for G/K. One of
the major advantages of Rosenberg’s proof of the Plancherel formula, compared
with Harish-Chandra’s original proof, is that some rather intricate estimates
of [23] are avoided. Recently it was shown (see [1]) that also Harish-Chandra’s
result on Schwartz functions can be derived by the same method. For the
present generalization to G/H we have not been able to avoid the use of such
Schwartz estimates (see Theorem 16.4); they are given in [9]. Besides the
theory for G/K our major source of inspiration has of course been Harish-
Chandra’s papers [25]-[27] for the group case.

Some of the results of this paper have been announced in [11], where
also some further results on the multiplicity function m, are discussed and
illustrated by examples. In that paper we also give some details on the spe-
cialization of the present theory to the group case. Other results of the present
paper, as well as applications to multipliers, have been described in the survey
paper [10]. Finally we would like to draw attention to the lecture notes [28],
where an overview of the theory behind the present paper is given.
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2. Notation and preliminaries

Let G be a real reductive Lie group of Harish-Chandra’s class (cf. [25]),
o an involution of G, and H an open subgroup of the group G? of its fixed
points. Then G/H is a reductive symmetric space. Let 6 be a Cartan involution
commuting with o, with corresponding maximal compact subgroup K, and let
g =bh+qand g = t+p be the decompositions of the Lie algebra g induced by o
and 6 (we follow the custom of denoting the Lie algebra of a Lie group by the
corresponding lower case German letter). As usual, the Killing form on [g, g]
is extended to an invariant bilinear form B on g, for which the inner product
(X,Y)=—B(X,0Y) is positive definite. We also require the extension to be
compatible with o, that is, B(cX,Y) = B(X,oY) for all X,Y € g.

Fix a maximal abelian subspace aq of p Mg, and put Ay = expaq. Let
M; be the centralizer of ay in G. We denote by ¥ the root system of aq in
g. Bach positive system X for ¥ determines a parabolic subgroup M;N,
where N is the exponential of the sum n of the positive root spaces. In this
way there is a one-to-one correspondence betweeen the positive systems for
Y and the o-minimal parabolic subgroups (that is, those which are minimal
with respect to being of-stable) containing A,. We write P for this set
of parabolic subgroups, ¥(P) for the positive system corresponding to a given
P ¢ PP and A(P) for its subset of simple roots. Similarly we write af (P)
for the corresponding positive open Weyl chamber in a4, and AQ; (P) for its
exponential. The Langlands decomposition of a given P € PM" is always
written as MANp or MAN; then MA = M,;, and Np = N is as above.
Moreover, the maximality of aq implies that a; = a N g, where a = log A. We
denote the real and complex linear dual spaces of a and aq by a*, af, ag and
age, respectively, and view the latter two spaces as the subspaces of the former
two, consisting of the linear forms which vanish on a, = aN. In particular,
the element p = pp = itrad(:)|, € a* satisfies 06p = p and hence belongs to

* *

The inner product (-, -) is transferred to a complex bilinear form on ag.

ag.
by duality. For A € a* and a € A we write a* = eMloga)

The reflection group W of ¥ is naturally isomorphic to N (aq)/Zk (aq),
the normalizer modulo the centralizer of aq in K. Let Wxny be the canon-
ical imagé of Nknm(aq) in W; then the open double P x H cosets in G are
parametrized by the quotient W/Wgknp in the obvious way. It will be con-
venient to fix, once and for all, a set W of representatives in Nk (aq) for this
quotient. It will also be convenient to denote the element of ¥V which repre-
sents eWgny in W/ Wikng by 1. We now have the following generalized Cartan

decomposition of G, for each Q € P

(2.1) ' G=cd |J KA} (Q)wH;
wew
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here cl stands for ‘closure’, and the union inside cl is disjoint. The map
(k, h,a) — kw™lawh is a diffecomorphism of K X xnunm H x Af(Q) onto the
open subset KAT (Q)wH of G. Moreover, cl KA (QwH = Kcl (A (Q))wH,
and if an element z of this set is written z = kawh according to the latter
decomposition, then the a € cl Aé‘(Q) is unique.

We now recall from [6] the definition of the principal series for G/H. Let
M\fu denote the set of (equivalence classes of) irreducible finite dimensional
unitary representations of M. For P = M AN € PM" we consider the repre-
sentation mg y = mpg » of G induced from the representation £ ® e ®1 of P,
where ¢ € Mg, and A € ac- In accordance with [6] we use left induction; thus
the space C®°(P: £: \) = C*™(£: \) of smooth vectors for m¢ 5 is the space of
smooth functions f: G — H¢ satisfying the transformation rule

(2.2) f(manz) = aPE(m) f(x) (meM,ae A,ne N, zeq),

and the group G acts from the right. Similarly, we denote by C~(P: §: A)
or C~®(&: \) the space of generalized functions f: G — H, satisfying (2.2).
It will also be useful to work with the compact picture of these representations;
it is obtained by taking restrictions to K of the above functions. More pre-
cisely, let C®°(K : £) and C~°°(K : £) denote the spaces of smooth, respectively
generalized, functions from K to H¢ satisfying the transformation rule

(2.3) f(mz) = &(m)f(z)  (m e K, z € K),

where we have written Ky = K N M. Then restriction to K induces a linear
isomorphism C~®(£: \) ~ C~®°(K : £), mapping C*®(£: A\) onto C®(K : §).
Via this isomorphism we transfer the induced representation to a representation
of G on C~°(K : £), again denoted by mp¢ » = m¢ . We recall that

(24) (1= [ (k)] gk)) ak

defines a sesquilinear pairing C®°(K : §) x C~*°(K : £) — C, which is equivari-
ant for m¢ x, T _5. In particular, for A € dag the representation ¢ ) is unitariz-
able; the associated Hilbert space is the space L?(K : £) of square integrable
functions in C~%°(K : €). Here and in the following we use the convention that
bilinear pairings are denoted by (-, -), whereas sesquilinear pairings are de-
noted by (- | -); the latter are always assumed to be skew linear in the second
component.
For each £ € M\fu, let V(&) denote the formal direct sum

(2.5) V() = @ e
weW

providec_ilwith the direct sum inner product, where Hyy = M N H, and where
H?HM“’ is the space of wHyw™!-fixed vectors in He. It will be convenient
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to write V (&, w) for the image of ’HE”HM“’_I in V(£), and pry,: ¢ — 1, for the
orthogonal projection of V' (£) onto this component.

Let My be the set of (equivalence classes of) those £ for which V(&) # 0.
Notice that

(2.6) M = KywHyw™

for all w € W, and hence the representations in M g restrict irreducibly to
Kwm (see [13, Lemma 1]). By [6, Thm. 5.10], the representations m¢  have
nontrivial H-fixed distribution vectors for generic A, if and only if £ € My.
For this reason the series of representations m¢ x with £ € M g and A € ag; is

called the principal series for G/H. In fact (loc.cit.), the space C~°(K : £)H of
H-fixed distribution vectors for m¢ 5 is in bijective correspondence with V'(£),
for generic A. The correspondence is given as follows. If R € R, then we put

(2.7) ag(P,R)={X€aj. | (Rer, ) <R for acX(P)}.

Let Q be the open subset UyeyyPwH of G, and let the linear map j(£: \) =
F(P: &:N) from V(€) to C~°(£: A)H be defined by

aMPE(m)n,  for x = manwh € Q
i€ N () (z) = (meM,ae A,n e Nyw e W,h € H),

0 for x ¢ ;

forn e V(€), £ € My and X € age With A+p € af(P,0) (this condition on A im-
plies that z — j(&: X)(n)(x) is continuous). Then the Hom(V (§), C~ (K : £))-
valued function A — j(£: ) extends meromorphically to ag., and j(£: A) is a
bijection from V' (¢) onto C~>(£: M) for generic A € age- In particular, the
elements of C~°(¢: A\)H are uniquely determined by their restrictions to €,
for generic A.

Let D(G/H) denote the algebra of invariant differential operators on G/H.
Let U(g) denote the universal enveloping algebra of the complexification g. of
g, and U(g) the subalgebra of H-fixed elements. Recall that the right action

R of G on C*°(@G) induces a surjective homomorphism of algebras
(2.8) r: Ug)" — D(G/H),

whose kernel is U(g)¥ N U(g)h. Let b be a maximal abelian subspace of g,
containing ag; then b is a Cartan subspace for G/H. Let 3(b) denote the root
system of b in g. and W(b) its reflection group. Then there is a natural isomor-
phism ~ (called the Harish-Chandra isomorphism) of D(G/H) onto the algebra
I(b) = S(6)V(® of invariants for W (b) in S(b) (the symmetric algebra of b).

Let P = MAN € P™", Since the distributions in C~°(¢: A\)# are right
H-invariant there is a natural action of the algebra D(G/H) on this space. We
shall now discuss this action and at the same time fix some notation.
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The space Mi/Hw, is again a reductive symmetric space (here Hy, =
MiNH); let D(M;/Hw,) denote its algebra of invariant differential operators.
Then there is a natural map wp: D(G/H) — D(M;/Hy,) defined by the
requirement

(2.9) D — up(D) € nU(g) + U(a)b;

here we have abused notation by identifying an element D € D(G/H) with any
X € U(g) for which D = r(X) (and similarly for D(M;/Hy,)). It is easily
seen that wp is a homomorphism of algebras.

Define the real analytic function dp: M; — |0, 00[ by

dp(m) = |det(Ad(m)],)]"/>.

Then the map D — dp' o Dodp defines an automorphism of D(M;/Hyy, ). We
define the algebra homomorphism p: D(G/H) — D(M;/Hw,) by

(2.10) w(D) = dp' o up(D)odp.

Let Wy, (b) be the Weyl group of b in myc, and let Iyg, (b) = S(b)V™1(%) denote
the set of invariants in S(b) for this Weyl group. Let the corresponding Harish-
Chandra isomorphism be denoted by ym,: D(M1/Hwm,) — I, (b). Then it is
easily seen that

(2.11) T, OB =7

This justifies the notation in the definition (2.10), since the resulting map pu
does not depend on the particular choice of P € P™in,

The natural decomposition My /Hy, ~ M/Hy % Aq as a product of spaces
induces a decomposition of the algebra of invariant differential operators:

(2.12) D(Ml/HMl) ~ ]D)(M/HM) X U(aq).

Since U (aq) is naturally isomorphic to the symmetric algebra S(aq), and hence
to the algebra of polynomial functions af. — C, the elements of D(M;/Hy, )
may be viewed as D(M/Hyr)-valued polynomial functions on agc- In particular,
if D € D(G/H), then wp(D) and p(D) may be viewed as polynomial functions
age — D(M/Hy). We denote by wp(D: A) and p(D: \) respectively their
values in an element A € ag.. It is readily verified that u(D: \) = wup(D: A +
pP)-

Let w € Nk(aq). Then conjugation by w in U(g) induces an algebra
isomorphism D(M;/Hy,) — D(Mi/wHy,w™t) ~ D(M/wHyw™!) ® S(ay),
which we denote by D — Ad(w)D. Thus

(2.13) o = Ad(w) o pu: D(G/H) — D(M/wHyw ™) ® S(aq)

is a homomorphism of algebras. If D € D(G/H), A € ag, then the operator

pu(D: ) in D(M/wHyw™!) is defined as the evaluation of (D) in .
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Let w € W. Then via £ we have a natural action of D(M/wHyw™?) on
the space V (£, w) ~ HE”HMw_l. Let &,: D(M/wHyw™t) — End(V (€, w)) be
the associated homomorphism of algebras. If D € D(G/H), A € ag, then
we define pu(D: &: X\) € End(V(€)) as the direct sum of the endomorphisms
€u(pw(D: A)) € End(V(§, w)), w e W.

We now recall from [13, eqn. (38)], that for every D € D(G/H),

(2.14) DG Mm) =3 (D= &: X)n)  (ne V(E)),

as a meromorphic identity in A € ag..

If D belongs to Z(G/H) = r(3), the canonical image in D(G/H) of the
center 3 of U(g), then u(D: £: ) can be computed as follows.

Let j be a Cartan subalgebra of g containing a4, and let jo denote the
orthocomplement of aq in j. Then

(2.15) j=1JoDaq.

Via this decomposition we view j;. and ag. as subspaces of jZ. Let W (j) denote
the Weyl group of the root system ¥(j) of jc in gc, and let 4] denote the Harish-
Chandra isomorphism from 3 onto I(j) := S(G)V1). Let A¢ € j§. denote the
infinitesimal character of £; here we use the decomposition jo = (jNm)® (aNh)
to identify (j N m)? with a subspace of ji.. Then A¢ + X is the infinitesimal
character of the induced representation m¢ x; that is, if Z € 3, then Z acts
by the scalar v(Z: A¢ + A) on ¢ 5. Performing the substitution D = r(Z) in
(2.14) and using the injectivity of j(£: A) for generic A € a*_, we infer, for all

qc?
Z € 3, A € ag, that

(2.16) u(r(2): €:0) = 8(Z: Ae+ M) Iy o).

3. Normalization of measures

In this section, we shall specify the normalization of the various measures
involved in our Plancherel formula. From now on dz = d(gH) will be a fixed
choice of invariant measure on G/H, and dk the normalized Haar measure of
K. Let P € PMn If da is an invariant measure on Ag, the decomposition
(2.1) induces the following formula for dz (see [38, p. 149]):

_ -1
(3.1) - f(z)dz = C’/K /A;L(P) w;\; flkawH)J(w™ aw) dadk,

for f € C.(G/H), where C is a positive constant and J is the function

J(a) — H |aa _ a-almg [aa + a—a]m;
aeX(P)
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on Ay. Here the numbers mZ are defined as follows: For a € ¥ let g, = g Dy

denote the decomposition of the root space g, into the £1 eigenspaces for
00; then mZ = dimgf. Notice that J is independent of the choice of P.
The constant C' is also independent of the choice of P; this follows from the
observation that the action of W is transitive on P and leaves the measure
da invariant. We shall use the normalization of da for which C' = 1.

Let [W] be the order of W, and let dA be Lebesgue measure on iay,
normalized as [W|™! times the regularly normalized measure dpyeg(\); the
latter measure is the one which allows an extension of the classical Fourier
transform ¢ — @, Cc(Aq) — C(iay), defined by the formula

(3.2) o0 = [ e(@ada,
q

to an isometry from L?(Agq,da) onto L?(iaf, dpireg).-

If w € Nk(aq) then the space M/wHyw™! is compact by (2.6). We equip
it with the M-invariant measure for which this space has total measure one.

If A = MAN;, P, = M AN, are o-minimal parabolic subgroups with
the indicated Langlands decompositions, let the Haar measure of the nilpotent
group N; N Ny be normalized as in [33, §2]. The sole reason for using this
normalization is to make valid the usual product formulas for standard inter-
twining operators (cf. [6, Prop. 4.6]). If P € P/ we let di denote the Haar
measure of Np (normalized according to the above), and define the positive
constant c¢(Aq) by (see also [7, eqn. (122)]):

(3.3) o(Ag) " = / 2P HP () gy
N
Here Hp: G — a is the real analytic map defined by x € Npexp Hp(x) M K.

Notice that the constant c¢(4,) is independent of the choice of P € Pmin,

4. The Fourier transform

Let PEP™™ and let £ € M. As a meromorphic Hom(V (¢),C~*°(K:¢&))-
valued function on ag, the function A — j(£: A) may have singularities at points
of ia}. Following [13] we shall now introduce a suitable normalization of the
J(&€: A) to get rid of these singularities.

If P,P, € P;ni“, let A(Py: Py:&: )\) denote the standard intertwin-
ing operator from 7p, ¢\ to 7p, ¢y, defined as in [6]. This operator maps
C~°(Py: &: N equivariantly and continuous linearly to C~°(Py: £: \), and
depends meromorphically on A as an endomorphism of C~*°(K : £) (‘the com-
pact picture’ cf. [6, Prop. 4.11]). Since the standard intertwining operators are
bijective for generic A\, the map

(4.1) FO(P:€:N)i=c(Ag) PA(P: P €: N)7Lj(P:g: N
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is again a bijection from V' (¢) onto C~®°(P: &: A\)H for generic \ € age (see
(3.3) for the definition of c¢(Aq)).

Remark 4.1. Note that the intertwining operator A(P: P: £: \) de-
pends on the chosen normalization of the Haar measure dn of Np. However,
the operator c(Aq)A(P: P: £: A) is independent of this particular normaliza-
tion. Therefore the map j°(£: A) is independent of the chosen normalization
of dn as well.

By meromorphy of the inverted intertwining operator (see [6]), the ex-
pression (4.1) is meromorphic as a Hom(V (£),C~°(K : £))-valued function of
A € ag.. Notice that eqn. (2.14) remains valid if j is replaced by j°, because of
the equivariance of the intertwining operator.

If € > 0, we define the subset ag(e) of ag. by:

ag(e) ={r€ag. | [(ReX,a)|<e forall ae€X}

Notice that a}(e) = a%(P,e) Naf(P,¢).
According to [13] we now have the following regularity result:

THEOREM 4.2. Let € € ]/V[\H. Then there exists a constant € > 0 such
that the meromorphic Hom(V (£),C (K : £))-valued function A — j°(£: N) is
reqular on the neighborhood ag(e) of iag.

Theorem 4.2 allows us to define a Fourier transform. At a later stage we
shall have to keep track of particular choices of representations; therefore we
shall distinguish between irreducible finite dimensional unitary representations
of M and their equivalence classes.

In this spirit we write [¢] € ]/W\fu, respectively £ € w € M\fu, to indicate that
£ is a finite dimensional irreducible unitary representation of M, whose equiv-
alence class belongs to ]/V[\fu, respectively equals w € ]\/qu. Moreover, we write
H¢ for the finite dimensional complex Hilbert space in which £ is (unitarily)
realized, and

d, = d¢ = dim Hg.

We now come to the definition of a Fourier transform on C°(G/H). For
(€] € M i, let L?(K : £) denote the Hilbert space of square integrable elements
in C~°(K : &) (cf. Section 2). We equip the dual V(§)* of V(§) with the dual
Hermitian inner product, and L?(K : £)® V(£)* with the tensor inner product.

If f € CX(G/H), then for [¢] € My, )€ iag, we define the element

f(€:2) = fp(¢: A) € Hom(V(§), C™(K : §)) = C™(K: ) @ V()"
by
(42)  fl&:N) = [me-a(f) x 0i°(P: &: =N
= [ FeH) reoa(0) @ 115°(P: €5 —N) d{gH).
G/H



THE PLANCHEREL DECOMPOSITION 281

Here we view j°(P: £: A) as an element of C™°(K : §) @ V(§)*, and mg ) =
mpe,—x denotes the principal series representation IndIG;(ﬁ ® —A ® 1), realized
on C~°(K : £) (cf. Section 2). By definition we thus have that f(£: \) €
C™(K:£) @ V()" for A € ia;. However, it is easily seen that actually
f(€:N) € C®(K: €) ® V(€)* (use Lemma 4.3 below to throw differentiations
on f). Moreover, the map f — f(£: ) is continuous from C*(G/H) to
C®(K: &) ®@V(§)*, for all A € iag.
The following intertwining property is obvious from the definitions:

LEMMA 4.3. Let f € C°(G/H),[€] € My, € ia%. Then

LfE: N =[rea@el f¢:)) (z€q).

5. Eisenstein integrals

Throughout this paper 7 will be a unitary representation of K in a finite
dimensional Hilbert space V;. A function f: G/H — V, is called 7-spherical if
it transforms according to the rule:

f(kx) = 7(k) f(x) (ke K,z € G/H).

The space of 7-spherical C*°-functions G/H — V; is denoted by C*°(G/H : ).

Let mv denote the restriction of 7 to K. If w € W, then we use the nota-
tion C*° (M /wHyw™!: 1) for the space of C*®-functions ¢: M/wHyw ™! —
V. that are myi-spherical, i.e. transform according to the rule

w(km) = 7(k)p(m) (k € Ky, m € M/wHyw™b).

We recall from Section 3 that M/wHyw™! is equipped with an invariant mea-
sure for which it has total measure 1. In view of the equality (2.6) the space
C®(M/wHyw™': 7y) is finite dimensional; it may be viewed as a subspace
of L*(M/wHyw™) ® V; and thus inherits a Hilbert space structure.

We now define the following formal direct sum of Hilbert spaces:

(5.1) °C(r) = @ C®(M/wHyw™t: ny).

wew
Note that the space °C(7) is finite dimensional. The component associated
with w € W will be denoted by °Cy,(7), and the projection map onto this
component by pr,,: ¥ — .

If €] € Mgy, we denote by Cgo(M/wHMw_l) (or C&‘]’(M/wHMw_l)) the
space of left M-isotypical functions of type [¢] in C®° (M /wHyw™1). It is easily
seen from (2.6) that this space is finite dimensional. We write °Cy¢(7) =
°Cu(T) N [C?(M/wHMw_l) ® V:] and denote the direct sum of these over
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w € Wby °C¢(7). It follows from the Frobenius reciprocity theorem (for details,
see [13, Lemma 3]) that °C¢(7) is nonzero if and only if [£] € My and &V Ky
occurs in the decomposition of 7y into irreducible Ky-types, where £V denotes
the representation contragradient to £&. We use the notation £V 1 7 (or [€Y] T 7)
to indicate this occurrence, and we thus have the finite sum decomposition

(5.2) °C(r) = P “Ce(),

[€vitr

where the sum extends over the equivalence classes [¢] € M;, for which [€Y] 1T

We are now ready to define the 7-spherical Eisenstein integral. It will
depend on parameters ¢ € °C(7) and A € af.. Let P € Pmin_If o) € °C(7),
then for A € a,. we define the function Y(\:-): G/H — V; by

a* PPy, (m) for x =manwH
(5.3) Y(\: ) = (meM,a€ A neN,weW);

0 for = ¢ UyewPwH.

It follows from [6, Prop. 5.6], that if A + pp € ag(P,0) (see (2.7)) then D(N) is
continuous on G. The 7-spherical Eisenstein integral is then defined by

(5.4) E(h: N)(z) = E-(P: ¢: \)() =/K7'(k)_11Z(/\: k) dk,

forz € G/H. Then ¢ — E(¢: \) is a linear map from °C(7) to C*°(G/H : 7).
Moreover the map A — E(i: \) allows a meromorphic extension to all of ag,
(see [7] and [13]).

Remark 5.1. The present definition of the Eisenstein integral slightly
extends the one given in [7, §3]. If ¥ C K is a finite set of K-types, then we
write Vy := C(K)yv for the space of continuous functions on K which behave
finitely under the right regular representation R, with K-types contained in the
set 9V := {6V | 6 € 9}, where §¥ € K denotes the representation contragradient
to 6. Moreover, we write

(5.5) Lo = RIV19

for the restriction of R to Vy. If we take (7,V;) = (79, Vy) in the present
definition of the Eisenstein integral, then we obtain the definition of [7].

The more general T-spherical Eisenstein integral can be expressed in terms
of the more restricted one in a natural way. This allows a straightforward
extension of the theory of [7] to the more general Eisenstein integral. For
details we refer the reader to [13]. In the present paper we shall often refer to
[7] for a result on Eisenstein integrals and then apply it to the present more
general setting.
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We now recall some properties of the singular set of the meromorphic
function A — E(3: X) that will be of importance in this paper.

As in [7],if S C ag. \ {0}, let IIs(aq) be the set of elements of S(aq) \ {0}
which can be written as a product of linear factors of the form (¢, ) 4+ ¢, with
€ €8S, ceC. It is to be understood that 1 € Is(aq). Notice that C*IIg(aq) is
precisely the set of polynomial functions on age. whose zero locus is contained
in a finite union of hyperplanes which are translates of the linear subspaces
& €eS IfS= age \ {0} we simply write II(aq) for IIg(ag).

We now have the following, by [7, Prop. 10.3] (and the above remark).
For every R € R there exists a polynomial p € IIy(aq) such that for every
Y € °C(1) the C*°(G/H : T)-valued meromorphic function

(5.6) E,(P:vY:): A= pA\)E(P:v: )

is regular on ag(P, R).

Thus the Eisenstein integral has its singularities in a locally finite union of
translates of the hyperplanes at, o € . It may have singularities at points A €
iag. We will describe a normalization procedure to obtain Eisenstein integrals
which are regular at tag. To prepare for this we first need to describe their
asymptotic behavior.

Let Q € P2 Then according to [7, §14], and [13, §4], there exist unique
meromorphic End(°C(7))-valued functions Cqip(s: +) on af. (s € W) such that

for generic A € iag;:

E(P: 4¢: X)(maw) ~ Z a*A =P [pr,Cqip(s: M)y](m) as a—gmo,
seW
forally € °C(1), w € W, m € M. Here the relation ~ means that the difference
is o(a™P?) as a&oo, and the latter notion means that loga tends radially to
infinity in the open chamber af (Q). The endomorphisms Cqip(s: ) (se W)
are invertible for generic A\ € ag.. We now define the normalized 7-spherical
Eisenstein integral by
E°(P:9: \) = E(P: Cpp(1: A) 11 \),

for ¢ € °C(7), and as a meromorphic identity in A € ag.- For generic \ € iag

its asymptotic behavior along the open chambers in the Cartan decomposition
is described as above, but with normalized C-functions:

(6.7) E°(P:: A)(maw) ~ Z a*rre [pry,CQp(s: Myl(m) as 2o
seW
Here the normalized C-functions are given by:

Coip(s: A) = Coip(s: A)Cpyp(1: X)L

Remark 5.2. A different normalization of the Eisenstein integral was de-
fined in [7, §16], by the formula: E'(P:: \) := E(P: Cpp(1l: A7l N).
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This definition extends to the present situation; see Remark 5.1. The asso-
ciated normalized C-functions are now given by the formula: Cé?l p(s: ) =
Cqip(s: A\)Cpyp(1: A)~L. According to [13, eqn. (52) and the line following
eqn. (55)], we have, for P,Q € P2 o € °C(7) and s € W:

(5.8) E°(P:4p:N)=E(P:¢:A), CQpls: N = Cop(s: N,

as meromorphic identities in the variable A € af.. The results of [7] for E* and
C! are easily translated to results for E° and C° because of these relations.

