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Abstract. Let V be a ¢nite-dimensional real vector space on which a root system S is given.
Consider a meromorphic function j on VC � V � iV , the singular locus of which is a locally
¢niteunion ofhyperplanes of the form fl 2 VC j hl; ai � sg, a 2 S, s 2 R. Assumej is of suitable
decay in the imaginarydirections, so that integrals ofthe form

R
Z�iV j�l� dlmake sense forgeneric

Z 2 V . A residue calculus is developed that allows shifting Z.This residue calculus can be used to
obtain Plancherel and Paley^Wiener theorems on semisimple symmetric spaces.
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0. Introduction

In several fundamental papers on harmonic analysis related to symmetric spaces or
Lie groups, a certain application of the Cauchy theorem plays an important role.
In its simplest form, the idea is present already in the proof of the
Paley^Wiener^Schwartz theorem for the Euclidean space (see, for example, [12,
p. 182]), where the integralZ

iRn
ehx;xic�x� dx �0:1�

over the imaginary space is shifted in a real direction Z 2 Rn to an integralZ
Z�iRn

ehx;xic�x� dx �0:2�

over a parallel space. Here, c is an entire function on Cnof exponential type, that is,
it satis¢es an estimate of the form

sup
z2Cn
�1� jzj�keÿR jRe zjjc�z�j <1

for some R > 0 and all k 2N. It is the polynomial decay at in¢nity (in the imaginary
directions), following from this estimate, that permits the use of Cauchy's theorem to
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shift the integral (0.1) to (0.2). The shifted integral allows an estimate that is used to
show that the (inverse) Fourier^Laplace transform (0.1) of c has compact support.
The use of such an argument in the context of more general symmetric spaces goes
back to Helgason, [11]. Later, Helgason's result was successfully applied by
Rosenberg, [16], to give a new proof of the Plancherel theorem for a Riemannian
symmetric space. In [3], where we obtain the most-continuous part of the Plancherel
decomposition for a semisimple symmetric space, an analogous shift of integrals
plays a key role.

In other situations in harmonic analysis, the same technique is used with a
meromorphic function c. Then the shift of integrals results in the appearance of
residues, which contribute to lower dimensional spectrum. This is, for instance,
the case in the fundamental work of Selberg and Langlands on automorphic forms
([13], [14]; see also the exposition in [15], in particular Section V.1.5(c)). In the spirit
of the classical proof, but with residues appearing, Paley^Wiener theorems are
proven in various contexts in [1, 6, 9]; the analysis in the former two papers is
in one complex variable, whereas that of Arthur in the last mentioned paper is
in several variables (like in Langlands' work on automorphic forms). In [10],
Heckman and Opdam treat the Plancherel decomposition for graded Hecke algebras
by a residue calculus in a similar multi-variable setting.

In [4] we employ a multi-variable calculus with residues to obtain an inversion
formula for the Fourier transform related to a semisimple symmetric space. The
results of [4] will be used in [5] to prove the Paley^Wiener and the Plancherel theorem
for these spaces (see the introductions of [4] and [8] for more details, and for
references to related work by other people).

In this paper we prepare the ground for [4] and [5] by developing the necessary
residue calculus. The basic tool is the one-variable residue theorem. In order to apply
it in the multidimensional setting with root systems, some geometric and combina-
torial problems have to be solved. It is the treatment of these problems that is
the essential purpose of this paper. The calculus is formulated entirely in terms
of root systems, without any reference to (analysis on) semisimple symmetric spaces,
but the scope of theory is naturally directly motivated by the intended application.
We believe there may be other applications than the one we have in mind, and that
the calculus is therefore of independent interest. This is our motivation for presenting
this part of the program [2^5] in a separate paper.

The main result is stated in Theorem 3.16 and Corollary 3.18. In the application
the left-hand side of Equation (3.26) in Corollary 3.18 corresponds to a so-called
pseudo-wave packet. It is the formation of the pseudo wave packet that is shown
in [4] to invert the Fourier transform. The terms in the right-hand side of (3.26)
then constitute the contributions of the several generalized principal series to the
Plancherel decomposition.

Besides Theorem 3.16, there are several features of the paper that are crucial for
the application, and that also add new insight to the cases of the previously cited
papers by Langlands, Arthur, Heckman and Opdam. First of all, the residues
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are obtained by operators that are de¢ned independently of choices (Theorem 1.13).
This was already observed by Heckman and Opdamin their case. These operators are
naturally represented in a certain projective limit space (Section 1.3). Another note-
worthy result is the support theorem (Theorem 3.15). The proof of this theorem
demands some quite delicate combinatorial and geometric arguments (given in Sec-
tion 2). The theorem is the key to the Plancherel theorem; as will be seen in [5]
it follows from this support theorem that the individual contributions in (3.26)
are of tempered behavior. The concept of a residue weight (which will be explained
below) is introduced to facilitate some of the involved combinatorics. Together with
the transitivity theorem (Theorem 3.14) it is motivated by the induction that takes
place in [4]. The Weyl group invariance (Section 3.5) contributes to a proper under-
standing of the Maass^Selberg relations, as will be discussed in [5].

We shall end this introduction by giving an outline of the paper, at the same time
further explaining some of the motivating ideas.

Throughout the paper, V is a ¢nite-dimensional real linear space, equipped with
an inner product h � ; �i, andVC denotes its complexi¢cation.We assume that a locally
¢nite collection H of hyperplanes in V is given, and consider the spaceM�V ;H� of
meromorphic functions on VC with singular locus contained in the union of the
complex hyperplanes HC; H 2 H: Let P�V ;H� be the subspace of functions
j 2 M�V ;H� having polynomial decay along the shifted imaginary space
Z� iV ; for every Z in reg�V ;H�; the complement inV of the union of the hyperplanes
from H: For j 2 P�V ;H� and Z 2 reg�V ;H� we consider the integralZ

Z�iV
jdmV ; �0:3�

where dmV denotes the pull back of Lebesgue measure on (the real linear space) iV
under the translation v 7! vÿ Z: When Z varies in a ¢xed initial component C of
reg�V ;H�; the integral in (0.3) is independent of Z; by Cauchy's theorem. We shall
therefore also write it with pt�C� in place of Z; to indicate that an arbitrary point
of C may be taken, without changing the value of the integral. It is of interest
to study the behavior of the integral when Z is moved to a different component
of reg�V ;H�:

If L is any af¢ne subspace of V (i.e., a translate of a linear subspace), then by c�L�
we denote the central point of L; i.e., the point of L closest to the origin inV :We note
that L � c�L� � VL; with VL a uniquely determined linear subspace of V : We shall
call c�L� � iVL the tempered real form of LC; since in the applications this is the
subspace of LC where tempered spectrum is located.

For the applications it is now of particular interest to move the Z in (0.3) as close to
0 (the central point of V ) as possible, so that the domain Z� iV of integration comes
close to the tempered real form iV of VC (this idea is also central in the previously
cited work of Langlands and Arthur). In general one cannot move Z all the way
to the origin 0; since 0 might be contained in V n reg�V ;H�; hence in the singular
locus of j: The best one can do here is to move Z to one of the (¢nitely many) central
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chambers, i.e., the components of reg�V ;H� having the central point 0 in their
closure. For the applications it is important not to discriminate between the (central)
chambers. With this in mind we introduce, in Section 1.7, the concept of a residue
weight. It prescribes for what part of the integral (0.3) the point Z is moved to other
components of reg�V ;H�: On the level of V a residue weight is a function
t: comp�V ;H� ! �0; 1� with ¢nite support, and such that

P
C02comp�V ;H� t�C 0� � 1:

The sumX
C02comp�V ;H�

t�C0�
Z

pt�C0��iV
jdmV �0:4�

may be viewed as a redistribution of the integral (0.3) over the various components of
reg�V ;H�:If t is supported by the central chambers (such a t is called central), then
each nonzero term of the above sum involves a central chamber C0; the point
pt�C 0� may be chosen arbitrarily close to the central point 0 of V ; without changing
the value of the corresponding integral. In (0.4) the domains of integration are thus
brought as close as possible to the tempered real form iV of VC:

The difference of (0.3) with its weighted redistribution (0.4) can be written as the
sum of the integrals t�C0��RZ�iV jdmV ÿ

R
pt�C0��iV jdmV �: The expression in the square

brackets may in turn be rewritten as a sum of residual integrals of the form:Z
x�iVH

R�j�dmH : �0:5�

Here H 2 H is a hyperplane separating Z from C 0. Moreover, let HH �
fH \H 0 j H 0 2 H; ; 6� H \H 0 6� Hg be the hyperplane con¢guration in H induced
by H: Then x is a point in reg�H;HH �: Finally, R is a linear operator from
P�V ;H� to P�H;HH �; arising from taking a one variable residue in a variable trans-
versal toH: The operatorR is an example of what we call a Laurent operator, since it
encodes the procedure of taking a coef¢cient in a Laurent series expansion trans-
versal to H: Laurent operators are introduced and studied in Section 1.3.

The procedure of rewriting (0.3) as a sum of integrals is now continued as follows.
Each of the residual integrals (0.5) is redistributed over chambers ofH at the cost of
codimension 2 residual integrals. The redistribution over the various chambers in H
is prescribed by a residue weight on the level ofH (relative toHH ). The codimension
2 residual integrals are redistributed by a similar prescription, and we continue in this
fashion until the ¢nal step, where point residues in ¢nitely many points of V occur.
(In the application, these correspond to discrete spectrum.)

We thus end up with the formula of Theorem 1.3, which describes the original
integral (0.3) as the following sum of residual integrals:Z

pt�C��iV
jdmV �

X
L2L

X
C02comp�L;HL�

t�C0�
Z

pt�C0��iVL

ResC;tL jdmL: �0:6�

Here L denotes the collection of nonempty intersections of hyperplanes fromH; for
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each L 2 L the induced collection of hyperplanes in L is denoted by HL; and the
associated set of connected components of reg�L;HL� by comp�L;HL�: Finally,
ResC;tL is a Laurent operator from P�V ;H� to P�L;HL�: It is of crucial importance
that the occurring Laurent operators ResC;tL are uniquely determined by the formula
(0.6); as mentioned, this observation goes back to Heckman and Opdam [10]. We call
these uniquely determined operators the residue operators associated with the initial
data H;C and the residue weight t:

Thus we see that, as in the theory of automorphic forms, the residue operators
essentially arise as compositions of one variable residues (in variables transversal
to singular hyperplanes). However, since the characterization by (0.6) determines
the residue operators uniquely, it is clear from the start that it is of no importance
in which order the compositions are taken.This seems to distinguish the calculus
of [10] and the present paper from that of Langlands [14] and Arthur [1]. It is
the uniqueness of the residue operators that makes it possible to develop a full
residual calculus. We end Section 1 by discussing properties of the residue operators
needed in the later sections.

In Section 2 we study the residual support of an initial chamber C 2 comp�V ;H�;
i.e., the collection of L 2 L such that the associated residual operator ResC;tL is non-
zero. The purpose is to prepare for the support theorem, Theorem 3.15.

In Section 3 we specialize the theory developed so far to hyperplane con¢gurations
related to a root system S in V : Let HS be the collection of all hyperplanes H in V
with VH � a? for some a 2 S; and let LS be the collection of all nonempty
intersections of hyperplanes from HS: We now consider a locally ¢nite af¢ne
hyperplane con¢gurationH that is S-admissible, i.e.,H � HS:Moreover, we assume
that a positive system S� is given and thatH is bounded in the anti-dominant direc-
tion in the sense that the inner products ha; c�H�i; for a 2 S� and H 2 H; are
uniformly bounded from below. Such H occur as sets of singular hyperplanes in
the applications. Moreover, it is natural to choose as initial chamber C the unique
component of reg�V ;H� on which every positive root is unbounded from below.

Of particular interest is the hyperplane con¢guration HS�0� consisting of the
hyperplanes from HS containing 0: In other words, HS�0� is the collection of root
hyperplanes. The associated collection LS�0� of nonempty intersections is equal
to the collection R of root spaces in V : Given b 2 R; let P�b� be the collection
of connected components of reg�b;HS�0��: Then V is the disjoint union of the
elements of P � [b2RP�b�; also called the Coxeter complex of S: (If S is the root
system of a Cartan subalgebra in a semisimple algebra, then P is in bijective cor-
respondence with the collection of parabolic subalgebras containing the Cartan
subalgebra, whence the notation.) A residue weight on P is by de¢nition a function
t:P ! �0; 1� such thatPQ2P�b� t�Q� � 1 for every b 2 R: In Section 3.4, formula (3.6),
we de¢ne a residue operator ResP;tL associated with data P 2 P�V �; t; L 2 LS: It is
universal in the following sense. The chamber P determines the positive system
S� � S��P� of roots positive on P: Let H be any S-admissible hyperplane con¢gur-
ation that is bounded relative to S�: The residue weight t naturally induces a central
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residue weight o�t� on H: Proposition 3.6 now expresses that each of the residue
operators in (0.6), associated with the data H; C and o�t� (where C is the initial
chamber), is equal to one of the universal residue operators ResP;tL :

An important feature of the universal residue operator is that it has transitivity
properties re£ecting parabolic induction. The main result in this direction, Theorem
3.14, essentially expresses that every residue operator equals a point residue operator
associated with a subroot system of S: This transitivity is of crucial importance for
the applications to analysis, since it allows induction as a method of proof.

In the main result of the present paper, Theorem 3.16, formula (0.6) is
reformulated in terms of the universal residue operators. Via Weyl group con-
jugations Theorem 3.16 may be reformulated as Corollary 3.18. As mentioned
above, this corollary is applied directly in [4] and [5]; it gives the Plancherel
decomposition of a pseudo wave packet. The ¢rst summation in formula (3.26)
extends over the subsets F of D; the collection of simple roots in S�: Each subset
F determines a so-called standard s-parabolic subgroup PF : The sum of terms
in (3.26) with F ¢xed corresponds with the contribution to the Plancherel
decomposition of the generalized principal series associated with PF :

1. The Residue Scheme

Let V be a ¢nite dimensional real linear space, equipped with an innerproduct h�; �i,
and let VC denote the complexi¢cation of V , equipped with the complex bilinear
extension of h�; �i. Let i 2 C be the imaginary unit. We shall often regard VC as
the Cartesian product of its real subspaces V and iV .

