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Introduction
In 1982, Harish-Chandra announced the Whittaker Plancherel theorem for real reduc-
tive groups in an invited lecture at the AMS summer conference in Toronto. Because
of his failing health, the lecture, with the title ‘On the theory of the Whittaker integral’,
was delivered on his behalf byV.S. Varadarajan. As a consequence of Harish-Chandra’s
untimely death in 1983, the details of the proof remained unpublished until they finally
appeared in the posthumous 5th volume of his collected papers [12, pp. 141-307]. That
volume also contains the text of the 1982 announcement, see [12, §1.2],
The proof of the Whittaker Plancherel theorem given in [12] seems to be incom-

plete, mainly since it does not develop a complete theory of Fourier transform for the
Whittaker Schwartz space. In particular the required uniformly tempered estimates for
the Whittaker integral are not addressed. In the present paper we give a proof of these
estimates.
Independently, N. Wallach developed a completely different approach to the Whit-

taker Plancherel theory in his book [21]. However, the treatment was flawed because
of an erroneous estimate, pointed out in [2, Remark 7.5]. Wallach has made several
attempts to circumvent the error, see [22], but the final status of his results seems
unclear at this point.
Clearly, the present paper has been inspired by both [12] and [21]. My desire

to investigate the details of all arguments has led to a somewhat different and rather
self-contained treatment of the theory needed for the derivation of a new functional
equation for Whitttaker vectors in the generalized principal series, which lies at the
basis of the mentioned uniform tempered estimates.
Now that the results of the present paper are available, it is natural to develop a

theory of the constant term for tempered families of Whittaker coefficients, as well as
a theory of wave packets of Whittaker integrals, in analogy with the Plancherel theory
for groups or symmetric spaces. This will be addressed in a follow up article.
We will now describe the contents of our paper in some detail. Throughout the

paper, we assume that 𝐺 is a real reductive Lie group of the Harish-Chandra class, that
𝐺 = 𝐾𝐴𝑁0 is an Iwasawa decomposition and that 𝜒 is a unitary character of 𝑁0. The
character 𝜒 is assumed to satisfy the regularity condition that for each simple root 𝛼 of
𝔞 in 𝔫0, the derivative 𝜒∗ := 𝑑𝜒(𝑒) has a non-zero restriction to the root space 𝔤𝛼 .
Let 𝐶 (𝐺/𝑁0 : 𝜒) be the space of continuous functions 𝑓 : 𝐺 → C transforming
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according to the rule

𝑓 (𝑥𝑛) = 𝜒(𝑛)−1 𝑓 (𝑥), (𝑥 ∈ 𝐺, 𝑛 ∈ 𝑁0),

and let 𝐶𝑐 (𝐺/𝑁0 : 𝜒) be the subspace of such functions with compact support modulo
𝑁0. The latter space has a natural left 𝐺-invariant pre-Hilbert structure, for which the
completion is denoted by 𝐿2(𝐺/𝑁0 : 𝜒). The representation of 𝐺 in this completion
induced by the left regular action is the unitarily induced representation

Ind𝐺𝑁0 (𝜒). (0.1)

TheWhittaker Plancherel formula concerns the unitary direct integral decomposition of
(0.1). It should be built from pairs (𝜋, _) with 𝜋 an irreducible unitary representation in
a Hilbert space, and _ a continuous linear functional on the associated space of smooth
vectors 𝐻∞

𝜋 , transforming according the rule

_ ◦ 𝜋(𝑛) = 𝜒(𝑛)_, (𝑛 ∈ 𝑁0).

The functionals of this type are calledWhittaker functionals of 𝜋, and the space of these
is denoted byWh𝜒 (𝐻∞

𝜋 ). An element _ in the latter space determines a 𝐺-equivariant
(Whittaker) matrix coefficient map wh_ : 𝐻∞

𝜋 → 𝐶∞(𝐺/𝑁0 : 𝜒) given by

wh_ (𝑣) (𝑥) = _(𝜋(𝑥)−1𝑣), (𝑣 ∈ 𝐻∞
𝜋 , 𝑥 ∈ 𝐺).

In Sections 1 and 2, theseWhittaker coefficients are discussed inmore detail. They have
moderate growth behavior towards infinity. In Lemma 2.3 we formulate a technique
which shows the importance of the regularity condition on 𝜒. As a consequence each
Whittaker coefficient of the above type has faster than exponential decay towards infinity
in any closed cone disjoint from 𝐴+\{0}, see Corollary 2.4. In Section 2 several related
estimates are proven that are needed in the later sections.
Section 3 concerns aspects of the Whittaker Schwartz space C(𝐺/𝑁0 : 𝜒) as

introduced by [12] and [21].
In Section 4 we discuss sharp estimates for a Whittaker coefficient wh_ : 𝐻∞

𝜋 →
𝐶∞(𝐺/𝑁0 : 𝜒) in terms of a functional Λ𝑉 ∈ 𝔞∗ attached to 𝜋. More precisely, Λ𝑉
is defined in terms of the 𝔞-weights of 𝑉/𝔫0𝑉, with 𝑉 the Harish-Chandra module of
𝐾-finite vectors of 𝜋, see 4.1. In [21] these estimates were obtained on the positive
chamber 𝐴+. In view of the results of Section 2 the estimates turn out to be valid on the
entire group 𝐴. In [21] the estimates on the positive chamber are obtained by using the
method of estimate improvement alongmaximal parabolic subgroups. We use the same
method, cast in the form of Lemma 4.6. This prepares for the lengthy argumentation in
Section 15, where the uniformly tempered estimates are obtained. The proof of Lemma
4.6 is deferred to Section 5. We end Section 4 with Cor. 4.8 which is due to both [12]
(on the 𝐾-finite level) and [21]. It asserts that if𝐺 has compact center and 𝜋 belongs to
the discrete series of 𝐺, then for every Whittaker vector _ ∈ Wh𝜒 (𝐻∞

𝜋 ) the associated
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Whittaker coefficient wh_ is a continuous linear map from 𝐻∞
𝜋 into the Schwartz space

C(𝐺/𝑁0 : 𝜒).
In Section 6 we discuss the space of smooth vectors for parabolically (normally)

induced representations of the form Ind𝐺𝑃 (b), with 𝑃 = 𝑀𝑃𝐴𝑃𝑁𝑃 a parabolic subgroup
of𝐺 and b a continuous representation of 𝑃 in a Hilbert space𝐻b . For technical reasons
we need to deal with this in the generality of a representation of the form b = 𝜎 ⊗ 𝜋,
with𝜎 an irreducible unitary representation of𝑀𝑃, extended to 𝑃 by triviality on 𝐴𝑃𝑁𝑃
and with (𝜋, 𝐹) a continuous representation of 𝑃 in a finite dimensional Hilbert space.
The main result is the characterization of Theorem 6.7, which asserts that the space of
smooth vectors of Ind𝐺𝑃 (b) equals

𝐶∞(𝐺/𝑃 : b) := { 𝑓 ∈ 𝐶∞(𝐺, 𝐻b) | 𝑓 (𝑥𝑚𝑎𝑛) = 𝑎−𝜌𝑃b (𝑚𝑎𝑛)−1 𝑓 (𝑥)}. (0.2)

The left regular representation of 𝐺 in this space is denoted by 𝜋∞
𝑃,b
.

In the subsequent Section 7, the space of generalized vectors for Ind𝐺𝑃 (b) is defined
as a conjugate continuous linear dual by

𝐶−∞(𝐺/𝑃 : b) := 𝐶∞(𝐺/𝑃 : b∗)′. (0.3)

Here b∗ is the continuous representation of 𝑃 in 𝐻b defined by b∗(𝑝) := b (𝑝−1)∗.
This definition has the advantage that (0.2) can be viewed as a subspace of (0.3), via a
𝐺-equivariant sesquilinear pairing defined by the usual integration over 𝐾/𝐾 ∩ 𝑀𝑃 .

In Section 8 we turn to the induced representations Ind𝐺
�̄�
(b), with 𝑃 a standard

parabolic subgroup, and with b = 𝜎 ⊗ (−ā) ⊗ 1, where 𝜎 is an irreducible unitary
representation of 𝑀𝑃 and a ∈ 𝔞∗

𝑃C
. The Whittaker functionals for the space of smooth

vectors 𝐶∞(𝐺/�̄� : 𝜎 : −ā) can then be identified with (conjugates of) elements of the
space of Whittaker vectors

𝐶−∞(𝐺/�̄� : 𝜎 : a)𝜒 := { 𝑗 ∈ 𝐶−∞(𝐺/�̄� : 𝜎 : a) | 𝐿𝑛 𝑗 = 𝜒(𝑛) 𝑗 , (𝑛 ∈ 𝑁0)}. (0.4)

The 𝑁0-equivariance of an element 𝑗 of this space makes that on the open set 𝑁𝑃�̄� it
can be represented by a continuous function with values in 𝐻−∞

𝜎 := 𝐻∞
𝜎
′. Subsequent

evaluation of this function in the identity element 𝑒 defines a linear map

ev𝑒 : 𝐶−∞(𝐺/�̄� : 𝜎 : a)𝜒 → (𝐻−∞
𝜎 )𝜒𝑃 , (0.5)

where 𝜒𝑃 := 𝜒 |𝑀𝑃∩𝑁0 . At this point we invoke the fundamental result [12, Thm. 1],
on which Harish-Chandra’s entire treatment of the Whittaker theory is founded, see
Theorem 8.1. It allows us to conclude that the map (0.5) is injective, see Corollary
8.11.
Conversely, if 𝜎 is a representation of the discrete series of 𝑀𝑃, and if Re a is

𝑃-dominant, we define for each [ ∈ (𝐻−∞
𝜎 )𝜒𝑃 a continuous 𝐻−∞

𝜎 -valued function on
𝑁𝑃�̄� which represents an element 𝑗 (�̄�, 𝜎, a, [) of (0.4) with ev𝑒 𝑗 (�̄�, 𝜎, a, [) = [, see
Propositions 8.12 and 8.14. The element 𝑗 (�̄�, 𝜎, a, [) depends holomorphically on a
in the region where Re a is 𝑃-dominant.
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In Section 9 we discuss the close relation between 𝑗 (𝑃, 𝜎, a, [) and the Jacquet
integral introduced in [21], see (9.3). Moreover, we discuss the definition of Harish-
Chandra’s Whittaker integral Wh(𝑃, 𝜓, a) which is the analogue of the Eisenstein
integral for a group or a symmetric space. We show that the Whittaker integral is
expressible as a sum of Whittaker matrix coefficients involving Whittaker vectors
𝑗 (a) = 𝑗 (�̄�, 𝜎, a, [), see Corollary 9.10.
In strong analogy with the theory of symmetric spaces one needs to extend the

map a ↦→ 𝑗 (a) meromorphically in order to reach imaginary a, which correspond to
the unitary principal series. In addition one needs to establish uniformly tempered
estimates in regions of the form |Re a | < Y, with Y > 0 a suitable constant. In the
theory of symmetric spaces, tools for this program where initially developed in [1] for
minimal 𝜎-parabolic subgroups and then extended to arbitrary 𝜎-parabolic subgroups
in [7]. It turns out that these tools from the theory of symmetric spaces are ideally
suited for the Whittaker setting. This unfolds in the final Sections 10 - 16.
In Section 10 we prepare by reviewing the characterization of irreducible finite

dimensional spherical representations of 𝐺 with an 𝑀𝑃-fixed highest weight vector.
Then, in Section 11 we consider the action of the center ℨ of the universal enveloping
algebra of 𝔤C on a tensor product of the form