For every R € R there exists a p € IIx(aq) such that the function
(5.9) EJ(P:tp:): A= p(AN)E°(P:: \)

is regular on a(’;(P, R), in analogy with (5.6); see [7, Cor. 16.2 and Prop. 10.3].
We now have the following crucial result, due to [7] and [8] (see also [13,
Prop. 5]).

PROPOSITION 5.3. Let P,Q € P s € W. Then

as a meromorphic identity in A € ag.. In particular the normalized C-function
C2?|P(s: A) 15 a unitary endomorphism of °C(7), for every A € iaj.

The above result implies that the right-hand side of (5.7) is regular for
A € dag. Starting from this observation, we obtain the following result in [13,
Thm. 2], where it plays a crucial role in the proof of Theorem 4.2 above (con-
versely it is a consequence of the latter theorem and eqn. (5.10) below).

PROPOSITION 5.4. Let T be a finite dimensional unitary representation
of K. There exists € > 0 such that the meromorphic C*°(G/H : 7)-valued map
A= E°(¢: A) is regular on af(e) for every ¢ € °C(7).

Remark 5.5. Combining the above proposition with Corollary 2 of [13],
we now see that (5.7) is in fact valid for all A € iaj.

We shall now describe the relation of the Eisenstein integral to the prin-
cipal series of G/H, meanwhile, fixing notation that will also be needed at a
later stage. If ¥ C K is a finite subset, then we write

Heg = C(K: &)y

for the (finite dimensional) space of K-finite functions in C®(K : £), all of
whose K-types belong to 9. If [¢] € My, w € W, we shall write V(€) and
V (&, w) for the Hilbert spaces which are conjugate to V(&) and V (£, w) respec-
tively. If ' = ¢ ® n belongs to H¢ y ® V (£, w), then according to [7, §4], we

may define a function ¢ € °Cy(19) = C®(M/wHyw ™ : T9p) by
vr(m)(k) = (k™) Em)n)e  (me M, k € K).
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The map T +— ¢ is linearly extended to a map He 9 ® V(£) — °C(ry). Via
the Hermitian inner product on V(§) we have a natural isometry

V(E) ~V (&),

and accordingly we view T' + %7 as a linear map from H¢ y ® V (£)* to °C(1y).
According to [7, Lemma 4.1], we now have:

LEMMA 5.6. The map T — d§/2z/1T is an isometry from Hey @ V(€)*
onto °Ce¢(1y), for each [€] € My.

According to [13, eqn. (53)], the relation with the principal series can now

be described as follows. Let T = ¢ ® n € He p @ V(€). Then
(5.10)  E7,(r: N)(zH)(k) = (¢ | 7 5(k2)j°(€: N)n)  (z € G, k€ K)

as a meromorphic identity in A € ag . The sesquilinear pairing in this formula
is defined by (2.4).

We now return to the more general situation of an arbitrary 7. In this
case a relation similar to (5.10) is given in [13, Prop. 2] (we shall however
not be using it here). The 7-spherical Eisenstein integrals as well as their
normalizations are D(G/H)-finite. The action of the algebra of invariant dif-
ferential operators may be described as follows. For w € W let u,,: D(G/H) —
D(M;/wHm,w™!) be the homomorphism of algebras defined in Section 2. We
recall that elements of D(M;/wHy,w™!) may be viewed as D(M/wHyw™1)-
valued polynomial functions on agc- In particular, if A € a3, D € D(G/H),
then p,(D: M) is a differential operator in D(M/wHyw™!); it therefore nat-
urally acts on °Cy (1) ~ C®°(M/wHyw™!: n) by an endomorphism we de-
note by (D : 7: X). Let u(D: 7: ) € End(°C(7)) be the direct sum of the
endomorphisms (D : 7: A), w € W. Then by [13, eqn. (54)] we have, for

Y € °C(r):
(5.11) DE°(¢: A\) = E°(u(D:7: A\)y: N) (D € D(G/H)),

as a meromorphic identity in \ '€ aq.- The above equation is also valid with
the unnormalized Eisenstein integral E instead of E°.

The dependence of the Eisenstein integral on the parabolic subgroup P is
described by the following functional equation, for Py, P, € PMIn +) € °C(T)
and s € W (see [13, Prop. 4]):

(5.12) E°(Py: Chyp, (81 A sA) = E°(Pr:4p: \).

As suggested by equations (5.11) and (5.12) we have the following rela-
tion between the action on °C(7) of D(G/H) and the C-functions (which are
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endomorphisms of °C(7)). Let P,Q € P™" s € W. Then for D € D(G/H):
(5.13) Cop(s: N)op(D:7: A) =pu(D: 7: X))o Cp(s: )

as a meromorphic identity in A € a, cf. [13, eqn. (73)].

The endomorphisms p(D: 7: A) of °C(7) admit a simultaneous diagonal-
ization: Let b be a Cartan subspace of q containing aq. Then b = by ®aq, where
by := b Nt Via this decomposition we identify ag. and by  with subspaces
of bX. Let v: D(G/H) — I(b) C S(b) be the Harish-Chandra isomorphism.
Given A € b}, we define the algebra homomorphism v, : D(G/H) — S(aq) by
YA(D)(A) =v(D: A+ A), for D € D(G/H), and A € ag.. Correspondingly we
have the joint eigenspace

CrAl= () ker[u(D:7: A) = (D))

Dep(G/H)
)\Eaac

Then according to [7, Prop. 4.7], there exists a finite subset L C ibj such that

(5.14) °C(r) = @ °C(1)[A],
A€l
with orthogonal decomposition.
The decomposition into joint eigenspaces becomes simpler if D ranges
over Z(G/H) = r(3). Recall from (2.15) that j is a Cartan subalgebra of g
containing aq. Moreover, 7)-9 is the Harish-Chandra isomorphism from 3 onto

I(5).

LEMMA 5.7. Let [¢] € M\H,/\ € ag. and Z € 3. Then the endomorphism
pw(r(Z): 7: A) acts by multiplication with the scalar v} (Z: A — A¢) on °Ce(7);
here A¢ € ji. is the infinitesimal character of &.

Proof. Since the endomorphism depends polynomially on A and linearly
on Z, we may as well assume that A € a7 and that Z € 3 is real (with respect
to the real fornl g of g.). Then the representation e 5 has the infinitesimal
character A¢ + A = A¢ — A. Moreover, since 7, 5 is unitary, it follows that

YV(Z:Ae = X) =9 (ZV: Ag = N) =7 (Z: X = Ag).
Combining this with (2.16) we see that, for every n € V(£),
p(r(Z): €: Nn=~(Z: A= Ag)n.

When we combine the obtained equation with equation (4.3) of [13] and ap-
ply Lemma 3 of [13], we see that u(r(Z): 7: \) acts by multiplication with
YW (Z: A= Ag) on °Ce(T). a

We end this section by recalling a result that will be used a number of
times in the rest of this paper. If D € D(G/H), then by D* we denote the
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formal adjoint of D with respect to the measure dx of G/H, i.e. it is defined by
the formula (Df | g) = (f | D*g) for all f,g € C°(G/H), where (- | -) denotes
the L%-inner product. For all D € D(G/H), X € ag. we have D* € D(G/H)
and:

(5.15) w(D:1: N =p(D*: 70 =N).

Here the star on the left-hand side indicates the adjoint with respect to the
Hilbert structure of °C(7). The relation (5.15) is an immediate consequence of
[13, eqns. (41) and (43)].

6. The T-spherical Fourier transform

Let 7 be a unitary representation of K in a finite dimensional Hilbert
space V. Following [7, §17], we shall define the 7-spherical Fourier transform
on a space of T-spherical Schwartz functions.

Let = be Harish-Chandra’s elementary spherical function with spectral
parameter zero, associated with the Riemannian symmetric pair (G, K). We
define the functions ©,7¢,4: G/H — [0,00][ by

O(H) = Z(oz)™H?  (zeq),
Tom(kah) = |logal (ke K,a€ Aq, h € H).

Following [7, §17], we now define the space of (L%-type) Schwartz functions
C(G/H,V,) as the space of C* functions f: G/H — V; such that

sup_ O(2) ™ (1 + 7ou(x))" | Luf (@)] < o0
z€G/H

for all n € N, u € U(g); here L, denotes the regular action of u from the
left on smooth functions on G/H. Equipped with the obvious collection of
seminorms this space is a Fréchet space. We denote its closed subspace of
T-spherical functions by C(G/H : 7).

If f,g: G/H — V, are T-spherical functions such that the function z —
(f(z) | g(x)) is integrable on G/H, then we define

(6.1) (f 1 g) = /G @) @) dz

Let P € P™n be fixed. It follows from Proposition 5.4 and from the
remark succeeding Thm. 19.1 in [7], that for f € C(G/H: 7) the function
z — (f(z) | E°(P:v¢: AN)(z)) is integrable on G/H, for every ¢ € °C(1). We
define the Fourier transform Ff = Fpf of f to be the function iaj — °C(7)
determined by:

(6.2) (FIX) [9) = (f | E°(P: 92 =N)),
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for all 9 € °C(7). Let S(iag) denote the (Schwartz) space of rapidly decreasing
functions on the Euclidean space iaj; we now have (cf. [13, Cor. 4]):

LEMMA 6.1. The Fourier transform F is a continuous linear map from
C(G/H : ) to S(iag) ® °C(7).

If f is compactly supported then from equation (6.2) one sees that F f
extends to a meromorphic °C(7)-valued function on dge, given by the same
equation.

We recall some more properties of the r-spherical Fourier transform. From
[4, Lemma 7.2], it follows that D(G/H) maps C(G/H : T) continuously into
itself. From equations (5.11), (6.2) and (5.15) we obtain the following result
(see also [7, Lemma 19.3]).

LEMMA 6.2. Let f € C(G/H: 1), D € D(G/H). Then
F(DfYAN) =p(D:71: N)Ff(N) (A € iay).

The following result is a consequence of (5.12) combined with Proposition
5.3 (see also [13, eqn. (76)]).

LEMMA 6.3. Let P;,P, € P20 and s € W. Then for all f € C(G/H : T):
Fpf(sA) = Cp,p, (s: N)Fp f(A) (A € dag).

We shall now describe the relation of the spherical Fourier transform with
the Fourier transform defined in Section 4. Let ¥ C K be a finite subset,
and in the rest of this section let 7 = 7y be as in Remark 5.1. We denote
the spaces of left K-finite functions in L?(G/H) and C°(G/H) all of whose
K-types belong to ¥ by L?(G/H)y and C°(G/H )y respectively. These spaces
are closed subspaces of L?(G/H) and C°(G/H), respectively. We equip them
with the induced structures, respectively, of a Hilbert space and a topological
linear space.

The map 8¢: ¢ — ¢(e) defines a linear functional on V; = V4. More-
over, one readily verifies that the map F +— 8.0 F' is a bijective isometry from
L*(G/H : 1) onto L*(G/H)y. Its inverse,

(6.3) ¢:L*(G/H)y—=L*(G/H: ),

is given by <(¢)(z)(k) = ¢(kx) for k € K,z € G/H (see [13, Lemma 5]).
Of course, ¢ maps the space C°(G/H)y bijectively and continuously onto
C*(G/H : 1), and it intertwines the actions of D(G/H) on these spaces.

If f € C*(G/H)y, then it follows from Lemma 4.3 that

N —

(6.4) FE:N eCT(K: €y V()" =Hew@V(E)
for [¢] € My, X € iaf,.
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We now recall the following relation between the 7y-spherical Fourier
transform and the Fourier transform.

PROPOSITION 6.4. Let 9 C K be a finite subset, and put T = 19. Fur-
thermore, let f € C°(G/H)y and put F = ¢(f). Then for [§] € My, T €
Hep @ V(E) and X € dag,

(6.5) (FFQ) | ) = (f(€: 2) | D).
Moreover, for X € iag,
(6'6) }—F()‘) = Z d&wf(gz)\),
[eleMy
[€Vvirr

with a finite sum on the right-hand side.

Proof. The relation (6.5) is given in [13, Prop. 3], and (6.6) is equivalent
to it as a consequence of (5.2) and Lemma 5.6. O

7. Expansions of the Eisenstein integral

In this section 7 will be a fixed unitary representation of K in a finite
dimensional Hilbert space V;, and P,Q will be fixed parabolic subgroups
from P, Being a D(G/H)-finite 7-spherical function, the Eisenstein inte-
gral E°(¢p: A) = E°(P:: \) (with ¢ € °C(7)) has a convergent expansion
on the chamber Af(Q) (see [4]). We will recall some specific properties of this
expansion, which are obtained in [14] in generalization of Gangolli’s paper [21].

We start by recalling from [4] the notion of the 7-radial component of a
differential operator from D(G/H ), meanwhile fixing notation that will be used
later in this paper.

From the Cartan decomposition (see (2.1) and the succeeding text) it
follows that KA$(Q)H is an open subset of G. If f € C*°(G/H : 7), then f
restricts to a smooth VX"HM_valued function on Af(Q). Thus we have the
restriction map:

(7.1) Té o fe f /101+(Q)7 C®(G/H: ) — COO(A;;(Q),VTKQHM),

which is a continuous linear map for the usual locally convex topologies on
these spaces.

Let C°(K A (Q)H, V;) denote the space of smooth compactly supported
V--valued functions equipped with the usual complete locally convex topology.
The subspace of functions f transforming according to the rule f(kzh) =
7(k)f(x) for k € K,h € H,x € KA} (Q)H is closed; we denote this subspace
by C*(KAf (Q)H : 7) and equip it with the restriction topology. A function of
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C(KA$(Q)H, V;) may be viewed as a function of C2°(G, V:) via extension by
zero outside its support. Accordingly we have a continuous linear embedding

(7.2) CSO(KA;;(Q)H: 7) — C®(G/H: T).

Via this embedding we identify the linear space on the left-hand side with
its image in the space on the right-hand side. This image equals the lin-
ear subspace of functions f € C*°(G/H: 7) with supp f ¢ K AT (Q)H. No-
tice however that the image is not closed, hence not complete, as a subspace
of C*°(G/H: 7); therefore the embedding (7.2) cannot be used to identify
C°(KAS(Q)H : 7) topologically with a subspace of C®°(G/H : 7).

Now recall that the map (k,h,a) — kah induces a diffeomorphism from
K Xynkna H x AF(Q) onto KA} (Q)H. From this the following lemma is
immediate.

LEMMA 7.1. The map Té restricts to a topological linear isomorphism
from the space C3°(K AL (Q)H : T) onto CX(AF(Q),VENM),

We define the continuous linear map
(7.3) T}, : C(AH(Q), VENIM) o c(G/H : 7)

as the inverse of the topological linear isomorphism of the above lemma, com-
posed with the embedding (7.2). For later purposes we list:

(7.4) TooTh = 1 on  CX(AF(Q),VENHM),
(7.5) ThoTy = I on CREANQH: 7).
For g,h € CZ(AF(Q), VENM) we define

(7.6) @Imsi= [, (6@ 1A I(a) da.

Then in view of (3.1) (with C = 1), TCT2 is the transpose of Té in the sense
that

(7.7) (f1 The) =(Thfla)s

for all f € CX(KAJ(Q)H: 7) and g € C2(47/(Q), VA ¥,
If D € D(G/H) then one readily checks that

(7.8) N, (D) := T} oDo T}
defines an element of the ring
(7.9) C*(44(Q)) ® S(aq) ® End (V")

of differential operators on A; (Q), with coefficients in the ring of functions
C°(A4(Q)) ® End(V,A"Hm). The operator (7.8) is called the 7-radial compo-
nent of D on Af(Q). Using (7.5) one readily sees that Ilg - is an algebra ho-
momorphism from D(G/H) to (7.9). Note that if a function f € C*®(G/H : 1)
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is D(G/H)-finite, then its restriction to At (Q) is finite under the algebra
o (D(G/H)).
If X € U(g)H, then we shall also write IIg - (X) for IIg - (r(X)) (cf. (2.8)).
Thus we also view Il ; as an algebra homomorphism from U(g)¥ to (7.9).
Let O = Og denote the ring of functions ®: AF(Q) — C which admit a
converging series expansion of the form

(7.10) ®a)= Y aa’ (a€Af@)

VENX(Q)

with coefficients ¢, € C.

Remark 7.2.  Let A(Q) be the set of simple roots in £(Q). If v € NX(Q),
we write v = ZaeA(Q) voa. If moreover z € CA@) | we put

2V = H zgx.
aeA(Q)
Let D denote the unit disk in C. Then obviously the series (7.10) defines a
function in O if and only if the power series >_vens(Q) cv?” converges on the
polydisk DA(@) (and hence defines a holomorphic function @ on that set). This
explains the use of the notation O.

Let z = zq: A$(Q) — DA@) be the map defined by z(a) = a™® (o €
A(Q))- Then the above functions ® and ¢ correspond to each other by ®(a) =
¢(z(a)). Operations like term by term differentiation which can be applied to
power series, can therefore be applied to elements of O as well.

The following result is now a straightforward consequence of [4, Prop. 3.5,
Lemma 3.6 and Prop. 3.7].

LEMMA 7.3.  The map g+ is an algebra homomorphism from U(g)™ to
O ® S(aq) ® End(VX )

In the rest of this section we let £+ = 3(Q), and suppress the dependence
on @ in the notation. In particular we write AT = A+(Q), A = A(Q), p = pg,
and I, =Ilg ..

If v =73 cavVax € NA, we write m(v) = 3, |va|. Let 7(Q,) denote the
endomorphism by which the ‘m N ¢-part’ of the Casimir element of U(g) acts
on VENHM (see [14] for details), and let v € End(End (VX" HM)) be defined by
v = ad(7(2m)). Then the set N of eigenvalues of v is a symmetric subset of R.
Put

(7.11) S={A€a; | I(reNA\{0}): (2A—v, v) e N}.

One readily checks that the evaluation map f — f(e) defines a linear
isometry

(7.12) ev1:°Cy(1) =~ C®°(M/Hy : mv)—VENHM,
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Via this isomorphism we endow VX"HM with the structure of a D(M/Hw)-
module. Recall the definition of the algebra homomorphism p: D(G/H) —
D(M/Hwm,) ~ D(M/Hy) ® S(aq) from Section 2. If D € D(G/H), A € a., we
denote the endomorphism by which the operator u(D: \) acts on VENHM by
p(D: 7: X). Notice that this endomorphism is related to the endomorphism
p1(D: 7: A) on °Cy(7) defined above (5.11) by

eviopu(D:7: A) =p(D:7: X)oevy.

Let L € D(G/H) denote the image of the Casimir element of U(g) under the
map r defined in (2.8). (L is the Laplace-Beltrami operator associated with

the natural pseudo-Riemannian structure on G/H induced by the bilinear form
B.)

PROPOSITION 7.4 ([14, Thm. 9.1]). Let X € ag.\'S, where S is defined by
(7.11). Then there ezists a unique function ®y = g\ € o POREnd (VAN )
having an expansion of the form

®x(a) = a*" Z r,(AN)a™ (a € Aa")
VvENA
with T, () € End(VEMM) To(X\) = I, such that:
[T, (L)®)](a) = ®a(a) op(L: 7: A) (a € AF).
Finally, ®5(a) and the T',(X) (a € At,v € NA) extend to meromorphic func-

tions of A € ag. with singular set contained in S.

The functions ®) occur in the expansion of the normalized Eisenstein
integral as follows. If w € W, A € al. \ S we define the End(VTKm”HM“’_I)—
valued function ®¢g . (A: ) on AF(Q) by
(7.13) Qo.w(A:a) =7(w)o (I)w—le,w—l/\(’(U—la’LU) o7 (w) ™
(see [14, Lemma 10.3]). Then we have the following.

THEOREM 7.5 ([14, Thm. 11.1)). Let P,Q € P w € W. Then for
every ¢ € °C(T):
E°(P:¢p: N(aw) = Y @qu(sh: a)lpr,Chp(s: NYl(e)  (a € A(Q))
seW
as a meromorphic identity in .
Note that the above identity remains valid if E°(¢: ) and CQ p(s: A) are

replaced by their unnormalized versions E(1): A) and Cg|p(s: A) respectively.
Let J: AT —]0,00[ be the Jacobian introduced in Section 3. Then for

A € ag. \ S we define the function By: AL — End(V,XNM) by

(7.14) ®y(a) = J(a)?®r(a)  (a € A]).
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Now obviously a="J (a)l/ 2 € 0, and therefore the function ®  has an expansion
of the form

(7.15) ®r(@)=a* Y a VT, (\)

VENA

with coefficients I',(\) € End(VENHM) 1 e NA.
If R € R, we define the following finite subset of NA:

Xp={veNA\{0} | |[v|* = 2Rm(v) + min N < 0}.
Moreover, we define the following polynomial function of \:
(7.16) pr) = [I T1(@\-v,v) - d).
vEXR deN

(If X is empty then by definition pg(\) = 1.)
The following estimates will play a crucial role in Sections 10 and 13. Let
dq(Q, R) denote the closure of 05(Q, R) in af..

THEOREM 7.6 ([14, Thm. 7.4]). Let R € R. Then there exist constants
C >0, sk >0 (depending on T,R) such that

PROITL(Vllop < C (14 [])*(1 + | A de8Pr,
for allv € NA and X € @%(Q,R). Here || - ||op denotes the operator norm.

COROLLARY 7.7 ([14, Thm. 9.1)). Let R € R.

(a) If a € A}, then the function A — PrR(A)®a(a) is holomorphic in a
neighborhood of a3(Q,R).

(b) For each € > 0 there ezists a constant C' > 0 (depending on 7,R) such
that

(7.17) [PROI1®A () lop < C a7 (1 4 |A|)de8Pr
for all X € a3(Q,R), and all a € Aq with a(loga) > ¢ (Vo € £F).

Remark 7.8. Notice that if G/H is split, that is, if aq is also maximal
abelian in g, then m C § so that 7(Qw) acts trivially on VENHM - Hence
N = {0}, from which we infer that if R < 0 then Xp is empty and pp = 1.
In particular this is the case when G /H is a Riemannian symmetric space.
The same conclusion holds for the trivial X -type 7 on an arbitrary reductive
symmetric space G/ H.

8. Paley-Wiener estimates for the Fourier transform

Let (7, V;) be a finite dimensional unitary representation of K. ,and let P €
Py If f € CX(G/H : 7) then its r-spherical Fourier transform F f=Fpf,
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originally defined as a °C(7)-valued Schwartz function on iag, has a unique
meromorphic extension to all of aj.. Thus it may be viewed as an element
of the space M ® °C() of meromorphic °C(7)-valued functions on a.. The
purpose of this section is to give estimates of Paley-Wiener type, relating the
growth of F f to the support of f.

We start with a preparatory lemma. The set IIx(aq), defined in Section
5, is partially ordered by the relation of division. Let ‘m € IIx(aq) be a
polynomial which is minimal subject to the condition that for every i € °C(r)
the function E° : A +— ‘m(A)E°(P:¢: A) is holomorphic in a}(P,0); for its
existence, cf. (5.9). The polynomial ‘7 is uniquely determined up to a nonzero
scalar factor.

LEMMA 8.1. There ezists a constant € > 0 such that:

(a) The polynomial ‘m has no zeros in ag(e);

(b) For every v € °C(t) the function ES.: X — ‘m(A)E°(P:: A) is
holomorphic in af(Pg).

Proof. If I: A — (A, a) — c is a linear factor of 't (a € X(P), c € C),
then by minimality of ‘m we must have [7!(0) N a(P,0) # 0. Hence Rec < 0,
and we see that there exists a constant ¢ > 0 such that I71(0) N a(e) = 0.
Since ‘7 is a product of linear factors like the above, there exists a constant
€ > 0 such that (a) holds.

The function EY; is regular on the set ia}. Moreover, by (5.9) there exists
a polynomial p € Ilx(aq) such that pE?, is regular on a’(P,1) (for any ¥).
Applying the lemma below with n; = 1 and ¢ = EY,, we see that there exists
n2 > 0, independent of 1, such that E?_ is regular on the set aa(f’,ng). Now

decrease the ¢ found in the first part of the proof so that € < 7s. O

LEMMA 8.2. Letm > 0 and p € IIs(aq). Then there exists a constant
n2 > 0 such that the following holds. Suppose ¢ a(’;(l_’,m) — C is a meromor-
phic function such that:

(a) py is regqular on a;(P,m);

(b) @ is regular on af(P,0) Uial.

Then the function ¢ is reqular on ag(P,n2).

Proof. We may restrict ourselves to the case that p is a first degree poly-
nomial of the form A — (X, @) —c, @ € £(P), ¢ € C, since (up to a sign) every
polynomial of IIx(aq) is a product of such first degree polynomials. We now
distinguish the following three cases: (i) Rec < 0; (ii) Rec = 0; (iii) Rec > 0.

(i) In this case Uy := p~1(0) N a;(}_’, 0) is a nonempty open subset of the
complex hyperplane p~1(0). By (b) it follows that py vanishes on Uy; the latter
set is contained in the convex, hence connected, open subset U] := p~1(0) N

a;(lf’, m) of p~1(0). By analytic continuation it follows that py vanishes on
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Uj. Hence on the set a:‘i(]_’, m1) the first degree polynomial p is a divisor of the
holomorphic function py, and the conclusion follows with 7 = 7;.

(ii) In this case Uy := p~!(0) Nia} is a nonempty real subspace of the
complex hyperplane p~1(0). By (b) the function py vanishes on U,. We may
now apply analytic continuation as in (i) and deduce the conclusion with

m =mnm-.

(iii) In this case we put 2 = min(n;,Rec). Then p has no zeros on
ag(P,m2), and py is holomorphic on a;(P,n2) C a:;(P, 71 ), by assumption (a).
From this the desired conclusion follows. O

Define the polynomial 7 € IIx(aq) by
(8.1) 7(A) = ‘w(=N).