1.1. THE SINGULAR CONFIGURATION

By an af¢ne subspace of V we mean any translate of a real linear subspace of V .
Thus, if A is an af¢ne subspace, there exists a unique linear subspace VA � V such
that A � a� VA for all a 2 A. The unique point in A with minimal distance to
the origin is called the central point of A and is denoted by c�A�. Note that we have
A � c�A� � VA and c�A� ? VA. We agree to call AC :� c�A� � �VA�C � VC the
complexi¢cation of A. For a 2 VC let Ta: VC! VC be given by l 7! l� a, then
Tc�A�: �VA�C ! AC is an af¢ne isomorphism mapping VA onto A. Via this iso-
morphism we equip A and AC with the structure of a real, resp. complex, linear
space. Moreover, we equip these spaces with the inner product obtained from
the restriction of h�; �i to VA, resp. �VA�C. We denote by A the collection of af¢ne
subspaces of V .

An af¢ne subspaceA ofV , such that the codimension ofVA inV is one, is called an
af¢ne hyperplane; a locally ¢nite collection of af¢ne hyperplanes is called an af¢ne
hyperplane con¢guration. Let such a con¢guration H be given. We shall assume
that for everyH 2 H a nonzero vector aH in the one-dimensional spaceV?H is chosen.
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Moreover, we de¢ne the ¢rst degree polynomial `H :VC! C, by

`H �l� � haH ; lÿ c�H�i; �1:1�

then H and HC are the null sets of `H in V and VC, respectively. We call the
elements of the set sing�VC;H� :� [H2HHC the singular elements; those of its comp-
lement reg�VC;H� in VC are the regular elements. We de¢ne the subsets
sing�V ;H�; reg�V ;H� � V similarly.

Let NH denote the space of maps H!N � f0; 1; 2; . . .g, and let d 2NH. If
K � V is a compact subset we de¢ne a polynomial pK on VC by

pK � pK;d �
Y

H2H;H\K 6�;
`d�H�H �1:2�

(if H \ K � ; for all H 2 H we let pK � 1). We denote byM�V ;H; d� the space of
meromorphic functions j:VC! C such that for every compact subset K � V
the function pK;dj is holomorphic on an open neighborhood of K � iV . Observe
that M�V ;H; d� is independent of the choice of the normal vectors aH , H 2 H.
The functions in M�V ;H; d� are holomorphic on the open set reg�VC;H�; which
is connected and dense in VC.

We equipNH with the ordering� de¢ned by d � d 0 if and only if d�H�W d 0�H� for
all H 2 H. Then we haveM�V ;H; d� � M�V ;H; d 0� when d � d 0. We now de¢ne

M�V ;H� � [d2NHM�V ;H; d�:

Let L 2 A. We de¢ne

H�L� � fH 2 H j H � Lg; �1:3�

and

HL � fH \ L j H 2 H n HL; H \ L 6� ;g: �1:4�

These are af¢ne hyperplane con¢gurations in V and L, respectively, hence we may
de¢ne the spaces M�V ;H�L�� and M�L;HL� as above. Notice that H�L� is ¢nite
and that M�V ;H�L�� � M�V ;H�.

For d 2NH (or d 2NH�L�) let qL be the polynomial on VC de¢ned by

qL � qL;d �
Y

H2H�L�
`d�H�H : �1:5�

In particular we have qV � 1, and qH � `d�H�H for H 2 H. We observe that qLj is
holomorphic on a neighborhood of reg�LC;HL� for all j 2 M�V ;H; d�, and that
j 7! qLj maps the subspace M�V ;H�L�; djH�L�� of M�V ;H; d� bijectively onto
the space O�VC� of entire functions on VC, for all L 2 A.
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1.2. RESIDUES

Let V ;H be as above, and let j 2 M�V ;H�, H 2 H. For l 2 reg�HC;HH � let cl

denote the meromorphic function z 7!j�l� zaH=jaH j� on C. We de¢ne the residue
ResVHj of j along H to be the function reg�HC;HH � ! C given by

ResVHj�l� � 2pResz�0cl�z� �
Z
CE

j l� z
aH
jaH j

� �
dz
i
;

where CE is the positively oriented circle inC of center 0 and suf¢ciently small radius
E > 0. Notice that the residue depends only on the normal vector aH through its
orientation: If the orientation is changed then ResVHj changes by a factor ÿ1.

Let S�V � denote the symmetric algebra of VC. We shall view its elements as con-
stant coef¢cient holomorphic differential operators on VC in the usual fashion, that
is, via the homomorphism induced by viewing the elements of VC as constant vector
¢elds on VC. The real subalgebra of S�V � generated by V (and 1) is denoted SR�V �;
its elements are called the real elements in S�V �.

LEMMA 1.1. Let d 2NH, j 2 M�V ;H; d�, and H 2 H. Then

ResVHj�l� �
2p

�d�H� ÿ 1�! jaH j2d�H�ÿ1
ad�H�ÿ1H �qHj��l�; �l 2 reg�HC;HH ��:

Proof. Fix l 2 reg�HC;HH� and let cl�z� be as above. Then we have
`H �l� zaH=jaH j� � zjaH j and, hence,

zd�H�cl�z� � jaH jÿd�H��qHj� l� z
aH
jaH j

� �
:

Thus we see that cl has a pole of order at most d�H� at 0, and hence

Resz�0cl�z� �
1

�d�H� ÿ 1�!
d

dz

� �d�H�ÿ1
�zd�H�cl�z��z�0

� 1
�d�H� ÿ 1�! jaH j

ÿ2d�H��1ad�H�ÿ1H �qHj��l�;

and the lemma follows. &

LEMMA 1.2. Let d 2NH, L 2 A, and u 2 S�V �.There exists an element d 0 2NHL

such that u�qLj�jLC
2 M�L;HL; d 0� for all j 2 M�V ;H; d�:

Proof. For each H 0 2 HL we have

H�H 0� � fH 2 H j H � H 0g 6� H�L�:
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Let n � deg�u� and let d 0 2NHL be de¢ned by

d 0�H 0� � �n� 1�
X

H2H�H 0�nH�L�
d�H�; �H 0 2 HL�: �1:6�

We claim that the result holds for this d 0.
We assume that for each H 0 2 HL a normal vector in VL \ V?H 0 has been chosen,

and that a corresponding ¢rst order polynomial `LH 0 :LC ! C is de¢ned (cf. (1.1)),
such thatH 0C � �`LH 0 �ÿ1�0�. We observe that `LH 0 is proportional to `HjLC by a non-zero
real constant, for every H 2 H�H 0� n H�L�. If K � L is compact we de¢ne

pLK �
Y

H 02HL;H 0\K 6�;
�`LH 0 �d

0�H 0�:LC ! C; �1:7�

our claim then amounts to pLKu�qLj� being holomorphic on an open neighborhood of
K � iVL in LC for all j 2 M�V ;H; d�.

Let

p �
Y

H2HnH�L�;H\K 6�;
`d�H�H :VC! C;

then pLK � cpn�1jLC
for some non-zero constant c 2 R. Moreover, if K 6� ; we have

pK � p qL, where pK and qL are given in (1.2) and (1.5). On reg�LC;HL� we now
have, by the Leibniz rule of differentiations,

u�qLj� � u�pÿ1pKj� � pÿ�n�1�
X
j

qjuj�pKj� �1:8�

for some polynomials qj on LC and some uj 2 S�V �, and the claimed property of
pLKu�qLj� follows. &

From Lemmas 1.1 and 1.2 we immediately obtain:

COROLLARY 1.3. Let d 2NH, H 2 H. There exists d 0 2NHH such that ResVH maps
M�V ;H; d� intoM�H;HH ; d 0�:

1.3. LAURENT OPERATORS

Let L 2 A. We call a linear map R:M�V ;H� !M�L;HL� a Laurent operator if
there exists, for each d 2NH, an element ud in S�V?L � such that

Rj � ud�qL;d j�jLC
�1:9�

for all j 2 M�V ;H; d�. Here qL;d is de¢ned in (1.5). A Laurent operator is called real
if it can be realized as above with ud real for all d. In particular, if VC � C and L is a
point, then a (real) Laurent operator is a map that associates to a meromorphic
function a ¢nite (real) linear combination of the coef¢cients of its Laurent series
at this point. We denote by Laur�V ;L;H�, resp. LaurR�V ;L;H�, the space of
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Laurent operators, resp. real Laurent operators, from M�V ;H� to M�L;HL�.
Notice that Laur�V ;V ;H� � C; the only Laurent operators fromM�V ;H� to itself
are the constants times the identity operator. It follows from Lemma 1.1 and
Corollary 1.3 that ResVH 2 LaurR�V ;H;H�, for H 2 H.

Notice that the notion of a Laurent operator is independent of the choice of the
normal vectors aH for H 2 H. We now ¢x such a choice. Then the following lemma
shows that for a given Laurent operator R, the elements ud 2 S�V?L �in (1.9) are
unique. Moreover, ud only depends on d through its restriction to H�L�. We denote
by uR the family �ud�d2NH�L� of elements from S�V?L �.

LEMMA 1.4. Let d 2NH�L� and u 2 S�V?L � be given. If u�qL;d j�jLC
� 0 for all

j 2 M�V ;H�L�; d� then u � 0.
Proof. Since qÿ1L;dc 2 M�V ;H�L�; d� for c 2 O�VC�, we have ucjLC

� 0 for all such
functions c.The space O�VC� is translation invariant, and so is the differential
operator u, hence we conclude that uc � 0 on VC, for all c 2 O�VC�. This implies
u � 0. &

It will be useful to have identi¢ed exactly those families u � �ud�d2NH�L� of elements
from S�V?L � that occur as uR for some Laurent operator R 2 Laur�V ;L;H�
(clearly,uR determines R). For this purpose we need the following de¢nitions.

Let V be a real linear space, and let X be a ¢nite (possibly empty) collection of
complex nonzero linear functionals on V . For d 2NX we de¢ne the homogeneous
polynomial function $X ;d :VC! C by

$X ;d �
Y
x2X

xd�x�

(if X � ; we let $X ;d � 1). Let � be the partial ordering on NX de¢ned by d 0 � d if
and only if d 0�x�W d�x� for all x 2 X : For d 0; d with d 0 � d we de¢ne
d ÿ d 0 2NX componentwise by differences as suggested by the notation. Then
$X ;d � $X ;d 0$X ;dÿd 0 . It follows from the Leibniz rule that given u 2 S�V � there exists
an element u0 2 S�V � such that

u�$X ;dÿd 0j��0� � u0j�0�
for all germs j of holomorphic functions at 0 onVC. Clearly u0 is unique; we denote it
by jd 0;d�u� (in fact, it only depends on d ÿ d 0). It is also clear that jd 00;d 0 � jd 0;d � jd 00;d if
d 00 � d 0 � d: We now de¢ne the space S �V ;X � as the projective limit

S �V ;X � � lim ÿ �S�V �; j :�: �1:10�

By de¢nition, this is the space of all families �ud�d2NX of elements in S�V �, that are
directed with respect to the maps jd 0;d , that is, satisfy

ud 0 � jd 0;d�ud� �1:11�
for all d 0; d with d 0 � d.
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Let us now return to the situation that H is a hyperplane con¢guration in V and
L 2 A. Let

X �L� � faH j H 2 H�L�g:
Via the inner product on V we identify the elements of X �L� with linear functionals
on V?L , and via the bijection H�L� ! X �L� we identify NX �L� with NH�L�. Then

qL;d �l� n� � $X �L�;d�n�; �1:12�
for all l 2 LC, n 2 V?LC, d 2NH�L�. Hence for u 2 S�V?L �and d 0 � d we have

u�qL;dj�jLC
� jd 0;d�u��qL;d 0j�jLC

�1:13�
for all functions j, that are de¢ned and meromorphic on a neighborhood of
LC and for which qL;d 0j is regular on reg�LC;HL�. In particular, if
R:M�V ;H� !M�L;HL� is a Laurent operator, then the family uR � �ud�d2NH�L�
satis¢es (1.9), hence

ud�qL;dj�jLC
� ud 0 �qL;d 0j�jLC

for d 0 � d and j 2 M�V ;H; d 0�, and we conclude from (1.13) and Lemma 1.4 that
(1.11) holds. Hence uR 2 S �V?L ;X �L��.

LEMMA 1.5. The map R 7! uR is a linear isomorphism Laur�V ;L;H�!�
S �V?L ;X �L��.

Proof. Only the surjectivity remains to be seen. Let u � �ud�d2NH�L� 2
S �V?L ;X �L��. For each d 2NH we let ud :� udjH�L� and de¢ne R � Ru:

M�V ;H; d� !M�L;HL� by (1.9) for j 2 M�V ;H; d� (cf. Lemma 1.2). It follows
easily from (1.11) and (1.13) that R is well de¢ned on M�V ;H�. That R belongs
to Laur�V ;L;H� and sati¢es u � uR is then obvious. &

We call S �V?L ;X �L�� the projective limit model for Laur�V ;L;H�. In what
follows we shall sometimes identify objects in Laur�V ;L;H� and its model by means
of the isomorphism in Lemma 1.5. In particular, since S �V?L ;X �L�� only depends
on H through H�L�, it follows that Laur�V ;L;H� ' Laur�V ;L;H�L��.

EXAMPLE 1.6. Let V ' R; let x 2 V n f0g; let x 2 V� be de¢ned by x�x� � 1; and
¢nally let X � fxg:We use the canonical identi¢cation S�V � ' C�x�: It is easily seen
that the map jd;d�1:S�V � ! S�V � for each d 2N is the map u 7! u0 that maps a
polynomial u 2 C�x� to its derivative. Hence, S �V ;X � is the space of all sequences
�ud�d2N of polynomials ud 2 C�x�, for which u0d�1 � ud for all d 2N. For example,
let l 2 Z be ¢xed, then S �V ;X � contains the sequence rl � �rld �d2N de¢ned by
rld � �d ÿ l�!ÿ1xdÿl for dX max�0; l� and rld � 0 for max�0; l� > dX 0.