Ind𝐺
�̄�
(𝜎 ⊗ a ⊗ 1) ⊗ 𝜋`, (0.6)

with 𝜋` an irreducible finite dimensional spherical representation of strictly 𝑃-dominant
highest weight `, with 𝑀𝑃 acting trivially on the highest weight space. Let Λ denote
the infinitesimal character of 𝜎, and let 𝑝Λ+a+` denote the projection in the space of
(0.6) onto the generalized weight space for the infinitesimal character Λ + a + `. Then
the main result of the section is that there exists a non-zero polynomial function 𝑞 on
𝔞∗
𝑃C
such that 𝑞(a)𝑝Λ𝜎+a+` can be realized by the action of an element 𝑍 ` (a) ∈ ℨ wich

depends polynomially on a, see Corollary 11.13.
In Section 12 the element 𝑍 ` (a) ∈ ℨ is used to define a suitable differential operator

𝐷` (𝜎, a) : 𝐶−∞(�̄� : 𝜎 : a) → 𝐶−∞(�̄� : 𝜎 : a + `) such that one has a Bernstein-Sato
type functional equation for the Whittaker vector,

𝑗 (�̄�, 𝜎, a) = 𝐷` (𝜎, a) ◦ 𝑗 (�̄�, 𝜎, a + `) ◦ 𝑅` (𝜎, a),

see (12.7). Here 𝑅` (𝜎) is a rational function on 𝔞∗𝑃C with values in End(𝐻−∞
𝜎,𝜒𝑃

). The
main problem is to show that 𝑅` (𝜎, · ) is generically invertible. This is done in the
rest of Section 12 and the next.
In Section 14 the functional equation is used to obtain the meromorphic contin-

uation of a ↦→ 𝑗 (a) = 𝑗 (�̄�, 𝜎, a) with estimates in terms of continuous seminorms
on 𝐶−∞(𝑃, 𝜎, a), see Theorem 14.1. The functional equation implies the existence
of a non-zero polynomial 𝑝𝑅 such that a ↦→ 𝑝𝑅 (a) 𝑗 (a) is holomorphic in the range
〈Re a , 𝛼〉 > 𝑅 for all 𝛼 ∈ Δ. Any singularity of 𝑗 in this range is contained in the
zero set 𝑀 = 𝑝−1

𝑅
(0). If it is contained in the regular part of 𝑀 then by a local analysis

transversal to 𝑀 it can be shown that the singularity produces a non-zero element of
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𝐶−∞(𝐺/�̄�, 𝜎, a)𝜒 which must be zero at 𝑒 hence zero. Therefore, singularities can
only occur at singular points of 𝑝−1(0). The appearence of singularities would thus
violate a form of Hartog’s principle formulated and proven in the appendix in Section
18. Therefore, 𝑗 cannot have singularities. This gives a new proof of Wallach’s result
[21, Thm. 15.4.1] on the holomorphy of the Jacquet integral, but with strong estimates,
see Theorems 14.4 and 14.8. This in turn leads to uniformly moderate estimates for
the associated family of Whittaker coefficients in Theorem 14.9.
In Section 15 it is shown that the uniformly moderate estimates for the family of

Whittaker coefficients (wha) produced by 𝑗a = 𝑗 (�̄�, 𝜎, a, [) can be improved to the
so-called uniformly tempered estimates, see Theorem 15.5. This is done by using the
differential equations satisfied by (wha) and the method of estimate improvement along
maximal parabolic subgroups, as in Section 4, but now with suitable uniformity in the
parameter a. See Lemma 15.9 for the crucial stepwise improvement.
In the final section, 16, the results obtained in the previous sections are applied

to the Whittaker integral Wh(𝑃, 𝜓, a) ∈ 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒). Here ‘𝜏 :’ indicates that
left 𝜏-spherical functions are considered, a ∈ 𝔞∗

𝑃C
and 𝜓 is an element of the finite

dimensional space A2,𝑃 of ℨ(𝔪𝑃)-finite functions in C(𝜏𝑃 :𝑀𝑃/𝑀𝑃 ∩ 𝑁0 : 𝜒𝑃). The
uniformly tempered estimates of Theorem 16.2 thus obtained allow us to define a
Fourier transform F𝑃 in terms of the Whittaker integral, and to show that F𝑃 defines
a continuous linear map from the Whittaker Schwartz space C(𝜏 : 𝐺/𝑁0 : 𝜒) to the
Euclidean Schwartz space S(𝑖𝔞∗

𝑃
,A2,𝑃), see Theorem 16.6.

1 Whittaker vectors and matrix coefficients
We consider a real reductive group 𝐺 of the Harish-Chandra class and fix an Iwasawa
decomposition 𝐺 = 𝐾𝐴𝑁0. We denote by Σ = Σ(𝔤, 𝔞) the root system of 𝔞 in 𝔤 and
by Σ+ the positive system consisting of the roots 𝛼 ∈ Σ with 𝔤𝛼 contained in the Lie
algebra 𝔫0 of 𝑁0. The associated collection of simple roots in Σ+ is denoted by Δ.
Thus, if 𝑀 = 𝑍𝐾 (𝔞), then 𝑃0 := 𝑀𝐴𝑁0 is the standard minimal parabolic subgroup

associated with Σ+. Here and in the rest of the paper we adopt the convention to denote
Lie groups by Roman capitals and the associated Lie algebras by the corresponding
fraktur lower cases.
In this article 𝜒 will always be a unitary character of 𝑁0. Following [12, p. 142],

we say that 𝜒 is regular if its derivative 𝜒∗ := 𝑑𝜒(𝑒) ∈ 𝑖𝔫∗0 is non-zero on each of the
simple root spaces 𝔤𝛼, for 𝛼 ∈ Δ. Unless otherwise specified, it will always be assumed
that 𝜒 is regular. Note that the notion of regularity as defined here coincides with the
notion of genericity in [21, p. 371].
We consider the function space

𝐶 (𝐺/𝑁0 : 𝜒) := { 𝑓 ∈ 𝐶 (𝐺) | 𝑓 (𝑥𝑛) = 𝜒(𝑛)−1 𝑓 (𝑥), (𝑥 ∈ 𝐺, 𝑛 ∈ 𝑁0)}. (1.1)

The subspace of functions with compact support modulo 𝑁0 is denoted 𝐶𝑐 (𝐺/𝑁0 : 𝜒)
and the subspace of smooth functions by 𝐶∞(𝐺/𝑁0 : 𝜒). Finally, the intersection of the
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latter two is denoted 𝐶∞
𝑐 (𝐺/𝑁0 : 𝜒).

We fix a choice of positive invariant Radon measure 𝑑 ¤𝑥 on 𝐺/𝑁0 and define a
pre-Hilbert structure on 𝐶𝑐 (𝐺/𝑁0 : 𝜒) by the formula

〈 𝑓 , 𝑔〉 :=
∫
𝐺/𝑁0

𝑓 (𝑥)𝑔(𝑥) 𝑑 ¤𝑥, ( 𝑓 , 𝑔 ∈ 𝐶𝑐 (𝐺/𝑁0 : 𝜒)).

The associated completion is denoted by 𝐿2(𝐺/𝑁0 : 𝜒). The Whittaker Plancherel
formula concerns the unitary decomposition for the left regular representation of 𝐺 in
the latter space. Here we note that 𝐿2(𝐺/𝑁0 : 𝜒) is the space for the unitarily induced
representation Ind𝐺𝑁0 (𝜒). Our notation is slightly different Harish-Chandra’s, who uses
the notation 𝐿2(𝐺/𝑁0 : 𝜒) for the space of the induced representation Ind𝐺𝑁0 (𝜒

∨), with
𝜒∨ : 𝑛 ↦→ 𝜒(𝑛)−1, see [12, p. 143]. Finally, note that Wallach [21, p. 365] works with
another realization of this representation space, namely 𝐿2(𝜒 : 𝑁0\𝐺) equipped with
the right regular representation.
In the following we will need a bit of background from representation theory that

we will now explain.
If 𝑉 is a locally convex (Hausdorff) space then a representation 𝜋 of a Lie group 𝐿

in 𝑉 is called smooth if it is continuous and if 𝑉 = 𝑉∞.
If𝑉 is Fréchet space, its strong dual𝑉 ′ is a complete locally convex space. Suppose

that 𝜋 is a continuous representation of 𝐿 in 𝑉, then the homomorphism 𝜋∨ : 𝐿 →
GL(𝑉 ′) defined by

𝜋∨(𝑥)b = b ◦ 𝜋(𝑥)−1, (𝑥 ∈ 𝐿, b ∈ 𝑉 ′). (1.2)

need not be a continuous representation. However, if 𝜋 is smooth, then 𝜋∨ is a smooth
representation of 𝐿 in 𝑉, called the contragredient of 𝜋. For details we refer to [23],
Proposition 4.4.1.9 and the definition of 𝑉∨ preceding Proposition 4.1.2.1.
To prepare for the treatment of conjugate representations, we first briefly discuss

the notion of conjugate space. Let 𝑉 and𝑊 be complex linear spaces. We denote by �̄�
the real linear space𝑉 equipped with the conjugate complex multiplication C×𝑉 → 𝑉,

(𝑧, 𝑣) ↦→ 𝑧𝑣. A map 𝑇 : 𝑉 → 𝑊 is said to be conjugate linear if it is real linear and
satisfies 𝑇 (_𝑣) = _̄𝑇 (𝑣) for 𝑣 ∈ 𝑉 and _ ∈ C. The complex linear space of conjugate
linear maps 𝑉 → 𝑊 (equipped with the pointwise operations of scalar multiplication
and addition) equals the complex linear space HomC(�̄� ,𝑊). Given 𝑇 ∈ Hom(𝑉,𝑊)
we denote by 𝑇 the map 𝑉 → 𝑊 viewed as an element of Hom(�̄� , �̄�). We note that
the map

𝑇 ↦→ 𝑇, Hom(𝑉,𝑊) → Hom(�̄� , �̄�)
is not complex linear, but conjugate linear. Hence, 𝑇 ↦→ 𝑇 is a complex linear
isomorphism Hom(𝑉,𝑊) → Hom(�̄� , �̄�). Since the map 𝑇 ↦→ 𝑇 is the identity on the
set Hom(𝑉,𝑊) we have the following identity of complex linear spaces

Hom(𝑉,𝑊) = Hom(�̄� , �̄�). (1.3)
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In the sequel we will encounter the conjugate dual space 𝑉∗ = Hom(𝑉,C) and the dual
conjugate space (�̄�)∗ = Hom(�̄� ,C). These spaces are not equal, but complex linearly
isomorphic under the map _ ↦→ 𝑐_ given by

𝑐_ = c ◦_, (1.4)

where c : C→ C denotes the conjugation map 𝑧 ↦→ 𝑧.