Let £ > 0 be as in Lemma 8.1. Then from (6.2) it follows that for every
f € C(G/H : 7) the function A — m(A)F f(X) is holomorphic on —a}(P,¢) =
ag(Pe).

By [7, Cor. 16.2 and Prop. 10.3] we may shrink ¢ to ensure the existence
of constants C' > 0, N € N, s > 0 such that:

(8.2) Pr(NES(P: 4z N(@)]| < C(L+ A NelsHReADos el

for all ¢ € °C(7), a € Aq and X € a}(P, ¢). We shall use this estimate to obtain
a crude estimate for 7 f. Let S be a subset of ay and define the subset Xg of
G/H by

(8.3) Xs=KexpSH.
If S is compact then so is Xg, and we equip the space
(8.4) CF(G/H: ) = {f € C®(G/H: 7) | supp f C Xs}
with the usual Fréchet topology. Put
Rgs =sup |Y|.
Yes

(If S = ( then Rg = —00.) Then we have the following:

PROPOSITION 8.3. Let ¢ > 0 be as above. Then for every n € N

there exists a continuous seminorm v on CP(G/H : T) such that for all f €
CP(G/H: 7) and every \ € ag(P,e):

lr(A) FFOI < (1 + AT el ().

Proof. From the above estimate for the Eisenstein integral it follows in a
straightforward manner that there exist constants C’ and N such that

(8.5) lm(A) FFI| < C'(1+ A VeftsIReN Sup 1 @)l
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for all A € a3 (P, ¢), f € CL(G/H : 7). To improve upon this estimate, we need
the following lemma. Recall the definition of the endomorphism g, (D: 7: X)
of °Cy(7) (w € W, D € D(G/H), X € ag.) from the text preceding eqn. (5.11).

LEMMA 8.4. There exist a constant m € N and for every w € W,k € N
and X € aq an m + 1-tuple Dy, ...,Dy, in D(G/H) such that:

(8.6) ZA(X pw(Dj: 72 A)
7=0

as an endomorphism of °Cy(7), for all X € ag.

Proof. Recall the definition (2.10) of p: D(G/H) — D(M;/Hyy, ), and the
identity ym, op = 7y in (2.11). It is well known that S(b) is an integral ring
extension of I(b), hence so is I, (b), and by the identity above we conclude
that D(M/Hy, ) is an integral ring extension of u(D(G/H)). Hence there exists
a number m € N with the property that for every Y € aqc C D(M;/Hyy, ) there
exist Fy, ..., E, € D(G/H) such that

Y = 3 Y (B

Let now w € W, and k € N. Then it follows by repeated application of the
above identity to Y = Ad(w!)X that there exist Dy, ..., Dy, € D(G/H) such
that

(8.7) [Ad(w™HX]F = Z[Ad XY (D).

7=0
Applying the isomorphism Ad(w): ]D)(Ml/HMl) — D(M; /wHy,w™!) we ob-
tain an identity of elements in ]D)(Ml/wHM1 ~1). By (2.12) this may be viewed

as an identity of D(M/wHyw™!)-valued polynomial functions on age- In view
of (2.13), evaluation in A now results in the desired identity (8.6). O

Completion of the proof of Proposition 8.3. For w € W let F,, := pr,, o F.
Then it suffices to prove the estimate with F replaced by F,,.

Let m € N be the constant of the above lemma. Fix w € W, X € qg,
k € N, and let Dy,...,D,, € D(G/H) be such that (8.6) holds. Then by
Lemma 6.2 and (8.5) it follows that

M) (N Fu fNI
(14 [AD™ ZIXIJ 7 (M) Fu(Di FY Al

IA

INA

c"(1+ IXI) (14 AN eftsliteX max sup || D; £
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Here N is the constant of (8.5), and C” > 0 is a constant independent of f
and . It is now straightforward to complete the proof. O

We shall also need an estimate for Ff which reflects more refined aspects
of the geometry of supp f. The key to this estimate is the following estimate
for the (unnormalized) Eisenstein integral.

PROPOSITION 8.5. Let w € W. Then there exists a constant C > 0 such
that for all ¢ € °Cy(7), a € Aq and X € ag(P,0) — pp,

(8.8) IE(P:¢: (@) £C max " ®erer) |y,

veWknH

Proof. Since the Eisenstein integral is an Eisenstein integral for (G, He)
as well (see the argument in [6, remark after the proof of Prop. 5.6]), we may
assume that H is connected. From [13, eqn. (69)], we recall that

EP: L(w): \) = E(w ' Pw: ¢: wl)),

where £(w) is a unitary endomorphism of °C(7). From the definition of £(w)
(loc.cit.) it follows that L£(w) maps °C;i(7) onto °Cy(7). On the other hand
A € a3(P,0) — pp if and only if wil e aa(w‘le,O) — Puw-1pw; therefore it
suffices to prove the result for w = 1 and arbitrary P.

Now assume that w = 1, and let ¥ € °Cy (7). Define ¥(A: -): G/H — V;
as in (5.3). Note that this function is continuous since Re A + pp is strictly
P-dominant, and that it vanishes outside PH.

Recall from (5.4) that the Eisenstein integral is defined by the absolutely
convergent integral

E(P:zp:A)(a):/Kr(k)_lzﬁ()\:ka)dk (a € Aq).

Now fix a € Aq, and k € K, and assume that ka € PH. Then to complete the
proof it suffices to show that

[(A: ka)|| < C max a*®BeXMer)|y)),
veWknH

with C a constant independent of k and a. Write ka = nexp Xmh, with n €
Np, X € aq, m € M, h € H. Then by the convexity theorem (Thm. 3.8 of [3]) it
follows that X =Y + Z, where Y € conv (Wxnpg loga), and where Z belongs
to the closed convex cone spanned by the vectors Hy, a € (P),m, # 0
(here Hy € aq is determined by H, L kera, a(Ha) = 2; cf. Section 3 for the
definition of m ). Hence (Re A + pp)(Z) < 0, and it follows that

7 A
W()\ ka)|| < vef‘flvii:H a/v(Re)\"FPP)”d)(m)H < Uervr‘l,iﬁH av(Re +pp) ”1/)”007

where || - ||o denotes the sup norm on °Ci(7) = C*®°(M/Hy: 7). By finite
dimensionality the sup norm is equivalent to the Hilbert norm. O
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COROLLARY 8.6. Let 6 > 0,w € W. Then there exist constants C >

0, N € N such that for all € °Cy(7), a € Aq and X € ay(P, — 6) — pp,
8.9 ['T(WE(P:¢: M)(@)| < C A+ A)Y Jnax o ReA=pr) |y

Wknu

Proof. From [13, Prop. 2], we have
E°(P:4p: X) = E(P: Cpp(1: \)"': A).

In view of [7, Prop. 16.1], the End(°C(r))-valued function A — Cp|p(1: A)7lis
meromorphic and of ¥-polynomial growth on every set a(P, R), R € R. More-
over, from [7, Prop. 15.7], we see that Cp|p(1: A) preserves the decomposition
°C(T) = ®wew Cuw(7). In view of Proposition 8.5 with P in place of P it now
follows that there exist a polynomial p € IIx(aq) and constants C > 0, N € N
such that we have an estimate of the form (8.9), for A € a(’;(P,O) — pp, but
with p instead of ‘m. The desired estimate now follows by an application of the
Cauchy formula in the same way as in the proof of Lemma 6.1 (loc.cit.). O

If T is a closed subset of a4, we define its supporting function hr: ag. —
[_007 OO] by:
(8.10) hr(n) = sup Ren(X) (n € ag.)-
XeT

Note that the supporting function of the empty set is given by hy = —o0o. Note
also that all values of hr are finite if and only if T is compact and nonempty.

COROLLARY 8.7. Let S be a Wknpg-invariant compact subset of aq,

and let 6 > 0. For every n € N there erists a continuous seminorm v on
C¥P(G/H: T) such that for every w € W,f € CP(G/H:7) and all X €
Cl:i(P, - 6) — PP:

TN Fu O < 1+ X)) emus ) ().

Proof. Since S is Wgnpg-invariant, it follows that

-1 -1
sup o "= ehs(w™in) _ chws(n) (n € ap).
a€exp S ‘

vEWKnH

From (6.2) and Corollary 8.6 it now follows in a straightforward manner that
I (N Fuf W] < Cs (1+ ADN P45V fllo

with Cg a constant which only depends on é and S. The proof is completed by
applying Lemma 8.4 in the same fashion as in the second part of the proof of
Proposition 8.3. O

We now come to a lemma which is a variation on Paley-Wiener type results
for Euclidean space as presented in [32, §7.3]. The lemma will enable us to
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collect the estimates of Proposition 8.3 and Corollary 8.7 into a simultaneous
one.

LEMMA 8.8. Let S be a compact subset of aq, let e,r,R > 0, and let ¢ be
a °C(7)-valued holomorphic function on ag(P,e). Assume that for everyn € N:

() SUDxcay Py (1 + A" BRN [6(N)]| < oo
(b) suPscqs P, (1 + A1 V]3N] < oo.
Then for each N € N,
(8.11) sup (14 [A)Ne sV g0 < oo.
Aeay(P,0)
Moreover, the seminorm in the latter expression can be estimated from above
by a constant times the seminorm in (a) with a suitable n (depending on N).

Proof. Let v,(¢) denote the seminorm in (a). From the estimates in (a)
it follows that the restriction to iag of ¢ is a Schwartz function; in fact by
a straightforward application of Cauchy’s integral formula we see that every
Schwartz-type seminorm can be estimated from above by (a constant times)
one of the seminorms vy (9).

Let f: ag—°C(7) be the inverse Fourier transform of ¢, defined by

(8.12) f(z) = / 2@ (2) dA,

S
Then f is a Schwartz function on the Euclidean space a4, and by continuity
of the inverse Fourier tranfsorm for the Schwartz topologies every Schwartz-
seminorm of f can be estimated by one of the v, (¢). Moreover, it follows from
the Euclidean Fourier inversion formula with a suitably normalized Lebesgue
measure dr on aq that

(8.13) $(2) = / @) £(g) da,

Aq
for A € iag.
Let Ao € ag(P,0); then it follows from (8.12) and an application of
Cauchy’s theorem, justified by (a), that

(8.14) f(z) = / @A (X £ \) d.

q

In particular, this shows that z — e=*0(*) f(z) is a Schwartz function, and
hence also that we have (8.13) for A € ag(P,0).

Let ¢ > 0 be any number such that tA\g € af(P, —r). Replacing Ao by tAg
in (8.14) and applying (b) with a suitably large n we obtain the estimate

[ £(@)] < Cee@erstto) [ (142 + X))~ dX
1ad



300 E. P. VAN DEN BAN AND H. SCHLICHTKRULL

with C' a positive constant. By taking the limit as ¢ — oo we infer that if
Re Ao(z) + hs(—Xo) < 0 then f(z) = 0.

In (8.13) we now need only integrate over the set where —Re \o(z) <
hs(—Xo) for all Ag € a5 (P, 0), and hence the integrand f(z)e~*® is dominated
by ets(=V| f(z)]], if A € ag(P,0); by continuity this domination still holds if A
belongs to the closure of a(P,0). Thus we obtain

()| < s / 1£(z)]| dz,

valid for all A € a3(P,0). A similar estimate is obtained for A(zg)*#()\) for any
Tg € aq, k € N; on the right-hand side f is then replaced by its k! derivative in
the direction xp. This shows that the seminorm in (8.11) can be estimated in
terms of a Schwartz-seminorm of f, which in turn may be estimated by v, (¢),
for a suitable n. O

In view of Lemma 8.8, Proposition 8.3 and Corollary 8.7 provide motiva-
tion for the following definition of pre-Paley-Wiener spaces. If ¢ is a °C(7)-
valued function, we write ¢,, = pr,, o ¢ for its w-component, w € W.

Definition 8.9. Let S be a nonempty Wxng-invariant compact subset
of aq. If p € TI(aq), we define the pre-Paley-Wiener space M(S,p) to be the
space of meromorphic functions ¢: age — °C(7) satisfying the following three
conditions (a) — (c):

(a) For each s € W we have ¢(s)\) = C}’)|P(s: A)ep(A) as a meromorphic
identity in X;

(b) The function py is holomorphic on an open neighborhood of ag(P,0);

(c) For every n € N and each w € W:

sup (14 [A])e "5V [[p(N)pu (V)] < oo
A€ay (P,0)

The pre-Paley-Wiener space M(.S, p) is equipped with the structure of a locally
convex space by means of the seminorms in condition (c).

Remark 8.10. In addition to the above we adopt the convention that
M(D, p) is the trivial space, for every p € I(ag).

Note that, if § C " and if p divides p, we have M(S,p) C M(S',p'), the
inclusion map being continuous.

One can actually prove that M(S, p) is a Fréchet space. We will do this
at a later stage, under the assumption that p € IIx(aq); see Corollary 20.2.

The results obtained in this section can now be summarized in the follow-
ing theorem.
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THEOREM 8.11. Let m € IlIx(aq) be as in (8.1). Let S be a Wknn-
invariant compact subset of aq. Then F maps C(G/H : T) continuously into

M(S,).

Proof. Let f € CZ°(G/H : 7). The meromorphic function ¢ = F f satisfies
(a) in view of Lemma 6.3 with P, = P, = P, and (b) in view of (8.1) and
Lemma 8.1 (b). Moreover, from Proposition 8.3 and Corollary 8.7 it follows
by application of Lemma 8.8 that ¢ satisfies (c). O

9. Wave packets

In this section P is a fixed element of P™". For n € N let C,, (ia3) denote
the space of continuous functions ¢: iag — C satisfying

sup (14 [A))" [p(A)] < o0,

*
€lag

equipped with the obvious structure of a Banach space. Then

Cn(iag) = ﬂ Cy(iag)
neN

is a Fréchet space in a natural way. For ¢ € Cn(iag) ® °C(7), we define the
wave packet Jp = Jpy by

9.1) To(z) = / E°(P: o(A): N(z)d\ (¢ € G/H).

The integral converges absolutely by the estimates of [7, Thm. 19.2], which hold
with 7 = 1, in view of the regularity theorem (Proposition 5.4). Obviously J¢
is a T-spherical function on G/H.

If o € Cn(iay) ® °C(7) and D € D(G/H), then we write u(D: 7)p for
the function A — p(D: 7: A)¢(A). Notice that ¢ — py is a continuous linear
endomorphism of Cy(iag) ® °C(7) for any End(°C(7))-valued polynomial p on
iag, hence in particular for p = u(D: 7).

LeEMMA 9.1.  The wave packet map J is a continuous linear map from
Cn(iag) ® °C(7) to C*°(G/H : 7). Moreover, for all ¢ € Cn(iag) ® °C(T) and
D e D(G/H),

(9.2) DJep=J(uD: 1)p).

Proof. The first assertion is a straightforward consequence of the above
mentioned estimates of [7, Thm. 19.2]. In fact, it follows from these estimates
that differentiation under the integral sign is allowed in (9.1): if u € U(g), then

(9:3) LuJe(@) = [ LulE(p(A): V](x)dA.
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Let now v be a representative of D in U(g)¥, and let € G be fixed. Then
DJe(z) = Ry(Tp)(z) = Lu(Tp)(x), with u = [Ad(z)v]Y, where y — yV
denotes the principal anti-automorphism of U(g). Inserting this in (9.3), and
observing that

Lu[E°(p(A): M](z) = DIE°(p(A): N](2)

for all A, we obtain (9.2). O

Remark 9.2. Notice that if p has no zeros on iag then ¢ € M(S,p)
implies that <,0|ia(*1 € C’N(iaa), for all S and p as in Definition 8.9, and the
map @ — ‘p‘i“cﬁ is continuous. Hence in this case J gives rise to a continuous
transformation, also denoted 7, from M(S,p) to C*°(G/H : 7). In particular
this applies to the polynomial 7 defined in (8.1).

We will now discuss the relation of the wave packet transform to the
spherical Fourier transform.

Recall the definition of the functions ©,7gu: G/H — [0,00][ from Sec-
tion 6. For p,n € N, let T?(G/H : 7) be the Banach space of functions
f € CP(G/H: T), such that

sup (1+ 7a/mu(2)) "0 (z) || Luf(@)| < oo,
zeG/H
for all u € U(g) with order u < p. Then by [7, Cor. 17.6] we have a G-equivariant,
continuous sesquilinear pairing (- | -): TP(G/H: 7) x C(G/H : ) — C, defined
by

(9.4) (| g) = /G U@ 9@, do

Since the inclusion map S(iaj) — Ci(iag) is obviously continuous, Lemma 6.1
shows that the spherical Fourier transform F maps C(G/H : 7) continuously
to Cn(iag) ® °C(1). We equip the latter space with the continuous sesquilinear
pairing
(1w = [ @O [$W)ecim dh (.6 € Culiay) ®°C(r)).
tagd

LEMMA 9.3. For every p € N there exists a number n € N such that J is
a continuous linear map from Cy(iag) ® °C(1) to TF(G/H : 7). Moreover, J is
the transpose of F in the sense that

9.5)  (Telf)=(el|Ff) (v €Cnliag) ®°C(7), f € C(G/H: 7)).

Proof. The first part of the lemma is a straightforward consequence of
(9.3) and the estimates in [7, Thm. 19.2]. Moreover, by the same estimates,
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given ¢ and f as in (9.5), the function ®: a3 x G/H — C, defined by

(X, z) = (E°(p(N): A) () | £(z))v,,
is an absolutely integrable function with respect to the product measure d\ dx
on iag X G/H. Integration of ®(A,x) first with respect to A\ and then with
respect to x yields the left-hand side of (9.5); integration in the reverse order

yields the right-hand side. In view of Fubini’s theorem this implies (9.5). O

COROLLARY 9.4. (a) The composition JF 1is a continuous linear map
from C(G/H : ) to C*°(G/H : T), which commutes with the action of D(G/H).

(b) There exists a number n € N such that JF is a continuous linear map
from C(G/H: 1) to TO(G/H : 7). The map JF is formally symmetric in the
sense that for all f,g € C(G/H : T):

(TFflg)=(f1TFg).

Proof. This is an immediate consequence of Lemmas 6.1, 6.2, 9.1 and
9.3. O

10. Support properties of wave packets

For the Euclidean and the noncompact Riemannian symmetric spaces, the
transformation J is also the inverse of the Fourier transformation F, and the
Paley-Wiener theorem is derived from the fact that if ¢ extends to a holomor-
phic function on ag. of exponential growth, then J¢ has bounded support.
In the more general case of a semisimple symmetric space, the situation is
more complicated, primarily because E°(¢: A) is only meromorphic in A. This
is one of the reasons we can only derive conclusions about the support of
DTy =Ju(D: 7)p, with D a suitable operator from D(G/H) (depending on

T).

For Q € P™" we denote by ¢t (Q) the closed dual cone of af (Q) in ag:

(10.1) i (Q):={X €aq| VY €af(Q): (X,Y)>0}.
Notice that we also have:
(10.2) aé’(Q):{Yan |VX€C§(Q)Z (X,Y)>0}.

Let T be a closed subset of aq. Then its supporting function hr: ag. —
[—00, 0], defined by (8.10), is lower semi-continuous. If 7" is nonempty and
compact, then hr is finite and continuous.

The supporting function will be useful to us because of the well known

fact that the closure of the convex hull of 7" is given by
(10.3) cl(convT) ={Y €aq|n(Y) < hr(n) (Vn€ay)}.
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Indeed this follows immediately from the fact that every point in the comple-
ment of cl (convT) may be separated from T by a hyperplane.

The following lemma will be needed in the rest of this section. If S, S’ are
subsets of aq, we write S — ' ={X - X' | X € S, X' € §'}.

LEMMA 10.1. Let S C aq be compact and convez, and let Q € PIin,
Then

(a) S —c(Q) ={Y €aq| ¥y €a;Nay(Q,0): n(Y) < hs(n) };

(b) [S = ¢4 (@)] Nad(Q) C conv WS,

Proof. If S = (), then the assertions are obvious. Therefore we assume
that S is nonempty. Notice that

i (@) ={Y €aq|Vnea;n a;(Q,0): n(Y) >0}

It is now straightforward to check that T := S — ¢} (Q) is contained in the
right-hand side of (a). Conversely, let Y € aq belong to the right-hand side of
(a). To prove that Y € T, it suffices to show that

(10.4) v(Y) < hr(v) (Ve a),

since T is closed and convex (see (10.3)). Now hg < hr since S C T. Hence if
v € ag is strictly @-dominant then (10.4) follows from the assumption on Y.
If v is Q-dominant, this is still the case, since hg is continuous. On the other
hand, if v is not Q-dominant, then v(ct (Q)) is not bounded from below, hence
hr(v) = oo, and (10.4) follows.

It remains to prove (b). Let Y € T Naf(Q). Then by (10.3) it suffices to
prove that for every v € ag one has

(10.5) v(Y) < hws(v).

Fix v € ag. Then there exists a w € W such that w™ v is Q-dominant, and by
(a) there exists an element X € S such that w™v(X) > w=tv(Y). But then

v(wX) =w v(X) > wv(Y) > v(Y);

indeed the last inequality holds because Y € aa' (@), whereas w™tv is Q-domi-
nant, so that ¥ —w™'Y € ¢ (Q) and w™'v(Y — w™'Y) > 0. This proves
(10.5). O

The main result of this section is the following theorem. See Definition
8.9 for the definition of the pre Paley-Wiener space M(S,p). Let P € Pmin
and J = Jp.
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THEOREM 10.2. Let p € II(aq) and w € W. Then there exists a differen-
tial operator D € D(G/H), such that

(a) p divides u(D: 1);

(b) det u(D: 1) € II(ag);

(c) for every Wgnm-invariant convex compact subset S of aq, and for all
@ € M(S.p),

(10.6) supp J [u(D: 7)¢] N Af (w™ Pw) C exp[S — cq+(w_1Pw)].

Notice that by (a), u(D: 7)p € Cy(iag) for all ¢ € M(S,p), so that the
application of J in (10.6) makes sense. Furthermore, here and below we regard
the chambers AQ;(Q), Q € PMn as subsets of G/H by means of the projection
G— G/H.

Before starting with the proof of this theorem we first deduce a corollary
from it.

Definition 10.3. Let p € II(aq). Then we define D, = D7, to be the set
of D € D(G/H) such that D* = D and

(a) p divides pu(D: 1);

(b) det u(D: 7) € I(aq);

(c) for every Winp-invariant convex compact subset S C aq and for all

v € M(S,p),

(10.7) supp J[u(D: 1)l N A;;(Q) C exp[S — c(‘;(Q)] (@ € pmin).

COROLLARY 10.4. Let p € Il(ay). Then D, # 0. Moreover, if D € D,
and if S C aq is a W-invariant convex compact set, then the following holds.
For every ¢ € M(S,p) the function J[u(D: 7)yp| belongs to CP(G/H: T).
The map ¢ — J[u(D: T)p] is continuous from M(S,p) to C¥(G/H: ).

Remark 10.5.  If p has no zeros on iag, then from Remark 9.2 and Lemma
9.1 it follows that Ju(D: 1) = DJ ¢, for all ¢ € M(S,p). In particular this
applies to the polynomial 7 defined in (8.1).

Proof of Corollary 10.4. For w € W, let D,, € D(G/H) fulfill the require-
ments of Theorem 10.2, and put

wew

We will first show that D € D,. It is readily verified that D* = D and that
condition (a) of Definition 10.3 holds. Condition (b) follows because by (5.15),

det u(Df: 7: \) =det w(Do: 7: —\)* =det u(Do: 7: —A).



306 E. P. VAN DEN BAN AND H. SCHLICHTKRULL

To see that (c) holds, let S C aq be a Wxnpg-invariant convex compact subset,
and let ¢ € M(S,p). Then for every w € W,

JwD: 1)l =D5 [ DuT(Duw: 7)¢]
vEW, vFw

by (9.2), and hence supp J[u(D: 7)p] C supp J[u(Dw: 7)p]. We thus see
that (10.6) holds for the present D and each w € W. If u € Ngnp(aq), then
JT(D: 7)pl(uau™) = 7(w) T [u(D: 7)¢](a), and

exp[S — car(u_lw_leu)] =u"texp[S — cq+(w_1Pw)]u,

and we see that (10.6) holds for all w € WNgknp(aq). The latter set is naturally
mapped onto W, and since WP = P2 (10.7) follows. Hence D, # 0.

To prove the remaining assertions, let D € I, and let S C aq satisfy the
hypothesis. Then from (10.7) and Lemma 10.1 (b) we obtain that

supp J [u(D: 7)] N AT (Q) C exp S,

for all Q € P;*", and since G/H = cl Ugepmin KAF(Q)H, we infer that
TJuw(D: )¢l € C¥(G/H: 7). Finally the map ¢ + u(D: 7)¢p is continuous
from M(S, p) to Cn(iag) since p divides u(D: 7), and hence the asserted con-
tinuity follows from Lemma 9.3. O

For the proof of Theorem 10.2 we need some preparation. We recall from
(2.15) that j = jo @ aq is a Cartan subalgebra of g. Let Wy(j) denote the
normalizer of aq in W(j).

LEMMA 10.6. Let X € aqc \ {0}. Then there exists an element Y € jg
such that X +Y ¢ w(joc) for each w € W(j).

Proof. If w € Wy(j), then w also normalizes jo. Hence in this case X +Y ¢
w(joc) for any Y € jp.

On the other hand, if w € W (j) \ Wy(j), then we may select v, € ag such
that wvy, ¢ a7, Thus py: Y +— wry (X +Y) is a nontrivial polynomial function
on jg. !

Let now Y € jo be such that p,,(Y) # 0 for every w € W(j) \ Wy(j). Then
for each w € W(j) \ Wy(j) we have: wuy(X +Y) # 0. Since v, € aj, this
implies that X +Y ¢ w(joc). O

LEMMA 10.7. Let p € II(aq). Then there exists a D € D(G/H) such that
P ® log(r) divides pu(D: 1) in S(aqg) ® End(°C(7)), and such that det u(D: T)
belongs to Il(ay).