Let q 2 V , L � fqg, and assume that L belongs to the hyperplane con¢gurationH.
The Laurent operator Ru 2 Laur�V ;L;H� corresponding to a sequence
�ud�d2N 2 S �V ;X � is given by j 7! ud�@x���xÿ q�dj��q� for j 2 M�V ;H� and d
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suf¢ciently large. For example, the Laurent operator that corresponds to the
sequence rl just de¢ned is given by j 7! �d ÿ l�!ÿ1�@x�dÿl��xÿ q�dj��q� for d suf-
¢ciently large, which is the operator that maps j to the coef¢cient of �xÿ q�ÿl
in its Laurent expansion at q.

On the other hand, if L � fqg =2H, then H�L� � ; andNH�L� has just one element.
Hence S �V ;X �L�� � S�V �, and the Laurent operator that corresponds to a
polynomial u 2 C�x� is given by j 7! u�@x��j��q�.

The family of Laurent operators is relatively large. This is illustrated by the pre-
vious example as well as the following lemma:

LEMMA 1.7. Let d 0 2NX .

(i) The map jd 0;d :S�V � ! S�V � is surjective for all d � d 0.
(ii) The canonical map u 7! ud 0 from S �V ;X � to S�V � is surjective.

Proof. (i) Since jd 00;d 0 � jd 0;d � jd 00;d if d 00 � d 0 � d, it suf¢ces to prove the surjectivity
for the case when d�x� � d 0�x� for all elements x 2 X except a given one, for which
d�x� � d 0�x� � 1. Assume that this is the case, and let x 2 X be this given element.
Then $X ;dÿd 0 � x. Furthermore, let u0 2 S�V � be given. By linearity ofjd 0;d we
may assume that u0 is of the form u0 � u00akx with k 2N and u00 2 S�x?�, where
ax 2 V is determined by x � hax; �i. It is then seen from the Leibniz rule that
�u0ax��xj��0� � �k� 1�jxj2u0�j��0�. Hence, jd 0;d�u0ax� � �k� 1�jxj2u0, from which the
asserted surjectivity of jd 0;d follows.

(ii) Let u0 2 S�V � be given. For k 2N let dk 2NX be given by dk�x� � d 0�x� � k for
each x 2 X . By (i) we can successively choose elements u0; u1; . . . 2 S�V �, such that
u0 � u0 and jdkÿ1;dk �uk� � ukÿ1 for all kX 1. For arbitrary d 2NX we now de¢ne
ud 2 S�V � as follows. For k suf¢ciently large we have d � dk. Let ud � jd;dk �uk�.
It is easily seen that ud is well-de¢ned and that the string �ud �d2NX belongs to
S �V ;X �. The surjectivity follows, since ud 0 � ud0 � u0 � u0. &

1.4. COMPOSITION OF LAURENT OPERATORS

Let L;L0 2 A with L0 � L. It is easily seen that HL0 � �HL�L0 .

LEMMA 1.8. Let R:M�V ;H� !M�L;HL� and R0:M�L;HL� !M�L0;HL0 � be
Laurent operators. Then R0 � R:M�V ;H� !M�L0;HL0 � is also a Laurent operator.
If R and R0 are real, then so is R0 � R.

Proof. Let d 2NH. Since R is a Laurent operator there exists u � ud 2 S�V?L � such
that (1.9) holds for j 2 M�V ;H; d�. According to Lemma 1.2 and its proof we have
Rj 2 M�L;HL; d 0� where d 0 2NHL is given by (1.6) with n equal to the degree of u.
Similarly, since R0 is a Laurent operator there exists u0 2 S�VL \ V?L0 � such that
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R0j0 � u0�qLL0;d 0 j0�jLC
0 for j0 2 M�L;HL; d 0�, where

qLL0;d 0 �
Y

H 02HL�L0�
�`LH 0 �d

0�H 0�:LC! C �1:14�

is the analogue of (1.5), for L0 inside L (see also the explanation leading up to (1.7)).
Thus we have

�R0 � R�j � u0�qLL0;d 0 �u�qL;d j��jLC
�jL0C;

and the claim is that there exists u00 2 S�V?L0 � such that this equals u00�qL0;d j�jL0C .
LetH 0 2 HL. As mentioned in the proof of Lemma 1.2, we have that `LH 0 is propor-

tional to `HjLC by a nonzero real constant, for all H 2 H�H 0� n H�L�. It then follows
from (1.4) and (1.6) that

qLL0;d 0 � c
h Y
H2H�L0�nH�L�

�`H �d�H�
in�1
jLC

with c 2 R n f0g. Let p:VC! C denote the polynomial inside the square brackets,
and observe that qL0;d � p qL;d . We now have

u0�qLL0;d 0 �u�qL;d j��jLC
�jLC
0 � c u0��pn�1u�pÿ1qL0;d j��jLC

�jL0C � u00�qL0;d j�jL0C;
�1:15�

where

u00 � c u0 � pn�1 � u � pÿ1:
The latter is a differential operator onVC whose coef¢cients are holomorphic (by the
Leibniz rule). Moreover they are invariant under translations in directions of
VL0 ,because p is invariant under such translations. Since we take restrictions to
L0C in (1.15) we can replace u00 in (1.15) by the constant coef¢cient operator obtained
from it by evaluation of its coef¢cients in any point of L0C, and since u and u0 both
belong to S�V?L0 �, so does then u00. It is also seen that if u and u0 are real, then
so is u00. This completes the proof. &

1.5. FUNCTIONS WITH POLYNOMIAL DECAY

Let H be an af¢ne hyperplane con¢guration, and let d 2NH. We denote by
P�V ;H; d� the subspace of M�V ;H; d� consisting of those functions j for which

sup
l2K�iV

�1� jlj�nj�pK;dj��l�j <1 �1:16�

for every compact subset K of V , and every n 2N (with pK;d de¢ned by (1.2)).
Endowed with the collection of seminorms nK;n given by the left-hand side of (1.6),
the space P�V ;H; d� becomes a Frëchet space.
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Let FV :C1c �V � ! O�VC� be the Fourier^Laplace transform, de¢ned by

FVf �l� �
Z
V

eÿhl;nif �n� dmV �n�;

where dmV is Lebesgue measure on V . This is an isomorphism onto the Paley^Wiener
space PW�V �, consisting of all the functions c 2 O�Vc� of exponential type, i.e., for
which there exists A > 0 such that

sup
l2VC

�1� jlj�neÿA jRe�l�j jc�l�j

is ¢nite for all n 2N. Notice that if c 2 PW�V � then the functions qÿ1L;dc belong to
P�V ;H; d�, for all L 2 A. Exploiting this observation, as in the proof of Lemma
1.4, we can improve that lemma as follows:

LEMMA 1.9. Let d 2NH�L� and u 2 S�V?L � be given. If u�qL;d j�jLC
� 0 for all

j 2 P�V ;H�L�; d� then u � 0.

Observe that if d � d 0 in NH then P�V ;H; d� � P�V ;H; d 0� with continuous
inclusion map. We now de¢ne P�V ;H� � [d2NHP�V ;H; d� and endow this space
with the inductive limit of the topologies. We de¢ne the spaces P�L;HL� similarly
for all L 2 A. It follows from Lemma 1.9 that a Laurent operator
R:M�V ;H� !M�L;HL� is uniquely determined by its restriction to P�V ;H�L��.

LEMMA 1.10. Let L 2 A and let R:M�V ;H� !M�L;HL� be a Laurent operator.
Then R maps P�V ;H� continuously into P�L;HL�.

Proof. Let d 2NH and let u � ud 2 S�V?L � be such that (1.9) holds. Then we know
from Lemma 1.2 that there exists d 0 2NHL such that R maps M�V ;H; d� into
M�L;HL; d 0�. We claim that it maps P�V ;H; d� continuously into P�L;HL; d 0�.
Let j 2 P�V ;H; d�, let K � L be compact and let pLK be given by (1.7). The required
estimate for pLKu�qL;d j� now follows from (1.8) and Lemma 1.11, to be proved next.
The lemma follows immediately. &

LEMMA 1.11. Let K � V be compact. Then there exists a compact set K 0 � V, and
for every u 2 S�V � and n 2 Z a constant C > 0 such that

sup
l2K�iV

�1� jlj�nj�upK;dc��l�jWC sup
l2K 0�iV

�1� jlj�nj�pK 0;dc��l�j

for all d 2NH and c 2 M�V ;H; d�.
Proof. Fix the compact set K 0 such that its interior contains K , and such that it

meets only those hyperplanes from H that already meet K . Then pK 0;d � pK;d for
all d 2NH.

Fix linear coordinates l1; . . . ; lm on VC that are real on V ; for l0 2 VC, E > 0, let
D�l0; E� denote the polydisc fl 2 VC j 8j : jlj ÿ lj0j < Eg. Fix E > 0 such that
D�l0; E� \ V � K 0 for all l0 2 K . Then D�l0; E� � K 0 � iV for every l0 2 K � iV :
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By a standard application of the Cauchy integral formula, we obtain the estimate

j�upK;dc��l0�jWC0 sup
l2D�l0;E�

j�pK;dc��l�j

for all d 2NH, c 2 M�V ;H; d� and l0 2 K � iV , with C0 > 0 a constant depending
only on u. On the other hand, there exists a constant C0 > 0; such that for all
l0 2 VC and all l 2 D�l0; E�; we have Cÿ10 W �1� jl0j��1� jlj�ÿ1 WC0: Combining
this estimate with the former one, we obtain

�1� jl0j�nj�upK;dc��l0�jWC sup
l2D�l0;E�

�1� jlj�nj�pK;dc��l�j;

with C > 0 depending only on u, n. The proof is now completed by using that
D�l0; E� � K 0 � iV for every l0 2 K � iV . &

1.6. THE RESIDUE OPERATOR FOR ADJACENT CHAMBERS

Let H be as above. We call the connected components of reg�V ;H� the chambers of
V (with respect to H), and denote the set of these by comp�V ;H�. The chambers
are convex sets. Let C be a chamber in V , and let C denote its closure. If
H 2 H and the intersectionH \ C has a nonempty interior in H we call this interior
a face of C. It is easily seen that the face equals C \ reg�H;HH �, and that it is a
chamber of H with respect to HH .

IfC is a chamber ofV we denote by pt�C� a point inC, arbitrarily chosen.We shall
use this symbol only when it makes no difference if a different choice had been made.

Two chambersC1 andC2 ofV are called adjacent if they are separated by precisely
one hyperplaneH 2 H (i.e., there is a path from pt�C1� to pt�C2� passing through [H
only in reg�H;HH �). Notice that this is precisely the case when C1 and C2 have a
unique face in common; we denote this face by C1 ^ C2. If C1 and C2 are adjacent
with the separating hyperplane H 2 H we say that the pair �C1;C2� is positively
ordered if the chosen normal vector aH points in the direction from C1 to C2.

Let dmV denote Lebesgue measure on V , normalized with respect to the inner
product. If j is a measurable function de¢ned on the set Z� iV � VC for some point
Z 2 V we denote by

R
Z�iV j dmV the integral

R
V j�Z� in� dmV �n�, if it exists. In

particular, if j 2 P�V ;H�, then it follows from (1.16) that this integral converges
for all Z 2 reg�V ;H�. Moreover, it follows easily from Cauchy's theorem together
with (1.16) that the value of the integral only depends on Z through the chamber
C 2 comp�V ;H� to which Z belongs. We therefore write it asZ

pt�C��iV
jdmV :

If L 2 Awe de¢ne
R

pt�C��iVL
j dmV similarly, for C 2 comp�L;HL� and j 2 P�L;HL�.

In particular, if L is a point, L � fl0g, then C � L is the only chamber in L, andR
pt�C��iVL

j dmL is the evaluation of j in l0.
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PROPOSITION 1.12. Let C1;C2 2 comp�V ;H� be adjacent chambers, with the
common face C1 ^ C2 � H, H 2 H. ThenZ

pt�C2��iV
j dmV ÿ

Z
pt�C1��iV

j dmV � E
Z

pt�C1^C2��iVH

ResVHj dmH �1:17�

for all j 2 P�V ;H�, where E � 1 if �C1;C2� is positively ordered, and E � ÿ1
otherwise.

Proof.Notice that both sides of (1.17) are independent of the choice of aH . Hence
we may assume that �C1;C2� is positively ordered. Fix points Zj 2 Cj, j � 1; 2. We
may assume that Z2 ÿ Z1 2 V?H ; this vector then points in the same direction as
aH . Moreover, we may assume that the line segment from Z1 to Z2 passes [H in
exactly one point, p 2 reg�H;HH �. Then

Zj � p� xj
aH
jaH j ; �j � 1; 2�

for suitable real numbers x1 and x2 with x1 < 0 < x2.
When evaluating the integrals along V we shall be using the diffeomorphism

F:VH �R! V given by

F�l; y� � l� y
aH
jaH j :

Obviously the Jacobian of this map is 1. We now haveZ
Z2�iV

j dmV ÿ
Z
Z1�iV

jdmV

�
Z
V
�j�Z2 � in� ÿ j�Z1 � in�� dmV �n�

�
Z
VH

Z
R
�j�Z2 � iF�l; y�� ÿ j�Z1 � iF�l; y��� dy dmH �l�

�
Z
VH

Z
R
j p� il� �x2 � iy� aHjaH j
� �

dyÿ
�

ÿ
Z
R
j p� il� �x1 � iy� aHjaH j
� �

dy
�

dmH �l�:

The function cp�il: z 7!j� p� il� zaH=jaH j� on C is meromorphic, and its only
possible singularity in �x1; x2� � iR occurs at z � 0. It now follows from the residue
theorem and the estimates in (1.6) that the difference between the two inner integrals
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in the expression above equals

2pResz�0cp�il�z� � ResVHj�p� il�;
and the result is proved. &

1.7. RESIDUE WEIGHTS

Let

L � LH :� fH1 \ . . . \Hk 6� ; j Hi 2 H; k > 0g [ fVg � A

be the collection of all the nonempty intersections of hyperplanes from H, together
with the full space V . We order L by inclusion. Let comp�H� �
[L2Lcomp�L;HL� denote the collection of all chambers of all the subspaces
L 2 L. By a residue weight associated to H we mean a function t: comp�H� !
�0; 1� such that for each L 2 L:

(a) tjcomp�L;HL� has ¢nite support, i.e., the set fC 2 comp�L;HL� j t�C� 6� 0g is ¢nite,
(b)

P
C2comp�L;HL� t�C� � 1.