Indeed, c ∈ Hom(C̄,C) so in view of the equality (1.3) it follows that 𝑐_ ∈
Hom(�̄� ,C) (_ ∈ Hom(𝑉,C)). It is now readily verified that _ ↦→ 𝑐_ is a conjugate
linear map Hom(𝑉,C) → Hom(�̄� ,C) hence a complex linear isomorphism

Hom(𝑉,C) '−→ Hom(�̄� ,C).

Given a representation 𝜋 of 𝐿 in a locally convex space 𝑉 , we denote by (�̄�, �̄�) the
conjugate of 𝜋. Here the conjugate complex linear space �̄� is equipped with the locally
convex topology of 𝑉. Furthermore, for 𝑥 ∈ 𝐿, �̄�(𝑥) equals the complex linear map
¯𝜋(𝑥) : �̄� → �̄� . It is clear that (�̄�, �̄�) is a representation of 𝐿 in a locally convex space
again, which is continuous if and only if 𝜋 is continuous.
We note that the spaces 𝑉 ′ and �̄� ′ are topologically complex linear isomorphic

under the map _ ↦→ 𝑐_ given by (1.4).
If 𝜋 is a smooth Fréchet representation, then �̄�∨ is a smooth continuous represen-

tation, and therefore, so is the equivalent representation 𝜋∨.
Weuse the notation𝑈 (𝔩) for the universal enveloping algebra of the complexification

𝔩C of 𝔩. The canonical anti-automorphism of 𝑈 (𝔩) is denoted by 𝑢 ↦→ 𝑢∨. It is readily
verified that for the associated infinitesimal representations 𝜋 : 𝑈 (𝔩) → End(𝑉) and
𝜋∨ : 𝑈 (𝔩) → End(𝑉 ′) we have

𝜋∨(𝑢)b = b ◦ 𝜋(𝑢∨), (𝑢 ∈ 𝑈 (𝔩), b ∈ 𝑉 ′).

Given a continuous Hilbert space representation (𝜋, 𝐻) of 𝐿 it is known that the
contragredient (𝜋∨, 𝐻′) is continuous, see [23, Cor. 4.1.2.3]. Therefore, so are �̄�∨ and
𝜋∨. Both duals (�̄�)′ and (𝐻′)∨ come into play through the Hermitian inner product 𝑏
viewed as a bilinear map 𝐻 × �̄� → C. Let 𝑏1 : 𝐻 → (�̄�)′ be the linear map defined by
𝑏1(𝑣) = 𝑏(𝑣, · ). Let 𝑏2 : �̄� → 𝐻′ be the linear map defined by 𝑏2(𝑣) = 𝑏( · , 𝑣). Then
𝑏2 can be viewed as a linear map 𝐻 → 𝐻′. As such 𝑏1 and 𝑏2 are topological linear
isomorphisms from 𝐻 onto (�̄�)′ and 𝐻′ respectively. Thus, here the isomorphism
𝐻′ → �̄�′ is given by 𝛽 = 𝑏1 ◦ 𝑏−12 . Using the conjugate symmetry of 𝑏, it readily
follows that 𝛽 coincides with the isomorphism 𝑐 ( · ) defined by (1.4). Since _ ↦→ 𝑐_

intertwines the representations 𝜋∨ and �̄�∨, it follows that 𝑏2 and 𝑏1, respectively,
intertwine these representations with the same continuous representation 𝜋∗ of 𝐿 in 𝐻,
given by

𝜋∗(𝑥) = 𝜋(𝑥−1)∗ (𝑥 ∈ 𝐿),
where the star indicates that the Hilbert adjoint is taken.
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For such a continuous Hilbert representation we denote the associated Fréchet
representation in the space of smooth vectors by (𝜋∞, 𝐻∞). As we mentioned above,
the continuous linear dual (𝐻∞)′ of 𝐻∞, equipped with the strong dual topology, is
complete. The associated contragredient of 𝜋∞ in (𝐻∞)′, denoted by (𝜋∞∨, (𝐻∞)′) is
a smooth representation of 𝐿. In this setting, with 𝐺 in place of 𝐿, it is of interest to
consider the space of Whittaker functionals

Wh𝜒 (𝐻∞) := {_ ∈ (𝐻∞)′ | ∀𝑛 ∈ 𝑁0 : _ ◦ 𝜋∞(𝑛) = 𝜒(𝑛)_}, (1.5)

see [21, 15.3.4, p. 378]. Equivalently,Wh𝜒 (𝐻∞) consists of the functionals _ ∈ (𝐻∞)′
such that

𝜋∞∨(𝑛)_ = 𝜒(𝑛)−1_, (𝑛 ∈ 𝑁0).
For a given Whittaker functional _ ∈ Wh𝜒 (𝐻∞), the matrix coefficient map wh_ :
𝐻∞ → 𝐶∞(𝐺/𝑁0 : 𝜒), given by

wh_ (𝑣) (𝑥) = _(𝜋(𝑥)−1𝑣),

is readily seen to be continuous and 𝐺-equivariant. Moreover, we have the following
easy lemma.

Lemma 1.1 The matrix coefficient map _ ↦→ wh_ is a bijection

Wh𝜒 (𝐻∞) '−→ Hom𝐺 (𝐻∞, 𝐶∞(𝐺/𝑁0 : 𝜒)), (1.6)

where Hom𝐺 indicates the space of intertwining continuous linear maps. The inverse
of (1.6) is given by 𝑇 ↦→ ev𝑒 ◦𝑇 , where ev𝑒 : 𝐶∞(𝐺/𝑁0 : 𝜒) → C denotes evaluation at
the identity.

The following result, valid for any continuous character 𝜒 of 𝑁0, is stated and
proven in [21, Cor 15.4.4].

Lemma 1.2 If (𝜋, 𝐻) is admissible and of finite length, then

dimWh𝜒 (𝐻∞) < ∞.

Given a continuous representation 𝜌 of a Lie group in a complete locally convex
space 𝑉, we use the notation �̄� for 𝜌 viewed as a representation in the conjugate space
�̄� . Clearly, �̄� is continuous again and the identifications 𝜌∞ = �̄�∞ and 𝑉∞ = �̄�∞ are
obvious.
In this paper it will be desirable to view the matrix coefficient map wh_, for

_ ∈ Wh𝜒 (𝐻∞) as a matrix coefficient with a suitable generalized vector. This is
possible in the following setting of duality.
Let (𝜋 𝑗 , 𝐻 𝑗 ) be two continuousHilbert representations of a Lie group 𝐿, for 𝑗 = 1, 2.

By a perfect sesquilinear pairing of 𝜋1 and 𝜋2 we mean an equivariant continuous
sesquilinear pairing

𝐻1 × 𝐻2 → C (1.7)

9



such that the induced maps 𝛼1 : 𝐻1 → (�̄�2)′ and 𝛼2 : 𝐻2 → 𝐻′
1 are unitary isomor-

phisms. Note that these maps are intertwining. In particular, the restriction map

𝑟1 : b ↦→ b |𝐻∞
1
, 𝐻′

1 → 𝐻∞
1
′

is a continuous linear injection, intertwining 𝜋∨1 with 𝜋
∞∨
1 .

We put
𝐻−∞
2 := 𝐻∞

1
′, (1.8)

and accordingly denote by 𝜋−∞2 := 𝜋∞∨
1 the natural continuous representation on (1.8).

We consider the canonically associated sesquilinear pairing

𝐻∞
1 × 𝐻−∞

2 → C, (𝑣, 𝑗) ↦→ 〈𝑣 , 𝑗〉. (1.9)

This pairing is equivariant for 𝜋∞1 and 𝜋
−∞
2 and induces the inverse of the continuous

linear isomorphism (1.12). Put ]2 := 𝑟1 ◦𝛼2. Then the map

]2 : 𝐻1 ↩→ 𝐻−∞
2 (1.10)

is a continuous linear injection, intertwining 𝜋1 with 𝜋−∞1 .We will use it to identify the
first of these spaces as an invariant subspace of the second. This allows us to view the
elements of (1.8) as generalized vectors for 𝜋2.We now note that for (𝑣, 𝑤) ∈ 𝐻∞

1 ×𝐻2,
we have

〈𝑣 , ]2(𝑤)〉 = [𝑟1(𝛼2(𝑤))] (𝑣) = [𝛼2(𝑤)] (𝑣) = 〈𝑣 , 𝑤〉,
where the last mentioned pairing is (1.7). We thus see that the sesquilinear pairing
(1.9) is an extension of the pairing 𝐻∞

1 × 𝐻2 → C given by restricting (1.7).
In the present context it is sometimes convenient to also use the sesquilinear pairing

𝐻−∞
2 × 𝐻∞

1 → C, ( 𝑗 , 𝑣) ↦→ 〈 𝑗 , 𝑣〉 := 〈𝑣 , 𝑗〉. (1.11)

Finally, we note that the above definitions imply that the pairing (1.9) induces a topo-
logical linear isomorphism

𝐻−∞
2

'−→ (𝐻∞
1 )

′. (1.12)

This isomorphism intertwines 𝜋−∞2 with 𝜋∞∨
1 . In the Whittaker setting, with 𝐿 = 𝐺 and

𝜋1 and 𝜋2 of finite length, this equivariance implies that (1.12) restricts to a bijective
conjugate linear map

𝐻−∞
2,𝜒

'−→ Wh𝜒 (𝐻∞
1 ), 𝑗 ↦→ ∨𝑗 , (1.13)

where
𝐻−∞
2,𝜒 := { 𝑗 ∈ 𝐻−∞

2 | 𝜋−∞2 (𝑛) 𝑗 = 𝜒(𝑛) 𝑗 (𝑛 ∈ 𝑁0)}. (1.14)
For obvious reasons, we agree to call (1.14) the space of Whittaker vectors for 𝜋1.
Given 𝑗 ∈ (𝐻−∞

2 )𝜒 there is the associated Whittaker coefficient map wh 𝑗 = wh(∨𝑗) :
𝐻∞
1 → 𝐶∞(𝐺/𝑁0 : 𝜒), given by

wh 𝑗 (𝑣) (𝑥) = ∨𝑗 (𝜋1(𝑥)−1𝑣) = 〈𝜋1(𝑥)−1𝑣 , 𝑗〉, (𝑣 ∈ 𝐻∞
1 , 𝑥 ∈ 𝐺).
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Remark 1.3 If (𝜋, 𝐻) is a continuous Hilbert representation of a Lie group 𝐿 we
define the representation 𝜋∗ of 𝐿 in 𝐻 by 𝜋∗(𝑥) = 𝜋(𝑥−1)∗ for 𝑥 ∈ 𝐿. It is readily
verified that the isometry i : 𝐻 → �̄�′ induced by the Hilbert inner product intertwines
𝜋∗ with �̄�∨. Thus, 𝜋∗ is continuous since �̄�∨ is continuous. Let now 𝐻𝜋 and 𝐻𝜋∗ denote
𝐻 equipped with the representations 𝜋 and 𝜋∗, respectively. Then the inner product of
𝐻 gives an equivariant perfect sesquilinear pairing

𝐻𝜋 × 𝐻𝜋∗ → C. (1.15)

Conversely, any equivariant perfect pairing of the form (1.7) can be transfered to
a pairing as (1.15) by putting 𝐻 = 𝐻1, 𝜋 = 𝜋1 and using the equivariant unitary
isomorphism i−12 ◦𝛼2 : 𝐻2 → 𝐻1. The pairing (1.15) gives rise to an intertwining
injective linear map 𝐻𝜋∗ → 𝐻−∞

𝜋∗ = 𝐻∞
𝜋
′. The representation 𝜋 is unitary if and only if

𝜋 = 𝜋∗. In that case we obtain the equality 𝐻−∞
𝜋 = 𝐻∞

𝜋
′ which is compatible with an

existing convention in the literature.