Remark 10.8. In the proof below we will see that in fact D can be chosen
from Z(G/H) = r(3).
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Proof of Lemma 10.7. Since D — p(D: 7) is an algebra homomorphism
from D(G/H) into S(aq) ® End(°C(7)), it suffices to prove the lemma for p =
X +c, with X € agc \ {0} and ¢ € C. Let Y € jo be associated with X as in
the previous lemma. For each [€] € My let A¢ € jj, denote the infinitesimal
character of £. Recall the finite decomposition (5.2) of °C(7) and define

(W= I [wA+A)X+Y)+d  (Ae).

weW (i)

Evirr
Then g € S(G)"1); hence g equals the image v} (Z) of a unique element Z € 3
under the Harish-Chandra isomorphism ~7. We claim that D = r(Z) satisfies
the requirements. For this let [{] € My and notice that by Lemma 5.7 the
endomorphism u(r(Z): 7: X) (A € ag.) acts on °C¢(7) by multiplication with
Y (Z: XA — Ag), that is by

gA=Ag) = J] [(wr—wAe+Ag)(X+Y)+].
weW())
(€)1

In particular, if [¢€Y] T 7 we have the factor \(X) + ¢ for (w,&) = (e, ).
Moreover, for arbitrary (w,£’) the polynomial A — (wA—wA¢+Ag)(X+Y)+c
on ag. is nontrivial because X +Y ¢ w(joc). All the assertions now easily
follow. O

Proof of Theorem 10.2. From (7.13) and (7.17) it follows that the poly-
nomial py € II(aq) has the property that for each a € AF(P) there exists a
constant C' > 0 such that

(10.8) IPo(A) @pw(X: @)l < C(1+|A])4EPoaleA,

for each w € W and all A € a3(P,0). Let D € D(G/H) be chosen according
to Lemma 10.7 such that pop divides u(D: 7). Then D satisfies assertions (a)
and (b) of the theorem. We shall prove that it also satisfies (c¢). Let S and ¢
be given as in (c), and put

P(A) = ,u’(D: T:N)e(A) (X Eag)-

Notice that ¢ belongs to the space M(S,1). Indeed, from eqn. (5.13) it follows
that ¢ fulfills condition (a) of Definition 8.9, and since p divides u(D: 7: \) and
w(D: 7: A) € End(°C(7)) commutes with the projection pr,,: °C(7) — °Cy(7),
for every w € W, conditions (b) and (c) hold as well. In fact, by the same
argument (b) and (c) hold also for py'@.

Let now w € W. Combining the estimate of Definition 8.9 (c) for py'¢
with (10.8) we see that for every n € N and a € AF (P) there exists a constant
C > 0 such that

(10.9) [@pw(X: @)@u(V)[| < C(1+ |A]) T ehuws(-NgReA
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for all X € @}(P,0). In particular, the function A — @ pu(A: a)Pyw(A) is holo-
morphic on an open neighborhood of EZ(P, 0).

Now fix a € Af(P), and suppose that J@(aw) # 0. In view of the spher-
icality of J¢ it suffices to show that

loga € wS — ca“(P).

Let 1 € af Nag(P,0) be fixed. Then —n € az(P, 0), and hence by Lemma 10.1
with Q = P it suffices to show that

(10.10) hws(—n) + n(loga) > 0.
By Theorem 7.5 and Definition 8.9 (a),

Tpaw) = / B (P p(0): V)(aw) d)

= [ 3 @rulsr: a)[Chpls: NE(N)u(e) dX

tag scW

- / S Bpu(sh: @) GulsA)(e) dA.
18G seW
From (10.9) we see that the integral and the sum in the last member may be

interchanged, and since the measure dA on iag is W-invariant, we obtain:

Jplaw) = |W| » Dpu(A: a)Puw(N)(e) dA.
%
In view of (10.9) we obtain, by applying Cauchy’s theorem:
(10.11) T(aw) = |W| / Bpu(At i )Fu()+ tn)(e) AN,
%
for all ¢ > 0. From (10.11) and (10.9) it follows that

(1012)  |7p@w)] < CiWlam [ (14 ) Tdx et

*
’L(lq

= Cyetlnioga)thus(=n] (¢ > o),

with C1,C3 positive constants lindependent of t (choose a suitable n). Since
Jp(aw) # 0, the last member of (10.12) cannot have limit equal to 0 as t — oo.
Hence (10.10) follows and the proof is complete. O

Remark 10.9. Consider the special case where G/H is a Riemannian
symmetric space of noncompact type. In this case the polynomial pg of (7.16)
is 1 (see Remark 7.8). Furthermore, if we take p = 1 in Definition 10.3, then
by examination of the above proof we see that the operator D € D, in this
case can be taken as the identity operator D = 1. In this case the proof above
is essentially Helgason’s ‘shift argument’ (cf. [30, Ch. IV, Thm. 7.3]).
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11. The behavior of supports

In this section we combine the results of the previous three sections.
We consider the composition JF, which is a continuous linear map from
CP(G/H: 7) to C*°(G/H : 7); indeed this follows from Corollary 9.4 (a).

It is an immediate consequence of the results of the previous sections that
there exists a differential operator D € D(G/H) such that det u(D: 7) € II(aq)
and such that DJF maps C°(G/H : T) continuously into itself. In fact, let
S be a Wiknpg-invariant convex compact subset of aq. Then by Theorem 8.11,
the Fourier transform F maps C$°(G/H : T) continuously into M(S, ), where
7 is the polynomial defined in (8.1). On the other hand, by Corollary 10.4 the
subset D C D(G/H) defined in Definition 10.3 (with p = 7) is nonempty. Let
D € Dg. Then, if in addition S is W-invariant, Corollary 10.4 (and Remark
10.5) shows that DJ maps M(S, ) continuously into CZ(G/H : 7). In par-
ticular, DJF maps C°(G/H : T) continuously into itself. The purpose of the
present section is to improve this result as follows.

THEOREM 11.1. Let D € D,. Then

supp DJF f C supp f for all feCr(G/H: T).

Proof. Let D € Dr. Then D* = D and it follows from Corollary 9.4 (b)
that the linear endomorphism DJF of C°(G/H : ) satisfies condition (a) of
Proposition 11.2 below.

On the other hand, from Theorem 8.11 and condition (c) of Definition
10.3 (with p = =) it follows that D7 F satisfies condition (b) of the proposition
below. The theorem now follows from that proposition. |

PROPOSITION 11.2.  Let T be a linear endomorphism of C>°(G/H : 1)
such that the following conditions (a) and (b) are fulfilled:

(@) (Tf|g)=(f|Tg), for all f.g € C&C(G/H: 7);

(b) for every Wing-invariant compact convexr subset S C aq, every f €
CP(G/H: 1), and each Q € PMin:

supp T f N AS(Q) C exp[S — ¢ (Q)].
Then suppT f C supp f for all f € C(G/H : 7).
We first need a lemma. Recall from (8.3) the notion of Xg C G/H.

LEMMA 11.3. Let f € C°(G/H : 1), and let S C aq be a Wi g -invariant
open set. Assume that (f | g) =0 for all g € C°(G/H : T) with suppg C Xg.
Then f vanishes on Xg.
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Proof. Let Q € P™n and recall the definition of the map Tg) in (7.3).
Then by (3.1) we have

[ @7f@) | h@) da= (7| Thh) =0
Ag(Q)

for all h € C2(AF(Q), V,XM™) with supph C exp[S N af (Q)]. This implies
that Jf and hence f vanishes on exp[SNaF (Q)]. Since the union of the cham-

bers af (Q) is dense the lemma follows. O

Proof of Proposition 11.2. If S C aq, then by cl (S), int (S) we denote the
closure and the interior of S in a4, respectively.

Let & denote the collection of all the closed Wgnp-invariant sets S C aq
with the property that for every f € C°(G/H : 71):

suppfNAq CexpS = supp7 fNAqCexplsS.

We shall establish the proposition by proving that & contains all the closed
Wkng-invariant sets.

We start by discussing some set operations for members of &. If f €
C(G/H : T), then by continuity of f one readily verifies, for any open subset
U C aq, that f =0 on expU if and only if f = 0 on exp[int (cl (U))]. Passing
to complements we see, for any closed subset S C a4, that supp f N Aq C
expS <= supp fN Aq C explcl (int S)]. From this we infer, for any Wxng-
invariant closed subset S of aq, that

S €6 < cl(int(9)) € &.

If S C aq is a closed subset of a4, we put S¢ = cl(aq\ S) = aq \ int (S). We now
observe that S € 6 = S° € &. Indeed, let S € G and let f € C*(G/H : 7) with
supp f N Aq C exp S°. By property (a) we then have (Tf | g) = (f|Tg) =0
for all g € C°(G/H : ) with supp g N Aq C explint (S)]. Hence T f vanishes
on explint ()] by the lemma above, whence supp 7 f N Ay C exp S°.

It is clear that any intersection of sets from & belongs to &. Moreover, if
S is any collection of sets from &, then one readily checks that cl [Ugesint (.9)]
equals [Nges5°)¢, hence belongs to &.

From property (b) and Lemma 10.1 (b) we see that the closed W-invariant
convex sets S C aq belong to &. In particular the closed balls B (0,R), R >0,
are in &. Moreover, let X € aq be nonzero and let r > 0; then the set

Exy={Y €aq| (wX,)Y) <r||X| foral weW}
is W-invariant and convex, hence a member of &. We infer that the sets
Ve=B(0,IX] +¢) N EY xj—e,  0<e<[IX],

also belong to &. Now if ¥ € V, then ||Y| < ||X]| + ¢ and (wX,Y) >
(IX|] — €)||X|| for some w € W, from which it follows that

1Y —wX|? = Y]+ IX|* - 2(wX, Y) < 4] X e,
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so that V. € WB(X, 4| X||¢). On the other hand it is easily seen that X lies in
the interior of V., and thus we see that there is a basis of neighborhoods U of
X satisfying WU € &. Taking unions we conclude, for any closed W-invariant
set S C aq, that the closure of its interior belongs to &, hence S € &.

As before, let X € aq be nonzero and let 0 < ¢ < || X||. Put U =
B(X,e) and let f € C°(G/H: 1) with supp f N Aq C exp(WgnuU). Then
supp7 f N Aq C exp(WU) since WU € &. We claim that if ¢ is sufficiently
small then actually supp 7 f N Aq C exp(WgnuU), so that WgngU € &.

To establish the claim, let @ € P™® and let Y € WU N al (Q) be such
that expY € supp7 f. Then

Y € conv WgnrU — caL(Q)

by (b). Write Y = Z — + accordingly with Z € conv WxngU and v € ¢ (Q).
Since Y € af (Q) we have (Y,v) > 0, and it follows that || Z]|> > ||Y[|* + [|v]|*.
On the other hand, from Z € conv WgngU we deduce that ||Z] < || X|| + ¢
and from ||Y|| € WU that |Y]| > || X|| —e. It follows that

(11.1) IVI2 < NZIP = 1Y 12 < (X)) +e)? = (1X]] = €)* = 4] X .

We now observe that Wxnp X is a finite subset of the sphere S = B(0, || X]||),
and hence conv (WgngX)NS = WgAg X. From this we see: if w € W is such
that wX ¢ Wgnag X, then wX ¢ conv WgngX. Thus by choosing ¢ sufficiently
small we may assume that the square of the distance from wU to conv WgngU
exceeds 4|/ X||e for all w € W with wX ¢ WgngX. Then (11.1) implies that
Y € wU for some w € W with wX € WgagX. But if wX = sX for w,s € W
then wU = sU, and hence we actually have Y € Wx~gU. Thus for sufficiently
small € > 0 we have supp7 f N AT (Q) C exp(WkngU) for every Q € P min
and hence also supp 7 f N Aq C exp(WgnrU); this establishes the claim that
WxnuzB(X,e) € & when ¢ is sufficiently small. Taking unions we conclude,
for any closed Wxnp-invariant set S C aq, that cl(int (S)) € &, hence S € &.
This establishes the proposition. dJ

12. Asymptotic behavior of differential operators

Let Q € P™", We consider the algebra
(12.1) D = C™(A$(Q)) ® End(VA"™M) @ S(aq)

of differential operators on A(‘;(Q) with coefficients in the ring of functions
C*®(AF(Q)) ® End(V,EMM). The algebra operates on V" M-valued func-
tions. If R is a subalgebra of C*°(A}(Q)), stable under the action of S(aq) by
differentiations, then

(12.2) Dr := R ® End(VE"M) @ S(a,)
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is a subalgebra of D. Via the map u — 1®u, the algebra End(VA"AM)® S(a,)
will be identified with Dc, the subalgebra of constant coefficient operators in D.

We recall that O = O is the ring of functions on AF(Q) which may be
expanded in series of the form (7.10). If u € age, we write e# for the function
a — a* on Aq. Moreover, we denote by O = (’)5 the ideal in O generated by
the functions e™*, a € A(Q). If P € Dy, then there exists a unique constant
coefficient differential operator C(P) = Cq(P) € End(VE"M) ® S(a,), called
the constant part of P along A(Jlr (@), such that

P —C(P) € 0" @ End(VEMM) © S(ay).
The following lemma, is obvious.

LEMMA 12.1.  The map P — C(P), Do — End(VEMHM) ® S(aq) is a
homomorphism of algebras.

From (7.8) we recall, for every D € D(G/H), the definition of its (Q, 7)-
radial component II.(D) = IIg (D). The map D + II.(D) is a homomor-
phism of algebras from D(G/H) to Do, by Lemma 7.3.

Recall also, from the text following formula (7.12), the definition of the
algebra homomorphism u(-: 7): D(G/H) — End(V,X"HM) ® S(a,).

Put p = pg. Then the following generalization of [22, Lemma 26] de-
scribes the top order asymptotic behavior of the radial component I (D) of
an operator D € D(G/H).

LEMMA 12.2. Let D € D(G/H). Then I1.(D) € Do, and
CII (D)) =e?u(D: 1)oce’.

Proof. From (2.9) we have
D = ug(D) € ngU(g) + Ul(g)b.

The result now follows from [4, Lemma 3.9], applied with the choice of positive
roots &1 = X(Q). , O

Thus the radial component II.(D) of an operator D € D(G/H) has a
converging expansion on A;}*(Q):

(12.3) (D)= > €D,

VENZ(Q)
with D, € End(VE"M) ® S(ay), Do = e Pu(D: 7)oeP. In this paper we shall
need such an expansion not only for the elements of the (commutative) algebra

II;(D(G/H)), but also for the elements in the commutant of this algebra in D.
The main result of this section is:
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THEOREM 12.3. Let P € D and assume that
(12.4) [PJII,(D)] =0 (D € D(G/H)).

Then P belongs to Dp; moreover P is uniquely determined by its constant part
C(P) € End(VEM) ® S(aq) along AT (Q). Finally, if P # 0, then:

order (P — C(P)) < order P.

Remark 12.4. 1In the above formulation we have used the convention that
the zero operator has order —1. Notice that it follows from the above that P
and C(P) have the same order.

Remark 12.5. Theorem 12.3 is in fact valid under the weaker hypothesis
that (12.4) holds for all D € Z(G/H) = r(3). This follows from a rather
straightforward modification of Lemma 12.10 and its proof.

Before discussing the proof of Theorem 12.3, we mention that it has the
following consequence, in view of Lemma 12.2. Notice that the radial compo-
nent of an operator D € D(G/H ) may have smaller order than D itself (it may
for example vanish for a nontrivial operator; cf. [12, Remark 2]).

COROLLARY 12.6. Let D € D(G/H),D # 0. Then
order (I, (D) — e Pu(D: 7)o €”) < order II(D),
and I1.(D) is uniquely determined by p(D: T).

We first investigate the meaning of the commutation relations (12.4) in a
somewhat more general situation. Let W be a finite dimensional vector space,
and let D be defined as in (12.1), but with W in place of V.X"#M_ Let R be a
subalgebra of C*°(A7 (Q)), stable under the action of S(aq) by differentiations,
and define Dg as in (12.2), again with W in place of VXM Finally suppose
that B C Dy is a subalgebra, and E C Dy a finite dimensional linear subspace
such that

(12.5) Dr = REB,

where the expression on the right-hand side denotes the linear subspace spanned
by all products of the form fvb with f e R, v € E, b€ B.
Let Hy,...,H, be a basis for aq. For a multi-index v € N¢, we write

& ZHfI"’HZd,

to emphasize that this element of S(aq) will be viewed as a mixed partial deriva-
tive on Aq. The 8%, v € N% constitute a basis for S(aq). Given a differential
operator P € D we write

P=>) P,
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with coefficients P, € C*(A$(Q)) ® End(W). The following lemma asserts
that if P commutes with B, then the vector composed of its coefficients satisfies
a cofinite system of differential equations.

LEMMA 12.7. Let P € D be a differential operator of order n € N, and
assume that
(12.6) [P,D]=0 (D € B).
Then there exist s € N-and finitely many functions ¢ FerR® End(End(W))

(10774

(1< <d, ullvl <s,lal,|B] < n), such that for every 1 < i < d, |u] < s and
all o with |a| < n,

(12.7) Hi0M(Py) = Y o8 (8¥(Pg)),

lv|<s
[Bl<n

as an equation in C*(AF(Q)) ® End(W).
Proof. By the assumption (12.5) there exists an s € N such that
(12.8) Dr = REnd(W)S;(aq)B,

where Ss(aq) denotes the subspace of elements of order at most s in S(aq). For
1<i<dand |u| < s we have

(12.9) [H; 0%, P] = _[H; 0", Pg] 8,
B
and by the Leibniz rule there exist constants cww € C, such that
(12.10) [H; 0", Ps] = H; 0"(Pg) + ) _ ¢, 9" (Ps) .
v
vi<s

On the other hand, from (12.8) we see that H; O* is a finite sum of elements of
the form fAO*B, with f € R, A € End(W), B € B, and |)\| < s. Moreover,
[fA&*B, P] = [fAd*, P|B by the hypothesis (12.6). The latter expression is a
finite sum of terms of the form 1/)7'3,,( 0" (Pg)) 07, with z/)fj,, € RQEnd(End(W))
and |v| < s. From this reasoning we conclude that

(12.11) |H; 0", P = Z #o (0 v,
|u|<s
with d)ﬁ‘ﬁ, € R ® End(End(W)). Substituting (12.10) in the right-hand side

of (12.9) and comparing the resulting coefficient of 9% with the correspondlng
coefficient of 0% in the right-hand side of (12.11), we obtain (12.7), with goww =
¢#ﬁ — c# 0

iav a—pPlv’

We will apply the above lemma, in two special cases. Let E(Aq) denote the
space of exponential polynomial functions on Ag, i.e. the space of finite linear
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combinations of functions of the form a — (loga)™a*, with A € a?,, m € N,

Here we have used the notation

qc

d
(loga)™ H [H; (loga)]™,

with HY,..., H} the basis of aj dual to Hj,..., Hs. A subalgebra A; of a
commutative algebra Ay will be called cofinite if A5 is finitely generated as an
Aj-module.

LemMA 12.8. If A C D(G/H) is a cofinite subalgebra, then the algebra
End(VEMM)® S(aq) is a finite u(A: 7)-module from the right (as well as from
the left).

Proof. In view of the isomorphism (2.12) this is a straightforward con-
sequence of the fact that the algebra D(Mj/Hy,) is finite as a u(D(G/H))-
module, cf. [7, eqn. (27)]. O

LEMMA 12.9. Let A C D(G/H) be a cofinite subalgebra and let P €
D be an operator such that [P,u(D:T)] = 0 for every D € A. Then P

has coefficients of exponential polynomial type; i.e., its coefficients belong to
E(4,) ® End(V,XNHwm),

Proof. In view of the previous lemma, we may apply Lemma 12.7 with
W = VEMHM R = C, and B = p(A: 7), and infer that the coefficients of P
satisfy equations of the form (12.7). Let A be the set of pairs (v, o) € N¢ x N¢,
with |v| < s and |a| < order P, and define the CV ® End(V,X M )-valued
function P on AF(Q) by

P0)(a) = 0" Pyla) ((v,a) € N).
Then we may rewrite the above system of equations in vector form:
(12.12) HP =MP (1<i<d),

where M; € End(CN(X)End(VTKOHM)). Let M: aq — End(CV ® End(VENHm))
be the linear map determined by M (H;) = M;. Then we infer that

P(a) = MlsaC (a € AT(Q)),

for a suitable C € CN® End(VTK NHy ). It follows that the coefficient P, = P,
of P is of exponential polynomial type. O

If A =D(G/H) then we can refine the above lemma, and we obtain the
following ‘flat’ version of Theorem 12.3.
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ProrosIiTION 12.10. Let P € D, and assume that
Pu(D:7)]=0 (D eD(G/H)).
Then P has constant coefficients; i.e., it belongs to End(VEMM) ® S(ay).

Proof. By the previous lemma, the coefficients of P are of exponential
polynomial type. Let S C ag. be the finite set of exponents occurring in these
coefficients. Then we may write P as a finite sum

P(a) = Z (loga)™ at P,

£es
mend

with P, € End(VEMM) ® S(aq). Put Pe(a) = a3, (log a)™ P 1r,; then one
easily sees that every P commutes with all u(D: 7),D € D(G/H). Thus we
may as well assume that S consists of a single element &.

For A € aj. and v € VENHM | define the function erv: Ay — VMM g1
a*v. Moreover, let £, denote the following finite dimensional linear span of
functions

(12.13) Ex=(eMv|seW,ve VENM),

In view of the lemma below, for generic A the space &, is a sum of joint
eigenspaces for u(D(G/H): 7). This implies that P maps £, into itself. In
particular the function

(12.14) P(e*v)(a) = at+* Z(log a)™ Pem(Mv

is contained in £, for generic A € ag.. Now £+ X ¢ WA\ {A} for generic A, and
we conclude that we must have £ = 0, and Pt () = 0 for m # 0. Hence P
has constant coefficients. a

LEMMA 12.11.  For X in the complement of a locally finite union of
hyperplanes in ag. the space €y defined in (12.13) is a sum of simultaneous
eigenspaces for u(D(G/H): 7).

Proof. Let b be a Cartan subspace of g, containing aq, and let the associ-
ated Harish-Chandra isomorphism be denoted by v: D(G/H) — I(b).
If A € af, we define £} to be the space of functions f € C*(Aq) @ VKM
satisfying the system of differential equations:

uD:7)f =pD:1: N)f (D e D(G/H)).
Then obviously e*v € & for all v € VXM and hence

(12.15) ExC Y Ein
seW



THE PLANCHEREL DECOMPOSITION 317

By (7.12) and (5.14) the endomorphism p(D: 7: A) of VEMHM ig semisimple
with eigenvalues of the form v(D: A+ ), A € L, for all D € D(G/H), A € ag,.
Let T = Uyeng (aq)WL; then it follows from the Weyl-invariance of v(D) that
u(D: 7: sA) has eigenvalues of the form y(D: A+X) with A € T, foralls € W.
For A € T, let £ 4 be the space of functions f € C*(4q) ® V. ENHM guch that

pD:7)f =vD: A+ N)f (D € D(G/H)).
Then it follows from the above discussion that
(12.16) ENC D &
AET
for all s € W.

On the other hand, in view of (7.12) it follows from [7, Prop. 13.5], that
8,’\’ A C &, for X in the complement of a locally finite union of hyperplanes.
Together with (12.15) and (12.16) this completes the proof. a

PROPOSITION 12.12. Let P € D, and let A C D(G/H) be a cofinite
subalgebra. Assume that

[P,IL(D)] =0 (D € A).
Then P belongs to E(Aq)O ® End(VEN M) ® S(ay).

Proof. 1t follows from [5, Lemma 3.8], that there exists a finite dimensional
subspace E' C End(VXMM) ® S(a,) such that

Do = OE'T.(Z(G/H)).

The above equality certainly holds with Z(G/H) replaced by D(G/H), and
since D(G/H) is a finite module over A, it also holds with Z(G/H) and E’
replaced by A and a finite dimensional linear subspace E of Dy respectively.
Therefore we may apply Lemma 12.7 with R = O and B = II.(A). It follows
that the coefficients of P satisfy equations of the form (12.7). As in the proof
of Lemma 12.7 these equations may be rewritten in the vector form (12.12),
but this time with M; € O ® End(CV ® End(VX"Hm)). The conclusion now
follows from [17, App. 1], if one proceeds along the lines of [4, pp. 233-234]. O

Proof of Theorem 12.3. Let P satisfy the hypotheses of the theorem. Then
by the previous proposition, P has an absolutely converging series expansion:
(12.17) P(a) = Z (log a)mag Prm (a € Ag’ (Q)).

Eex
meM

Here M C N% is a finite subset, and X is a subset of age of the form X =
S+ (-NX(Q)), with S C ag finite. Moreover, P, € End(VEHM) ® S(aq).
Here it is possible that S = (); this means that X = () and P = 0. An element
¢ € X for which there exists an m € M such that P ,, # 0 will be called an
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exponent of P (along Q). The maximal elements in the set of exponents with
respect to the ordering < on ag, (defined by {1 <X & <= & —& € NX(Q)) are
called the leading exponents of P. We denote the set of these leading exponents
by T and define the associated leading part of P to be the operator

P (a) = Z (loga)™a® Ps .

seT
meM

By construction we have P, = 0 = P = (0. We now consider the commutation
relations (12.4) once more. Inserting the expansions (12.17) and (12.3) of P
and I (D), we conclude that [Pr,e™”u(D: 7)oef] = 0, or, equivalently,

(e’ PLoe?,u(D: 1) =0 (D € D(G/H)).
Then by Lemma 12.10 we infer that e’ P, oe™”, and hence P, has constant
coefficients. Thus we see that 7' C {0}, and that Py, = 0 for m # 0. Hence
(12.18) P(a) = Z (loga)™ Z a "P_ym,

meM VENZ(Q)

with Py, = 0 for m # 0. In particular we see that P, = Pyo. Hence the map
P — Py is an injective linear map from the commutant of IL,(D(G/H)) into
End(VX"HM) ® S(a,). Inserting the expansion (12.18) together with that of
I1,(D) once more in (12.4), we now find, for every D € D(G/H):

0 = [PI(D)|(a)
= Z [(loga)™a™"P_ym,a "D,

meM
v,LENZ(Q)

= Z ((loga)™a " P_ym,a #D,] +a *[(loga)™, DyJa " P_, ) .
m;rggg{@

Shrinking M if necessary, we may assume that for each m € M at least one
of the P_,, (v € NX(Q)) is nontrivial. Suppose now that M # () and that
my is an element in M of maximal length |m|. Then, since [(loga)™°, D,] has
powers of loga of length strictly smaller than myg, it follows from the above
equations that:

Z [@a™YP_ymg,a #D,] = 0;

VUEND(Q)

that is, the differential operator

Ppy(a) = Z a "P_ym,

VENX(Q)

also commutes with II-(D), for every D € D(G/H). By the first part of the
proof this forces Py, 7# 0, which in turn forces my = 0. Hence M C {0}, and
writing P, = P_, o we obtain:

P(a) = Z a P, (a € AT(Q)).