For example, if a distinguished nonempty ¢nite set of chambers, C�L� �
comp�L;HL�, has been chosen for each L 2 L, then we obtain a residue weight
by letting t�C� � 1=jC�L�j if C 2 C�L� for some L 2 L and t�C� � 0 otherwise. Here
jC�L�j denotes the number of elements in C�L�.

The set of residue weights associated to H is denoted WT�H�. Observe that if
t 2WT�H� and L 2 L then the restriction tL of t to comp�HL� �
[L02LLcomp�L0;HL0 � belongs to WT�HL�. Here LL:� fL0 2 L j L0 � Lg.

THEOREM 1.13. Let H be an af¢ne hyperplane con¢guration in V and let
t 2WT�H�. Then for every chamber C 2 comp�V ;H� there exists a unique family
of Laurent operators ResC;tL :M�V ;H� !M�L;HL�, L 2 L, such that

(a) fL 2 L j ResC;tL 6� 0g is ¢nite,
(b) for all j 2 P�V ;H� we haveZ

pt�C��iV
j dmV �

X
L2L

X
C02comp�L;HL�

t�C 0�
Z

pt�C0��iVL

ResC;tL j dmL: �1:18�

Moreover, the operators ResC;tL are real and we have ResC;tV � I, the identity operator.
For H 2 H, the operator ResC;tH is a real multiple of ResVH.

The proof of this result (inspired by [10, Lemma 3.1]) will be given in the following
two subsections. Based on the theorem we de¢ne the residual support of
C 2 comp�V ;H�, relative to t, as the ¢nite subset of L given in item (a). It is denoted
ressupp�C; t�. The expression (1.18) gives the motivation for the phrase `residue
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weight'. Notice in particular, that the term in (1.18) corresponding to L � V readsX
C02comp�V ;H�

t�C0�
Z

pt�C0��iV
j dmV ;

that is, it is a weighted sum of shifted integrals.

1.8. THE EXISTENCE OF THE RESIDUE OPERATORS

We ¢rst prove the existence of the operators ResC;tL in Theorem 1.13. The proof is
carried out by induction on the dimension of V . Thus let m 2N and assume that
the existence of the residue operators has been established for all pairs �V ;H� with
dimV < m and all residue weights t 2WT�H�(if m � 0 this is certainly all right,
as there are no such pairs). Let a space V of dimension m and a chamber
C 2 comp�V ;H� be given. We rewrite the left-hand side of (1.18) as follows:Z

pt�C��iV
jdmV �

X
C02comp�V ;H�

t�C 0�
Z

pt�C0��iV
j dmV�

�
X

C02comp�V ;H�
t�C0�

Z
pt�C��iV

j dmV ÿ
Z

pt�C0��iV
jdmV

� �
:

The ¢rst sum on the right-hand side is going to represent the part of (1.18) where
L � V , with ResC;tV � I. In the second sum, the expression in the square brackets
can be written as a sum of termsZ

pt�C1��iV
j dmV ÿ

Z
pt�C2��iV

j dmV

with adjacent chambers C1;C2 2 comp�V ;H�. Using Proposition 1.12 we can write
each of these terms as

�
Z

pt�C1^C2��iVH

ResVHj dmH ;

where H 2 H is the separating hyperplane. By the induction hypothesis applied to
�H;HH � and the restriction tH of t to comp�HH �, the latter expression can be written
as

�
X
L2LH

X
C002comp�L;HL�

t�C00�
Z

pt�C00��iVL

ResC1^C2;tH
L ResVHj dmL

with real Laurent operators ResC1^C2;tH
L :M�H;HH � !M�L;HL�. By Lemma 1.8

the operator

R � ResC1^C2;tH
L �ResVH
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is a real Laurent operator. The existence of the operator ResC;tL now follows; it is a
real linear combination of operators of the form R, with H 2 H�L�.

1.9. THE UNIQUENESS OF THE RESIDUE OPERATORS

We shall now establish the uniqueness part of Theorem 1.13. Let t 2WT�H� and
C 2 comp�V ;H� be given. If we have two families of operators satisfying (a)
and (b) in Theorem 1.13, we obtain by subtraction a family of Laurent operators
RL:M�V ;H� !M�L;HL�, L 2 LH, satisfying (a) and

0 �
X
L2L

X
C02comp�L;HL�

t�C 0�
Z

pt�C0��iVL

RLj dmL

for all j 2 P�V ;H�. In order to obtain the desired result we must prove that RL � 0
for all L 2 L. This results immediately from the following proposition.

PROPOSITION 1.14. Let H and t be as in Theorem 1.13, and let d 2NH. Assume
there is given, for each L 2 L, an element uL 2 S�V?L � such that

(a) fL 2 L j uL 6� 0g is ¢nite,
(b) for all j 2 P�V ;H; d� we have

0 �
X
L2L

X
C02comp�L;HL�

t�C0�
Z

pt�C0��iVL

uL�qL;dj� dmL:

Then uL � 0 for all L.
Proof. We shall proceed by downward induction on the dimension of L. Thus let

l 2N and assume that it has been already established that uL � 0 for all L 2 Lwhose
dimension is strictly greater than l (if l � dimV this is certainly all right as there are
no such subspaces L). Let L0 2 L be of dimension l. We claim that uL0 � 0. Let
L� � fL 2 L j dimLW l;L 6� L0g. We have

0 �
X

L2L�[fL0g

X
C02comp�L;HL�

t�C 0�
Z

pt�C0��iVL

uL�qL;dj� dmL �1:19�

for all j 2 P�V ;H; d�.
Notice that for each L 2 L� we have L0 6� L and, hence, H�L� 6� H�L0�. Choose

HL 2 H�L� n H�L0�, then for NL 2N suf¢ciently large we have uL�`NL
HL

f � � 0 on
reg�LC;HL� for all functions f holomorphic on a neighborhood in VC of this set.
Let

q �
Y

L2L�;uL 6�0
`NL
HL

(where, as usual, an empty product is 1), then uL�qf � � 0 on reg�LC;HL� for f as
before. Moreover, q is not identically zero on L0. We now have (insert qj in place

A RESIDUE CALCULUS FOR ROOT SYSTEMS 45



of j in (1.19))

0 �
X

C02comp�L0;HL0 �
t�C 0�

Z
pt�C0��iVL0

uL0�qL0;d qj� dmL0

for all j 2 P�V ;H; d�. In particular this holds if j has the form qÿ1L0;dc with
c 2 PW�V �(see above Lemma 1.9), and we thus obtain

0 �
X

C02comp�L0;HL0 �
t�C 0�

Z
pt�C0��iVL0

uL0�qc� dmL0

for all c 2 PW�V �. The space PW�V � is invariant under multiplication by a poly-
nomial as well as under the application of a constant coef¢cient differential operator,
and functions in PW�V � restrict to functions in PW�L� for any L 2 L. Hence the
integrand in the expression above belongs to PW�L0�. By Cauchy's theorem we
can then replace each point pt�C 0� by any other point of L0, in particular, by
the central point, and we obtain (using property (b) in the de¢nition of a residue
weight)

0 �
Z
c�L0��iVL0

uL0�qc� dmL0

for c 2 PW�V �. The space PW�V � is also invariant under translations by elements of
VC, and hence

0 �
Z
iVL0

uL0 �q0c� dmL0
�1:20�

for all c 2 PW�V �,where q0�l� � q�l� c�L0��. Notice that the polynomial q0 is not
identically zero on VL0C. The space ff jiV j f 2 PW�V �g is dense in the Schwartz space
S�iV � (where iV is considered as a real Euclidean space), and the right-hand side of
(1.20) is continuous on this space. Hence this identity holds for all c 2 S�iV �.

LetO1 � iV?L0
andO2 � iVL0 be open nonempty sets such that 0 2 O1 and such that

q0 is nowhere zero on O � O1 � O2 � iV . Then it follows from (1.20) that we have

0 �
Z
iVL0

uL0cdmL0
�1:21�

for c 2 C1c �O�. If uL0 6� 0 there exists a function f1 2 C1c �O1� such that uL0 f1�0� � 1.
Moreover, there exists a function f2 2 C1c �O2� such that

R
iVL0

f2 dmL0
� 1. Let

c � f1 
 f2 2 C1c �O�, then we haveZ
iVL0

uL0c dmL0
� 1;

contradicting (1.21). Hence uL0 � 0 as claimed. This completes the proof of
Proposition 1.14, and thus also that of Theorem 1.13. &
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1.10. SUBCONFIGURATIONS

In the remainder of Section 1 we give some properties of the residue operators that
will be used in the following sections.The properties are easily established by means
of the uniqueness inTheorem 1.13.

Suppose H0 and H are af¢ne hyperplane con¢gurations in V with H0 � H.
We call H0 a subcon¢guration of H. We have M�V ;H� � M�V ;H0� and
P�V ;H� � P�V ;H0�. In general a chamber C0 2 comp�V ;H0� contains several
chambers from comp�V ;H�; we denote by comp�C0;H� the set of these chambers.

Let L 2 A, then H0;L:� �H0�L is a subcon¢guration of HL. Moreover, if R is a
Laurent operatorM�V ;H� !M�L;HL�, then it follows from (1.9) that the restric-
tion of R to M�V ;H0� maps into M�L;H0;L� and is a Laurent operator.

The set L0:� LH0 is a subset of L � LH. The inclusion map i:H0,!H induces a
map i� from WT�H� to WT�H0� as follows. Let t 2WT�H� and de¢ne for
L 2 L0 and C0 2 comp�L;H0;L�:

i��t��C0� �
X

C2comp�C0;HL�
t�C�: �1:22�

It is easily seen that i��t� is a residue weight for �V ;H0�. It is called the induced
weight.

PROPOSITION 1.15 Let C0 2 comp�V ;H0�, C 2 comp�C0;H�, t 2WT�H� and
L 2 L. Then

ResC;tL jM�V ;H0� � Res
C0;i��t�
V if L 2 L0;

0 otherwise:

�
�1:23�

Proof. By Theorem 1.13 (for the con¢guration H0 and the weight i��t�) and (1.22)
we have, for all j 2 P�V ;H0�:Z

pt�C0��iV
j dmV

�
X
L2L0

X
C002comp�L;H0;L�

X
C02comp�C00;HL�

t�C0�
24 35Z

pt�C00��iVL

Res
C0;i��t�
L j dmV :

Since pt�C0� 2 C 00 for all C
0 2 comp�C 00;HL� we can insert these points for pt�C 00� on

the right-hand side, and we obtainZ
pt�C0��iV

j dmV �
X
L2L0

X
C02comp�L;HL�

t�C 0�
Z

pt�C0��iVL

Res
C0;i��t�
L j dmL �1:24�

for all j 2 P�V ;H0�.
Let d0 2NH0 , and de¢ne d 2NH by d�H� � d0�H� for H 2 H0, and d�H� � 0

otherwise. Then P�V ;H; d� � P�V ;H0; d0�, and we have the equation (1.18) for
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all j in this space. Since pt�C� 2 C0 the left-hand sides of (1.18) and (1.24) coincide,
hence so do the right-hand sides, and the identities in (1.23) follow by means of
Proposition 1.14. &

In particular, we have the following immediate consequence of Proposition 1.15.

COROLLARY 1.16. LetH, t, and C be as in Theorem 1.13, and letj 2 M�V ;H�. Let
H0 � H denote the set of hyperplanes along which j is singular, and let L0 � LH0 . If
L 2 L n L0 (in particular, if j is holomorphic in a neighborhood of L), then
ResC;tL j � 0.

For the next result we recall (see below Lemma 1.5) that we have identi¢ed the
spaces Laur�V ;L;H� and Laur�V ;L;H�L��.

COROLLARY 1.17. LetH, t, and C be as above, and let L 2 L be ¢xed. Furthermore,
let C0 2 comp�V ;H�L�� be determined by C � C0, and let i:H�L�,!H be the inclusion
map. Then ResC;tL � Res

C0;i��t�
L .

(In other words, when computing the residue operator ResC;tL , or more precisely,
its representative in S �V?L ;X �L��, we can ignore all the hyperplanes from H that
do not contain L.)

Proof. This follows immediately from Proposition 1.5, since H�L� is a sub-
con¢guration of H and since in this case we have L 2 L0 � LH�L�. &

1.11. INVARIANCE UNDER ISOMETRIES

Let T :V ! V be an isometry. Then T maps hyperplanes to hyperplanes, hence it
mapsH to the af¢ne hyperplane con¢guration TH:� fTH j H 2 Hg. It is easily seen
that T maps comp�H� bijectively to comp�TH�, and thatj 7!j � Tÿ1 is a bijective
linear map from M�V ;H� to M�V ;TH�, as well as from P�V ;H� to P�V ;TH�.

Since T is an isometry there is a unique linear orthogonal transformation of V ,
which we denote by T 0, such that

�T 0u��j� � u�j � T � � Tÿ1 �1:25�

for u 2 V and j 2 C1�V �. Thus if T itself is linear then T 0 � T , and if T is a
translation then T 0 � I. Let T 0 denote as well the natural extension to S�V � of this
map, such that (1.25) holds for u 2 S�V �. Let L 2 A. Then T 0 maps S�V?L � to
S�V?TL� and S �V?L ;X �L�� to S �V?TL;TX �L��. It follows (cf. Lemma 1.5) that
T 0 induces a linear isomorphism, also denoted T 0, of Laur�V ;L;H� onto
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Laur�V ;TL;TH�, and by (1.9) and (1.25) we have

T 0R�j� � R�j � T � � Tÿ1 �1:26�
for R 2 Laur�V ;L;H�, j 2 M�V ;H�.