Remark 1.4 The point of view explained aboveRemark 1.3will be of particular impor-
tance in the setting of parabolically induced representations of the form Ind𝐺𝑃 (b), with
b a continuous Hilbert representation of a parabolic subgroup 𝑃 of𝐺. Let 𝐿2(𝐺/𝑃 : b)
be the Hilbert space in which Ind𝐺𝑃 (b) is realized by the left regular action. Then,
with the similar notation for b∗, there exists a natural𝐺-equivariant perfect sesquilinear
pairing

𝐿2(𝐺/𝑃 : b) × 𝐿2(𝐺/𝑃 : b∗) → C.
Applying the formalism introduced above, one obtains a compatible equivariant sesquilin-
ear pairing

𝐿2(𝐺/𝑃 : b)∞ × 𝐿2(𝐺/𝑃 : b∗)−∞ → C
which induces an equivariant continuous linear isomorphism

𝐿2(𝐺/𝑃 : b∗)−∞ '−→ (𝐿2(𝐺/𝑃 : b)∞′

The associated space of Whittaker vectors, (𝐿2(𝐺/𝑃 : b∗)−∞)𝜒, can thus be viewed as
a space of generalized sections of a Hilbert bundle.

2 Moderate estimates for Whittaker coefficients
We fix a non-degenerate Ad(𝐺)-invariant symmetric bilinear form

𝐵 : 𝔤 × 𝔤 → R (2.1)

which is negative definite on 𝔨, positive definite on 𝔭 and which restricts to the Killing
form on the semisimple part [𝔤, 𝔤] . Let \ denote the Cartan involution on 𝔤 associated
with 𝐾.We define the positive definite Ad(𝐾)-invariant inner product 〈 · , · 〉 on 𝔤 by

〈𝑋 , 𝑌〉 := −𝐵(𝑋, \𝑌 ), (𝑋,𝑌 ∈ 𝔤). (2.2)
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The restriction of this inner product to 𝔞 induces a dual inner product on 𝔞∗, The latter’s
extension to a complex biliinear form on 𝔞∗

C
is also denoted 〈 · , · 〉. The associated

norms on 𝔞 and 𝔞∗ are denoted by | · |. Finally we extend the norm on 𝔞∗ to the norm | · |
on 𝔞∗

C
associated with the Hermitian extension of the inner product on 𝔞∗. Accordingly,

|a |2 = |Re a |2 + |Im a |2, (a ∈ 𝔞∗C). (2.3)

If 𝔳 ⊂ 𝔞 is a linear subspace, we will use the inner product on 𝔞 to identify the real
linear dual 𝔳∗ with a subspace of 𝔞∗, unless otherwise specified.
We define ◦𝐺 to be the intersection of the kernels ker b where b ranges over the

characters 𝐺 → R>0. Let 𝔞Δ = ∩𝛼∈Δ ker𝛼 and put 𝐴Δ = exp(𝔞Δ). Then multiplication
induces an isomorphism of Lie groups

𝐺 ' ◦𝐺 × 𝐴Δ.

It follows that 𝐺 = ◦𝐺 if and only if 𝐺 has compact center.
We define ◦‖ · ‖ : ◦𝐺 →]0,∞[ by ◦‖𝑥‖ = ‖Ad(𝑥)‖op (𝑥 ∈ 𝐺), where the subscript

‘op’ indicates that the operator norm with respect to the inner product (1.2) has been
taken.
We put ∗𝐴Δ := 𝐺0 ∩ 𝐴. Then via the direct sum 𝔞 = ∗𝔞Δ ⊕ 𝔞Δ we identify the

elements of the real duals ∗𝔞∗
Δ
and 𝔞∗

Δ
with elements of 𝔞∗. We select a basis B of 𝔞∗

Δ

and define ‖ · ‖Δ : 𝐴Δ → [1,∞[ by

‖𝑏‖Δ = max
𝛽∈±B

𝑏𝛽, (𝑏 ∈ 𝐴Δ).

Finally we define ‖ · ‖ : 𝐺 → [1,∞[ by

‖𝑥𝑏‖ := max(◦‖𝑥‖, ‖𝑏‖Δ), (𝑥 ∈ ◦𝐺, 𝑏 ∈ 𝐴Δ).

Put Σ𝑒 := Σ ∪ B ∪ (−B). Then it is easily verified that for 𝑘1, 𝑘2 ∈ 𝐾 and 𝑎 ∈ 𝐴,

‖𝑘1𝑎𝑘2‖ = max
𝛼∈Σ𝑒

𝑎𝛼 . (2.4)

See also [3, Lemma 2.1], where the definition is given for 𝐺 with compact center.
From the above definitions and (2.4) it readily follows that ‖ · ‖ is a norm on 𝐺 in

the sense of [20, Lemma 2.A.2.1].

Lemma 2.1 If (𝜋, 𝐻) is a (continuous) representation of 𝐺 in a Hilbert space, then
there exist constants 𝑟 (𝜋) ≥ 0 and 𝐶 > 0 such that

‖𝜋(𝑔)‖op ≤ 𝐶‖𝑔‖𝑟 (𝜋) , (𝑔 ∈ 𝐺), (2.5)

where ‖ · ‖op indicates the operator norm.

Proof. See [20, Lemma 2.A.2.2]. 2
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Lemma 2.2 Let (𝜋, 𝐻) be of finite length, and _ ∈ Wh𝜒 (𝐻∞). There exists a constant
𝑟 > 0 and a continuous seminorm n on 𝐻∞ such that the Whittaker coefficient wh_
satisfies

|wh_ (𝑣) (𝑎) | ≤ 𝑒𝑟 | log 𝑎 |n(𝑣), (2.6)

for all 𝑣 ∈ 𝐻∞ and 𝑎 ∈ 𝐴.

Proof. Let 𝑟 (𝜋) and 𝐶 be as in (2.5). Put 𝑚 = max𝛼∈Σ𝑒 |𝛼 |. Then it follows that for
𝑎 ∈ 𝐴 we have

‖𝑎‖𝑟 (𝜋) ≤ 𝑒𝑚𝑟 (𝜋) | log 𝑎 | .
By continuity of _, there exist a finite subset 𝑆 ⊂ 𝑈 (𝔤) such that |_(𝑣) | ≤∑

𝑢∈𝑆 ‖𝜋∞(𝑢)𝑣‖, for all 𝑣 ∈ 𝑉∞. By decomposing each element of 𝑆 as a sum of
weight vectors for ad(𝔞) it is readily seen that we may assume 𝑆 to consist of weight
vectors from the start. Let b𝑢 denote the weight by which ad(𝔞) acts on 𝑢. Then it
follows that, for all 𝑣 ∈ 𝐻∞ and 𝑎 ∈ 𝐴,

|_(𝜋(𝑎)𝑣) | ≤
∑︁
𝑢∈𝑆

‖𝜋∞(𝑢)𝜋(𝑎)𝑣‖

≤ 𝐶 ‖𝑎‖𝑟 (𝜋)
∑︁
𝑢∈𝑆

𝑎−b𝑢 ‖𝜋∞(𝑢)𝑣‖

≤ 𝐶 𝑒(𝑚𝑟 (𝜋)+𝑠) | log 𝑎 |
∑︁
𝑢∈𝑆

‖𝜋∞(𝑢)𝑣‖,

where 𝑠 = max𝑢∈𝑆 |b𝑢 |. The result follows with 𝑟 = 𝑚𝑟 (𝜋) + 𝑠. 2

The above proof does not use the assumption that 𝜒 ∈ 𝑁0 is regular. If 𝜒 is
regular, then the above estimate gives rise to remarkable new exponential estimates.
The argumentation for this is suggested by the following lemma.

Lemma 2.3 Let 𝑢 ∈ 𝑈 (𝔫0) have weight [ ∈ 𝔞∗ for the adjoint action of 𝔞. Then for all
𝑓 ∈ 𝐶∞(𝐺/𝑁0 : 𝜒) and 𝑎 ∈ 𝐴,

𝐿𝑢 𝑓 (𝑎) = 𝑎−[𝜒∗(𝑢) 𝑓 (𝑎).

Proof. Note that

𝐿𝑢 𝑓 (𝑎) = [𝑅Ad(𝑎)−1 (𝑢∨) 𝑓 ] (𝑎) = 𝑎−[𝑅𝑢∨ 𝑓 (𝑎) = 𝑎−[𝜒∗(𝑢) 𝑓 (𝑎). 2

The regularity of the character implies that Whittaker coefficients have fast decay
outside the closed positive Weyl chamber cl(𝐴+).

Corollary 2.4 Let (𝜋, 𝐻) be an admissible Hilbert representation of𝐺 of finite length
and let _ ∈ Wh𝜒 (𝐻∞). Let Γ be a closed cone in 𝔞 which is disjoint from cl(𝔞+) \ {0}.