VENZ(Q)
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Hence P € O ® End(VEX"HM) ® S(aq), as claimed in the theorem. Moreover,
C(P) = Py determines P uniquely. Finally, if P # 0, it remains to prove the
statement on the orders. This is done exactly as in [12, proof of Prop. 1], by
means of a recursion formula for the P,, arising from the commutation of P
with the Laplacian. O

We conclude this section by discussing some properties of the constant part
of an operator P € Dy which will be useful at a later stage. The following
lemma is easy to prove.

LEMMA 12.13.  Let v € ag.. Then conjugation by the function e”: a —
a¥ leaves the algebra Do as well as its subalgebra D¢ invariant, and defines
automorphisms of these algebras. Moreover, for every P € Do,

C(e"Poe™) =€"C(P)oe™".
LEMMA 12.14. Conjugation by the function a — J(a)'/? leaves the alge-

bra Do invariant, and defines an automorphism P +— P of Do. Moreover, if
P € Dy, then

(12.19) C(P) = e’C(P)oe™".

Proof. Observe that J(a)/? = afyp, with ¢ € O an invertible element

such that p(a) — 1 if 00 (i.e. if a=® — 0 for each a € ¥(Q)). Using the
previous lemma we find that

C(JY2PoJ12) = ePC(pPogp 1) oe™ = e’C(P)oe". O
Let ¢ € C°(at(Q)) be fixed such that

(12.20) /u+(Q) lp(X)[2dX =1,

where dX denotes the Lebesgue measure on aq which via exp corresponds to
the invariant measure da on A,. Let d := dim aq. Then for v € VXM ¢ a5
and € > 0 we define the function f; ., € C(AF(Q)) ® VA by

(12.21) fewn(exp X) = e¥? e’ J(exp X) 1 2p(eX) v.

Then supp fe v tends to infinity in AF(Q) as € \, 0. Using (7.7) and the
relation (7.4), one now readily checks that

<TCT2 fs,l/,v | TQT) fe,—ﬁ,w> = <.f€,l/,'u I fe,—ﬂ,w)] = <’U I w>‘
LEMMA 12.15. Let P € Do. Then for vyw € VEMM gnd v o

;i\n})(Pfa,V,v | fe,—pw)g = <C(]S)(V)U | w).
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Before proving the lemma we mention the following easy estimate for
functions in Ot.

LEMMA 12.16. Let ¢ € OF, and let Q C af (Q) be compact. Then there
exist constants r,C > 0 such that

lp(exptX)| < Ce™™ (XeQt>1).

Proof. This follows easily from the observations in Remark 7.2. O

Proof of Lemma 12.15. Let k be the order of P, let Si(aq) denote the
subspace of elements of order at most k£ in S(aq), and fix a norm | - | on
End(VXMHM) @ Sk(aq)-

For ¢ > 0, v € VENEM put ¢.(a) = p(cloga), and define ge,: Aq —
VEOHM by g (a) = €2, (a)v. Here we have extended ¢ by zero to a com-
pactly supported function on aq. For all € > 0,

(12.22)
(e | e0) = [ (060(0) | gesu(@))r da = (v w): (v, € VD).

q
We will first investigate the behavior of (Pgey | gew). One readily verifies
that there exists a constant C' > 0, only depending on ¢, such that for every
U € End(VENMM) ® Si(ag), and all € €]0,1],v € VXM,

(12.23) Ugew(a) — U(0)gew(a)] < eF¥2C|U||v]
and
(12.24) Ugev(a)] < Ce¥?|U|v|

for all a € Aq. Using the estimate (12.24) and Lemma 12.16 we see that for
P, := P—C(P) € OF ® End(VE"HM) ® Sy (a,) there exists a constant r > 0
such that
(Pt9en(@) | gew(@) =0(™") (e \0),

uniformly in a € Ay. Combining this estimate with (12.23) for U = C(P) and
with (12.24), and integrating over Aq, we find that

([P = C(P)(0)]ge,v [96,w> = O(e**!vol(supp ;) = O(e).
But

(C(P)(0)ge,v | gesw) = (ge,c(P)(0)v | gew) = (C(P)(0)v | w),
for all € > 0, by (12.22). It follows that

(12.25) lim (Pge | gew) = (C(P)(O)v | w).

To complete the proof, we observe that

<Pfe,v,v | fs,—l‘/,w>J = (6*'/1306”96,@ 1 ge,w>~
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Moreover, in view of Lemma 12.13, the operator eVPo e” belongs to Do, and
has constant part equal to e “C(P)oe”. Hence C(e™Poe)(0) = C(P)(v).
Now apply (12.25), with e ¥ PoeY in place of P. O

13. A limit behavior of the spherical Fourier transform

Throughout this section P € P™" will be fixed, and we will discuss the
asymptotic behavior of the 7-spherical Fourier transform F = Fp in the fol-
lowing sense. Let Q@ € PMn, o € C(af(Q)), and suppose that (12.20) holds.
For v € VANHM ¢ iy and € > 0, we define f. ., € CP(AF(Q)) ® VMM
as in the previous section, by (12.21). We shall investigate the asymptotic
behavior of .T'TCT2 feww ase N\ 0.

Our first result is the following. For v € VXM let 4, € °Ci(1) ~
C*®(M/Hwm: mv) be defined by ,(eHy) = v. Then the map v — 1), inverts
the map (7.12), hence is an isometry. Extend ¢ by zero to a compactly sup-
ported function on aq, and let ¢ denote its Euclidean Fourier transform, defined
as in (3.2). Define ¢, : ia} — °C(7) by

—d/2 A SNV o .
(13.1) Pewp(N) = D &2 —) Cup(s: X) Y.
seEW

Let pg be the polynomial defined by (7.16) with R = 0, and let
=TI po(sd), £V = pu(N).

sEW

PROPOSITION 13.1.  There exists an v > 0 such that for every p € S(aq)
which is divisible by p.,

”p (FTC,TQ fa,u,v - 906,11,1))“L2(ia;)®°6(7) = O(e_r/e) (5 N 0)
for all v € VENHM gnd v € iag.
Proof. Let ¢ € °C(7). Then for A € iag,
(13.2)  ([FTG fewalV) | %)
= <T$ Jeww | E°(¥: X))

-/ S X)W | T X B V) (exp X)) dX.
%

Put Cfpy(s: A) :=pr; o C oip(s: A) and let

EQ1(¥: A)(ma) Za [Copi(s: NP (m) (me M, ac Ay
seW
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be the (Q,1)-principal part of the normalized Eisenstein integral (cf. [13,
eqn. (56)]). It depends analytically on A € ia?. Also, define the remainder
term R(Y,\): af (Q) — V; by

*
q-

J(exp X)V2E°(¢: \)(exp X) = Ed 1 (v: N)(exp X) + R(w, \)(X).

Let I;(v,v,e,%,A) and I2(v,v,€,%, A) be the integrals obtained from the inte-
gral (13.2) when one replaces J(expX)Y2E°(¢: M) (expX) by
E§ 1(¥: A)(exp X) and R(9, A)(X) respectively. Then

<[-7:TCT2 fE,I/,’U]()\) | ¢> = I](’U, V,€71;ba)‘) =+ IQ('UaV,Ean,A)'

We claim that I (v, v,&,%, ) = (pevv(A) | ¥) and then it remains to estimate
the integral p(\) Iz(v, v, €,, A), for all ¢ € °C(T).
To prove the claim we observe that

Il(U,V,EJ/J,)\)
(13.3) _ 42 / S (e X) eV (5 | 0 (51 Nh(e)) dX
% seW
_ L [(SA—v o
(134) = Zws0< =) (0] Caypals: Mool

Because the map v — 1, is an isometry,

(v | CQpa(s: A)p(e)) = (Yo | Coipa(s: M)¥).

Since 1, € °C1(1) = pry°C(7), the right-hand side in the above equation is
equal to (¢, | C&P(s: M) = ( 22“)(3: A)*y, | ¢) and the validity of the
claim follows.

The proof is now completed by the estimate of p.(\)I2(v,v,e,9, A) given
in the lemma below. O

LEMMA 13.2.  There exists an v > 0 and for every v € dag, N > 0 a
constant C > 0 such that for all v € VEOVHM 4 € °C(1),\ € iag and all
0<e<l,

P+ () L(vv,ep )| < C (L+ M) N e/ [yl [Jol].

Proof. Since °C(7) is finite dimensional, it suffices to prove the estimate for
a fixed 1. From Theorem 7.5 and (7.13) with w = 1, and in view of definition
(7.14) and the expansion (7.15), we infer that the remainder term is given by
the following absolutely convergent series (A € 4ag):

(13.5) 'px(A) R(, MN(X) = Z Rs,'y(d)v A (X),
‘YENg(ECg‘;\{O}
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where
Ry (1, M) (X) = 'pu(N) e VEIT (1) [Cpy (51 Ml (e).

By Proposition 5.3 and Theorem 7.6 there exist constants C’ > 0 and x > 0
such that

(13.6)  [I'P« (VD5 (sX) [Cpa(s: Al(e)| < C'(1+ AP+ (1 + y])",
for all \ € iag, v € NX(Q).
Let

" = min{a(X) | @ € 2(Q), X € supp ¢}

and let 0 < 7 < 7’. Then for every v € NX(Q) we have v > r'm(~) on supp ¢.
Hence if X € e~!supp ¢, then

(13.7) | Rs (10, A)(X)]| < C'(1 4 |A|)38P+ (1 4 |y])< e~m /e,

for all X € ia}, v € NX(Q). Since [{y € NX(Q) | m(y) = k}| grows at most
linearly in k, the series

Gz = Y (+h)"
vENZ(Q)\{0}
converges absolutely in the disc |z] < 1, and defines an analytic function G
there. It follows from this that the series (13.5) converges absolutely and
uniformly in X € e 'supp ¢, for every A € iag, and 0 < ¢ < 1. Interchanging
integration and summation and performing the substitution X +— 71X, we
now obtain (A € dag):

p*()‘)IQ(U7V7E7'¢)’)\) = Z IS,’Y(U7 ’/76,11)7)‘)7
’YEN)%(GC?)/\{O}

where

(13.8) Iy (v,v,6,9,\)
=2y <sA = 7) ([ PuNT5(52) Crpa(s: A)w(e)).

Fix v € ta3. By the Paley-Wiener estimate for the Euclidean Fourier-Laplace
transform of a compactly supported smooth function there exists for every
N € N a constant D > 0 such that

A<s)\¢u+7)
v 3

for all 0 < e <1, X € dag, v € NX(Q). Since 1 is real, whereas s\ — v is purely
imaginary, we have |sA — v + y| > |s\ — v/, hence there exists a constant D’,
depending on N and v, such that

? (L = 7‘)' <DL+ AN e,

<D 4eYsh—v ) NemO/e

(13.9)
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Applying this estimate and (13.6) to (13.8), we find that for every N € N there
exists a constant D” > 0, such that for all 0 < ¢ < 1, v € NX(Q) \ {0}, and
v E VTKHHM,

Lan(v, 56,0, )] < D" L+ )N (L+ )" e e ™D E o] (A€ ia).
We deduce from this that there exists a constant D" > 0 such that:
eV Ia(v, 1,6, %, )] < D" (1 + A) ™ [Jo]| Gle™™ ),

forall 0 < e < 1, € daj, v € VENHM  We now use the fact that the
holomorphic function G vanishes at z = 0, and therefore satisfies an estimate of
the form G(2) = O(z) on |z| < e~". Since < 7' we infer that e~U2G(e"/e) =
O(e~"/), and the lemma follows. a

The following corollary to Proposition 13.1 will be crucial in the next
section.

COROLLARY 13.3. Let D € D(G/H) be a differential operator such that
the polynomial X — px(A)p«(=A) divides u(D: 7) in S(aq) ® End(°C(7)). Then
for allvw € VEMIM and v € iaf,

(1310)  lim (FDT), fewo | FTY o) = (@(D: 72 v)v | w).

Proof. We write I(¢) for the inner product behind the limit sign in (13.10),
and denote by P € S(aq) ® End(°C(7)) the quotient of A +— u(D: 7: ) by the

scalar-valued function A = py(A)p«(—A). Then for v € iag,

1(€) = (PP F T feww | PAF T fe).

From definition (13.1), the estimate (13.9) with v = 0, and the unitarity of the
normalized C-functions (Proposition 5.3) it follows that for every polynomial

q € S(aq)’
||q (ps’u’vHLz(iu;)@VTKnHM = O({;‘"d/?) (5 N 0)

Combining this with Proposition 13.1 we see that
I(€) = (Ppsfe vy | PxPepw) +O(e) = J(g) + O(e),

where J(g) = (u(D: 7)Pepw | Pepw). Thus it suffices to study the limit be-
havior of J(¢). Substituting (13.1) we see that J(e) = 35 ;ew Jst(€), with

(1311) Juale) = e [ (22 p(BY) Auh) an
zaé

€ €
Agt(N) = (W(D:7: NCGHp(s: APy | Cip(t: A) Yu).
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Here we recall that d\ = |W| ldueg()) as in Section 3. Substituting & =
e7(sA — v) we obtain

Joal&) = W [ (@) PETE + o 6w = ) Asales™645710) dpeeg(€)

If ts~'v—v # 0, then by dominated convergence we see that limen o Jst(e) =0
(use that ¢ is Schwartz, and that A;:()) is polynomially bounded in A, by
unitarity of the normalized C-functions). On the other hand, if ts~'v = v,
then by dominated convergence we see that

lim Jos(e) = (W] / P(E) PE5E) e (€) Agy(5~'0)

€
— / o(X) (s 1X) dX Asi(s™ )
o
= W[ 84 Ass(s™I0).
Therefore

lim I(e) = lim J(e)
15

e\0
= W™ D Ass(sTl)
seW
= |w|! Z (Cop(s: sy u(D: 7: s_ll/)CZ”p(s: ST by | o).
seEW

Using (5.13) and Proposition 5.3 we now see that
il\ry[(l)I(E) = </U'(D T: V)% | ¢w> = <w;_L(D:T:1/)'u | 1L'w) = (H(D T: V)U | ’LU>

Here we have used the definition of y in Section 7 and the fact that the map
v > 1, is an isometry. |

14. Fourier inversion modulo a differential operator

In this section we shall use the results of the previous sections to prove
the following theorem. Recall the definition of 7 € IIx(aq) from (8.1), and that
of Dr = Dy r C D(G/H) from Definition 10.3 with p = w. Then D, # 0, by
Corollary 10.4.

THEOREM 14.1. Let D € D,. Then
(14.1) DJFf=Df,
for all f € CX(G/H: T).
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Proof. Fix D € Dy, and let f € C°(G/H : 7). Then the functions on both
sides of (14.1) are smooth. Hence it suffices to prove (14.1) on KAZ(Q)H for
any Q € P (use (2.1)). For this it suffices to show that (g | DJFf) =
(9| Df) for all g € C(G/H : 7) with suppg C KAY(Q)H (cf. Lemma 11.3).
The latter equation is equivalent to

(14.2) (DIFg | f)=(Dg| f),

by Corollary 9.4 (b) and since D = D* (see Definition 10.3 with p = ).

Thus it suffices to prove DJFg = Dg for every g € C°(G/H : T) with
suppg C K Ajl” (Q)H. In other words, we have reduced the proof of (14.1) to
the case that f € CX(KAS(Q)H: ) = image(Té) (see (7.3) and Lemma
7.1), with arbitrary Q.

By Theorem 11.1 the operators DJF and D decrease supports, hence
the maps DJF o TCTQ and Do Té) map the space C(?O(AQ”(Q),VTKQHM) into
CP(KAS(Q)H : 7). Thus in view of Lemma 7.1 it suffices to show that the
endomorphism

P:=T)oDJFoT)

of C° (A(‘;(Q),VTKQHM) equals Tcl2 oDo Té. The latter operator equals the
radial part II,(D) = Ilg (D). Hence it suffices to show that

(14.3) P =11.(D).
This identity will be established in the rest of this section.

LEMMA 14.2. The operator P = qu? oDJFo TQT) is a differential opera-
tor with smooth End(V,K"M)_yalued coefficients, satisfying the commutation
relations

[PIL()]=0 (8 eD(G/H)).

Proof. 1t follows from Theorem 11.1 that the continuous linear operator
P from the space C°(AF(Q), VM) to the space C®(AF(Q), VM) de-
creases supports. Hence P is a differential operator with smooth End(VENHw).
valued coefficients (cf. [30, remark on p. 236]). Let 0 € D(G/H) be arbitrary.
Then it follows from Corollary 9.4 (a) that 0 commutes with the operator
DJF. From this and (7.5) we see that P commutes with Té 0o Té, which
equals I1;(0). O

It follows from the above lemma and Theorem 12.3 that P € D, and that
the constant part C(P) € End(V;X"HM)® S(aq) is well defined and determines
P uniquely. Thus, in order to obtain the identity (14.3) we need only to verify
that C(P) = C(I1(D)), or equivalently, that

(14.4) C(P) = C(IL,(D)).
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Observe that

(14.5) CII-(D)) = w(D: 1),

by Lemmas 12.2 and 12.14. Hence (14.4) is a consequence of the proposition
below, which completes the proof of Theorem 14.1. O

PROPOSITION 14.3. C(P) = u(D: 7).

Proof. Let ps be as in Proposition 13.1. Then by Lemma 10.7 there
exists a differential operator D, € D(G/H) such that the polynomial A
P«(N)p«(—A) divides u(Ds : 7) in S(aq)®End(°C(7)), and such that the function
det u(Dx : 7) is nontrivial. In particular, u(Dy: 7) is not a zero divisor in the
ring S(aq) ® End(V;X"HM). Now consider the operator P’ = Té D*DJ.'FTCT) .
Using (7.5) we infer that P’ = II(D,)P, and by Lemmas 12.1 and 12.2 we see
that P’ € Dy and

(14.6) C(P') = u(D.: T)C(P).
On the other hand, in view of Lemma 12.15 we have, for v,w € V.XNM ¢
iay

q?

<C(]5/)(z/)v | w> = ;I\I"I(I) <P/fe,l/,v I fe,u,w)J

(T5 DuDIF T feo

;1\1:1(1) fe,u,w>]
= lim (JFD.D T feww | T feww)
= U (FD.DTY fep | FTY feu)
= (u(DuD:7: V) | w),

the last three equalities being in consequence of (7.7) and Corollary 9.4 (a),
(9.5), and Corollary 13.3, respectively. Hence

(14.7) C(P') = w(Dy: T)u(D: 7).

The desired conclusion now follews from (14.6) and (14.7), since pu(Dy: 7) is
not a zero divisor. a

Remark 14.4. Consider again the case where G/H is a Riemannian sym-
metric space of the noncompact type. Then the Eisenstein integrals (see also
[31, Ch. III, §2]) are entire functions on a}.. The normalized Eisenstein in-
tegrals are obtained from these by division with Harish-Chandra’s c-function
(use loc.cit., p. 245, eqn. (51)), which by the formula of Gindikin-Karpelevic
has no zeros in aa(P, 0), and hence the polynomial 7 of (8.1) is 1. By Remark
10.9 we have 1 € D, hence Theorem 14.1 says that 7F = I on C°(G/H : 7).

In this case our formula is essentially identical with the inversion formula for
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Helgason’s é-spherical Fourier transform; see loc.cit., Ch. III, Prop. 5.10 and
Thm. 5.16.

15. Injectivity of the Fourier transforms

From the inversion theorem (Theorem 14.1) of the previous section we
will deduce injectivity of the Fourier transforms F and f — f on compactly
supported smooth functions.

THEOREM 15.1.  The Fourier transform F maps C°(G/H : 1) injectively
into the space S(iag) ® °C(T).

The proof of this theorem will be based on a result of [12], which we will
now recall.

Fix Q € P™" and put n = ng. In view of the decomposition g = n+m-+aq+
h, we may define amap ‘ng: U(g) — U(aq) by ‘ng(w) = w modulo (n4+m)U (g)+
U(g)h. By restriction to U(g) we obtain a homomorphism D(G/H) — S(aq),
also denoted by '‘ng. We define the homomorphism 7:D(G/H) — S(aq) by
n(D)(A) = ‘ne(D)(A + pg) (D € D(G/H), A € ag.); then n is independent of
the choice of @; cf. [12, Lemma 1].

Recall that if S is a closed subset of aq, then we define the subset X of
G/H by (8.3).

PROPOSITION 15.2. Let D € D(G/H) be a nonzero differential operator

with degn(D) = order D, and let S be a Wk~ -invariant closed convex subset
of aq. Then for every f € C*(G/H),

(15.1) supp Df C Xg = supp f C Xg.
In particular, D is injective on CX°(G/H).

Proof. This is Theorem 2 of [12]. The final statement is equivalent to

(15.1) with S = 0. a
LEMMA 15.3. Let p € TI(ag), and define the subset Dy, = D , of D(G/H)

by

(15.2) D, = {D € Dy | degn(D) = order D}.

Then Dy, # 0.

Proof. From [12, Lemma 3], it follows that degn(D) = degn(D*), for
D € D(G/H). Fix w € W. Then from the first lines of the proof of Corollary
10.4 we see that we must show that in Theorem 10.2 the operator D = D,,
can be found with degn(D) = order (D). This will be true if the operator D
in Lemma 10.7 can be found such that degn(D) = order D. We will go over
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the proof of that lemma, and verify that the constructed operator D satisfies
the additional requirement. One easily verifies that one may still reduce to the
case that p € Il(aq) is of the form p = X + ¢, with X € aq\ {0}, ¢ € C. Define
g € SG)"0) and Z € 3 as in the proof. Then we must show that D = r(2)
satisfies the additional requirement.

Fix Q € P™n put n = ng, and define ‘ng as above. Then degn(9) =
deg 'ng(0) for all 0 € D(G/H). Now ‘ng(D) = ‘ng(Z), and since deg ‘ng(Z) <
order D < order Z = degg, it is sufficient to show that deg ‘ng(Z) = degq.
We recall that the Cartan subalgebra j decomposes as in (2.15), and that,
accordingly, ag. and jg. are viewed as subspaces of jf. Let X7 (j) be a choice
of positive roots for j. in g. which is compatible with 3(Q). Let g+ be the
associated sum of positive root spaces in g, and let p; € j* be the associated
rho. Define ‘q € S(j) by ‘q(A) = g(A — p;) for A € j*. Then it suffices to show
that deg ‘q = deg 'ng(Z). Now Z = ‘¢ modulo g} U(g). Since

g:_ =n:. P [Bg N mc]

it follows from this that ‘ng(Z) equals the restriction of ‘q to agc- Now ‘g is a
product of first degree polynomials of the form L: A — (wA — wp; + Ag)(X +
Y)+c. Since w™ (X +Y) ¢ jo by Lemma 10.6, the polynomial A — wA(X +Y)
is not constant on ag . The restriction of every factor L to af. is therefore of
degree 1. Hence the restriction of ‘q to agc has the same degree as ‘g, and the
proof is complete. d

Proof of Theorem 15.1. Let f € C°(G/H : 7), and suppose that Ff = 0.
Fix D € D (cf. the lemma above). Then from Theorem 14.1, DJFf = Df;
hence Df = 0. Applying Proposition 15.2 we infer that f = 0. O

Using Proposition 15.2 once more we obtain the following version of the
inversion formula.

COROLLARY 15.4. Let D € D(G/H) be any differential operator such
that DJF maps C°(G/H : 7) to itself. Then DJF =D on C(G/H : 7).

Proof. Fix Dy € D}, and let f € CX(G/H: 7). Then it follows from
Theorem 14.1 that Dy(DJFf—Df) = D(D1JFf—D1f) =0. But DJFf —
Df is compactly supported and hence using Proposition 15.2 we infer that it
is zero. O

From Theorem 15.1 we obtain the following companion result for the
Fourier transform f +— f.

THEOREM 15.5. Let f € CX(G/H). If f(£,A) = 0 for all [€] € My and
A € tag, then f =0.
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Proof. It suffices to prove this for a K-finite f, by equivariance and con-
tinuity of the Fourier transform (cf. Lemma 4.3). Thus assume that ¥ C K is
finite, and that f € C°(G/H)y. Let 7 = 79 be as in Remark 5.1 and recall
the definition of ¢ in (6.3). We recall that ¢ maps C°(G/H)y bijectively onto
C®(G/H : 7). Put F = ¢(f). Then by Proposition 6.4 we have FF' = 0, and
hence F' = 0 by Theorem 15.1. This implies that f = 0 as well. O

We end this section with a result that relates n(D) to the Q-radial com-
ponent IIg (D) defined in (7.8), with Q a given parabolic subgroup in P oin,
Recall that IIg -(D) is a differential operator on Al (Q), with coefficients in
C(A$(Q)) ® End(VEN),

LEMMA 15.6. Let D € D(G/H). Then order D = degn(D) if and only
if order D = order Il (D). Moreover, if one of these equivalent conditions is
fulfilled, then the principal symbol of Il (D) equals I knmy ® {‘nQ(D)]d; here
the subscript d indicates that the homogeneous part of aegree d := order D has
been taken.