LEMMA 1.18. Let T :V ! V be as above, and let t 2WT�H�. Then
Tt:� t � Tÿ1 2WT�TH�. Moreover, let C 2 comp�H� and L 2 L. Then

T 0ResC;tL � ResTC;TtTL : �1:27�

Proof. The ¢rst statement is clear from the de¢nition of WT.Let j 2 P�V ;TH�,
then the claim in (1.27) amounts to

ResC;tL �j � T � � Tÿ1 � ResTC;TtTL j: �1:28�
Since T preserves Lebesgue measure we haveZ

pt�C��iV
�j � T � dmV �

Z
pt�TC��iV

jdmV : �1:29�

The identity (1.28) follows easily, if we apply (1.18) to the left-hand side of the
expression (1.29) and use the de¢nition (Theorem 1.13) of the residue operators
ResTC;TtTL . &

1.12. EXTENSIONS

Let A � V be an af¢ne subspace, and letHA be an af¢ne hyperplane con¢guration in
A. Then by

H � fH 0 � V?A j H 0 2 HAg

we de¢ne an af¢ne hyperplane con¢guration in V ;which we call the extension ofHA.
It satis¢es

VA � V?H ; for all H 2 H: �1:30�

Conversely, if a given af¢ne hyperplane con¢guration H in V satis¢es (1.30), then
H � �H \ A� � V?A for all H 2 H, and hence H is the extension of the hyperplane
con¢guration

HA :� fH \ A j H 2 Hg �1:31�

in A.

LEMMA 1.19. LetH be the extension ofHA, and let L 2 A. Assume V?A � VL. Then
L � L \ A� V?A :

A RESIDUE CALCULUS FOR ROOT SYSTEMS 49



(i) De¢ne, for j 2 M�V ;H� and n 2 V?AC, a function jn on AC by

jn�l� � j�l� n� �l 2 AC�: �1:32�

Then jn 2 M�A;HA�. Moreover, if j 2 P�V ;H� then jn 2 P�A;HA�.
(ii) Let a Laurent operator RA:M�A;HA� !M�L \ A;HL\A� be given, and de¢ne,

for j 2 M�V ;H�, a function Rj on LC by

Rj�l� n� � RA�jn��l� �1:33�

for l 2 �L \ A�C, n 2 V?AC. Then Rj 2 M�L;HL� and R:M�V ;H� !M�L;HL�
is a Laurent operator.

(iii) The map RA 7!R de¢ned in (ii) is an isomorphism of Laur�A;L \ A;HA� onto
Laur�V ;L;H�.

Proof. That L � L \ A� V?A is obvious. Let a normal vector aH 2 V?H be chosen
for eachH 2 H, then aH is also a normal vector forH \ A in VA. With these choices
¢xed, it follows that the associated ¢rst degree polynomials `H :VC! C and
`H\A:AC! C in (1.1) are related by the equation

`H �l� n� � `H\A�l� �l 2 AC; n 2 V?AC�: �1:34�
The bijection H 7!H \ A from H to HA induces a bijection NH 'NHA . Let K � A
be a compact subset. It follows from (1.34) that for every d 2NH 'NHA we have

pK;d �l� n� � pK;d�l� �l 2 AC; n 2 V?AC�:
Now (i) easily follows.

Notice that H�L� is the extension of HA�L \ A� � fH 0 2 HA j H 0 � L \ Ag. It
follows from this observation and from the identity (1.34) that for a given
d 2NH�L� 'NHA�L\A� the polynomials qL:VC! C and qL\A:AC ! C in (1.5)
are related by

qL�l� n� � qL\A�l� �l 2 AC; n 2 V?AC�: �1:35�
Let RA be given, as in (ii), and let u 2 S �V?L\A \ VA;X �L \ A�� be its image by the
isomorphism in Lemma 1.5. Here the set X �L \ A� consists of the normal vectors
in VA to the hyperplanes inHA�L \ A�. With the choice of normal vectors mentioned
earlier in the proof we have X �L \ A� � X �L�. Since V?L\A \ VA � V?L we conclude
that

S �V?L ;X �L�� � S �V?L\A \ VA;X �L \ A��: �1:36�
Hence u 2 S �V?L ;X �L��. As in Lemma 1.5 let Ru be the corresponding Laurent
operator M�V ;H� !M�L;HL�, then Ruj is given by (1.9) for j 2 M�V ;H�. It
is now easily seen from (1.35) that the function Rj de¢ned by (1.33) is equal to
Ruj. Hence R � Ru and (ii) is proved. Moreover, (iii) is an immediate consequence
of (1.36) and Lemma 1.5. &
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Remark 1.20. Given a Laurent operator R 2 Laur�V ;L;H� we denote by RA its
preimage in Laur�A;L \ A;HA� by the isomorphism of (iii). Notice that if we ident-
ify the spaces of Laurent operators with their projective limit models, as mentioned
below Lemma 1.5, then it follows from the proof above that the map R 7!RA is
just the identity map on the space (1.36).

Let L � LH, LA � LHA . The map L 7!L \ A is a bijection from L to LA. The map
C 7!C \ A is a bijection from comp�H� to comp�HA�. Hence, if t 2WT�H� we
obtain a residue weight tA 2WT�HA� by de¢ning

tA�C \ A� � t�C�; �C 2 comp�H��: �1:37�
The map t 7! tA is then a bijection from WT�H� to WT�HA�.

LEMMA 1.21. Let H be the extension of HA as above, and let t 2WT�H�,
C 2 comp�H�. Then

�ResC;tL �A � ResC\A;tAL\A �1:38�

for every L 2 L.
Proof.We de¢ne for each L 2 L the Laurent operator RL:M�V ;H� !M�L;HL�

by �RL�A � ResC\A;tAL\A . The lemma follows if we establish the identity RL � ResC;tL for
every L 2 L. By the uniqueness in Theorem 1.13 it suf¢ces to prove thatZ

pt�C��iV
jdmV �

X
L2L

X
C02comp�L;HL�

t�C 0�
Z

pt�C0��iVL

RLjdmL �1:39�

for j 2 P�V ;H�.
For each ¢xed n 2 V?AC we have

RLj�l� n� � ResC\A;tAL\A �jn��l� �l 2 �L \ A�C� �1:40�
(cf. (1.33)), andZ

pt�C\A��iVA

jn dmA

�
X
L02LA

X
C002comp�L0;HL0 �

tA�C 00�
Z

pt�C00��iVL0
ResC\A;tAL0 �jn� dmL0 ;

by the de¢nition of the residue operators for HA. Substituting L0 � L \ A and
C00 � C0 \ A �L 2 L;C0 2 comp�L;HL��, and applying (1.37) and (1.40), we obtainZ

pt�C\A��iVA

jn dmA �
X
L2L

X
C02comp�L;HL�

t�C0�
Z

pt�C0\A��iVL\A
�RLj�n dmL\A: �1:41�

Now j 2 P�V ;H�; and for every L 2 L we have RLj 2 P�L;HL�; by Lemma 1.10.
Hence the expressions on both sides of (1.41) are integrable over n 2 iV?A with respect
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to the measure dmV?A �n�:Moreover, the desired equation (1.39) follows by application
of the Fubini theorem. &

2. Support Conditions

As mentioned in the introduction we would ideally like to replace the Z in an integral
of the form (0.3) by the origin ofV ; at the cost of residual terms. This means that for
the terms in (1.18) corresponding to L � V we want to have t�C0� � 0 unless 0 2 C 0.
Likewise, in the contributions to (1.18) from L 6� V (the residual terms) we would
like to have t�C0� � 0 unless c�L� 2 C 0. In the application, in [5], to the Plancherel
decomposition, the tempered part of the spectrum is to be found on (real) af¢ne
subspaces in VC of the form c�L� � iVL. Therefore, we call this af¢ne subspace
of LC the tempered real form of LC. What we want is that only integrals over tem-
pered real forms contribute in (1.18). However, in general we cannot quite obtain
this, since c�L� may belong to the singular set sing�L;HL� for some L 2 L. What
we can obtain is that an integral over pt�C0� � iVL only contributes if c�L� is in
the closure ofC0. For this purpose, we introduce in this section the notion of a central
residue weight; this is a weight that is supported on chambers C 0 with closure con-
taining c�L� (where C 0 2 comp�L;HL�). Our main result here is Theorem 2.6, which
gives necessary conditions for an element L 2 L to produce a nonvanishing residue
operator, relative to a central weight.

2.1. CENTRAL RESIDUE WEIGHTS

Let H be an af¢ne hyperplane con¢guration in V , and let L 2 L. A chamber
C 2 comp�L;HL� is called central (in L), if its closure contains the central point
c�L�. The set of central chambers in L is denoted compc�L;HL�; this is a ¢nite
set since H is locally ¢nite. Let t: comp�H� ! �0; 1� be a residue weight. We call t
central if it has central support, that is if for every L 2 L and C 2 comp�L;HL�
we have t�C� 6� 0 only if C 2 compc�L;HL�. The set of central residue weights is
denoted WTc�H�.

EXAMPLE 2.1. A particularly simple case appears if c�L� 2 reg�L;HL� for all L 2 L.
In this case there is only one central residue weight tc, namely that which associates
the weight 1 to the unique central chamber (which contains c�L�) for each L,
and 0 to all other chambers. For this weight, (1.18) reads

Z
pt�C��iV

jdmV �
X
L2L

Z
c�L��iVL

ResC;tcL j dmL �2:1�

for C 2 comp�V ;H� and j 2 P�V ;H�.
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Asmentioned, we shall give a necessary condition for an element L 2 L to be in the
residual support ressupp�C; t� of a chamber C 2 comp�V ;H� relative to a central
weight t. If C is also central, the criterion is simple:

LEMMA 2.2. Let C 2 compc�V ;H� be a central chamber, and let t 2WTc�H� be a
central weight. Then for every L 2 ressupp�C; t� we have 0 2 L.

Proof. Observe ¢rst that if C 0 is another central chamber in V then there exists a
sequence C 01; . . . ;C 0n of central chambers in V such that C01 � C, C0n � C 0, and
C0i;C

0
i�1 are adjacent for all i.

Let L 2 L. Since t is central it follows from the preceding observation and the
proof in Section 1.8 that ResC;tL is a linear combination of operators of the form
ResC1^C2;tH

L �ResVH with adjacent chambersC1,C2, both central inV . The hyperplane
H 2 H�L� that separates C1 and C2 contains 0 since C1, C2 are both central. More-
over, C1 ^ C2 is a central chamber in H. The restriction tH of t to comp�HH � is also
central.

The proof is completed by a straightforward induction on dimV . &

For non-central chambers C our criterion for an element L 2 L possibly to be in
ressupp�C; t�(with t 2WTc�H�) is more intricate. Let us describe the idea for the
simple case of Example 2.1. Using that ResC;tcV � I we rewrite (2.1) as follows:Z

pt�C��iV
jdmV ÿ

Z
0�iV

j dmV �
X

L2L;L 6�V

Z
c�L��iVL

ResC;tcL jdmL:

It follows from the proof of this formula (see Section 1.8) that a hyperplane H 2 H
that belongs to ressupp�C; tc� must separate C and 0. In other words, the line
segment �pt�C�; 0� from pt�C� to 0 must intersect H, say in a point q. This exactly
is our condition if L � H is a hyperplane. The limitation on the lower dimensional
spaces in ressupp�C; t� is inductive: If L 2 ressupp�C; tc� has codimension 2 in
V , it must be contained in one of the above mentioned hyperplanes H, and it must
separate q from c�L�. Here q is the point mentioned above ^ notice however that
we must take into account that it depends on the choice of the point pt�C� in C.

An example is given in the Figure 1, where H consists of the two lines H1 and H2,
and C is the lower left chamber.

When we move the two-dimensional integral
R
p�iV j dmV from p � pt�C� to p � 0,

a residue occurs at a point, say q, on H1, to the left of its intersection with H2. This
residue is itself a one-dimensional integral along q� iVH1 , and has to be shifted
to an integral along the tempered real form c�H1� � iVH1 of H1. In the latter shift
another residue occurs at the point of intersection, H1 \H2; this residue is a scalar.
Thus we see that ressupp�C; t� (at most) consists of V , H1, and H1 \H2.

For the general case when c�L� is allowed to be singular in L, the result is of a
similar nature. Besides the complications arising from considering the general case,
another dif¢culty arises from the problem that the point q 2 �pt�C�; 0� \H (see
above) may be a singular point ofH. This occurs already in the simple case described

A RESIDUE CALCULUS FOR ROOT SYSTEMS 53



above, for example if in the ¢gure we add a third line,H3, that intersectsH1, resp.H2,
to the left of, resp. below, H1 \H2. If C is again the lower left chamber, the point q
where �pt�C�; 0� intersects H1 could happen to be the point H1 \H3. However, this
is not the case if pt�C� is chosen outside a certain singular subset of C (viz., outside
the line through 0 andH1 \H3). This is precisely our aim in the following subsection:
We shall de¢ne (for ¢nite hyperplane con¢gurations) an open dense subset
reg��V ;H� of reg�V ;H� such that the mentioned problem is avoided (on all levels)
if pt�C� is chosen from this subset.

2.2. WEAKLY SINGULAR HYPERPLANES

For the rest of this section we assume thatH is ¢nite. We shall de¢ne reg��V ;H� by
means of a larger (but still ¢nite) hyperplane con¢guration H�. The de¢nition
of this con¢guration is inductive.

If c 2 V and A � V is an af¢ne subspace we denote by aff�c;A� the af¢ne span of
fcg [ A, that is the set of all af¢ne combinations �1ÿ t�c� tl, t 2 R, of c and all
points l 2 A. The set aff�c;A� is obviously an af¢ne subspace, and its dimension
is dimA� 1 unless c 2 A in which case aff�c;A� � A.

We de¢ne for each L 2 L a ¢nite setH�L of hyperplanes in L, by induction on dimL,
as follows:

H�L � HL [ faff�c�L�;H 0� j H 2 HL; c�L� =2H; H 0 2 H�Hg: �2:2�

If dimL � 0 then HL � ;, and (2.2) gives H�L � ;. If dimL � 1 then (2.2) gives
H�L � HL. Let H� � H�V ; this is a ¢nite hyperplane con¢guration in V , and it
has H as a subcon¢guration. We call the hyperplanes in H� weakly singular with
respect to H.

Notice that by the inductive construction it is obvious that H�L is the set of hyper-
planes in L that are weakly singular with respect to HL.