Then for every 𝑠 > 0 there exists a continuous seminorm 𝑛 of 𝐻∞ such that, for all
𝑣 ∈ 𝐻∞, 𝑘 ∈ 𝐾 and 𝑎 ∈ exp(Γ),

|wh_ (𝑣) (𝑘𝑎) | ≤ 𝑒−𝑠 | log 𝑎 |𝑛(𝑣). (2.7)
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Proof. Let 𝑟 > 0 and 𝑛 be as in (2.6). Let 𝑆 be the unit sphere in 𝔞. Then by
compactness of 𝑆 ∩ Γ it suffices to show that for every 𝐻0 ∈ 𝑆 ∩ Γ there exists a closed
neighborhood 𝜔 3 𝐻0 in 𝑆 such that (2.7) holds with suitable 𝑠′ and 𝑛′ in place of 𝑠
and 𝑛, for all 𝑣 ∈ 𝐻∞, all 𝑘 ∈ 𝐾 and all 𝑎 ∈ exp(R≥0𝜔).
Let 𝐻0 ∈ 𝑆 ∩ Γ be given. Then 𝐻0 ∉ cl(𝔞+) and it follows that there exists a simple

root 𝛼 ∈ Δ such that 𝛼(𝐻0) < 0.We may fix 𝑝 ∈ N such that for 𝐻 = 𝐻0 we have

𝑟 |𝐻 | + 𝑝𝛼(𝐻) < −𝑠 |𝐻 |. (2.8)

We may now fix a closed neighborhood 𝜔 in 𝑆 such that this estimate holds for 𝐻 ∈ 𝜔.
By positive homogeneity (2.8) holds for 𝐻 ∈ R+𝜔. Let now 𝑋 ∈ 𝔤𝛼 be such that
𝜒∗(𝑋) = 1. Put 𝑢 = 𝑋 𝑘 ∈ 𝑈 (𝔤). Then by application of Lemma 2.3 it follows that, for
all 𝑣 ∈ 𝐻∞, 𝑘 ∈ 𝐾 and 𝑎 ∈ exp(R≥ 0𝜔),

|wh_ (𝑣) (𝑘𝑎) | = 𝑎𝑘𝛼 |𝐿𝑢 (wh_ (𝜋(𝑘)−1𝑣)) (𝑎) |
= 𝑒𝑘𝛼(log 𝑎) |wh_ (𝜋(𝑢)𝜋(𝑘)−1𝑣) (𝑎) |
≤ 𝑒𝑘𝛼(log 𝑎)+𝑟 | log 𝑎 |𝑛(𝜋(𝑢)𝜋(𝑘)−1𝑣) ≤ 𝑒−𝑠 | log 𝑎 |𝑛′(𝑣),

where 𝑛′(𝑣) = sup𝑘∈𝐾 𝑛(𝜋(𝑢)𝜋(𝑘)−1𝑣). 2

Lemma 2.5 Let 𝜗 : 𝔞 → R be either linear, or of the form 𝜗 = 𝑟 | · |, with 𝑟 > 0. Let
b ∈ 𝔞∗ and assume that b ≥ 𝜗 on 𝔞+. Then there exists a finite subset Θ ⊂ 𝑈 (𝔫) such
that for all 𝑓 ∈ 𝐶∞(𝐺/𝑁0 : 𝜒) and all 𝑎 ∈ 𝐴 we have the estimate

𝑎−b | 𝑓 (𝑎) | ≤ 𝑒−𝜗(log 𝑎) max
𝑢∈Θ

|𝐿𝑢 𝑓 (𝑎) |. (2.9)

Before we start with the proof, we need to introduce suitable notation. As usual, for
Φ ⊂ Δ we define 𝔞Φ to be the intersection of the spaces ker𝛼, for 𝛼 ∈ Φ. In particular,
𝔞Δ equals the centralizer of 𝔤 in 𝔞. We agree to write ∗𝔞Φ for the orthocomplement of
𝔞Φ in 𝔞. Then 𝔞 = ∗𝔞Φ ⊕ 𝔞Φ.

The collection of restrictions 𝛼 |∗𝔞Δ , for 𝛼 ∈ Δ, is a basis of ∗𝔞∗
Δ
. The associated dual

basis of ∗𝔞Δ is denoted by {ℎ𝛼 | 𝛼 ∈ Δ}. We define 8𝔞Φ := spanR{ℎ𝛼 | 𝛼 ∈ Φ}. Then
we have the following direct sum decomposition

𝔞 = 8𝔞Φ ⊕ 𝔞Φ. (2.10)

This decomposition will be important in the proof of Lemma 2.5.
We denote by 8𝔞−

Φ
the interior in 8𝔞Φ of the closed cone spanned by the elements

−ℎ𝛼 for 𝛼 ∈ Φ. Then

8𝔞−Φ = {𝐻 ∈ 8𝔞Φ | (∀𝛼 ∈ Φ) : 𝛼(𝐻) < 0}.

In addition, we define 𝔞(Φ) := 8𝔞−
Φ
+ cl(𝔞+

Φ
).

Lemma 2.6 The set 𝔞 is the disjoint union of the sets 𝔞(Φ), for Φ ⊂ Δ.
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Proof. We write RΔ for the real linear space of functions Δ → R. ForΦ ⊂ Δ we define
RΔ(Φ) to be the subset of RΔ consisting of 𝑥 ∈ RΔ with 𝑥𝛼 < 0 for 𝛼 ∈ Φ and 𝑥𝛽 ≥ 0
for 𝛽 ∈ Δ \ Φ. It is clear that RΔ is the disjoint union of the sets RΔ(Φ). Consider the
linear map 𝑝 : 𝔞 → RΔ defined by 𝑝(𝐻)𝛼 = 𝛼(𝐻) for 𝛼 ∈ Δ. Then 𝑝 is a surjective
linear map, hence 𝔞 is the disjoint union of the sets 𝑝−1(RΔ(Φ)), for Φ ⊂ Δ.

We will finish the proof by showing that 𝑝−1(RΔ(Φ)) = 𝔞(Φ). For this, suppose
𝐻 ∈ 𝔞 and consider the decomposition 𝐻 = 8𝐻 + 𝐻Φ, according to (2.10). Then
𝐻 ∈ 𝑝−1(RΔ(Φ)) is equivalent to the assertion that 𝛼(𝐻) < 0 and 𝛽(𝐻) > 0 for all
𝛼 ∈ Φ and 𝛽 ∈ Δ \ Φ. This in turn is equivalent to the assertion that 𝛼(8𝐻) < 0 and
𝛽(𝐻Φ) ≥ 0 for all 𝛼 ∈ Φ and 𝛽 ∈ Δ \ Φ, hence to 8𝐻 ∈ 8𝔞−

Φ
and 𝐻Φ ∈ cl(𝔞+

Φ
). By

definition, the latter is equivalent to 𝐻 ∈ 𝔞(Φ). 2

Proof of Lemma 2.5. We may fix 𝑘 ∈ N sufficiently large, such that for every 𝛼 ∈ Δ

we have 𝑘𝛼 + 𝜗 ≤ b on −ℎ𝛼 . For Φ ⊂ Δ we put

𝜎Φ :=
∑︁
𝛼∈Φ

𝛼.

Then it is readily verified that 𝑘𝜎Φ + 𝜗 ≤ b on 8𝔞−
Φ
. Since 𝜎Φ vanishes on 𝔞+Φ, whereas

𝔞+
Φ
⊂ cl(𝔞+), it follows from the hypothesis that the same estimate is valid on 𝔞+

Φ
. Using

the subadditivity of 𝜗 and the linearity of 𝜎Φ and b we now find that

𝑘𝜎Φ + 𝜗 ≤ b on 𝔞(Φ). (2.11)

The idea is now to derive suitable estimates on the set 𝐴(Φ) := exp(𝔞(Φ)) for Φ ⊂ Δ

fixed, by using Lemma 2.3. Put 𝑢 = 𝑢Φ =
∏
𝛼∈Φ 𝑋

𝑘
𝛼 , where an arbitrary fixed ordering

in the product may be taken, and where 𝑋𝛼 ∈ 𝔤𝛼 are such that 𝜒∗(𝑋𝛼) = 1.
Let 𝑓 ∈ 𝐶∞(𝐺/𝑁0 : 𝜒) and 𝑎 ∈ 𝐴(Φ), then it follows that

| 𝑓 (𝑎) | = 𝑎𝑘𝜎Φ |𝜒∗(𝑢) |−1 |𝐿𝑢 𝑓 (𝑎) | = 𝑎𝑘𝜎Φ |𝐿𝑢 𝑓 (𝑎) |.

Therefore,
𝑎−b | 𝑓 (𝑎) | = 𝑎−b+𝑘𝜎Φ |𝐿𝑢 𝑓 (𝑎) | ≤ 𝑒−𝜗(log 𝑎) |𝐿𝑢 𝑓 (𝑎) |.

As the sets 𝔞(Φ) cover 𝔞, we find the desired estimate with Θ = {𝑢Φ | Φ ⊂ Δ}. 2

Corollary 2.7 Assume that 𝐺 has compact center and let (𝜋, 𝐻) be an admissible
Hilbert 𝐺-representation of finite length. Let _ ∈ Wh𝜒 (𝐻∞). Then there exists a
b ∈ 𝔞∗ and a continuous seminorm n on 𝐻∞ such that for all 𝑣 ∈ 𝐻∞ and 𝑎 ∈ 𝐴 we
have

|wh_ (𝑣) (𝑎) | ≤ 𝑎bn(𝑣).

Proof. It follows from (2.6) that there exists a continuous seminorm n0 on 𝐻∞ such
that for all 𝑣 ∈ 𝐻∞ and 𝑎 ∈ 𝐴,

|wh_ (𝑣) (𝑎) | ≤ 𝑒𝑟 | log 𝑎 |n0(𝑣).
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Since 𝐺 has compact center, 𝔞Δ = 0, so that cl(𝔞+) is a proper closed cone in 𝔞. Hence,
there exists a linear functional b ∈ 𝔞∗ such that b > 0 on cl(𝔞+) \ {0}. Let 𝑆 be the unit
sphere in 𝔞∗, then by compactness of 𝑆 ∩ cl(𝔞+) we may multiply b by a positive scalar
to arrange that b > 𝑟 on 𝑆 ∩ cl(𝔞+). This implies that 𝑟 | · | ≤ b on cl(𝔞+). Let now
Θ ⊂ 𝑈 (𝔫0) be a finite subset as in Lemma 2.5. Then 𝐿𝑢𝑤(𝑣) = 𝑤(𝜋(𝑢)𝑣), so that

𝑎−b |wh_ (𝑣) (𝑎) | ≤ max
𝑢∈Θ

𝑒−𝑟 | log 𝑎 | |wh_ (𝜋(𝑢)𝑣) (𝑎) | ≤ max
𝑢∈Θ

𝑛0(𝜋(𝑢)𝑣).

The required estimate now follows with the continuous seminorm defined by 𝑛(𝑣) :=
max𝑢∈Θ 𝑛0(𝜋(𝑢)𝑣). 2

At a later stage we will also need the following result. We retain the assumption
that 𝐺 has compact center.

Lemma 2.8 Let ` ∈ 𝔞∗ be such that `(ℎ𝛼) > 0 for all 𝛼 ∈ Δ. Then there exists a
constant 𝑠 > 0 and a finite subset Θ ⊂ 𝑈 (𝔫0) such that for all 𝑓 ∈ 𝐶∞(𝐺/𝑁0 : 𝜒) and
all 𝑎 ∈ 𝐴 we have the estimate

𝑎−` | 𝑓 (𝑎) | ≤ 𝑒−𝑠 | log 𝑎 | max
𝑢∈Θ

|𝐿𝑢 𝑓 (𝑎) |. (2.12)

Proof. Since cl(𝔞+) is the cone spanned by the elements ℎ𝛼, for 𝛼 ∈ Δ, it follows that
there exists 𝑠 > 0 such that ` ≥ 𝑠 on cl(𝔞+) ∩ 𝑆, where 𝑆 is the unit sphere in 𝔞. This
implies that `(𝐻) ≥ 𝑠 |𝐻 | for all 𝐻 ∈ 𝔞+. The result now follows by application of
Lemma 2.5. 2

3 The Whittaker Schwartz space
We denote the map 𝐺 → 𝔞 associated with the Iwasawa decomposition 𝐺 = 𝐾𝐴𝑁0 by
𝐻. Thus, for 𝑘 ∈ 𝐾, 𝑎 ∈ 𝐴 and 𝑛0 ∈ 𝑁0,

𝐻 (𝑘𝑎𝑛0) = log 𝑎. (3.1)

Let 𝜌 ∈ 𝔞∗ be defined by 𝜌(𝐻) := 1
2 tr [ad(𝐻) |𝔫0] .