Proof. Assume that order (D) = d, with d > 1 (otherwise all assertions
are trivial). Fix D € U(g)! of order d such that r(D) = D. Put & = ng.
Then we have the decomposition g = i + (m N &) + aq + b, as a sum of vector
spaces. Hence D — 'ng(D) belongs to aU(g)a—1 + (m N &)U(g)a—1 + U(e)h,
where U(g)q_1 denotes the subspace of U(g) consisting of all elements of order
at most d— 1. It now follows from [4, Lemma 3.9], that the differential operator
1o+ (D)—I® ‘ng(D) has order at most d—1. From this all assertions follow. [

16. The image of the spherical Fourier transform

In this section we will determine the image of the Schwartz space under
the Fourier transform F = Fp, and the kernel of the wave packet transform
J = Jp (as before we assume that P € P™", and that 7 is a finite dimensional
unitary representation of K).

If s,t € W, then from [13, eqn. (71)], we see that

Cpip(t: sA)Cpp(s: A) = Cpip(ts: A) (A € dag).

This condition allows us to define a representation v of W on the space of
°C(7)-valued functions on iag, by

(161)  [y(8)e)(N) = Cpp(s™: N p(s7IN) = Cppls: 7 N)p(s 1),

From the unitarity of the normalized C-functions (Proposition 5.3), we see
that v defines a unitary representation of W on L*(ia}) ® °C(7).
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LEMMA 16.1. Let s € W. Then ~(s) commutes with u(D: T) for all
D € D(G/H); that is,
V() (D T)op) = u(D: 7)o (v(s)p)
for all ¢ as above.

Proof. This follows from eqn. (5.13). a

The importance of the representation ~ is apparent from the following
result. Let (S(iag) ® °C(7))" denote the space of v(W)-invariants in S(ia%) ®
°C(7). Clearly this is a closed subspace of S(iag) ® °C(7), hence it is Fréchet.

LEMMA 16.2. The Fourier transform F maps C(G/H : T) into the space
(S(iagy) ® °c(r)W.

Proof. This is an immediate consequence of Lemma 6.3 with P, =
P, =P. O

Remark 16.3. Although we did not assert it in the above lemma, it is
true that S(ia}) ® °C(7) is an invariant subspace for v, and that ~(s) acts
continuously on it for all s € W. This follows from polynomial estimates for
the derivatives of the C-functions that can be obtained using the material of
[7]. However, we shall not need this here.

In this section we will show that we actually have the equality
im (F) = (S(iag) ® °c(r)%.

In the proof, the following result, which is the analogue of [27, Thm. 26.1] is
needed.

THEOREM 16.4. The wave packet transform J maps S(iag) ® °C(T) con-
tinuously into the Schwartz space C(G/H : ).

Proof. See [9, Thm. 1]. O

Combining this theorem with the continuity of F on the Schwartz space
(cf. Lemma 6.1) and density of C3°(G/H : 7) in C(G/H : T), we see that The-
orem 14.1 holds for Schwartz functions:

COROLLARY 16.5. Let D € Dy. Then DJF =D on C(G/H : 7).

We now come to a result that will be the key to the other results of this
section. Since v defines a unitary representation of W in the Hilbert space
L?(ia%) ® °C(7), the map

Py: f = (W™ Y7 (s)f

seEW
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defines an equivariant orthogonal projection operator onto the space of
W-invariants, and we have an orthogonal direct sum decomposition of L2 (iaf;)@
°C(7) into the following invariant closed subspaces:

(16.2) L?(iag) ® °C(r) = ker Py & (L2(ia%) ® °C(7))"
THEOREM 16.6. FJ = Pw, as an endomorphism of S(iag) ® °C(7).

We will prove Theorem 16.6 in a number of steps. First we collect some
properties of the composition FJ.

LEMMA 16.7. The composition T = FJ is a continuous linear endomor-
phism of S(iag) ® °C(1). Moreover, it satisfies the following conditions:

(@) u(D: 7)oT =T op(D: ) for all D € D(G/H);

(b) ¥(8)oT =T for all s € W;

(©) (Tpr1 | @2) = (1| Tepa) for all 1,05 € S(ia) ® °C(7).

Proof. The continuity of 7 follows from Theorem 16.4 and Lemma 6.1.

Condition (a) follows from Lemmas 9.1 and 6.2. Condition (b) follows from
Lemma 16.2. Finally, (c) follows from Lemma 9.3 and Theorem 16.4. O

PROPOSITION 16.8. There ezists an open dense W -invariant set ag’ Cag
with the following property. Let T be any continuous linear endomorphzsm of

S(iag) ® °C(7) such that conditions (a) - (c) of Lemma 16.7 are fulfilled. Then
there exists a unique smooth function B: ia}® — End(°C(r)) such that

(16.3) Top(A) = B(A) o Pweip(N)
for all ¢ € S(ia?) ® °C(7), X € iat°

Proof. We will prove this result in a number of steps. For every \ € ge
we define the distribution uy € D'(ia}) ® End(°C(7)) by

(16.4) u(p) = Tep(X) (v € CZ(ing) ® °C()).
Then the commutation relations (a) become:
(16.5) urou(D: 1) =p(D: 7: X)ouy (D € D(G/H)).

To cast these relations in a more tractable form, we recall the decomposition
(5.14) of °C(7) in joint eigenspaces for u(D: 7: \), D € D(G/H), where L C
iby, is finite. Here b = by @ aq is a Cartan subspace of q containing aq. Via this
decomposition we identify agc and by, with subspaces of b?.

Let W(b) be the Weyl group of the restricted root system ¥(b) of b, in
gc- We claim that there exists an open subset Q; C iag, whose complement is
a finite union of hyperplanes, such that for all \; € Q1, Ay € Age

(16.6) L+ XM N W)L+ ] £ 0= A\ € Wh.
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In order to prove this claim we fix a basis B for bj,. For Ai,Ap € L,
w € W(b) and 8 € B with wg ¢ b}, the set

{)\ € ia:l | (A, wB) = (wAg — Al,wﬂ)}

is either empty or a hyperplane in ia3. Let 1 C iag be the complement of the
union of all these sets. If A\; € 7 and A1+ = w(Az+)\2) for some Aj, Ag € L,
w € W(b), A2 € ag. then (A, wB) = (w(A2 + A2) — A1, wB) = (wAs — A1, wp),
and hence by the definition of Q;, w3 € bj_, for all 3 € B. It follows that w
normalizes by, and hence also aq. Moreover it then follows that A\; = wA2 and
A1 = wAsy. This proves (16.6).

The next steps in the proof of Proposition 16.8 are given in the following
lemmas. Recall that v: D(G/H) — S(b) is the Harish-Chandra homomor-
phism, and that y5(D: A) :=y(D: A+ X) for A € bj_ and X € ag,.

LEMMA 16.9. If A € Q4, then suppuy C WA.

Proof. Fix A1,Ay € L, 9 € °C(7)[A4] (5 = 1,2), and define v € D'(iay)
by v(f) = (ua(f ® ¥1) | o) for f € C°(ia;). Then it suffices to show that
suppv C WA.

The relations (16.5) imply that

(16.7) (¥4, (D) =14, (D)(M)] v = 0,

for all D € D(G/H). Let v € suppv. Then it follows from (16.7) that
Y(D: A1 +v)=~v(D: Az + )N, for all D € D(G/H). This implies that Ag + A
is W (b)-conjugate to A; + v, hence that v € W by the property (16.6) of ;.
Hence suppv C WA. O

Our next objective is to show that, for generic A, the distribution u) has
order zero. The following lemma will be our basic tool.

LEMMA 16.10. Let u be a distribution on R™ with support consisting of
a single point o € R™. Moreover, let p; € C°(R™) (1 < j < n) and suppose
that the dpj(xo), 1 < j < n, are linearly independent. Finally assume that

©ju = pj(zo) u (1<j<n).
Then u is a multiple of the Dirac measure 65, at xo.

Proof. The proof is straightforward, and involves an application of the
multi-variable Leibniz rule. O

LEMMA 16.11.  Let A € by,. Then for X in the complement in ag. of
a finite union of hyperplanes, the map from D(G/H) to aqc, given by D +—
d[ya(D)](N), is surjective.
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Proof. For a € ¥(b), let H, € b be the —1 eigenvector for the reflection
Sq in «, normalized by a(Hy) = 2. If S C b}, we write W(b,.S) for the cen-
tralizer of S in W(b), and (b, S) for the set of roots o € 3(b) whose root
hyperplane ker H, in b} contains S. (Here and in the following we use the
canonical identification b, ~ b**.) It is well known that W (b, S) is the sub-
group of W (b) generated by the reflections in roots of ¥(b, S). Since obviously
(b, A+ al.) = X(b,CA + a7.), it follows that the group W (b, A + a?.) equals
W (b, CA + ag), hence in partlcular centralizes ag..

Let Q be the subset of A € ag. for which A+ is not contained in any of the
root hyperplanes ker(Hg), § € E( )\ (b, A +aZ.). Then § is the complement
of finitely many hyperplanes in ag.. Moreover, by definition we have, for A € ,
that $(b, A+ A) = X(b, A + a.) and hence W (b, A + X) centralizes ag..

Fix A € Q and let X € a4 be given. Choose a polynomial function p: b7 —
C such that

dp(w(A+ ) =wX

for all w € W(b). This is possible because the stabilizer of A + X in W(b)
stabilizes X by what was said above. The polynomial

q(v) = |W( Z p(wv)

wGW(b)
has derivative dg(v) = |W ()|~ D weW (b) w~ldp(wv); hence
dg(A+ X)) =X.

On the other hand, ¢ is W(b)-invariant, hence equal to (D) for some D €
D(G/H). Let m,, denote the projection b. — agc along byc; then it follows that

dlya(D)]J(A) = moqldg(A + N)] = X. O

We shall now use Lemmas 16.9 and 16.11 to prove that for generic A the
distribution u) defined by (16.4) is a sum of Dirac measures. More precisely,
let 21 be as in Lemma 16.9, and let {2 be a complement in iag of a finite
union of hyperplanes such that, the assertion of Lemma 16.11 holds for every
A e L, A € Q. Let Qy denote the intersection of 1 N Qo with the set of
regular points in iag, and finally let ia;° be the intersection of the sets w(,

(w € W). Then the complement of 4ag° in zag is a finite union of hyperplanes.

LEMMA 16.12.  For every A € iag® the distribution uy is supported by WA
and has order zero.

Proof. Fix A € iag’. Then u) is supported in WA, by Lemma 16.9. Let
Aj € L, o; € °C(7)[A4] for j = 1,2, and define v as in the proof of that lemma.
Since A is regular, the orbit W consists of |W| distinct points and we may
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express v uniquely as a sum of distributions v, (s € W), with suppvs C {sA}.
From (16.7) it follows that each vs satisfies the relations

¢pus =0,

where op = YA, (D) — ya,(D)(A). It follows from the definition of iay° and
Lemma 16.11 that the collection of differentials dpp (s)\) (D € D(G/H)) spans
a5, and therefore contains a subset consisting of dim e, independent elements.
Now apply Lemma 16.10 to conclude that each v, has order ZE€ro. O

Completion of the proof of Proposition 16.8. It follows from Lemma 16.12
that there exist unique functions Ej: ia’® — End(°C(7)) such that for every
A € tag’,

ux = Y 83 ® Eg(N).
seW

In particular, if ¢ € C°(ia3°) ® °C(7) is supported inside a given chamber,

TY(A) = ua(¥) = Es(N)p(N) .
for A in this chamber, and hence by property (b) of 7 (in Lemma 16.7) that
(16.8) = > () [Er)(N)
seEW

for all A € dag’.

Let ¢ € S(iag) ®°C(7) be given and fix A € ia?°. Let ¢ € Ce(iag) ®°C(7)
be supported 1n51de the chamber containing A. Then it follows from property
(c) (in Lemma 16.7) and eqn. (16.8) that

(To )= (e | TY) = (¢ | D v()E1]) = (Ef > v(s)p | ¥).

seEW seW
Hence (16.3) follows with 8 = |W|E}.
It is easily seen from (16.3) that 8 is unique and smooth. O

Proof of Theorem 16.6. In view of Lemma 16.7 the operator 7 = FJ
satisfies the conclusion of Proposition 16.8. It remains to prove that we have
B = I for this T; the resulting equation

To(A) =Pwep()

for A € ia?® extends to tag by continuity.
Let f € C(G/H : ) and apply (16.3) to ¢ = Ff. Then we have

(16.9) FIFfFA) =BNFFN)

for A € dag®. Select D € D (recall that this set is nonempty, by Corollary
10.4). Then det u(D: ) belongs to II(aq) hence does not vanish identically.
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Multiplying (16.9) with u(D: 7: A) and applying Corollary 16.5 and Lemma
6.2 we infer that

w(D: 7 NFFQ) = w(D: 7: NBNFF(N)

for A € iag°. Using Lemma 16.13 below, and the fact that pu(D: 7: A) is invert-
ible for A in a dense open subset of a3, we now conclude that 3(A) = I for A
in a dense open subset of iaz°. By continuity of 3 this completes the proof. O

LEMMA 16.13.  Let A € iag, and suppose that (A, o) # 0 for all o € 3.
Then f — Ff(X\) maps C(G/H : T) onto °C(1).

Proof. Let A satisfy the hypotheses, and suppose that ¢ € °C(7) is or-
thogonal to F f(\) for every f € C°(G/H : 7). We will show that then ¢ = 0.
We have

(fIE°(P:dp: M) =(Ff(A) [ ¥) =0,

for all f € C°(G/H : 7). This implies that E°(P: v¢: \) vanishes on G/H.
Now apply the lemma below. O

LEMMA 16.14.  Let \ € iag, and suppose that (A, o) # 0 for all o € X.
Then for every ¢ € °C(t) \ {0} the function E°(P:: \) does not vanish
tdentically on G/H.

Proof. Let X satisfy the hypotheses, let ¥ € °C(7), and suppose that
E°(P:¢: ) = 0. If w € W, then on Af(P)wH the Eisenstein integral is
asymptotically given by its principal part:

aP? E°(P: ¢: A)(aw) = Z aS)‘[C;,|P(s: AN)Yw(e) + o(1)
seW

as a — oo along rays in AY(P) (see Remark 5.5). Since A is regular, the
exponents sA (s € W) are distinct, and by uniqueness of asymptotics we
conclude that each coefficient [C’}’,| p(s: A\)Y]w(e) must be zero. Recalling that

f,'P(l: A) = I, we conclude that ,,(e) = 0 for all w € W. Hence ¢(e) = 0,
and since 1 is Ty-spherical this implies that ¢ = 0. O

If V is a topological linear space, then by a projection of V' we mean
an idempotent continuous linear endomorphism P of V. For such an endomor-
phism we have ker P = im (I — P) and im P = ker(I —P), and V = ker P®im P
as a direct sum of closed linear subspaces.

COROLLARY 16.15. The map Pw leaves the space S(iag) ® °C(T) invari-
ant. Its restriction Py to this space equals F J and is a projection. The image
of Pw equals (S(iag) ® °C(t))W. Finally, Py 1is symmetric with respect to the
L2-pre-Hilbert structure of S(ia}) ® °C(T).
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Proof. The first assertion and the equality Py = FJ follow from The-
orem 16.6. That Py is a projection of S(ia}) ® °C(7) is now obvious; the
characterization of its image is obvious as well. The symmetry of Py, follows
from the orthogonality of Py . O

In particular we have the following decomposition of the Schwartz space
into an orthogonal direct sum of closed subspaces:

S(iag) ® °C(1) = ker Py @ (S(iag) ® °c(r)W.
We are now able to determine the image of F and the kernel of J.

THEOREM 16.16.  The image of : C(G/H : 7) — S(iag) ®°C(7) and the
kernel of J: S(iag) ® °C(1) — C(G/H : ) are given by

(16.10) imF = imPy = (S(a}) ® °C(r)",
(16.11) ker J = kerPy.

Proof. Lemma 16.2 asserts that im F C (S(ia}) ® °C(7))". On the other
hand, from Theorem 16.6 it follows that 7 = I on (S(iag) ® °C(1))W, estab-
lishing the converse inclusion and hence (16.10).

By (9.5) the kernel of J is the orthocomplement of the image of F, hence
(16.11) follows. O

17. The kernel of the spherical Fourier transform

In this section we will study the kernel of F and the image of J in
C(G/H : 7). The main result is Corollary 17.4. We start with the following
observation.

LEMMA 17.1.  The operator Py := JF is a projection of the space
C(G/H : 7). Moreover, it is symmetric with respect to the L?-pre-Hilbert struc-
ture of C(G/H : T).

Proof. The continuity oflPmc follows from Lemma 6.1 and Theorem 16.4.
Combining Theorem 16.6 and Lemma 16.2 we see that

(17.1) FIF =F.
The idempotence of P, now follows immediately. Finally, the symmetry is a
straightforward consequence of Lemma 9.3. O
Let
Co(G/H:1) = ker(Pme),

Cc(G/H: 1) := ker(I —Pp) =im (Ppc).
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Then as a direct consequence of the above lemma we obtain:

COROLLARY 17.2. The following is an orthogonal direct sum decomposi-
tion into closed subspaces:

C(G/H:7)=Cnc(G/H: T)®Co(G/H : 7).

PROPOSITION 17.3.  The kernel of F: C(G/H : T) — S(iagy) ® °C(7) and
the image of J : S(iag) ® °C(1) — C*°(G/H : T) are given by:

ker F = Co(G/H: ),
imJ = Cum(G/H:T).
Moreover, let D € D,. Then
ker DNC(G/H: 1) =Co(G/H: 7).

Proof. From (17.1) we see that ker F = ker FJF D ker JF D ker F, and
the first identity follows.

To prove the second identity we note that im J D im JF = im Py, =
Cmc(G/H : 7). On the other hand, by (9.5) the image of J is contained in the
orthocomplement of the kernel of F, which by the first identity is C\c(G/H : T).

For the last equality, notice that D = DPy,., by Corollary 16.5, whence
ker D D Co(G/H : 7). For the converse inclusion suppose that f € ker D. Then
w(D: T)Ff = F(Df) = 0. The endomorphism p(D: 7: A) is invertible for
A in a dense open subset of iag, by Definition 10.3 (b) with p = 7. It now
follows that F f vanishes on an open dense subset of iag, hence everywhere by
its continuity. Hence ker D C ker F = Co(G/H : 7). O

COROLLARY 17.4.  The restriction Fme = F | Cme(G/H : T) is a con-
tinuous linear isomorphism from Cuwc(G/H : T) onto (S(iag) ® °C(r))W. The
inverse of Fmc equals the restriction of J to (S(iag) ® °Cc(t))W. Finally, the
map Fme 5 an isometry for the given L?-pre-Hilbert structures on the Schwartz
spaces.

Proof. That Fp is a bijection onto (S(ia}) ® °C(7))", whose inverse is
the restriction of J to this space, is immediate from the definitions and results
above. Since F and J are continuous for the Schwartz space topologies, it
follows that Fy,. is a topological isomorphism. Thus, it remains to prove that
Fme is an isometry. For this we notice that for f € Cn(G/H: 7) we have
JFf = f; hence

(FLH=(TFFI ) =(FfIFf). O

Let L?>(G/H : 7) denote the space of T-spherical square integrable func-
tions G/H — V;, and let L? (iag) ®°C(7) denote the space of square integrable
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functions ia} — °C(). Then L*(G/H : 7) and Lz(iafl) ® °C(T) are the comple-
tions of the pre-Hilbert spaces C(G/H : 7) and S(ia}) ® °C(T) respectively. Let
L3(G/H: 1) and L% (G/H : 7) be the closures in L*(G/H : 7) of Co(G/H : T)
and Cre(G/H : T) respectively.

COROLLARY 17.5.  The following holds as an orthogonal decomposition
of Hilbert spaces:

L*(G/H:7)=LiG/H: 7)® L2 .(G/H: 7).

Moreover, the Fourier transform F has a unique extension to a continuous lin-
ear map from L*(G/H : ) to L2(ia%)®°C(7), also denoted by F. The extension
has a kernel equal to L3(G/H : 7) and maps L2 .(G/H : T) isometrically onto
(L?(ia) ® °C(7)).

The adjoint F*: L*(ia}) ® °C(t) — L*(G/H: 1) of the estension F is
the unique continuous linear extension of J: S(iay) ® °C(1) — C(G/H : T).
Finally, F*F is the orthogonal projection L*(G/H : 1) — L2,.(G/H : T).

Proof. Apart from the assertion about the adjoint, all assertions are im-
mediate consequences of the above discussion. Let ¢ € S(iaf) ® °C(7). Then
for all f € C(G/H : 7) we have (F*¢ | f) = (o | Ff) = (J¢ | f), by Lemma
9.3. By density of C(G/H : 1) in L*(G/H: T) we now see that F* = J on
S(ia3) ® °C(7). O

The space Co(G/H : T) is spectrally small in the sense that it equals the
kernel of any differential operator from D,. In a distribution sense a similar
assertion is valid for L3(G/H : 7).

LEMMA 17.6. Let D € Dy = D, ,, and let ker D denote the space of
generalized functions G/H — V; annihilated by D. Then

L3(G/H:7)=L*(G/H: 7)Nker D.

Proof. Let f € L*(G/H:71). If g € C(G/H:7), then (Df | g) =
(f | Dg) = (f | DIFg) = (f | Ju(D:7)Fg) = (f | F*u(D:7)Fg) =
(W(D: 7T)*Ff| Fg). In view of Theorem 16.16 we see from this that Df = 0
in the sense of generalized functions if and only if the tempered generalized
function p(D: 7)*Ff is perpendicular to [S(ia%) ® °C(7)]". This is in turn
equivalent to u(D: 7)*Ff = 0, in view of Lemma 16.1. Since u(D: 7) is in-
vertible almost everywhere the latter assertion is equivalent to Ff = 0, or
feL3(G/H: T). O
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We will say that a function of L?(G/H) belongs to a finite sum of discrete
series if it is contained in a finite sum of irreducible closed invariant subspaces
of L?>(G/H).

PROPOSITION 17.7. If dimaq = 1, then the spaces Co(G/H: T) and
L3(G/H : 1) are finite dimensional and equal to each other. Any component
of a function in these spaces belongs to a finite sum of discrete series.

Proof. Assume that dimaq = 1. We first show that Co(G/H : 7) is finite
dimensional. Select D € D/ (cf. Lemma 15.3). Then by Proposition 17.3 the
space Co(G/H : 7) is contained in the kernel N of D in C*°(G/H : 7). Recall the
definition of the restriction maps Té 1 C®(G/H: 1) — C*(AF(Q), VENHW)
Q € P™" from (7.1). By the Cartan decomposition (2.1) the kernels of the
maps Té , @ € PMin have a trivial joint intersection. Thus, when Q € P" it

suffices to show that the space Tclg (N) has finite dimension. The latter space is
contained in the kernel of the radial component Il (D) of D, defined in (7.8).
Since dim Aq = 1, this radial component is an ordinary differential operator.
Its coefficients belong to C*°(Af(Q), End(V,X"HM)). Moreover, by Lemma 15.6
its principal symbol equals I ® X*, for some X € dqe; k € N. From this we see
that the kernel of Ilg (D), and hence the space Té) (N), is a finite dimensional
subspace of C”(A;(Q),VTKQHM). This proves that the space Co(G/H : T) is
finite dimensional. It therefore equals its closure in L?(G/H : ), which in turn
equals LZ(G/H : ), by definition.

For the remaining assertion we note that the finite dimensional space
Co(G/H : T) is invariant under the action of the center 3 of U(g). Thus if f is a
component of a function in Co(G/H : 7), then f is a 3- and K-finite function in
C(G/H). By a well known theorem of Harish-Chandra (see e.g. [39, Cor. 3.4.7])
the (g, K)-module V; generated by f is admissible and of finite length (note
that it is contained in C(G/H)). Its closure V; in L?(G/H) is therefore a
closed invariant subspace which is admissible and of finite length; by unitarity
it decomposes as a finite direct sum of irreducible closed subspaces. O

In the following corollary we assume that G is connected, semisimple and
linear.

COROLLARY 17.8. Ifdimaq = 1 and rank G/H # rank K/K N H, then
JFf=f, foral feC(G/H: ).

Proof. By Corollary 16.5 and Proposition 17.3 the function f — JFf
belongs to the space Co(G/H : 7). The latter is trivial by Proposition 17.7,
since the assumption on the rank of G/H implies that there is no discrete
series; cf. [36]. a
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18. The Plancherel decomposition

In this section we shall describe the Plancherel decomposition of the most
continuous part of L?(G/H). It will be convenient to have the Fourier transform
F([€]: ) defined on classes [¢] € My instead of individual representations &.
For this purpose we fix, once and for all, a distinguished representative R for
every class we M 7. The set of these representatives will be denoted by M H.
Let w € My. Then for f € Ce(G/H), X € iag we define

flw:A):i=f(w: A) e CT®(K: &)V (&)

The Weyl group W acts naturally on My as follows. Let v € N, K (aq)
represent the element s € W, and let £ € w € M f. Then sw = [v€], where
the representation v¢ is defined by v&(m) = &(v~ mw). This action on My
transfers to an action on My determined by sé€, = &sw

If 9 C K is a finite set of K-types, let 79 be defined as in Remark 5.1.
Moreover, let ¢ be the isometry L?(G/H)y — L*(G/H : 79) defined in (6.3).
We recall that ¢ maps C°(G/H)y bijectively onto CX°(G/H : Ty).

PROPOSITION 18.1. Let 9 C K be a finite set of K-types, and let f €
CP(G/H)y, F =<(f) € C(G/H : m9). Then for every X € iag,

IFFN|?* = Z do [1F(w: M2k e)0v ()
wEMH

The sum is finite; f (w: A) is nonzero only for those w for which £ 1 Ty.