Figure 1.
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Let sing��V ;H� � sing�V ;H�� � [H� and reg��V ;H� � reg�V ;H�� �V n [H�.
The crucial property of the re¢ned con¢guration H� is expressed in the following
lemma:

LEMMA 2.3. Let l 2 reg��V ;H� and let q 2 Rl \ sing��V ;H�, q 6� 0. Then q 2 H
for a unique hyperplane H 2 H, and Rl \H � fqg � reg��H;HH �.

Proof. Let H 2 H� be such that q 2 H. The set Rl \H is af¢ne, hence either
it is a point or it equals Rl. The latter is excluded since l is �-regular and, hence,
is not in H. Thus Rl \H � fqg. In particular, 0 =2H. It follows from (2.2)
(with L � V ) that the hyperplanes from H� n H contain 0. Hence H 2 H.
Assume q 2 sing��H;HH �. Then q 2 H 0 for some H 0 2 H�H , and since (2.2)
(again with L � V ) implies that aff�0;H 0� � sing��V ;H�, we conclude that
Rq � sing��V ;H�. Again, this contradicts the assumption on l. Hence,
q 2 reg��H;HH �. In particular, this implies the stated uniqueness of H. All state-
ments in the lemma have now been proved. &

More generally, let L0 2 L andl 2 reg��L0;HL0�, and let

` � f�1ÿ t�c�L0� � tl j t 2 Rg:

If q 2 ` \ sing��L0;HL0�, q 6� c�L0�, then q 2 L for a unique L 2 HL0 , and we have
` \ L � fqg � reg��L;HL�. This follows immediately from the preceding lemma,
applied to L0, HL0 .

2.3. THE CHAMBERS OF THE REFINED CONFIGURATION

We call a connected component of reg��V ;H� a �-chamber and denote by
comp��V ;H� the (¢nite) set (� comp�V ;H��) of these �-chambers. Since
reg��V ;H� � reg�V ;H� there is a natural surjective map {V : comp��V ;H� !
comp�V ;H� de¢ned by {V �C� � C for C 2 comp��V ;H�.

Put comp��H� � [L2Lcomp��L;HL�. Notice that here the set L is de¢ned relative
to the original con¢guration H; in general not all intersections of elements from H�
belong to L. This has the effect that in general comp��H� does not cover all of
V (whereas comp�H� does cover V ). Notice also that by the inductive construction
of H� we immediately have for all L0 2 L that comp��HL0� is the subset of
comp��H� consisting of those �-chambers C for which C \ L0 6� ; (and, hence,
C � L0).

If C 2 comp��H� we denote by L�C� the (unique) element L 2 L for which
C 2 comp��L;HL�, and we put dimC � dimL�C�. Let {: comp��H� ! comp�H�
be given by {�C� � {L�C��C�. Furthermore, let ressupp�C; t� � ressupp�{�C�; t� for
t 2WT�H�.

If p; q 2 V we write �p; q� for the line segment f�1ÿ t�p� tq j t 2 �0; 1�g from p to q,
and �p; q� :� �p; q� n fqg.
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LEMMA 2.4. Let C0 2 comp��H� be given and put L0 � L�C0�. Let p 2 C0. The set

b�p� � fC 2 comp��H� j dimC < dimC0; �p; c�L0�� \C 6� ;g

is independent of p. Moreover, dimC � dimC0 ÿ 1 for each C 2 b�p�, and
�p; c�L0�� \ C has exactly one element. Denote this element by q�p;C�, then

�p; c�L0�� \ sing��L0;HL0� � fq�p;C� j C 2 b�p�g: �2:3�

Proof. Fix C 2 b�p� and let q 2 �p; c�L0�� \C. It follows from the observation
below Lemma 2.3 that L:� L�C� is a hyperplane in L0, and that
�p; c�L0�� \ L � fqg. The hyperplane L separates C0 from c�L0�, hence
�l; c�L0�� \ L consists of a single point q�l� for all l 2 C0. Again by Lemma 2.3
we have q�l� 2 reg��L;HL� for all l 2 C0. The map l 7! q�l� is af¢ne. Hence, its
image q�C0� is a convex subset of reg��L;HL�, and as it contains q � q�p� we con-
clude that q�C0� � C. This shows that C 2 b�l� for all l 2 C0. Hence b�p� � b�l�.
The converse statement holds by symmetry of the argument. Thus b�p� is indepen-
dent of p.

It remains only to prove (2.3). That q�p;C� belongs to sing��L0;HL0 � for each
C 2 b�p� is clear. Conversely, if q 2 �p; c�L0�� \ sing��L0;HL0 � then the observation
below Lemma 2.3 shows that q 2 reg��L;HL� for some L 2 HL0 . Hence, q 2 C
for some C 2 comp��L;HL�. Hence, C 2 b�p� and q � q�p;C�. &

We write b�C0� for the set b�p� � comp��H� of the preceding lemma. We now
de¢ne the partial order relation �H on comp��H� by C 0 �H C if and only if there
exists an integer kX 0 and a sequence C0; . . . ;Ck 2 comp��H� such that C0 � C,
Ck � C 0, and Cj 2 b�Cjÿ1� for 0 < jW k.

Notice that a �-chamber C0 2 comp��H� is central (i.e., its closure contains
c�L�C0�)) if and only if b�C0� is empty. Thus the central �-chambers are the minimal
elements in comp��H� with respect to �H.

It is easily seen that if L0 2 L and C0 2 comp��L0;HL0 �, then a �-chamber
C0 2 comp��H� satis¢es C0 �H C0 if and only if it lies in L0 and satis¢es
C0 �HL0

C0. In particular, �HL0
equals the restriction of �H to comp��HL0 �.

2.4. BOUNDS ON THE RESIDUAL SUPPORT

PROPOSITION 2.5. LetH be ¢nite and t 2WTc�H� a central weight. Then for every
C0 2 comp��V ;H� and for every L 2 ressupp�C0; t� there exists a �-chamber
C �H C0 such that

c�L�C�� 2 L � L�C�: �2:4�

Proof. For any C0 2 comp��H� we denote by L��H C0� the set of those L 2 L for
which there exist a �-chamber C �H C0 such that (2.4) holds. We must show that
ressupp�C0; t� � L��H C0� for C0 2 comp��V ;H�. By the uniqueness of the residue
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operators (cf. Theorem 1.13) it suf¢ces to prove that for every C0 2 comp��V ;H�,
L 2 L��H C0�, there exists a Laurent operator RL:M�V ;H� !M�L;HL� such that
we haveZ

pt�C0��iV
j dmV �

X
L2L��HC0�

X
C02comp�L;HL�

t�C 0�
Z

pt�C0��iVL

RLj dmL �2:5�

for all j 2 P�V ;H�. We shall achieve this by induction on dimV .
Letm 2N and assume the existence of operators RL such that (2.5) holds has been

established for all pairs �V ;H� with dimV < m and all central residue weights
t 2WTc�H� (if m � 0 this is certainly all right, as there are no such pairs). Let a
pair �V ;H� be given with dimV � m, and let t 2WTc�H� and C0 2 comp��V ;H�.

Fix p 2 C0 and let C 01; . . . ;C0r be an enumeration (possibly empty) of the elements
from b�C0�. Then (cf. (2.3)) the hyperplanes Hj :� L�C 0j� 2 H cut the line segment
�p; 0� into r� 1 disjoint, nonempty pieces:

�p; 0� � [rj�0�qj; qj�1�;
where q0:� p, qj:� q�p;C 0j� for j � 1; . . . ; r, and qr�1:� 0 (we have assumed that theC0j
are numbered in suitable order). For each j � 1; . . . ; r there is a unique chamber
Cj 2 comp�V ;H� such that �qj; qj�1�� Cj. Moreover, Cj is adjacent to Cjÿ1, and
we have Cjÿ1 ^ Cj � i�C 0j�. The chamber Cr is central. It now follows from
Proposition 1.12 that for all j 2 P�V ;H� we haveZ

p�iV
jdmV �

Z
pt�Cr��iV

j dmV �
Xr
j�1

Ej

Z
qj�iVHj

ResVHj
jdmHj

�2:6�

with Ej � �1.
By Theorem 1.13 and Lemma 2.2 we haveZ

pt�Cr��iV
j dmV �

X
L2L; 02L

X
C02comp�L;HL�

t�C 0�
Z

pt�C0��iVL

ResCr;t
L j dmL:

If 0 2 L, then L 2 L��H C0� because (2.4) holds with C � C0. Hence, the ¢rst term in
(2.6) has the form desired for (2.5).

It remains to be seen that each of the termsZ
qj�iVHj

ResVHj
j dmHj

in (2.6) also has the desired form. This follows easily from our induction hypothesis
and Lemma 1.8 (use that C �HHj

C0j ) C �H C0). &

THEOREM 2.6. LetH be a hyperplane con¢guration in V and t 2WTc�H� a central
weight. Let C0 2 comp�V ;H�.Then

jc�L�jW infl2C0 jlj �2:7�
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and

hc�L�; liX 0; �l 2 C0� �2:8�

for all L 2 ressupp�C0; t�.
Proof. Fix L 2 L. It follows from Corollary 1.17 that we may assume that
H � H�L�. In particular, then H is ¢nite. In order to prove the inequalities (2.7)
and (2.8) for a chamber C0 2 comp�V ;H� it suf¢ces, by density, to establish them
for each �-chamber inside C0. We may therefore assume that C0 2 comp��V ;H�
and L 2 ressupp�C0; t�. According to Proposition 2.5 there exists a �-chamber
C �H C0 such that (2.4) holds. Then c�L� � c�L�C��. Let C1; . . . ;Ck 2 comp��H�
with Ck � C and Cj 2 b�Cjÿ1� for j � 1; . . . ; k. Let l0 2 C0 be arbitrary and deter-
mine lj 2 Cj for j � 1; . . . ; k recursively such that lj 2 �ljÿ1; cL��Cjÿ1��� \Cj. Then
jljjW jljÿ1j for j � 1; . . . ; k, and since lk 2 C we also have jc�L�C��jW jlkj. We
conclude that jc�L�jW jl0j.

Put Lj � L�Cj� and cj � c�Lj� for j � 0; . . . ; k, then c0 � 0, ck � c�L� and
V � L0 � L1 � . . . � Lk � L�C� � L:

Let j � 1; . . . ; k. Then hn; cjÿ1i � hcjÿ1; cjÿ1iW hcj; cji � hn; cji for all n 2 Lj. Hence

hlj; c�L� ÿ cjÿ1iX hlj; c�L� ÿ cji:
Since lj 2 �ljÿ1; cjÿ1� and cjÿ1 ? c�L� ÿ cjÿ1 we have

hljÿ1; c�L� ÿ cjÿ1i � tjhlj; c�L� ÿ cjÿ1i
for some tj X 1. Hence hljÿ1; c�L� ÿ cjÿ1iX tjhlj; c�L� ÿ cji for j � 1; . . . ; k, and since
hlk; c�L� ÿ cki � hlk; 0i � 0 we conclude that hl0; c�L�i � hl0; c�L� ÿ c0iX 0.

3. The Residue Scheme for Root Systems

In this ¢nal section we assume S to be a (possibly nonreduced) root system in the
¢nite dimensional real inner product space V . Let �V denote the span of S; and
V0 its orthocomplement in V ; we do not require that �V � V : We shall apply
the theory developed so far to meromorphic functions with singular hyperplanes
of the form c� a?; with c 2 V ; a 2 S:

3.1. ADMISSIBLE HYPERPLANE CONFIGURATIONS

By de¢nition an af¢ne root hyperplane in V (with respect to S) is an af¢ne
hyperplane H for which there exists a root a 2 S such that VH � a?. Thus
H � c�H� � a? � Ha;s, where

Ha;s:� fl 2 V j hl; ai � sg �3:1�
and s � hc�H�; ai 2 R. Let HS denote the set of all af¢ne root hyperplanes in V and
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HS�0� � fa? j a 2 Sg the (¢nite) subset of the hyperplanes that contain 0. An af¢ne
hyperplane con¢gurationH inV is calledS-admissible ifH � HS, that is if it consists
of af¢ne root hyperplanes. Notice that HS itself is not an af¢ne hyperplane con-
¢guration, since it is not locally ¢nite (unless dim� V � 0).

A root space in V (with respect to S) is de¢ned to be a linear subspace b in V of the
form b � a?1 \ . . . \ a?l for some roots a1; . . . ; al 2 S; we agree that V itself is a root
space. Let R � RS denote the set of root spaces, and let LS be the set of all af¢ne
subspaces L of V for which VL 2 R. The elements of LS and R are the nonempty
intersections of hyperplanes from HS and HS�0�, respectively. Given L 2 LS we put

HS�L� � fH 2 HS j H � Lg � fc�L� � a? j a 2 S; a ? VLg; �3:2�
this is a ¢nite set, hence a S-admissible hyperplane con¢guration. The set of inter-
sections associated with this con¢guration is

LS�L�:� fL0 2 LS j L0 � Lg � fc�L� � b j b 2 R; b � VLg:
In particular we have HS�V0� � HS�0� and LS�V0� � R.

Given b 2 R we write sing�b;S� and reg�b;S� for the sets of singular, resp. regular,
elements in b, associated with the hyperplane con¢guration HS�0�. This means that

sing�b;S� � Sa2Snb? a
? \ b; reg�b;S� � b n sing�b;S�:

As usual the connected components of the latter set are called the chambers of b; we
writeP�b� for the set (� comp�b;HS�0�b�) of these, and P for the set (� comp�HS�0��)
of all chambers of all b 2 R:

P � [b2R P�b�:
This union is disjoint; if P 2 P there is a unique root space bP 2 R such that P 2 P�b�.
Notice that if P 2 P�b� then the subset ÿP of b also belongs to P�b�; it is called the
chamber opposite to P. The set P is called the Coxeter complex.

Notice that if b is a root space, then the set Sb? :� S \ b? is a root system in the
subspace b? of V . Notice also that W , the Weyl group of S, acts on R: If
b � a?1 \ . . . \ a?l and w 2W then wb � fwl j l 2 bg � �wa1�? \ . . . \ �wal�?.
Moreover, w�reg�b;S�� � reg�wb;S�. Hence there is also a natural action of W
on P.