Following Harish-Chandra [12, §1.3] and Wallach [21, §15.3.1] we define the
Whittaker Schwartz space C(𝐺/𝑁0 : 𝜒) to be the space of functions 𝑓 ∈ 𝐶∞(𝐺/𝑁0 : 𝜒)
such that for all 𝑢 ∈ 𝑈 (𝔤) and 𝑁 > 0

𝑛𝑢,𝑁 ( 𝑓 ) := sup
𝑥∈𝐺

(1 + |𝐻 (𝑥) |)𝑁𝑒𝜌𝐻 (𝑥) · |𝐿𝑢 𝑓 (𝑥) | < ∞.

The indicated seminorms 𝑛𝑢,𝑁 induce a Fréchet topology on C(𝐺/𝑁0 : 𝜒). It is readily
verified that 𝐶∞

𝑐 (𝐺/𝑁0 : 𝜒) ⊂ C(𝐺/𝑁0 : 𝜒) ⊂ 𝐶∞(𝐺/𝑁0 : 𝜒), with continuous
inclusion maps.

Lemma 3.1 The space 𝐶∞
𝑐 (𝐺/𝑁0 : 𝜒) is dense in C(𝐺/𝑁0 : 𝜒).
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Proof. For 𝑡 > 0 we define

𝐵𝑡 := {𝑥 ∈ 𝐺 | |𝐻 (𝑥) | ≤ 𝑡}
Then 𝐵𝑡 is right 𝑁0-invariant, with compact image in 𝐺/𝑁0. Adapting the argument
given in [19, p. 343, Lemma 1] in an obvious fashion, we infer that there exist left
𝐾-invariant functions 𝜓𝑡 ∈ 𝐶∞

𝑐 (𝐺/𝑁0), for 𝑡 > 0 such that 0 ≤ 𝜓𝑡 ≤ 1, 𝜓𝑡 = 1 on 𝐵𝑡 ,
supp𝜓𝑡 ⊂ 𝐵𝑡+1 for all 𝑡 > 0 and such that, in addition, for every 𝑢 ∈ 𝑈 (𝔤) there exists
a constant 𝐶𝑢 > 0 such that

|𝐿𝑢 (𝜓𝑡) (𝑥) | ≤ 𝐶𝑢 for all 𝑡 > 0, 𝑥 ∈ 𝐺.
Adapting the argument of [19, p. 343, Thm. 2], again in an obvious way, we deduce
that for every 𝑢 ∈ 𝑈 (𝔤), 𝑁 > 0 there exists a finite subset 𝑉 ⊂ 𝑈 (𝔤) such that for all
𝑡 ≥ 1,

𝑛𝑢,𝑁 ( 𝑓 − 𝜓𝑡 𝑓 ) ≤
∑︁
𝑣∈𝑉

(1 + 𝑡)−1𝑛𝑣,𝑁+1( 𝑓 ).

From this it follows that 𝜓𝑡 𝑓 → 𝑓 in C(𝐺/𝑁0 : 𝜒) as 𝑡 → ∞. 2

Lemma 3.2 The space C(𝐺/𝑁0 : 𝜒) is invariant under left translation by elements of
𝐺. The associated left regular representation 𝐿 of 𝐺 on it is continuous.

Proof. We start with the observation that for 𝑥 ∈ 𝐺/𝑁0 and 𝑔 ∈ 𝐺 one has
𝐻 (𝑔𝑥) = 𝐻 (𝑔𝑘 (𝑥)) + 𝐻 (𝑥),

where 𝑘 (𝑥) is determined by 𝑥 ∈ 𝑘 (𝑥)𝐴𝑁0. It follows from this that for every compact
subset 𝑆 ⊂ 𝐺 and every 𝑁 ∈ N there exists a constant 𝐶𝑆,𝑁 > 0 such that

𝑒𝜌𝐻 (𝑔𝑥) (1 + |𝐻 (𝑔𝑥) |)𝑁 ≤ 𝐶𝑆,𝑁𝑒𝜌𝐻 (𝑥) (1 + |𝐻 (𝑥) |)𝑁 .
This implies that, for 𝑔 ∈ 𝑆 and 𝑓 ∈ C(𝐺/𝑁0 : 𝜒),

𝑛1,𝑁 (𝐿𝑔 𝑓 ) ≤ 𝐶𝑆,𝑁𝑛1,𝑁+1( 𝑓 ).
Noting that 𝐿𝑢 (𝐿𝑔 𝑓 ) = 𝐿Ad(𝑔−1)𝑢 𝑓 and observing that Ad(𝑆−1)𝑢 is a bounded subset
of a finite dimensional subspace of 𝑈 (𝔤), we deduce the existence of a finite subset
𝑉 ⊂ 𝑈 (𝔤) such that for all 𝑔 ∈ 𝑆 and 𝑓 ∈ C(𝐺/𝑁0 : 𝜒) we have

𝑛𝑢,𝑁 (𝐿𝑔 𝑓 ) ≤
∑︁
𝑣∈𝑉

𝑛𝑣,𝑁 ( 𝑓 ).

This implies that C(𝐺/𝑁0 : 𝜒) is invariant for the left regular representation and that
the set of linear maps 𝐿𝑔, for 𝑔 ∈ 𝑆, is equicontinuous in End(C(𝐺/𝑁0 : 𝜒)). If
𝑓0 ∈ 𝐶∞

𝑐 (𝐺/𝑁0 : 𝜒) then for 𝑔 → 𝑒, the function 𝐿𝑔 𝑓0 tends to 𝑓0 in 𝐶∞
𝑐 (𝐺/𝑁0 : 𝜒)

hence in C(𝐺/𝑁0 : 𝜒). Using the density of 𝐶∞
𝑐 (𝐺/𝑁0 : 𝜒) in C(𝐺/𝑁0 : 𝜒) it follows

by a standard argument that for all 𝑓 ∈ C(𝐺/𝑁0 : 𝜒) we have
lim
𝑔→𝑒

𝐿𝑔 𝑓 = 𝑓 in C(𝐺/𝑁0 : 𝜒).

Invoking the equicontinuity mentioned above, it now follows by a standard argument
that the map (𝑔, 𝑓 ) ↦→ 𝐿𝑔 𝑓 is continuous 𝐺 × C(𝐺/𝑁0 : 𝜒) → C(𝐺/𝑁0 : 𝜒). 2
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Lemma 3.3 If ℓ > dim 𝐴 then∫
𝐺/𝑁0

(1 + |𝐻 (𝑥) |)−ℓ𝑒−2𝜌𝐻 (𝑥) 𝑑𝑥 < ∞.

Proof. By substitution of variables a measurable function 𝜑 : 𝐺/𝑁0 → C is absolutely
integrable if and only if the function (𝑘, 𝑎) ↦→ 𝜑(𝑘𝑎)𝑎2𝜌 is absolutely integrable over
𝐾 × 𝐴. If so, the integrals

∫
𝐺/𝑁0

𝜑(𝑥) 𝑑 ¤𝑥 and
∫
𝐾×𝐴 𝜑(𝑘𝑎)𝑎

2𝜌 𝑑𝑘𝑑𝑎 are equal, provided
the invariant measures are suitably normalized. From this, the proof is immediate. 2

Corollary 3.4 C(𝐺/𝑁0 : 𝜒) ⊂ 𝐿2(𝐺/𝑁0 : 𝜒), with continuous linear inclusion map.

We end this section with a result that will be applied in the next section. It is
assumed that 𝐺 has compact center. Then Δ is a linear basis of 𝔞∗; the associated dual
basis of 𝔞 is denoted by {ℎ𝛼 | 𝛼 ∈ Δ}.

Lemma 3.5 Suppose that 𝐺 has compact center and let b ∈ 𝔞∗ be such that b (ℎ𝛼) <
−𝜌(ℎ𝛼) for all 𝛼 ∈ Δ. Let (𝜋, 𝐻) be an admissible continuous representation of finite
length of 𝐺 in a Hilbert space and let _ ∈ Wh𝜒 (𝐻∞). Assume there exist a continuous
seminorm n on 𝐻∞ and a constant 𝑑 ∈ N such that, for all 𝑣 ∈ 𝐻∞ and 𝑎 ∈ 𝐴,

|wh_ (𝑣) (𝑎) | ≤ 𝑎b (1 + | log 𝑎 |)𝑑 n(𝑣).

Then the Whittaker coefficient map wh_ is continuous 𝐻∞ → C(𝐺/𝑁0 : 𝜒).

Proof. We put ` = −𝜌 − b. Then it follows that `(ℎ𝛼) > 0 for all 𝛼 ∈ Δ. By
Lemma 2.8 there exists a finite set Θ ⊂ 𝑈 (𝔫0) and a constant 𝑠 > 0 such that for all
𝑓 ∈ 𝐶∞(𝐺/𝑁0 : 𝜒) and all 𝑎 ∈ 𝐴 we have the estimate

𝑎−` | 𝑓 (𝑎) | ≤ 𝑒−𝑠 | log 𝑎 | max
𝑢∈Θ

|𝐿𝑢 𝑓 (𝑎) |.

This implies that

𝑎𝜌 | 𝑓 (𝑎) | = 𝑎−b𝑎−` | 𝑓 (𝑎) |
≤ max

𝑢∈Θ
𝑎−b𝑒−𝑠 | log 𝑎 | |𝐿𝑢 𝑓 (𝑎) |

≤ 𝑒−𝑠 | log 𝑎 | (1 + | log 𝑎 |)𝑑 max
𝑢∈Θ

𝑎−b (1 + | log 𝑎 |)−𝑑 |𝐿𝑢 𝑓 (𝑎) |.

Using the above estimate for 𝑓 = wh_ (𝑣), with 𝑣 ∈ 𝐻∞, we find that

𝑎𝜌 |wh_ (𝑣) (𝑎) | ≤ 𝑎−𝑠 | log 𝑎 | (1 + | log 𝑎 |)𝑑 max
𝑢∈Θ
n(𝜋(𝑢)𝑣). (3.2)

For 𝑁 ∈ N we define the positive number

𝐶𝑁 = sup
𝑡≥0

𝑒−𝑠𝑡 (1 + 𝑡)𝑁+𝑑 . (3.3)
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It follows from (3.2) and (3.3) that, for all 𝑣 ∈ 𝐻∞ and 𝑎 ∈ 𝐴,

𝑎𝜌 (1 + | log 𝑎 |)𝑁 |wh_ (𝑣) (𝑎) | ≤ 𝐶𝑁 n1(𝑣),

where n1 is the continuous seminorm on 𝐻∞ given by n1(𝑣) = max𝑢∈Θ(𝜋(𝑢)𝑣). Finally,
the last displayed estimate implies that, for 𝑢 ∈ 𝑈 (𝔤) and for all 𝑣 ∈ 𝐻∞ and 𝑥 ∈ 𝐺,

𝑒𝜌𝐻 (𝑥) (1 + |𝐻 (𝑥) |)𝑁 |𝐿𝑢 (wh_ (𝑣)) (𝑥) | = 𝑒𝜌𝐻 (𝑥) (1 + |𝐻 (𝑥) |)𝑁 | (wh_ (𝜋(𝑢)𝑣)) (𝑥) |
≤ n𝑢 (𝑣),

with n𝑢 the continuous seminorm on 𝐻∞ given by nu(𝑣) = 𝐶2 sup𝑘∈𝐾 n1(𝜋(𝑘)𝜋(𝑢)𝑣)).
2

4 Sharp estimates for Whittaker coefficients
In this section we assume that 𝐺 has compact center. We shall derive certain growth
properties of Whittaker coefficients, building on results and ideas of Wallach [21] and
Harish-Chandra [12].
We assume that (𝐻, 𝜋) is an admissible continuous representation of finite length

of 𝐺 in a Hilbert space. Let 𝑉 = 𝐻𝐾 be the associated Harish-Chandra module, and let
𝑉∼ denote the associated dual Harish-Chandra module. Then it is well known that the
natural map (𝐻∞)′ → 𝑉∗ induces an isomorphism (𝐻∞)′

𝐾
' 𝑉∼.