Remark. Notice that || f(w: A)| is independent of the choice of the repre-
sentative &,,.

Proof. This follows readily from (6.6), since the map T dé/ 21/)T is an
isometry. . O

COROLLARY 18.2. For every f € C°(G/H),
e > 2 [ dollfw: DI ax

, (L)EMH
In particular all the integrals on the right-hand side converge, and for almost
all X € ia}, the sum 3, dy||f(w: A)||? is bounded.

Proof. Since the Fourier transform f — f (w: A) is equivariant and con-
tinuous it suffices to prove this for left K-finite f. Thus assume that f €
C>*(G/H)y, with ¥ C K a finite subset, define 7 = 7y as before and let
F =¢(f) € C*¥(G/H: 1) (cf. (6.3)). Applying Corollaries 17.2 and 17.4 we
obtain

117 =IF|? > [[PmcF|* = / IFEN)|? dA.

*
taq
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Now use Proposition 18.1. O

For w € ]T/I\H, we endow
H(w) = L*(K: &) ® V()"
with the tensor product Hilbert structure. Let the algebraic direct sum
Dag = P Hw)
wEMH
be equipped with the inner product defined by

(v]w)= Z dy, (vy | we) (v,w € Halg)-
wEMH

Moreover, let ) be the Hilbert completion of £, for this inner product, and let
£2 denote the Hilbert space of square integrable functions iag — 9. lfpe £2,
we write p(w: A) = p(N\),. With this notation

ol = 3 [ dullet: DIF ar
) wGMH
Thus, if f € C®(G/H), then by Corollary 18.2, f(A) € $ for almost all X € iag,
and f € £2 with
(18.1) I£llez < 1fll2(e/m)-
There is a natural unitary representation 7 = mp of G in £2, given by:
(m(@)p)(w: A) = [mpe,,-a(x) @ IJp(w: A)  (z€).

Lemma 4.3 implies that the map f — f intertwines the regular action L of G on
C*(G/H) with this representation 7. The following result is now immediate.

PROPOSITION 18.3. The map f — f has a unique extension to a G-equi-
variant continuous linear map § from (L,L*(G/H)) to (m,£%).

Now let L3(G/H) = ker§ and let L2, .(G/H) be its orthocomplement in
L*(G/H). Then

(18.2) L*(G/H) = L§(G/H) ® L,.(G/H)
is an orthogonal direct sum decomposition into closed G-invariant subspaces.
PROPOSITION 18.4. The restriction of § to L2 .(G/H) is an isometry.

Proof. Let ¥ C K be a finite subset. Then it suffices to show that the
restriction of § to L2 .(G/H)y is an isometry. The following lemma allows us
to do this by reduction to Corollary 17.4. O

Let ¥ C K be a finite subset and put T = 7y.
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LEMMA 18.5. For f € L*(G/H)y and F = <(f),
(18.3) 18flle2 = IFFI.
Moreover, the map ¢ restricts to isometries

LY(G/H)y—>L§(G/H:7)  and Ly (G/H)s——Lo(G/H : 7).

Proof. From Proposition 18.1 we see that (18.3) holds for f € C°(G/H)y.
By density and continuity the equation is still true for f € L?(G/H)y. From
this we see that L3(G/H: 7) = ker F = ¢(L§(G/H)y), and taking orthocom-
plements we conclude that L2 (G/H: 7) = (L% (G/H)y). O

To find the explicit direct integral decomposition of L2 (G/H), we must
characterize the image of §. For this we need to define a representation I' of
W on £2 which is the analogue of the representation v defined in (16.1).

If H is a Hilbert space, let End(H) denote the Banach space of continuous
linear endomorphisms of H, equipped with the operator norm.

PROPOSITION 18.6.  For each s € W there exists a measurable map

¢s: dag — End($), which is almost everywhere uniquely determined, such that
A= ||es(N)|| is bounded, and such that for every f € CP(G/H),
(18.4) F(s)) = €.V V)

for almost all X € ia}. For almost all A € iag the map C(A): H — 9 is uni-
tary, and restricts to a unitary operator €s(w: X): H(w) — H(sw), intertwining
Te,,,—x With T¢,, _sx, for every w € My. Moreover, for all st e W,

Cst(w: A) = C5(tw: tA) o C(w: A).
In particular € () = I and €5(\)~! = €;-1(s)) for all se W.

Before giving the proof of this proposition we note the following conse-
quence. For s € W, let €, be as above and define a map I'(s): £2 - g2 by

(18.5)  [[()el(N) = €1 (M) Ho(s7N) = &(s T N)p(s71A) - (p € £9).

Then it follows that I'(s) is m(G)-equivariant, and that I': s — I'(s) defines a
unitary representation of W in £2, satisfying

(18.6) (L) /N = F)

for f € C°(G/H). A different characterization of I' in terms of standard
intertwining operators will be given in Corollary 19.6.

Turning to the proof of the above proposition we will first establish unique-
ness. If Q C iag is a measurable subset, we write 2?2 for the closed invariant
subspace of £2 consisting of elements that vanish outside Q. If ¢ € £2) let

©q be the unique element of £3 that equals ¢ on Q. Then ¢ ¢q is an
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orthogonal projection. Since multiplication by a bounded measurable map is
L2-continuous, the uniqueness statement of Proposition 18.6 is an immediate
consequence of the following lemma.

LEMMA 18.7.  Let Q be an open chamber in iag with respect to ¥. Then
f — fo maps C(G/H) onto a dense subspace of £%. and C*(G/H)yg onto a

dense subspace of (£3)y, for all finite sets ¥ C K.

Proof. By density of the algebraic sum of the (£3)y in £3 it suffices to
prove the statement about C°(G/H)yg for all 9. Let T € (£3)s, and suppose
that

(18.7) (f1TY=0 forall feC>®(G/H)y.
Then we must show that 7= 0. Put T(\) = >, T(w: A), with T(w: A) €

Hw)y = LA2(K: £,)9 @ V(£,)*. Notice that the sum is finite. Let 7 = 79 be as
before. Then (. ) € °Cy(7). Define ¥: dag — °C(7) by

Z dw¢T(w:A)'
welV.IH
Then ¥ € L?(ia}) ® °C(7), and ¥ = 0 outside Q. Let now F € C*(G/H : 1),
and put f = ¢ 'F € C®°(G/H)y. Then by Proposition 6.4,

FFI9) = 3 / do (f(w: \) | T(w: ) dr= (f| T) = 0.
weM H
Since the image of C°(G/H : 7) under F is dense in (L*(ia}) ® °C(7))" by
Theorem 16.16, it follows that ¥ is perpendicular to (L*(ia}) ® °C())". In
combination with the fact that ¥ vanishes outside a fundamental domain for
the action of W, this implies that ¥ = 0, and we conclude that 7" = 0. a

Proof of Proposition 18.6. Let s € W. Fix a finite subset ¥ C K and
let 7 = 79 be as before. For w € ]/\/[\H, recall (Lemma 5.6) that the map
H(w)y — °Cyu(r), T — di,/2z,bT is an isometry. For A € tag we notice that the en-
domorphism CP1P( A) of °C(7) maps °Cy(7) into °Cew(7) (cf. [13, eqn. (68)])
and define the map

Cs(w: N)y: H(w)y — H(sw)y

by
(18.8) Yeyw: N7 = Cpip(s: Nyor (T € H(w)y).

Then it follows from Lemma 5.6 and Proposition 5.3 that €5(w: \)y is a unitary
map. For A € ia; we define the unitary map €s(A\)y € End($y) by €s(A)y =
Cs(w: Ay on H(w)y. Notice that the map A — €4(\)y is continuous since
A= Cpp(s: A) is continuous. Let now f € C*(G/H)g, and let F =f €
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C®(G/H: 7). Then using Lemma 6.3, Proposition 6.4 and (18.8) we easily
see that

(18.9) fsA) =& Nof(N)  (f e CZ(G/H)y).

Now let ' C K be a finite subset containing 9. Then it follows by (18.9) and
Lemma 18.7 together with the continuity of A — €5(\)y that €5(\)y restricts
to €s(A)y on $Hy for all A € iag. Hence for every A € iag there exists a unique
unitary map €s(\): H — 9 such that €;(A) = €5(N\)y on Hy, for all J. The map
A — €4(X) is measurable, since it is the limit of a sequence of continuous maps.
Moreover, from (18.9) it follows that € satisfies (18.4) for K-finite functions
f € CX(G/H), for all X € ia}. By density and continuity (Proposition 18.3)
it follows that (18.4) holds for all f as an identity in £2, hence also pointwise
almost everywhere. The existence of €4 is now established; the uniqueness was
obtained earlier. The remaining assertions are straightforward consequences
of the construction above. O

We can now describe the image of §. Let (£2)" denote the set of W-invar-
iants in £2 for the representation I', defined by (18.5). This is an invariant
subspace for 7, since I'(s) is equivariant for each s € W.

THEOREM 18.8.  The Fourier transform § is an equivariant isometry
from L2 (G/H) onto (£2)W.

Proof. Let U denote the image of C%°(G/H) under §. Then U C (£2)W
by (18.6). The map § being an isometry, it suffices to show that U is dense in
()".
Let Q2 be an open chamber in iag. If ¢ € £2, recall that we write pq for
the restriction of ¢ to Q, i.e. the unique element of £3 satisfying o = ¢ on
Q. One readily verifies that |W|1/ ? times the map

(18.10) ®: (W - 23 v g
is an equivariant isometry, and therefore it suffices to show that ®(U) is dense
in £3. Now this follows from Lemma 18.7. O

Fix a choice ¥F of positive roots for the root system X = ¥(g, aq), and let
a:;’L be the positive Weyl chamber in ag.

THEOREM 18.9. The map § induces the following Plancherel decomposi-
tion of the restriction of the regular representation L to L2 (G/H):

®
(18.11) Lig.em= Y | V&) @7 do|W[d,
wGMH *a
and

52}
1187w NP
q

1=l L d [

= a
wEMpgy
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for f € L2 .(G/H). In particular, for every w € M u the principal series mg, x

occurs with multiplicity my, = dim V(&) for almost every X\ € iafl*.

~ Remark 18.10. For further results on the multiplicities in the decompo-
sition (18.11) we refer to [11].

Proof. Put Q = —iaé*, and let ® be defined as in (18.10). The map ®oF

now induces the direct integral decomposition (18.11). If w € My, then for
every A\ € z'afj‘lJr the principal series representation g, » is irreducible (cf. [6,
Prop. 3.7]). Moreover, owing to the restriction on the domain of A, there
is no double occurrence of the representations 7, . To be more precise, let
w,w' e M 1 be fixed. Then for almost all A\, \' € iu;+ the representations e, x
and ¢ , \ are equivalent if and only if (w', \') = (sw, s)) for some s € W. Since
X and X are in the same chamber, the latter condition is in turn equivalent to
(W, N) = (w, N).

These final remarks imply that indeed (18.11) establishes the Plancherel
decomposition, with multiplicities as described in the final assertion of the
theorem. O

The following result expresses the fact that the orthocomplement L3(G/H)
of L2 .(G/H) is small in a certain spectral sense. Recall the definition of D, ,
from Definition 10.3 and let Dy , = D r.

THEOREM 18.11.
(a) Let ¥ C K be a finite subset. Then for any D € Dy :

(18.12) L3(G/H)y = L*(G/H)y Nker D,

in the sense of generalized functions.
(b) L§(G/H) N CX(G/H) = 0.
(c) If dimag = 1, then the space L{(G/H) decomposes discretely.

Proof. (a) Let 7 = 19. Let f € L3(G/H)y, and put F = cf. Then F €
L*(G/H:7)and f = éco F. Now Df = 0 as a generalized function if and only
if DF' = 0 as a generalized function. Therefore the result follows by application
of Lemma 18.5 and Lemma 17-6.

(b) This is equivalent to Theorem 15.5.

(c) Assume that dimag = 1. Let ¥ C K be any finite subset and put
T = 79. Then using the first isometry of Lemma 18.5 we infer from Proposition
17.7 that the space L3(G/H )y is finite dimensional. Moreover, its elements are
components of functions in L3(G/H : ), and by again applying Proposition
17.7 we see that L3(G/H)y is contained in the discrete part L3(G/H) (that
is, the closure of the span of all the irreducible closed invariant subspaces)
of L>(G/H). Since ¥ was arbitrary we infer that L3(G/H) is contained in
L%(G/H), hence it decomposes discretely. O



THE PLANCHEREL DECOMPOSITION 347

19. Dependence on choices

In this section we shall discuss the dependence of the Plancherel formula
for L2 (G/H) on the choices made. We will also derive a formula for the
representation I' of W in £2 in terms of intertwining operators.

We first discuss the dependence of the Plancherel formula on the choice W
of representatives for W/Wgkng. Let W' be a second choice of representatives.
Let V/(¢) ([¢] € My), 7', 5, fp, & and €2, 7' be defined as before, but with
W replaced by W. Then according to [6, Lemma 5.8], there exists, for every
€] € My, a unique unitary map R(&): V(&) — V(&) such that

(19.1) F(P:E:N)oR(E) =F(P:&:N),

for P € PRin )\ € age- Since the map R(¢) does not depend on P € PR it
follows from the definition of j° (cf. (4.1)) that (19.1) holds with j replaced by
j°. Hence

fo&: X)) =[T@RE)™ fp(6: X) € LX(K: &) @ V' (§)*
for all f € C°(G/H), X € ia}. Let the map %: £2 — £?' be defined by

Ro(w: N) = [[@R(E&) Mpw: N)  (p€ &% we My, A€ ial).

Then the following result expresses how the decomposition (18.11) depends on
the choice of W.

LEMMA 19.1. The map %: £2 — 22 isa unitary isomorphism, inter-
twining m and 7. Moreover, § = Ro3F.

We now turn to the dependence of the Plancherel decomposition on the
choice of the parabolic subgroup P € P, If P,Q € P, [¢] € Mg, ) € ger
let the standard intertwining operator A(Q: P: &: X) from mpg » to mge x be
defined as in [6] (see also the text preceding (4.1)).

We recall from [6, Prop. 6.1], that there exists a unique meromorphic

End(V(£))-valued meromorphic function B(Q: P: §) on ag, such that

(19.2) AQ:P:E:XN)oj(P:&:XN)=7(Q:&:N)oB(Q: P:&: N

as a meromorphic identity in A € ag.. The version of this transformation rule
for j° is given by the following lemma.

LEMMA 19.2. Let P,Q € P/, Then for every [£] € My,

(19.3) AQ:P:E:XN)oj°(P:E:X)=3°(Q:€:N)oB(Q: P: £: ).

Proof. See [13, diagram (14)]. a
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Let P,Q € Pin_ Then from the above we see that for all f € C°(G/H),
(€] € My and X € iaf,

fo€: N =[AQ: P:£: N)@B(Q: P: £: N fp(¢: N).
We now define the map 2(Q: P): £2 — £2 by
AQ: P)o(w: N) =[A(Q: P: &: ) Q@B(Q: P: &y A) Hp(w: \),

for p e £2, we M H, A € tag. The following result describes the dependence of
the decomposition in Theorem 18.9 on the parabolic subgroup P.

LEMMA 19.3. The map A(Q: P) is an equivariant unitary isomorphism
from (£2,7p) onto (£%,mq). Moreover, §g = A(Q: P)oFp.

Proof. According to (7, §15], we have, for w € M H, A € 1ag, the identities

AQ:P: & N*AQ: P: &, N) = n(Q: P:&,: NI,
B(Q:P:&,: N)'B(Q: P:&,:N) = n(Q: P:&,: M.
Moreover, combining Lemma 15.8 and equation (129) of [7] we obtain a third
identity n(Q: P: &,: X) = n(Q: P: &,: )\). The unitarity of %(Q: P) follows
from these three identities. The proof of the other assertions is straightfor-
ward. O

Next we investigate the dependence of the Plancherel decomposition on
the choice of the representatives &,,. First, let w be a class in M H, and suppose
that £, € w. Fix a unitary intertwining operator T': He — He. Then T
naturally induces the map I(T): C~®(P: £: X)) — C~®(P: ¢ : \) given by
f = Tof. Recall that the space V() is the formal direct sum of the spaces
V (&, w), with w ranging over W. For w € W, let i(T,w): V (&, w) — V(¢/,w)
be the natural map induced by T, and let «(T): V(&) — V(¢’) be the direct
sum of the maps (T, w). Then it is obvious from the definitions that

(19.4) I(T)oj°(P: €:X) = 5°(P: € \)oi(T).

One readily verifies that the restriction of I(T) ®4(T)~* to a map L?*(K : £)®
V(€)* — LYK : ¢') ®@ V(£)* does not depend on the particular choice of T.
Therefore we denote this restriction by I(¢’,€). It is obviously unitary, and it
intertwines the representations mp¢ y ® I and mpgr y ® I. Moreover, it follows
from the above that for every f € C°(G/H) and A € iag,

FE N =18 f(&: .

Now fix for every w € My a second representative &, Let 1/\7[/}1 denote the
set of these representatives, and define %, £2', 7/ and § as in Section 18 but
with everywhere &, instead of &, for w € My. Let I( > Mp) denote the
direct sum of the maps I(£/,,&,): H(w) — H'(w), and let I(M/y, Mp): £2 —
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£’ be defined by ¢ — I (1/\\/1}1,1\//\1;1) o@. The following straightforward result
now describes the dependence of the Plancherel decomposition on the choice
of M H.

LEMMA 19.4. The map 3(1/\\/1}1,1\//\1;1): 22 — 2 s an equivariant unitary
isomorphism. Moreover, §' = IJ(M/y,Mp)o3g.

We will finally use the material of this section to give a characterization
of the representation I" of W in £2, different from the one in Proposition 18.6.
For this we need transformation properties of j° under the action of the Weyl
group. For v € Nk(aq), let L(v): C™°(P: £: A) —» C~®(wPv~!: v€: v)) be
the intertwining operator defined by L(v)¢(z) = ¢(v~1z). Then by [6, Lemma
6.10], there exists a unique unitary map L(&,v): V(€) — V(v€), not depending
on P, )\, such that

(19.5) L(v)oj(P: &oX) = j(wPv™t: vE: vd)o L(E,v).
By [13, eqn. (63)],
(19.6) Fopo-1(vE: vA) = [L(v) @ L(€,0) 7] fp(€: N)

for all f € C(G/H), [¢] € My, X € ial,.

Now fix v € Nk(aq), and let s denote its image in W. Put 1/\\/I’H = oMy,
so that &, = v€,-1,, and let %', £2', 7/ and § be defined as above. Define the
map m(v): £2 — £2’ by

[m()el(w: A) = [L(v) ® L(€s-14,v) " ip(s ™ w: s7HN).

Then m(v) is a unitary equivariant isomorphism (£2, 7p) — (£2/, T py-1), and
it follows from (19.6) that for every f € L?(G/H):

Sips-1f =m)[Fpf].

One readily verifies that the map Z(l\//\IH, vl\//\IH) om(v): £2 — £2 only depends
on the image s of v in W. Therefore we denote it by m(s). We now have the
following.

LEMMA 19.5. Let s € W. Then the map m(s) is an equivariant unitary
isomorphism from (£2,mp) onto (£2,m,ps-1). Moreover, F p,—1 = m(s)oFp.

COROLLARY 19.6. T'(s) =A(P: sPs~!)om(s), for every s € W.

Proof. Fix s € W and write a for the operator on the right-hand side
of the above equation. From the definitions given above we infer that there
exists a measurable function A — b(\) with values in the space of unitary maps
$ — 9 such that for ¢ € £% we have [ap](\) = b(s " \)p(s~!A). Combining
Lemmas 19.3 and 19.5 we see that f = af for every f € C°(G/H). Hence

F(sA) = b(A)f(N).
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By the uniqueness part of Proposition 18.6 this implies that b(\) = €,()). Now
use definition (18.5) of I'(s) to conclude that a = I'(s). O

Remark 19.7. Corollary 19.6 essentially expresses the relation between
f(sA) and f(\) by means of standard intertwining operators. In the Rieman-
nian case a similar relation is given in [31, Ch. VI, Cor. 3.9].

20. Properties of the pre-Paley-Wiener spaces

In this section we collect some properties of the pre-Paley-Wiener spaces
introduced in Definition 8.9. These properties will be needed in the next
section. Let P € P™" be fixed, let (7,V;) be a finite dimensional unitary
representation of K, and let F = Fp be the associated T-spherical Fourier
transform.

Let m € IIx(aq) be as in (8.1) and let S be a compact Wxng-invariant
subset of ay. Moreover, let € > 0 be as in Lemma 8.1. If f € CFP(G/H : 1),
then by Theorem 8.11 the function F f belongs to the pre-Paley-Wiener space
M(S, 7). Moreover, it has the property that 7 f is holomorphic on the open
neighbourhood af(P,€) of a}(P,0). We will show that the positive constant e
can be fixed so that any function in M (S, 7) has this property. More generally,
we establish a similar result for the pre-Paley-Wiener space M(S, p), under the
assumption that p € IIx(aq).

For convenience we introduce, for p € II(aq), the space M(p) of meromor-
phic functions ¢: af. — °C(7) which satisfy conditions (a) and (b) of Definition
8.9. We equip this space with the locally convex topology determined by the
set of seminorms

(20.1) vy @ e sup [[pp(A)]],
AeV

with V' a bounded subset of a3(P,0). Then M(S,p) is a linear subspace of
M(p); moreover the inclusion map is continuous.

If U is a complex manifold, then by O(U) we denote the space of holo-
morphic functions U — C, equipped with the usual Fréchet topology.

PRroOPOSITION 20.1.  Let p € IIx(aq).

(a) For every r > 0 there exists a polynomial function g, € Ilx(aq) such
that the following holds. For every ¢ € M(p) the function g, is holomorphic
on ag(P,r); moreover, the map ¢ qT(pla(’;(P’r) is continuous from M(p) to
O(ag(P,r)) ® °C(7).

(b) There exists a constant € > 0 such that for every ¢ € M(p) the func-
tion pp is reqular on ag(P ). Moreover, the map ¢ p(pIaa(p75) is continuous

from M(p) to O(ag(P,e)) ® °C(T).
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(c) The space M(p) is Fréchet.

Before giving the proof of this result, we derive the following corollary
from it.

COROLLARY 20.2. Let p € lIx(aq).

(a) There ezists a constant € > 0 such that for any Wxnpg-invariant com-
pact set S C ag the following holds. For every ¢ € M(S,p) the function py
is regular on ag(P,e); moreover, the map ¢ psolag;(P,s) is continuous from
M(S,p) to O(ag(P,e)) ® °C(T).

(b) For every Wgnm-invariant compact set S C aq the pre-Paley- Wiener
space M(S,p) is Fréchet.

Proof. If S C aq is any Wgnpg-invariant compact subset, then M(S, p) C
M(p), the inclusion map being continuous. Hence (a) follows from Proposition
20.1 (b) with the same positive constant e.

To see that (b) holds, let S C aj be compact and Wkng-invariant. Then
M(S, p) has a countable system of neighborhoods of the origin, hence is metriz-
able. Let (¢,) be a Cauchy sequence in M(S,p); then we must show it con-
verges in M(S,p). By continuity of the inclusion map the sequence (¢,) is
Cauchy in M(p), hence converges in M(p); let ¢ be its limit. Then py, — pp
pointwise on @ (P,0). Hence if v is any of the seminorms of Definition 8.9 (c),
then v(on — ¢) < supy,s, v(on — ©m). Since (pr) is a Cauchy sequence in
M(S,p) it now follows that ¢ € M(S,p) and that (¢,) converges to ¢ in
M(S,p) as well. Thus we have established property (b). O

For the proof of Proposition 20.1 we need information on the poles of the
C-functions. We start with some results on standard intertwining operators.
For P,Q € PMn [¢] € M, X € a5 let A(Q: P: &: \) denote the standard
intertwining operator from mpg x to mg ¢ x, defined as in [6]. We recall from
the text preceding (4.1) that A(Q: P: &: \) may be viewed as a continuous
linear endomorphism of C~%°(K : £), depending meromorphically on A.

From [6, Props. 4.7 and 4.8], we recall that there exists a unique nontrivial

meromorphic function n(Q: P: &): age — C such that

(20.2) AP:Q:€:N)oA(Q: P:&:N)=n(Q: P:&: NI,

for generic A € ag,.

We shall describe the poles of the intertwining operators, viewed as mero-
morphic functions of A, in some detail, first on the K-finite level. If ¥ C K is
a finite subset, then we denote by C(K : £)y the finite dimensional subspace of
right K-finite functions in C~°(K : &), all of whose right K-types belong to
9. Moreover, we denote the restriction of the standard intertwining operator
to this space by A(Q: P: &: \)y.
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LEMMA 20.3. Let P,Q € P™" gnd let U C ag. be an open subset such
that for every a € X(Q,P) := L(Q) N X(P) the function X — |Re (X, a)]| is
bounded on U. Then there ezists a polynomial q € Iy py(aq) such that for
every finite subset 9 C K:

(a) the meromorphic functions X — q(\)A(Q: P: &: )3, with values in
End(C(K: &)y), are regular on U,

(b) the meromorphic functions X\ — q(\)n(Q: P: &: \)* are regular
onU.

Proof. The existence of g such that the function A — g(A\)A(Q: P: &: Ny
is regular on U for any finite set ¥ C Kisa straightforward consequence of
[33, Thm. 6.6]. This proves the part of assertion (a) with exponent +1.

Fix a K-type § € K occurring in C™°(K: &). Then by [7, Lemma 16.6],
there exists a go € IIx(aq) such that A — go(A\)A(Q: P: &: N5t is regular
on U. From the proof of that lemma one sees that this actually holds for a
g0 € IlIy(g,p)(aq). The existence of a g such that (b) holds now follows if we
restrict (20.2) to C~%°(K : €)s and apply the above observations to the resulting
restrictions of the intertwining operators.