The setP�V � is in one-to-one correspondence with the set of positive systems for S;
the correspondence is given by

P$ S�P�:� fa 2 S j a > 0 on Pg:
Let P 2 P�V � be given. Each af¢ne root hyperplane H 2 HS has the form (3.1) with
a 2 S�P� and s 2 R. Let V��P;H� denote the component of V nH pointed at by
a, and Vÿ�P;H� the other component. Then

V��P;H� � fl 2 V j hl; ai0sg:
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Furthermore, if H is a S-admissible hyperplane con¢guration we put

V��P;H� � \H2HV��P;H�: �3:3�
Clearly if V��P;H� or Vÿ�P;H� is not empty, it belongs to comp�V ;H�. We say that
H is P-bounded if there exists s0 2 R such that if Ha;s 2 H for some a 2 S�P�,s 2 R,
then sX s0.

LEMMA 3.1. Let P 2 P�V � and let H be a S-admissible hyperplane con¢guration.
The following properties of H are equivalent:

(i) H is P-bounded,
(ii) Vÿ�P;H� 6� ;,
(iii) 9l0 2 V : l0 ÿ P � reg�V ;H�.

Proof. (i)) (ii). Let s0 be as above, and choose l0 2 V such that hl0; ai < s0 for all
a 2 S�P�. Then l0 2 Vÿ�P;Ha;s� for all a 2 S�P� and sX s0, and hence
l0 2 Vÿ�P;H�.

(ii) ) (iii). Take l0 2 Vÿ�P;H�. Then l0 ÿ P � Vÿ�P;H� � reg�V ;H�.
(iii) ) (i). Suppose l0 ÿ P � reg�V ;H�, and let s0 � mina2S�P�hl0; ai. If

H � Ha;s 2 H, where a 2 S�P�, then �l0 ÿ P� \H � ;. Hence hl0 ÿ l; ai 6� s for
all l 2 P, from which it easily follows that hl0; aiW s. Thus s0 W s. &

3.2. RESIDUE WEIGHTS

DEFINITION 3.2. The elements of WT�S�:�WT�HS�0�� are called residue weights
associated with S. Thus, by de¢nition, these are the functions t:P ! �0; 1� such thatP

P2P�b� t�P� � 1 for all b 2 R.
For t 2WT�S� and w 2W we de¢ne wt 2WT�S� by wt�P� � t�wÿ1P� for P 2 P.

Likewise, we de¢ne t_ 2WT�S� by t_�P� � t�ÿP�.If wt � t for all w 2W , resp. if
t_ � t, we call t Weyl invariant, resp. even.

EXAMPLE 3.3. The map P 7! 1=jP�bP�jÿ1 is a residue weight. We call it the stan-
dard weight. It is both Weyl invariant and even.

Our goal in this subsection is to de¢ne a suitable map from WT�S� to WTc�H�, for
each S-admissible hyperplane con¢guration H. For this we need the following
lemma:

LEMMA 3.4. Let a chamber Q 2 P�V � be given, and let H be a S-admissible hyper-
plane con¢guration. Then there exists a unique central chamber C 2 compc�V ;H�
for which Q \ C 6� ;.

Proof. SinceH is locally ¢nite there exists a positive number E such that 0 2 H for
all hyperplanesH 2 H that meet the open ball BE:� B�0; E� inV . Moreover, sinceH is
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S-admissible such a hyperplane is contained in sing�V ;S�. It follows that

; 6� BE \Q � BE \ reg�V ;S� � BE \ reg�V ;H� � [C2compc�V ;H�C:

Moreover, for C 2 compc�V ;H� we haveQ \ C 6� ; if and only if BE \Q \ C 6� ;,
since Q and C are both central and stable under contraction. However, since
BE \Q is convex, it follows from the above inclusions that BE \Q \ C 6� ; for
one and only one chamber C 2 compc�V ;H�. &

Let H be as above and let L 2 L � LH. Then it follows from Lemma 3.4
that for each chamber Q 2 P�VL� there is a unique central chamber CQ �
CQ;L;H 2 compc�L;HL� intersecting non-trivially with c�L� �Q.

Let now t 2WT�S� be given. We de¢ne a map oH�t�: comp�H� ! �0; 1� as follows.
Let L 2 L and C 2 comp�L;HL�. Then

oH�t��C�:�
X

Q2P�VL�;CQ�C
t�Q� �3:4�

if C is central in L, and oH�t��C�:� 0 otherwise. It is straightforward to check that
oH�t� 2WTc�H�.

3.3. LAURENT OPERATORS

Let L 2 LS and let HS�L� be the ¢nite hyperplane con¢guration in V given by (3.2).
The Laurent operators R 2 Laur�V ;L;HS�L�� map M�V ;HS�L�� into O�LC�.
Fix a chamber P 2 P�V �, and let �S�P� denote the set of indivisible roots in
S�P�. For each H 2 HS�L� we require that the chosen normal vector aH (see Section
1.1) belongs to �S�P� (it is then unique). Let b � VL. As in Section 1.3 (see (1.10))
we form the projective limit S �b?;X �, X � �S�P� \ b?. The space S �b?;X � is
isomorphic to Laur�V ;L;HS�L��(cf. Lemma 1.5); we denote it by S �b?;P�.
The map u 7!R � Ru that takes an element u 2 S �b?;P� into Laur�V ;L;
HS�L�� is given by (1.9), that is, by

Rj�l� � ud �$X ;djl��0�; �l 2 LC�; �3:5�

for d 2NHS�L� 'N
�S�P�\b? ,j 2 M�V ;HS�L�; d�. Here

jl: b
? 3 n 7!j�l� n�;

and

$X ;d : b? 3 n 7!
Y

a2 �S�P�\b?
ha; nid�a�:

In particular, we emphasize that we have in S �b?;P� a model for Laur�V ;L;HS�L��
that depends only on L through its tangent space b � VL 2 R.
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LetH be an arbitrary S-admissible hyperplane con¢guration in V , and let L 2 LS
and P 2 P�V � be given. Again we require that the normal vector aH has been taken
from �S�P� for all H 2 H. Let H�L� be de¢ned by (1.3), then H�L� � HS�L�. Let
b � VL. Given an element d 2NH�L� we extend it trivially to an element of
NHS�L� 'N

�S�P�\b? (that is, so that it vanishes outside H�L�). Then the polynomial
qL de¢ned in (1.5) is related to the polynomial $X ;d de¢ned above by
qL;d�l� n� � $X ;d�n� for l 2 L, n 2 V?L (cf. (1.12)). It follows that (3.5) makes sense
for j 2 M�V ;H; d� and, moreover, that in this way we obtain a Laurent operator
R � Ru:M�V ;H� !M�L;HL�. In conclusion, there is a natural linear map from
S �b?;P� to Laur�V ;L;H�, for all S-admissible hyperplane con¢gurations H in
V and all L 2 LS with VL � b, and if H � HS�L� then this map is an isomorphism.

3.4. THE UNIVERSAL RESIDUE OPERATOR

Let L 2 LS and let HS�L� be the ¢nite hyperplane con¢guration in V given by (3.2).
Fix P 2 P�V � and let Vÿ�P;L� � Vÿ�P;HS�L�� be the chamber in
comp�V ;HS�L�� de¢ned by (3.3); we have Vÿ�P;L� 6� ; because HS�L� is ¢nite (use
Lemma 3.1). Finally, let t 2WT�S� be given and put oL�t� � oHS�L��t�. We de¢ne
the residue operator associated with the data L;P; t by

ResP;tL :� Res
Vÿ�P;L�;oL�t�
L :M�V ;HS�L�� ! O�LC�: �3:6�

Let b � VL. As described in the previous subsection the residue operator (3.6) is
given by a unique element in the projective limit space S �b?;P�; we denote this
element by ResP;tL as well, and call it the universal residue operator associated with
the data L;P; t: It also follows from the previous subsection that it makes sense
to apply this element to functions inM�V ;H� for any S-admissible hyperplane con-
¢guration H; it gives a Laurent operator fromM�V ;H� toM�L;HL�. In particular,
if L 2 LS n LH then it follows easily from Corollary 1.16 that ResP;tL j � 0 for
j 2 M�V ;H�.

EXAMPLE 3.5. Let V � R, S � f�ag, P � fx > 0g, and let t 2WT�S� be given by
t�P� � t�ÿP� � 1=2, t�f0g� � 1. Fix l 2 R and let L � flg. There are exactly two
chambers in comp�V ;HS�L��, they are the sets Vÿ�P;L� and V��P;L� given by
the inequalities x < l and x > l, respectively. The induced weight oL�t� takes
the following values on these chambers. If l < 0 then oL�t��Vÿ�P;L�� � 0 and
oL�t��V��P;L�� � 1; if l > 0 then oL�t��Vÿ�P;L�� � 1 and oL�t��V��P;L�� � 0;
if l � 0 then oL�t��Vÿ�P;L�� � oL�t��V��P;L�� � 1=2. It then follows from the
residue theorem that

ResP;tflg �
ÿ2pu if l<0,
ÿpu if l=0,
0 if l>0.

(
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where u is the element of S �b?;P� that corresponds to the operator
j 7!Resz�lj�z�; it is independent of l, cf. Example 1.6.

Let H be a P-bounded S-admissible hyperplane con¢guration in V , then we have
Vÿ�P;H� 2 comp�V ;H�(cf. Lemma 3.1). Let L 2 LH, and let HS�L� be as in (3.2).
Then H�L� � HS�L�, where H�L� is given in (1.3). We shall now identify the residue
operator

Res
Vÿ�P;H�;oH�t�
L :M�V ;H� !M�L;HL�

in terms of the element ResP;tL , which was de¢ned independently of H.

PROPOSITION 3.6. Let t 2WT�S�, P 2 P�V �, let H be a P-bounded S-admissible
hyperplane con¢guration, and let L 2 LH.Then

Res
Vÿ�P;H�;oH�t�
L j � ResP;tL j

for all j 2 M�V ;H�.

For the proof we need the following lemma. Let H1 � H2 be S-admissible hyper-
plane con¢gurations, and let the map i�: WT�H2� !WT�H1� be de¢ned as in (1.22).

LEMMA 3.7. We have i��oH2 �t�� � oH1 �t� for all t 2WT�S�.
Proof. Let L 2 LH1 and C1 2 comp�L; �H1�L�.It is easily seen that it suf¢ces to

show the following:Let Q 2 P�VL�. Then

C1 � CQ;L;H1 , CQ;L;H2 2 comp�C1; �H2�L�: �3:7�
Recall that CQ;L;Hj 2 comp�L; �Hj�L� is the unique central chamber for which

CQ;L;Hj \ �c�L� �Q� 6� ;:

This property immediately implies (3.7). &

Proof of Proposition 3.6. Let H1 � H�L�, then H1 � H and Vÿ�P;H1� �
Vÿ�P;H�, as well as H1 � HS�L� and Vÿ�P;H1� � Vÿ�P;L�. By the preceding
lemma we have i��oH�t�� � oH1 �t� as well as i��oL�t�� � oH1�t�;and by Proposition
1.15 we then have

Res
Vÿ�P;H�;oH�t�
L jM�V ;H1� � Res

Vÿ�P;H1�;oH1 �t�
L

as well as

ResP;tL jM�V ;H1� � Res
Vÿ�P;H1�;oH1 �t�
L :

The proposition follows immediately, since a Laurent operatorM�V ;H� !
M�L;HL� is uniquely determined by its restriction toM�V ;H1� (see Lemma 1.4).&
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3.5. THE ACTION OF THE WEYL GROUP

The Weyl group W acts orthogonally on V and it preserves S. Hence, it also acts on
HS and LS. We shall now see how this action affects the residue operators.

LEMMA 3.8. LetH be a S-admissible hyperplane con¢guration in V, and let w 2W.
Then wH � fwH j H 2 Hg is also S-admissible, and if L 2 LH then w maps
comp�L;HL� bijectively onto comp�wL; �wH�wL�. Moreover, if t 2WT�S� then

owH�t��wC� � oH�wÿ1t��C� �3:8�

for all C 2 comp�H�.
Proof. The ¢rst statements are straightforward to verify. The equality in (3.8)

follows from (3.4) and De¢nition 3.2, once it has been observed that if
Q 2 P�VL� then wQ 2 P�VwL� and wCQ;L;H � CwQ;wL;wH:This latter observation is
also straightforward (cf. Lemma 3.4). &

We shall now apply Lemma 1.18. Notice that the operator w0:S�V � ! S�V �
obtained from (1.25) is just the natural action of w. We denote this operator, as
well as the corresponding operator in (1.26), by w.

COROLLARY 3.9. LetH, w, L, and t be as in Lemma 3.8, and let C 2 comp�H�. Then

wRes
C;oH�t�
L � Res

wC;owH�wt�
wL :

If H is P-bounded for some P 2 P�V �, then wH is wP-bounded and

wRes
Vÿ�P;H�;oH�t�
L � Res

Vÿ�wP;wH�;owH�wt�:
wL

Proof. The ¢rst statement follows immediately from Lemma 3.8 in combination
with Lemma 1.18. The other statements then follow from the observation that
wVÿ�P;H� � Vÿ�wP;wH�. &

PROPOSITION 3.10. Let P 2 P�V �, L 2 LS, t 2WT�S�, and w 2W. Then

wResP;tL � ReswP;wtwL �3:9�

If

w�S�P� \ V?L � � S�P�; �3:10�

then we also have

wResP;tL � ResP;wtwL : �3:11�
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Proof. Put H � HS�L�. Then wH � HS�wL�, and we obtain (3.9) from (3.6) and
Corollary 3.9. Assume (3.10). We claim that then

ResP;tL � Resw
ÿ1P;t

L : �3:12�
By the de¢nition of ResP;tL it suf¢ces to show that Vÿ�P;H� � Vÿ�wÿ1P;H�, and for
this it suf¢ces to show that Vÿ�P;H� � Vÿ�wÿ1P;H� for all hyperplanes H 2 H.
Such a hyperplane is of the form c�L� � a? with a 2 S \ V?L (cf. (3.2)), and we must
then show that a 2 S�P� if and only if a 2 S�wÿ1P�. This follows easily from (3.10).
Hence (3.12) holds, and by application of w to both sides of it we obtain (3.11) after
use of (3.9). &

Notice that we may regard (3.9) as an identity in the space S �wV?L ;wP�. When
(3.10) holds we have wV?L \ S�wP� � wV?L \ S�P�, hence in this case
S �wV?L ;wP� � S �wV?L ;P�, and we may similarly regard (3.11) as an identity
in the latter space.