We agree to write 𝐸 (𝑃0, 𝑉) for the set of generalized weights of the finite dimen-
sional 𝔞-module 𝑉/𝔫0𝑉.
Let Δ be the collection of simple roots in Σ(𝔫0, 𝔞) and let {ℎ𝛼 | 𝛼 ∈ Δ} be the

associated dual basis of 𝔞.We define Λ𝑉 ∈ 𝔞∗ by

Λ𝑉 (ℎ𝛼) := max{−Re `(ℎ𝛼) | ` ∈ 𝐸 (𝑃0, 𝑉)}. (4.1)

Remark 4.1 At a later stage it will be of crucial importance to us that for 𝜋 irreducible
unitary, the following two conditions are equivalent

(a) 𝜋 is equivalent to a direct sum of representations from the discrete series of 𝐺;

(b) Λ𝑉 (ℎ𝛼) < −𝜌(ℎ𝛼) for all 𝛼 ∈ Δ.

For a proof of this well known result, we refer to [20] as follows. The element Λ𝑉
corresponds to Λ𝑉∼ as defined in [20, §4.3.5]. In the terminology of [20, §5.1.1]
assertion (b) means that 𝑉∼ is rapidly decreasing. According to [20, Prop. 5.1.3 &
Thm. 5.5.4] this is equivalent to the assertion that (𝜋∨, 𝐻′) is a direct sum of square
integrable representations, which in turn is equivalent to assertion (a).

The following result is due to Wallach [21, 15.2.2]. The regularity of 𝜒 is not
required.
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Proposition 4.2 Put Λ := Λ𝑉 and let _ ∈ Wh𝜒 (𝐻∞). Then there exists a constant
𝑑 ≥ 0 and for every 𝑣 ∈ 𝐻𝐾 a constant 𝐶𝑣 > 0 such that

|_(𝜋(𝑎−1)𝑣) | ≤ 𝐶𝑣 (1 + | log 𝑎 |)𝑑 𝑎Λ.

for all 𝑎 ∈ cl(𝐴+).

Wallach’s proof of this result follows the lines of the proof of an earlier result,
stated in [20, Thm. 4.3.5]. That result, applied to the contragredient representation 𝜋∨,
asserts that for a given 𝑣 ∈ ((𝐻′)∞)′

𝐾
' 𝐻𝐾 there exists a constant 𝑑 > 0, a continuous

seminorm 𝜎𝑣 on (𝐻′)∞ such that for all _ ∈ (𝐻′)∞ one has

|𝑣(𝜋∨(𝑎)_) | ≤ (1 + | log 𝑎 |)𝑑𝑎Λ𝜎𝑣 (_).

As 𝑣(𝜋∨(𝑎)_) = _(𝜋(𝑎−1)𝑣), the result [20, Thm. 4.3.5] implies that Proposition 4.2
is valid for _ a smooth vector in 𝐻′.
The proof of [20, Thm. 4.3.5] makes use of initial estimates and of estimate im-

provement through asymptotic behavior along maximal standard parabolic subgroups
𝑃Φ,withΦ = Δ\{𝛼}. It exploits a system of differential equations coming from the ob-
servation that𝑉/𝔫Φ𝑉 is an admissible (𝔪1Φ, 𝐾Φ)-module (𝔪1Φ = 𝔪Φ+𝔞Φ), so that 𝔞Φ
acts finitely on it. From the proof one sees that only estimates of [𝜋∨(𝑈)_] (𝜋(𝑎)𝑤) for
𝑈 ∈ 𝑈 (𝔫0), 𝑤 ∈ 𝐻𝐾 and 𝑎 ∈ 𝐴+ are needed tomake the approach work. This is the con-
dition of (𝑃0, 𝐴)-tameness of [21, §15.2.1]. If _ ∈ Wh𝜒 (𝐻∞) then 𝜋∨(𝑈)_ = 𝜒∗(𝑈∨)_
so that the needed tameness is trivially guaranteed. Therefore, essentially the same
approach gives the validity of Proposition 4.2. For further details, see the proof of [21,
Thm. 15.2.2], assertion (1).
For regular 𝜒 the following refinement of Proposition 4.2 will be of crucial impor-

tance to us, since it gives an estimate for the Whittaker coefficient wh_ (𝑣) for every
smooth 𝑣 ∈ 𝐻∞ on all Weyl chambers of 𝐴. The key idea is to now focus on the
𝔞Φ-actions on the modules𝑈 (𝔤)_/�̄�𝑘

Φ
𝑈 (𝔤)_, for 𝑘 ≥ 1, making use of the information

provided by Proposition 4.2 to exclude the contribution of 𝔞Φ-weights that are not
dominated by Λ|𝔞Φ .

Theorem 4.3 Suppose that 𝐺 has compact center and let Λ := Λ𝑉 . Assume that 𝜒 is
a regular unitary character of 𝑁0 and that _ ∈ Wh𝜒 (𝐻∞). Then there exists a constant
𝑑 ≥ 0 and a continuous seminorm n on 𝐻∞ such that for every 𝑣 ∈ 𝐻∞,

|_(𝜋(𝑎−1)𝑣) | ≤ (1 + | log 𝑎 |)𝑑 𝑎Λ n(𝑣),

for all 𝑎 ∈ 𝐴.

Remark 4.4 [21, Thm. 15.2.5] gives this estimate for 𝑎 ∈ cl(𝐴+).
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The rest of this section is devoted to the proof of Theorem 4.3. We start with the
fact that there exists a b ∈ 𝔞∗, a constant 𝑑 ≥ 0 and a continuous seminorm n on 𝐻∞

such that

|wh_ (𝑣) (𝑎) | ≤ 𝑎b (1 + | log 𝑎 |)𝑑 n(𝑣) (𝑣 ∈ 𝐻∞, 𝑎 ∈ 𝐴). (4.2)

Indeed, according to Corollary 2.7 this estimate holds with 𝑑 = 0 for a suitable choice
of b.
In the following we shall say that b ∈ 𝔞∗ dominates the Whittaker coefficient wh_

if there exist a 𝑑 ∈ N and a continuous seminorm n on 𝐻∞ such that the estimate (4.2)
is valid for all 𝑣 ∈ 𝐻∞ and 𝑎 ∈ 𝐴. The following result concerning domination will be
useful.

Lemma 4.5 Let 𝜗, b ∈ 𝔞∗ be such that 𝜗 ≤ b on 𝔞+. If 𝜗 dominates the Whittaker
coefficient wh_, then so does b.

Proof. Let Θ be a finite subset of𝑈 (𝔫0) with the properties guaranteed by Lemma 2.5.
Assume 𝜗 is dominating. Then there exist a constant 𝑑 ≥ 0 and a continuous seminorm
n on 𝐻∞ such that for all 𝑣 ∈ 𝐻∞ and all 𝑎 ∈ 𝐴 we have

𝑎−𝜗 |wh_ (𝑣) (𝑎) | ≤ (1 + | log 𝑎 |)𝑑n(𝑣).

By applying Lemma 2.5 with 𝑓 = wh_ (𝑣), and using that 𝐿𝑢 (wh_ (𝑣)) = wh_ (𝜋∗(𝑢)𝑣)
we infer that, for all 𝑣 ∈ 𝐻∞ and 𝑎 ∈ 𝐴,

𝑎−b |wh_ (𝑣) (𝑎) | ≤ max
𝑢∈Θ

𝑎−𝜗 |wh_ (𝜋∗(𝑢)𝑣) (𝑎) |

≤ (1 + | log 𝑎 |)𝑑 max
𝑢∈Θ
n(𝜋∗(𝑢)𝑣).

Since n′ : 𝑣 ↦→ max𝑢∈Θ n(𝜋∗(𝑢)𝑣) is a continuous seminorm on 𝐻∞ it follows that b
dominates wh_. 2

The idea is now to show that a dominating b can be improved by using asymp-
totic expansions along maximal standard parabolic subgroups derived from suitable
differential equations. This method, inspired by [20, §4.4] and [21, §15.2], leads to
the following lemma, which is the main step in our proof of Theorem 4.3. We write
Λ = Λ𝐻𝐾 .

Lemma 4.6 (estimate improvement) Assume that the Whittaker coefficient wh_ is
dominated by b ∈ 𝔞∗. Let 𝛼 ∈ Δ. Then wh_ is also dominated by b′, where b′ ∈ 𝔞∗ is
defined by

(a) b′ = b on ker𝛼;

(b) b′(ℎ𝛼) = min(b (ℎ𝛼),Λ(ℎ𝛼)).
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The proof of this lemma will be given in the next section. Here we note that using the
lemma successively for all simple roots 𝛼 ∈ Δ we obtain the following corollary.

Corollary 4.7 (estimate improvement) Assume that the Whittaker coefficient wh_ is
dominated by b ∈ 𝔞∗. Then wh_ is also dominated by b′′, where b′′ ∈ 𝔞∗ is defined by
b′′(ℎ𝛼) = min(b (ℎ𝛼),Λ(ℎ𝛼)) for every 𝛼 ∈ Δ. In particular, b′′(ℎ𝛼) ≤ Λ(ℎ𝛼) for all
𝛼 ∈ Δ.

The above results allow us to establish the main result of this section.

Proof of Theorem 4.3. According toCorollary 2.7 there exists a b ∈ 𝔞∗which dominates
wh_. By Corollary 4.7 the coefficient wh_ is also dominated by b′′. From the definition
of b′′ one sees that b′′ ≤ Λ on 𝔞+. By application of Lemma 4.5 it now follows that Λ
dominates wh_. This establishes the assertion of Theorem 4.3. 2

Corollary 4.8 Suppose that (𝜋, 𝐻) belongs to the discrete series of 𝐺 and let _ ∈
Wh𝜒 (𝐻∞). Then the associated Whittaker coefficient wh_ defines a continuous linear
map 𝐻∞ → C(𝐺/𝑁0 : 𝜒).