It remains to prove the existence of a ¢ such that the part of assertion
(a) with exponent —1 holds. This follows from the established part of (a)
combined with (20.2) and (b). O

For r € N, let C7"(K: &) denote the space of generalized functions in
C™°(K : &) of order at most 7. By compactness of K this space carries a
Banach topology (see [6, §4], where the notation D, is used instead of C™").
In the following we shall use the notation B(C~", C"T') for the Banach space
of bounded linear operators C~"(K: &) — C~" (K:€), equipped with the
operator norm (r,7’ € N).

COROLLARY 20.4. Let the assumptions of Lemma 20.3 be fulfilled and let
g € Ly, p)(aq) be such that for any finite subset ¥ C K assertion (a) holds.
Then for every relatively compact open subset @ C U there ezists a constant
s € N, such that for every r € N:

(a) the mapping (A, f) — q(A)A(Q: P: &: N)f maps Q x C~"(K : £) con-
tinuously into C~"5(K : £);

(b) the induced function X — q(A\) A(Q: P: &: X)) | C™"(K : &) from Q to
the Banach space B(C~",C~"~%) is holomorphic.

Proof. By density of the K-finite functions the result follows if we combine
Lemma, 20.3 (a) with Prop. 4.11 of [6]. O

Recall the introduction of the meromorphic function B(Q: P: ) on Gges
with values in End(V'(£)), by the property (19.2).
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LEMMA 20.5. Let P,Q € P™" and let U C agc be an open subset such
that for every a € L(Q,P) := X(Q) N X(P) the function A — |(Re), a)] is
bounded on U. Then there ezists a polynomial function q € Oy q,p)(aq) such
that the End(V (€))-valued meromorphic functions

(20.3) A= gN)B@Q:P:é:)) and A g\)B(Q: P:&: N7t
are regular on U.

Proof. By the product decomposition of [6, Prop. 7.1], we see that it
suffices to prove this result if P,Q are o-adjacent, i.e. P # @Q and all roots
in ¥(Q, P) are proportional. Assume this to be the case and let a be the
reduced root in (@, P). Then « is a simple root for the positive system X(P),
and @Q = P’ the conjugate of P under the reflection s, € W in the root
hyperplane . Moreover, C*IIx g, p)(aq) = C*II{4)(aq) and the condition on U
is equivalent to: A — |Re (\, a)| is bounded on U.

We recall from Section 2 that the set W is in bijective correspondence
with W/Wknp. Accordingly we transfer the action by left multiplication of W
on W/Wgkng to an action on W, denoted (s,v) — s-v. If w € W, we write
V (&, w) for the summand H?HM“”I in the direct sum decomposition (2.5).

Let w € W. Then the endomorphism B(Q: P: £: )\) leaves the subspace
V(& w) + V(£ sq - w) of V() invariant; see [6, Lemma 7.2]. We denote its re-
striction to that subspace by B,,(Q: P: £: A\). Then it suffices to establish the
existence of a polynomial function g € () (aq) such that the endomorphisms
g(N)By(Q: P: ¢: \)*! depend holomorphically on A € U.

By [6, Lemma 6.10 and eqn. (7.1)], there exists a unitary bijection L =
L(w™¢,w) from V(w™1¢) onto V(€), mapping V(w™1€,1)+V (w™1¢, sy-14-1)
onto V (&, w) + V (&, sq - w), such that

(204)  By(Q:P:&:N)=LoBi(w'Qu: wlPw: wlt: w i) oLl

Note that w™a is a simple root in (w ™! Pw), that w™'Quw = (w1 Pw)’v-1a,
and that w‘IH{a}(aq) = H{y-14)(aq). Also taking (20.4) into account we now
see that it suffices to prove the existence of a polynomial ¢ € II(4y(aq) such
that g(A)Bi(P%=: P: £: \)*! depend holomorphically on A € U, for arbitrary
e M H, P € PP o any simple root in £(P), and finally U any open subset
of ag. with A — [Re (), )| bounded on U. Using the split rank one reduction
of [6, Lemma 7.4] (where Bj is denoted B, ), we now see that it suffices to
prove the lemma if dimaq = 1, and if Q@ = P. In the rest of the proof we
assume this to be the case. Let a be the reduced root in X(P). The condition
on U means that U C ag(R) for some R > 0.

Following [6, § 5], we define, for any @ € P™" the map
ev: C™®(Q: &: N - V()
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by ev(f)w = f(w), w € W. Then evoj(Q: §: X) = Iy (), for generic \ € aj..
Using (19.2) we now obtain the following identity of endomorphisms of V()
for generic A € af.:

(20.5) B(P:P:&:N)=evoA(P:P:&: N)oj(P:€:)).

By [7, Thm. 9.1], there exist a polynomial ¢; € IIx(aq) and a constant r € N
such that ¢1(A\)j(P: &: A\)n depends holomorphically on A € ag(R) as an el-
ement of C~"(K : &), for every n € V(§). Moreover, by Corollary 20.4 there
exists a polynomial g2 € IIx(aq) such that ga(A\)A(P: P: £: )\) depends holo-
morphically on A € ag(R) as an element of the space B(C™",C~"~*). Write
g = q1q2. Then we see that f,(\) := g(A\)A(P: P:&: X)j(P: &: A\)n depends
holomorphically on A € ag(R), as an element of C™"7%(K : £). Moreover,
fn(X) is me \(H)-invariant, hence (X, h) — m¢ x(R) f(A) is a smooth map from
ag(R) x H to C™"7*(K : §), which is holomorphic in the first variable. It now
follows by application of [6, Lemma 4.13], that ev(f,()X)) € V(§) depends holo-
morphically on A € a3(R), for every n € V(£). We conclude that g(\) times
the endomorphism on the right-hand side of (20.5) depends holomorphically
on A € ag(R), and the assertion about B follows. For the assertion about B -1

we observe, from [6, Prop. 6.2 (i)], that
B(P:P:&: M) t=nP:P:£:N"IB(P: P:£:)\).

Now combine Lemma 20.3 (b) with the result obtained for B to complete the
proof. O

LEMMA 20.6. Let P,Q € ’Pamin, s € W. Moreover, let U be an open subset
of ag. such that for each a € Y(P)Ns~IL(Q) the function A — |Re (), )| is
bounded on U. Then there ezists a polynomial function q € Il pyns-13(g)(aq)
such that the endomorphism

(20.6) a(A) Cgip(s: A)
of °C(1) depends holomorphically on X € U.

Proof. For s € W, let L(s) be the unitary endomorphism of °C(7) defined
in [13, §7]. Then (loc.cit., Lemina 7), we have the transformation rule

CEQ|P(S: )‘) = L(s)o so“le]P(l: A)s
as a meromorphic identity in A € ag.. From this we see that it suffices to prove
the assertion for s = 1 and arbitrary P,Q € P,
By (5.2) the space °C(7) admits an orthogonal direct sum decomposi-
tion into subspaces °C¢(7), where [£] ranges over finitely many classes in My.
Moreover, the endomorphism CE;| p(1: ) leaves every subspace of this decom-

position invariant. Let [{] € My occur in the decomposition. Then it suffices
to prove the existence of a ¢ € Iy p)nE(Q)(aq) such that the restriction to
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°C¢(7) of the endomorphism (20.6) with s = 1 depends holomorphically on
A € U. This follows immediately from [13, Lemma 3 and eqn. (57)], combined
with Lemmas 20.3 and 20.5 above. O

If U C ag, is an open subset, and ¢ a polynomial function in (aq), we
denote the map O(U) — O(U), ¢ — qp by mq. The image of m, is denoted
by O(U, q) and equipped with the topology inherited from the ambient space
o).

LEMMA 20.7. Let U C ay, be an open subset, and let q € Il(aq). Then
the map myq is a topological linear isomorphism from O(U) onto O(U ,q).

Proof. Since O(U) has no zero divisors, it is clear that my is a linear
isomorphism from O(U) onto O(U, q). Moreover, it is obvious that mg is con-
tinuous. For the continuity of its inverse one needs to estimate ¢ in terms
of qp, for ¢ € O(U). The required estimates can be obtained by a repeated
application of Cauchy’s integral formula in the same fashion as in the proof of
Lemma 6.1 in [7]. a

Proof of Proposition 20.1. We first prove (a). Let 7 > 0. For s € W, put
Us = s_la;(P, ) Nag(P,0).

Then ag(P,r) is the union of the sets sUs, s € W.

Fix s € W for the moment, and let o € s71X(P) N E(P). Then for A € U,
we have Re (A, @) > 0. For such A we also have Re (A, a) = Re (s\, sa) < r.
Hence A — |Re(\, )| is bounded on Us. By Lemma 20.6 it now follows
that there exists a polynomial function g5 € IIx(aq) such that the function
A= gs(N) P|P( A) is regular on an open neighborhood of Us, hence locally
bounded on Us. Let now ¢ € M(p). Since ¢ satisfies conditions (a) and (b) of
Definition 8.9, it follows that the function

A= gs(M)p(N)p(sA)

is locally bounded on U;. We now define the polynomial ¢ € IIx(aq) by

=[] as(s7"N)p(s7'N).

seW
Then the function gy is locally bounded on sU, for every s € W. These sets
are closed in the set ag(P,r) and cover it. Therefore the function gy is locally
bounded, hence holomorphlc on ag(P,r). Moreover, from the above reasoning
we also see that the map ¢ — ‘N’Iag( pyr) is continuous.

We now turn to the proof of (b). Let g € IIx(aq) be a polynomial as in (a)
for r = 1. Let ¢ € M(p). Then gpy is regular on ag(P, 1), and py is regular on
dg(P,0), hence on the smaller set jag U ag(P,0). By Lemma 8.2, applied with
m = 1 and with ¢ in place of p, it follows that there exists a constant ¢ € |0, 1],
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depending only on ¢, such that py is regular on ag(P,€). This establishes
the first assertion of (b). For the second assertion, we note that by (a) the
map R: ¢ — qpp|e(pe) is continuous from M(p) to O(ag(P,e)) ® °C(7). We
have just seen that its image is contained in O(ag(P,€),q). Thus we may apply
Lemma 20.7 and compose the map R with m;l ®Ioc(7y to establish the validity
of (b).

Finally we prove (c). Since M(p) has a countable system of neighborhoods
of the origin it is metrizable, and it suffices to prove completeness.

Let (¢n)nen be a Cauchy sequence in M(p). For each r > 0 we write
Q. = a3(P,r), and we select g, € IIx(aq) as in assertion (a). Then the sequence
(grpn | Q) is a Cauchy sequence in the Fréchet space O(Q,) ® °C(r), hence
converges to a limit ¢, € O(Q,)®°C(7). We define the meromorphic function ¢,
on Q, by ¢, = Qr_lwr- Let now 7,7 > 0. Then grqy ¢n | Qo — @by = qrgpidyr,
locally uniformly on €,.. Similarly, we see that g-g.po¢n | Q0 — ¢rgroyr,
locally uniformly on Q,. It follows that ¢, = ¢,» on Q, N Qv = Qmin(r)- Now
the union of the sets Q,, r > 0, equals ag.. Hence there exists a meromorphic
function ¢: ag. — °C(7) such that ¢ = ¢, on £, for every r > 0. We will show
that ¢ belongs to M(p) and is the limit of the sequence (yy,).

By the definition of ¢ we have that g,¢, converges to g-¢ in O(Q,)®°C(7)
for all r > 0. In particular it follows that ¢,(X\) — @()\) for generic A € Age-
From this it follows that ¢ fulfills condition (a) of Definition 8.9.

Let € > 0 be the constant of the already established property (b). Then
(pen | Q) is a Cauchy sequence in O(Q) ® °C(7). Let f be its limit. By a
straightforward passage to limits, ¢. f = py. = pg.p. Hence f = py, and we
conclude that py is holomorphic on €2, and that the sequence (py,) converges
locally uniformly to py on €. In particular this means that ¢ fulfills condition
(b) of Definition 8.9, hence belongs to M(p), and that ¢, — ¢ with respect
to the seminorms (20.1). This completes the proof of property (c). O

21. Paley-Wiener theorems

In this section we assume that P € P and that 7 is a finite dimensional
unitary representation of K. Our objective is to investigate the image of the
space C¢°(G/H : 7) under the 7-spherical Fourier transform F = Fp.

If S C aq is a closed Wgng-invariant subset, then we define the closed
subset Xg of G/H by (8.3). Recall also the definition (8.10) of the supporting
function hr: af. — [~00,00], when T is a closed set of aq. Define the polyno-
mial 7 € IIx(aq) as in (8.1). Then we have the following Paley-Wiener type
characterization of the support of a compactly supported function in terms of
its Fourier transform.
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THEOREM 21.1. Let f € CX(G/H: 1), and let S be any Wkng-
invariant compact conver subset of aq. Then supp f.C Xgs if and only if for
every n € N there exists a constant C' > 0 such that for every w € W and
A € ag(P)0),

(21.1) I (Wpry, FFA < C (14 [A) T ees =,

Proof. The implication ‘only if’ is immediate from Theorem 8.11 and Def-
inition 8.9 (c). Since f is compactly supported, there exists a Wxnpg-invariant
compact subset T' C aq such that supp f C X7. By Theorem 8.11 we have that
Ff e M(T,n). Hence F f satisfies conditions (a) — (b) of Definition 8.9. If we
combine these with the estimate (21.1), we see that in fact F f € M(S, 7). Fix
D € D/, (cf. Lemma 15.3). Then from Corollary 10.4 (and Remark 10.5) we
obtain that

supp DITFf C Xg.

By Theorem 14.1 this implies that
suppDf C Xg.
In view of Proposition 15.2 we finally conclude that supp f C X5g. a

Definition 21.2. The pre-Paley-Wiener space M(G/H : 7) is defined to
be the space of meromorphic functions ¢: ag. — °C(7) having the following
properties:

(a) p(sA) = C}’;lp(s: A)p(A) for all s € W, and generic A € ag;

(b) The function 7y is holomorphic on an open neighborhood of ag (P, 0);

(c) There exists a constant R > 0 and for every n € N a constant C > 0,

such that for all A € a3(P,0),
I (NN < C (1 + [A) "R,

The supporting function of the closed ball B in aq of center 0 and radius
R >0 is given by hg(\) = R|Re \A|. Using this in combination with Definition
8.9 we see that

(21.2) M(G/H: 1) =] M(S,m),
S

where S ranges over the Wknpg-invariant compact subsets of aq. From Corollary
20.2 (b) we recall that the spaces in the right-hand side of (21.2) are Fréchet.
Moreover, if S; C Sa, then M(S;,7) C M(Ss, ), the inclusion map being
continuous. Accordingly we equip M(G/H : 7) with the direct limit locally
convex topology.

In view of (21.2), the following result is an immediate consequence of
Corollary 10.4 (and Remark 10.5).
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LEMMA 21.3. Let D € D,. Then DJ maps the pre-Paley- Wiener space
M(G/H : T) continuously into CX(G/H : 7).

Remark 21.4. It follows from Corollary 20.2 that there exists an € > 0
such that 7¢ is holomorphic on the open neighborhood ag(P, ) of a (P, 0), for
every ¢ € M(G/H : 7). Moreover, the map ¢ — 7¢ | ag(P,¢) is continuous
from M(G/H : 7) to O(ag(P,¢€)) ® °C(1). We may shrink € to ensure that the
polynomial 7 has no zeros in ag(¢) (see (8.1) and Lemma 8.1 (a)). Thus it also
follows that every ¢ € M(G/H : 7) is holomorphic on the open neighborhood

ag(e) of a3 and that the restriction map is continuous from M(G/H: 7) to

O(ag(e)) ® °C(7).

From Theorem 8.11 and Theorem 15.1 we see that F maps C°(G/H : 7)
injectively and continuously into M(S, ), for any Wxng-invariant and com-
pact subset S of aq. Therefore F maps C°(G/H : 7) injectively and continu-
ously into M(G/H: 7). If f € C°(G/H : 7) then the coefficients in all power
series developments of 7F f satisfy all the linear relations coming from similar
relations for Eisenstein integrals. In fact we have:

LEMMA 21.5.  Let O1,...,0r € S(ag) be a finite collection of constant
coefficient complex differential operators on af., and let ¢1,... Y, € °C(7),
and A\i,...,\p €@ (P 0). Then the relation

qc’

(21.3) Z Bi[r(A) (v | E°(P: ;s =A))]a=a, = 0

of elements in C°°(G/H) holds for every v € V, if and only if for all f €
C®(G/H : 1) one has the relation:

(21.4) Z 0; [ (A) [ 9i)]a=x; = 0.

Proof. For v € V;, let E, denote the left-hand side of (21.3), viewed as
a function in C*°(G/H). Define E: G/H — V} by E(x)(v) = E,(z). Then
E € C®°(G/H: 1V). The condition (21.3) holds for every v € V; if and only
if E = 0, which in turn is equivalent to fG/H E(z)(f(z)) de = 0 for all f €
CX(G/H : T). By the definition of the Fourier transform the latter condition
is equivalent to (21.4) for all f € C*(G/H : 7). O

In the group case the extra relations (21.4) are known to determine the
image F(C°(G/H : 7)) as a subspace of M(G/H : T) by the work of Campoli
[16] in the split rank one case and Arthur [2] in the general case. This motivates
the following definition.

Definition 21.6. The Paley-Wiener space PW(G/H : 7) is defined to be
the space of functions ¢ € M(G/H : 7) satisfying the following condition: For
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all finite collections 01,...,0; € S(ag), ¥1,...,%k € °C(7), and Ay,..., A €
ay (P, 0) for which one has the relation (21.3) of elements in C*°(G/H) for every
v € V., one also has the relation:

k
(21.5) Y %N (@A) | ¢i)laza, = 0.
=1

Let 2 be the open neighborhood of ag(P,0) of Remark 21.4. If 9y,...,0; €
S(ag), Y1,...,Uk € °C(7), and Ay,..., A € ag(P,0) are as in the above defi-
nition, then the map

k
Y D B [mN)(e(A) | $id]aza,
i=1

is continuous from O(£2) ® °C(7) to C. In view of Remark 21.4 the map is also
continuous from M(G/H : 7) to C. This implies that the space

PWgs(G/H: 1) := M(S,m)NPW(G/H: T)

is a closed subspace of the Fréchet space M(S,n); it thus becomes a Fréchet
space in a natural way. From (21.2) we see that

PW(G/H: 1) =] PWs(G/H: 1),
S

where S ranges over the Wxng-invariant compact subsets of aq. Moreover, if
S1 C Sz, then PWg, (G/H:7) C PWg,(G/H : 7), the inclusion map being
continuous. Accordingly we equip PW(G/H : ) with the direct limit locally
convex topology. Then the inclusion map PW(G/H: 1) C M(G/H:7) is
continuous and has a closed image.

From the above discussion we now obtain:

PROPOSITION 21.7.  The Fourier transform F is an injective continuous
linear map from C(G/H : 1) into PW(G/H : 7). Moreover, if S is a Wi -
invariant compact subset of aq, then F maps CP(G/H : ) into PWg(G/H : 7).

Remark 21.8.  'We believe that F is actually a linear isomorphism from
Ce(G/H: 7) onto PW(G/H : 7). Although we do not know how to prove this
in general, we will present a proof for the case dimag = 1.

Before proceeding we note some consequences of the above conjecture.
Suppose the conjecture is valid. Then if S is a Wxng-invariant compact convex
subset of aq, the Fourier transform F restricts to an injective continuous linear
map of Fréchet spaces Cg°(G/H : 7) — PWg(G/H : 7). The restricted map is
surjective as well. For when 1 € PWg(G/H : 7), then by the conjecture there
exists a function f € Cg°(G/H : 7) such that v = Ff. From Theorem 21.1 we
deduce that f € C$°(G/H : 7), whence the surjectivity. By the open mapping
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theorem for Fréchet spaces it then follows that F restricts to a topological linear
isomorphism from C°(G/H : 7) onto PWg(G/H : 7). Taking the limit over all
Wknm-invariant compact convex subsets of aq we then obtain that F is actually
a topological linear isomorphism from C°(G/H : T) onto PW(G/H : 7).

The following result gives a useful reformulation of the relations in Defi-
nition 21.6 (compare with [2, p. 76]).

LEMMA 21.9. Let p € M(G/H: 7). Then ¢ € PW(G/H : 7) if and only
if for all finite collections 01, ...,0r € S(a3) and A1,..., A\, € ag(P,0) there
exists a function f € CX(G/H : 1) such that

AN eNaza, = G[TNFF(N)h=r, (1 <i<k).

Proof. The ‘if’ part is obvious from Lemma 21.5. To see that the ‘only
if’ part holds, let 04,...,0r and Aq,..., A\ be given. We equip the finite
dimensional linear space (°C(7))* with the product space Hilbert structure
and define the linear map L: PW(G/H : 7) — (°C(7))* by

L()i = 8 [fNeWhar, (@ €PW(G/H:7)i=1,...,k).

Then we must show that L(¢) € L(FCP(G/H : 1)) for all ¢ €« PW(G/H : 7),
or equivalently that the subspace U := L(FC(G/H : 7)) of im L in fact equals
im L. Since (°C(7))* is finite dimensional this is equivalent to the assertion that
for every 1 = (v;) € (°C(7))* we have that ¢y L U = % L im L. In view of
Lemma 21.5 this is a consequence of Definition 21.6. a

We will need the following result.
LEMMA 21.10. Let D € D,. Then for every ¢ € M(G/H : 1),
(21.6) FDJTp = p(D: T)ep.

Proof. By meromorphy of both members it is sufficient to establish this
identity on éag. Since det u(D: 1) # 0, it is sufficient to establish the identity
which arises from application of u(D: 7) to (21.6); hence it is enough to prove
(21.6) with D? instead of D. By the invariance (a) of Definition 21.2 it suf-
fices to show that the resulting identity holds when tested against elements of
(S(iag) ® °C(7))". Hence in view of Theorem 16.16 it is sufficient to show that

(21.7) (FfIFD*T o) = (Ff | w(D: 7)%¢)

for all f € C(G/H : 7). By continuity of the Fourier transform it suffices to
establish the identity for f in the dense subspace C°(G/H : 7). The left-hand
side of (21.7) then equals

(JFfID*Tp) = (DIFf|DI¢)=(Df|DTy)
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= (D*f | J¢) = (FD*f | ¢)
(21.5) = (WD PFf | o)

The transpositions that have been carried out are all allowed, since they are
of the form (g | Dh) = (Dg | h), with g,h € C®°(G/H : 7), and with either
g or h compactly supported. The second equality follows from Theorem 14.1.
Finally the last member of the equations (21.8) equals the right-hand side of
(21.7) in view of (5.15) and since both F f and ¢ are smooth functions on iag,
decreasing faster than (1 + |A|)™™ for every n. O

COROLLARY 21.11. Let D € D,. Then multiplication by pu(D: T) maps
M(G/H : T) into the subspace F(C*(G/H : 1)) of PW(G/H : 7).

Proof. This follows from combining Lemma 21.10 with Lemma 21.3 and
Proposition 21.7. a

In particular, when G/H is a Riemannian symmetric space of the non-
compact type we have seen in Remark 14.4 that # = 1 and 1 € D,. Hence
it follows from the corollary above that M(G/H: 1) = F(CX(G/H: 1)) =
PW(G/H : 7). Therefore, in this case (21.5) is fulfilled for all functions sat-
isfying conditions (a)-(c) in Definition 21.2. Moreover, the Fourier transform
maps C°(G/H : ) onto the Paley-Wiener space. It can be shown that this
assertion is equivalent to Helgason’s Paley-Wiener theorem for the §-spherical
Fourier transform; see [31, Ch. III, Thm. 5.11].

Notice that in general PW(G/H : 7) is a proper subspace of M(G/H : T)
(see for example [16, Thm. 3.4.2 and the succeeding example]). However, in
the split rank one case (i.e. dimaq = 1) the following corollary shows that only
finitely many conditions of the form (21.5) are needed to characterize it as a
subspace of M(G/H : 7) (cf. [16, Observation 2.3.2], for the group case).

COROLLARY 21.12.  Assume that dimaq = 1. Then the Paley-Wiener
space PW(G/H : T) has finite codimension in M(G/H : T).

Proof. Fix D € Dr. Then'in view of Corollary 21.11 it suffices to show
that the space u(D: 7)M(G/H : 7) has finite codimension in M(G/H : 7).
Let {A1,..., Ak} be the set of zeros of det u(D: 7) in ag(P,0). For 1 < j <k,
let m; be the order of the zero of det u(D: 7) at A;. Let V be the subspace
of M(G/H : ) consisting of the functions ¢ for which 7¢ vanishes up to the
order m; at every \; (1 < j < k). Then V has finite codimension. Moreover,
if ¢ € V, then wu(D: 1)~y is holomorphic on dg(P,0). Using (5.13) with
Q = P one now readily deduces that u(D: 7)"l¢ € M(G/H: 7). Hence V
is contained in u(D: 7)M(G/H : ), and therefore the latter space has finite
codimension. d
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LEMMA 21.13.  Assume that dimaq = 1, and let D € D,. Then for every
function ¢ € PW(G/H : T) there exists a function f € C°(G/H : T) such that
@ — Ff belongs to p(D: T)M(G/H : T).

Proof. Let ¢ € PW(G/H : ), and let the subspace V of M(G/H : 7) be
defined as in the proof of Corollary 21.12. Then by Lemma 21.9 there exists
an f € CX(G/H: T) such that ¢ — Ff € V. In the proof of Corollary 21.12
we saw that V C u(D: 1)M(G/H: 7). O

We can now prove a full Paley-Wiener theorem for the case that G/H has
split rank one.

THEOREM 21.14.  Assume dimaq = 1. Then F is a topological linear
isomorphism from C°(G/H : 1) onto PW(G/H : T).

Proof. By Remark 21.8 it suffices to prove bijectivity, and by Proposition
21.7 it remains to prove surjectivity. Let ¢ € PW(G/H : 7) be given. Fix
D € D, and let f € C°(G/H : T) be as in Lemma 21.13. Then ¢—F f belongs
to w(D: T)M(G/H : 7), hence to F(C(G/H : 1)), by Corollary 21.11. Thus
 also belongs to the latter space. O
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