By arguments similar to those leading up to (3.9) we obtain the following identity

�ResP; tL �_ � ResÿP; t
_

ÿL 2 S �V?L ;ÿP�; �3:13�
where the element on the left-hand side has been de¢ned by means of the principal
automorphism u 7! u_ of S�V � determined from X_:� ÿX �X 2 V �; it is easily seen
that this automorphism induces a map from S �V?L ;P� to S �V?L ;ÿP�.

3.6. TRANSITIVITY OF RESIDUES

Let b 2 R. If P 2 P�V � then S�P� \ b? is a positive system for Sb? . Let
�P be the

associated chamber of b?, so that

S�P� \ b? � Sb?��P�: �3:14�

Alternatively, �P may be characterized as the unique chamber of b? for which

P � �P � b: �3:15�

More generally we have the following result. Let Pb? denote the set of all chambers of
all root spaces in b?.

LEMMA 3.11. Let b 2 R, P 2 P, and assume that b � bP. Then there is a unique
chamber �P 2 Pb? for which P is an open subset of �P � b.

Proof.Let �bP � bP \ b? 2 RSb? , then bP decomposes as the orthogonal direct sum
�bP � b. We now have the following inclusions of open subsets:

P � reg�bP;S� � reg��bP;Sb?� � b � bP;

from which the result easily follows. &
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Let t 2WT�S� and de¢ne �t:Pb? ! �0; 1� by
�t�Q� �

X
P2P; bP�b; �P�Q

t�P� �3:16�

for Q 2 Pb? . It is easily seen that �t 2WT�Sb?�. Moreover, if t is Weyl invariant or
even, then so is �t.

Let H be a S-admissible hyperplane con¢guration in V , and assume that b � VH

for allH 2 H. Let �H � Hb? � fH \ b? j H 2 Hg (cf. (1.31)), then �H is a hyperplane
con¢guration in b?, andH is its extension. It is easily seen that �H is Sb?-admissible.
If s 2WT�H� we de¢ne �s � sb? 2WT��H� as in (1.37), that is by �s�C \ b?� � s�C�
for C 2 comp�H�.

LEMMA 3.12. Let H be as above, and let t 2WT�S�. Then o�H��t� � ��oH�t��:
Proof. Let L 2 L and let P 2 P�VL�. Recall from the text following the proof of

Lemma 3.4 that P determines a central chamber CP � CP;L;H 2 compc�L;HL� by
the condition

CP \ �c�L� � P� 6� ;: �3:17�
Let �L � L \ b?, thenV�L � VL \ b?. Let Pb?�V�L� denote the set of Sb?-chambers of
V�L. Then, similarly, each Q 2 Pb?�V�L� determines a unique central chamber
CQ � CQ;�L;�H 2 compc��L;� H�L� by

CQ \ �c�L� �Q� 6� ;: �3:18�
It follows from (3.15) and (3.17) that

CP \ �c�L� � �P � b� 6� ;;
and since C � �C \ b?� � b for all C 2 comp�L;HL� this implies that

�CP \ b?� \ �c�L� � �P� 6� ;:
Invoking (3.18) with Q � �P we conclude that

C�P � CP \ b? �3:19�
for P 2 P�VL�.

Let C 2 compc�L;HL�. It follows from (3.19) that we have the disjoint union

fP 2 P�VL� j CP � Cg �
[

Q2Pb? �V�L�;CQ�C\b?fP 2 P�VL� j �P � Qg:

Hence we obtain from (3.4) and (3.16)

oH�t��C� �
X

Q2Pb? �V�L�;CQ�C\b?
�t�Q� � o�H��t��C \ b?�;

and the lemma is proved. &
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LEMMA 3.13. Let H be as in Lemma 3.12, and let P 2 P�V �. Then

Vÿ�P;H� \ b? � Vÿ��P;� H�:

Proof. It follows immediately from (3.14) that

Vÿ�P;H� \ b? � Vÿ��P;H \ b?�
for all H 2 H. &

Let L 2 LS and assume that VL � b. Then we can apply the preceding two lemmas
to the con¢guration H � HS�L�. Let �L � L \ b?, then we have:

�H �� �HS�L�� � fH \ b? j H 2 HS;H � Lg

� f�H 2 HSb? j �H � �Lg � HSb? ��L�; �3:20�
and HS�L� is the extension to V of this con¢guration in b?.

Notice that the projective limit model for the set Laur�b?;� L;� H� of Laurent
operators M�b?;� H� !M��L;� H�L� is S �V?�L \ b?;� P�. Since b � VL we have
V?�L \ b? � V?L , and by (3.14) we have S��P� \ V?�L \ b? � S�P� \ V?L . Hence this
model is identical with S �V?L ;P�, the projective limit model for Laur�V ;L;H� (cf.
also (1.36)).

THEOREM 3.14. Let b 2 R, L 2 LS, and assume that b � VL. Then, for t 2WT�S�,
P 2 P�V �, we have the following identity in S �V?L ;P�:

ResP;tL � Res
�P; �t
�L : �3:21�

In particular, if b � VL, then �L is a point. Thus by this theorem we can reduce the
determination of the residue operators ResP;tL to the case where L is a point.

Proof. Let H � HS�L�. Recall from the de¢nition in (3.6) that

ResP;tL � Res
Vÿ�P;H�;oH�t�
L :

By Lemma 1.21 and Remark 1.20 we have, in S �V?L ;P�:

Res
Vÿ�P;H�;oH�t�
L � Res

Vÿ�P;H�\b?;��oH�t��
L ;

and combining these identities with Lemmas 3.12 and 3.13 we then have

ResP;tL � Res
Vÿ��P;�H�;o�H��t�
�L :

Here �H � HSb? ��L� as in (3.20). On the other hand, by (3.6) we also have

Res
�P; �t
�L � Res

Vÿ��P;�H�;o�H��t�
�L :

This proves (3.21). &
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3.7. THE SUPPORT THEOREM

Let L, P, and t be as in the beginning of Section 3.4. We shall now give a necessary
condition on L in order that ResP;tL does not vanish. The condition is on the central
point c�L�, and the key to the result is Theorem 2.6.

Let G� � G��V � � V be the closed cone spanned by the roots of S�P�, that is,

G� �
X

a2S�P�
xaa

��� xa 2 R; xa X 0

( )
;

and let Gÿ � ÿG�. For b 2 R we de¢ne similarly

G��b?� �
X

a2S�P�\b?
taa

��� ta 2 R; ta X 0

8<:
9=;; Gÿ�b?� � ÿG��b?�;

then G��b?� � G� \ b?. (We agree to set G��f0g� � f0g.) We also put

�b?�� � fl 2 b? j hl; ai > 0; 8a 2 S�P� \ b?g:

THEOREM 3.15. Let L 2 LS, P 2 P�V �, and t 2WT�S�. If ResP;tL 6� 0 then

c�L� 2 Gÿ�V?L �:

Proof. Let H � HS�L� and C0 � Vÿ�P;H�, then by de¢nition (see (3.6)) we have
ResP;tL � Res

C0;oH�t�
L . Since oH�t� is central we can apply Theorem 2.6. Assume

ResP;tL 6� 0. Then L 2 ressupp�C0;oH�t�� and we obtain that hc�L�; liX 0 for all
l 2 C0.

Notice that for each H 2 HS�L� we have H � c�L� � a? with a 2 V?L \ S�P�.
Hence c�L� ÿ �V?L �� � Vÿ�P;H�, and taking the intersection over H 2 HS�L� we
obtain that c�L� ÿ �V?L �� � C0. Hence, hc�L�; c�L� ÿ liX 0 for all l 2 �V?L ��. It
follows easily that then hc�L�; liW 0, and from this we derive the desired result since
Gÿ�V?L � is the dual of the cone �V?L �� in V?L . &

3.8. CONCLUSION

We can now state the main result that will be applied in [5]. Let P 2 P�V �, letH be a
P-bounded S-admissible hyperplane con¢guration, and let L � LH. Moreover, let

RP;H � inffjlj j l 2 Vÿ�P;H�g

and let �B�0;RP;H� denote the closed ball of radius RP;H, centered at 0. Since H is
locally ¢nite, there exists E > 0 such that for all L 2 L with jc�L�jWRP;H and all
H 2 H we have H \ B�c�L�; E� 6� ; ) c�L� 2 H. Choose, for each Q 2 P, a point
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eQ 2 Q \ B�0; E�. Then, for l 2 �B�0;RP;H� and L 2 L with c�L� � l we have
l� eQ 2 CQ;L;H (see Section 3.2).

THEOREM 3.16. Let P, H, L, and eQ, Q 2 P, be as above, and let t 2WT�S�. Then
for each b 2 R the set

fl 2 b? j ResP;tl�bj 6� 0 for some j 2 M�V ;H�g �3:22�

is ¢nite and contained in Gÿ�b?� \ �B�0;RP;H�. Moreover, if Z 2 Vÿ�P;H� thenZ
Z�iV

j dmV �
X
b2R

X
l2b?

X
Q2P�b�

t�Q�
Z
l�eQ�ib

ResP;tl�b j dmb �3:23�

for all j 2 P�V ;H�.
Notice that in (3.23) the term corresponding to b � V reads as follows:X

Q2P�V �
t�Q�

Z
eQ�iV

jdmV :

In particular, if 0 2 reg�V ;H� then this equals
R
iV j dmV , and thus (3.23) gives an

expression for the difference between the latter integral and
R
Z�iV j dmV by means

of residues.

Proof. Given b 2 R and l 2 b? we have from Proposition 3.6 that

ResP;tl�bj � Res
Vÿ�P;H�;oH�t�
l�b j �3:24�

for j 2 M�V ;H� if l� b 2 L. Otherwise ResP;tl�bj � 0 (see the remarks after (3.6)).
The ¢niteness of the set in (3.22) then follows from Theorem 1.13 (a). That the
set is contained in Gÿ�b?� and �B�0;RP;H� follows from Theorems 3.15 and 2.6,
respectively.

Combining Theorem 1.13 and (3.24), we haveZ
Z�iV

jdmV �
X
L2L

X
C02comp�L;HL�

oH�t��C0�
Z

pt�C0��iVL

ResP;tL j dmL:

Hence, by (3.4),Z
Z�iV

jdmV �
X
L2L

X
C02comp�L;HL�

X
Q2P�VL�;CQ�C0

t�Q�
Z

pt�CQ��iVL

ResP;tL jdmL

�
X
L2L

X
Q2P�VL�

t�Q�
Z

pt�CQ��iVL

ResP;tL j dmL:

In the last expression we choose c�L� � eQ as the point in CQ. Moreover, we write
l � c�L� and b � VL. Then b 2 R and l 2 b?. Hence (3.23) holds. &
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It is convenient to rewrite (3.23) in a somewhat different form. Let D � D�P�
denote the set of simple roots for S�P�. Then the Coxeter complex
P � [b2R P�b� can be parametrized as follows. For each subset F of D we denote
by bF the orthocomplement of F in V ; then bF 2 R. Let PF 2 P�bF � be the chamber
on which the roots of D n F are positive. The chambers PF , where F � D, are called
the standard chambers (relative to P). In particular, we have P � P; and
V0 � PD. Given F � D we denote by WF the subgroup of W generated by the ref-
lections in the elements of F , and de¢ne the subset WF of W by
WF � fv 2W j v�F � � S�P�g:

LEMMA 3.17. (i) Let F � D. Each element w 2W has a unique expression of the
form w � vu, where v 2WF and u 2WF. The stabilizer of the standard chamber
PF in W is WF .

(ii) LetQ 2 P. There exists a unique subset F � D such that Q isW-conjugate to PF .
Moreover, there exists a unique v 2WF for which Q � vPF .

Proof. See [7, Thm. 2.5.8 and Props. 2.6.1, 2.6.3]. &

In the following corollary notation and assumptions are as in Theorem 3.16. We
assume in addition that the weight t is Weyl invariant, and that the eQ have been
chosen so that ewQ � weQ for all w 2W , Q 2 P (this is clearly possible). Let
eF � ePF for F � D.

COROLLARY 3.18. For each F � D the set

fl 2 b?F j ResP;tl�bF �j � v� 6� 0 for some j 2 M�V ;H�; v 2WF g �3:25�
is ¢nite and contained in Gÿ�b?F � \ �B�0;RP;H�. MoreoverZ

Z�iV
j dmV �

X
F�D

X
l2b?F

t�PF �
Z
l�eF�ibF

ResP;tl�bF
X
v2WF

j � v
 !

dmbF �3:26�

for j 2 P�V ;H�.
Proof. It follows from (1.26) and Proposition 3.10 that for v 2WF , j 2 M�V ;H�

we have

ResP;tl�bF �j � v� � ��vResP;tl�bF �j� � v � �ResP;tv�l�bF �j� � v: �3:27�
Hence by the ¢rst conclusion of Theorem 3.16, if ResP;tl�bF �j � v� 6� 0 then vl belongs
to a ¢nite subset of Gÿ�vb?F � \ �B�0;RP;H�. It is easily seen that vl 2 Gÿ�vb?F � implies
l 2 Gÿ�b?F � for v 2WF . The statements about the set (3.25) follow.

It follows from (3.23) and Lemma 3.17 together with our assumptions on t and eQ
that Z

Z�iV
jdmV �

X
F�D

X
v2WF

X
g2vb?F

t�PF �
Z
g�veF�ivbF

ResP;tg�vbFj dmvbF
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Substitution of g � vl, l 2 b?F , in the sum over g, together with a similar substitution
in the integral on the right-hand side, yieldsX

F�D

X
v2WF

X
l2b?F

t�PF �
Z
l�eF�ibF

�ResP;tv�l�bF �j� � v dmbF ;

and the result follows from (3.27) and a simple rearrangement of the sum. &
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