Proof. From Remark 4.1 it follows that Λ(ℎ𝛼) < −𝜌(ℎ𝛼) for 𝛼 ∈ Δ. The result now
follows by combining Theorem 4.3 with Lemma 3.5. 2

5 Proof of Lemma 4.6: improvement of estimates
As in the previous section, we assume that 𝐺 has compact center. Furthermore, (𝜋, 𝐻)
is an admissible continuous representation of finite length of 𝐺 in a Hilbert space,
and 𝑉 = 𝐻𝐾 is the associated Harish-Chandra module. We define Λ = Λ𝑉 as in (4.1)
and assume that _ ∈ Wh(𝐻∞). Let wh_ : 𝐻∞ → 𝐶∞(𝐺/𝑁0 : 𝜒) be the associated
Whittaker coefficient. The purpose of this section is to prove Lemma 4.6.
Our starting assumption is that wh_ is dominated by b ∈ 𝔞∗. This means that there

exists a constant 𝑑 ∈ N and a continuous seminorm n on 𝐻∞ such that for all 𝑣 ∈ 𝐻∞

and all 𝑎 ∈ 𝐴 we have

|𝑚_ (𝑣) (𝑎) | ≤ (1 + | log 𝑎 |)𝑑𝑎bn(𝑣). (5.1)

We will improve upon this estimate by using a system of differential equations
satisfied by wh_. Our first goal is to set up this system.
Given a finite dimensional real linear space 𝔳 we denote by 𝑆(𝔳) the symmetric

algebra of its complexification 𝔳C and by 𝑃(𝔳) the algebra of polynomial functions
𝔳C → C.
Given a real Lie algebra 𝔩 we denote by 𝑈 (𝔩) the universal enveloping algebra of

its complexification 𝔩C, and by ℨ(𝔩) the center of 𝑈 (𝔩). Furthermore, 𝑈 (𝔩) is equipped
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with the standard filtration by order, (𝑈 (𝔩)𝑛)𝑛≥0. The center ℨ(𝔩) is equipped with the
induced filtration.
For a parabolic subgroup 𝑃 of 𝐺 we denote its Langlands decomposition by 𝑃 =

𝑀𝑃𝐴𝑃𝑁𝑃 and we write 𝑀1𝑃 := 𝑀𝑃𝐴𝑃 . We agree to use the abbreviated notation
ℨ = ℨ(𝔤), ℨ1𝑃 = ℨ(𝔪1𝑃) and ℨ𝑃 := ℨ(𝔪𝑃).
Given a subsetΦ ⊂ Δ we denote by 𝑃Φ the associated standard parabolic subgroup

of 𝐺. Its Langlands components are denoted by 𝑀Φ, 𝐴Φ, 𝑁Φ. Furthermore, 𝑀1Φ :=
𝑀Φ𝐴Φ, ℨ1Φ := ℨ(𝔪1Φ) and ℨΦ := ℨ(𝔪Φ).
We consider the𝑈 (𝔤)-submodule

Y := 𝑈 (𝔤)_

of (𝐻∞)′. Since𝐻 is admissible and of finite length,ℨ_ is a finite dimensional subspace
of Y.
We fix Φ ⊂ Δ. By the PBW theorem,𝑈 (𝔤) = 𝑈 (𝔪1Φ) ⊕ (�̄�Φ𝑈 (𝔤) +𝑈 (𝔤)𝔫Φ). The

associated projection 𝑈 (𝔤) → 𝑈 (𝔪1Φ), restricted to ℨ, defines an algebra homomor-
phism

𝑝 : ℨ → ℨ1Φ. (5.2)
It is well known that 𝑝 is injective and preserves the filtrations induced by the standard
filtration (𝑈 (𝔤)𝑛)𝑛∈N by order on𝑈 (𝔤).
We fix a maximal torus 𝔱 ⊂ 𝔪; then 𝔥 := 𝔱 ⊕ 𝔞 is a Cartan subalgebra of 𝔤. Let

𝑊 (𝔥) denote the Weyl group of the root system 𝑅(𝔤, 𝔥) of 𝔥C in 𝔤C. Furthermore, let
𝑊Φ(𝔥) denote the Weyl group of 𝑅(𝔪1Φ, 𝔥). Then𝑊Φ(𝔥) equals the centralizer of 𝔞Φ
in𝑊 (𝔥).
We denote by 𝑆(𝔥)𝑊 (𝔥) and 𝑆(𝔥)𝑊Φ (𝔥) the associated subalgebras of Weyl group

invariants in 𝑆(𝔥). Then it is well known that 𝑆(𝔥)𝑊Φ (𝔥) is a free 𝑆(𝔥)𝑊 (𝔥)-module of
rank ℓ = [𝑊 (𝔥) : 𝑊Φ(𝔥)] with free homogeneous generators, 𝑞1 = 1, 𝑞2, . . . , 𝑞ℓ ., see
[23, Thm 2.1.3.6].
Let 𝛾 : ℨ → 𝑆(𝔥)𝑊 (𝔥) and 𝛾Φ : ℨ1Φ → 𝑆(𝔥)𝑊Φ (𝔥) denote the associated Harish-

Chandra isomorphisms. These are known to be isomorphisms of filtered algebras.
Furthermore,

𝑝 = 𝑇−𝜌Φ ◦ 𝛾−1Φ ◦ 𝛾,

where𝑇−𝜌Φ is the automorphism𝑇 ofℨ1Φ ' ℨΦ⊗𝑆(𝔞Φ) determined by𝑇 = 𝐼 onℨΦ and
by 𝑇 (𝑋) = 𝑋 − 𝜌Φ(𝑋), for 𝑋 ∈ 𝔞Φ. Here 𝜌Φ ∈ 𝔞∗ is given by 𝜌Φ(𝑋) = 1

2 tr (ad(𝑋) |𝔫Φ).
For 1 ≤ 𝑖 ≤ ℓ, put

𝑢𝑖 := 𝑇−𝜌Φ𝛾
−1
Φ (𝑞𝑖) ∈ ℨ1Φ.

Thenwe see thatℨ1Φ is a free 𝑝(ℨ)-module with basis 𝑢1 = 1, 𝑢2, . . . , 𝑢ℓ . Furthermore,
since the 𝑞𝑖 are homogeneous and since 𝛾, 𝛾Φ and 𝑇−𝜌Φ are isomorphisms of filtered
algebras, the following is valid.
For every 𝑢 ∈ ℨ1Φ ∩𝑈 (𝔤)𝑛, (𝑛 ∈ N), let 𝑍1, . . . , 𝑍ℓ ∈ ℨ be the unique elements such
that 𝑢 =

∑ℓ
𝑖=1 𝑢𝑖𝑝(𝑍𝑖). Then for all 1 ≤ 𝑖 ≤ ℓ,

ord(𝑢𝑖) + ord(𝑍𝑖) ≤ 𝑛 (5.3)
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Let 𝐸Φ be the complex linear span of the elements {𝑢𝑖 | 1 ≤ 𝑖 ≤ ℓ} in ℨ1Φ. Then
the map (𝑢, 𝑍) ↦→ 𝑢𝑝(𝑍) induces a linear isomorphism 𝐸Φ ⊗ ℨ ' ℨ1Φ.

Lemma 5.1 With 𝐸Φ ⊂ ℨ1Φ as above, we have

𝑈 (𝔤) = 𝑈 (�̄�Φ)𝑈 (𝔪Φ)𝐸Φℨ𝑈 (𝔫Φ). (5.4)

Proof. By induction on 𝑛 ∈ N we will show that𝑈 (𝔤)𝑛 is contained in the space on the
right-hand side of (5.4). For 𝑛 = 0 the inclusion is obvious. Thus, let 𝑛 ≥ 1 and assume
the inclusion has been established for strictly smaller values of 𝑛. We observe that by
the PBW theorem, every element of 𝑈 (𝔤)𝑛 may be written as a sum of an element of
𝑈 (𝔤)𝑛−1 and a finite sum of products 𝑤𝑣𝑢𝑦 with 𝑤 ∈ 𝑈 (�̄�Φ), 𝑣 ∈ 𝑈 (𝔪Φ), 𝑢 ∈ 𝑈 (𝔞Φ)
and 𝑦 ∈ 𝑈 (𝔫Φ) such that

ord(𝑤) + ord(𝑣) + ord(𝑢) + ord(𝑦) ≤ 𝑛. (5.5)

In view of the induction hypothesis, it suffices to show that each such product 𝑤𝑣𝑢𝑦
with (5.5) belongs to the space on the right of (5.4).
Since𝑈 (𝔞Φ) ⊂ ℨ1Φ, the element 𝑢 may be expressed as a sum of elements 𝑢𝑖𝑝(𝑍𝑖)

with ord(𝑢𝑖)+ord(𝑍𝑖) ≤ ord(𝑢).Now 𝑝(𝑍𝑖)−𝑍𝑖 ∈ 𝑈 (𝔤)𝑛𝑖−1𝔫Φ,where 𝑛𝑖 := deg 𝑍𝑖 ≤ 𝑛.
It follows that for every 1 ≤ 𝑖 ≤ ℓ,

𝑤𝑣𝑢𝑖 (𝑝(𝑍𝑖) − 𝑍𝑖)𝑦 ∈ 𝑈 (𝔤)𝑛−1𝔫Φ.

Summing over 𝑖 and applying the induction hypothesis, we find

𝑤𝑣𝑢𝑦 ∈ 𝑤𝑣
∑︁
𝑖

𝑢𝑖𝑍𝑖𝑦 +𝑈 (𝔤)𝑛−1𝔫Φ ⊂ 𝑈 (�̄�Φ)𝑈 (𝔪Φ)𝐸Φℨ𝑈 (𝔫Φ).

2

For 𝑘 ≥ 1, the quotientM𝑘 := Y/�̄�𝑘
Φ
Y is a left𝑈 (𝔪1Φ)-module.

Lemma 5.2 The subspace 𝐸Φℨ_ of Y has a finite dimensional 𝔞Φ-invariant image in
M1, which generates the𝑈 (𝔪Φ)-module M1.

Proof. Since 𝐸Φ and ℨ_ are finite dimensional, the mentioned image 𝐹1 of 𝐸Φℨ_ in
M1 is finite dimensional. From

𝑈 (𝔞Φ)𝐸Φ ⊂ ℨ1Φ ⊂ 𝐸Φ𝑝(ℨ) ⊂ 𝐸Φℨ + �̄�Φ𝑈 (𝔤)

it follows that 𝐹1 is finite dimensional and 𝔞Φ-invariant. 2

In particular, it follows that the set 𝑆Φ of generalized 𝔞Φ-weights ofM1 is finite
and thatM1 is the direct sum of the associated generalized 𝔞Φ-weight spaces.

Lemma 5.3 For 𝑘 ≥ 1 the set wt(M𝑘 ) of generalized 𝔞Φ-weights of M𝑘 is finite.
Each of its elements is of the form 𝜎 − (𝛼1 + · · · + 𝛼𝑙), with 𝜎 ∈ 𝑆Φ, 0 ≤ 𝑙 < 𝑘 and
𝛼 𝑗 ∈ Σ(𝔫Φ, 𝔞Φ) for all 1 ≤ 𝑗 ≤ 𝑙.
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Proof. For 𝑘 = 1 the result has been established above. For 𝑘 ≥ 2 we notice that the
natural map 𝑞𝑘 :M𝑘 → M𝑘−1 is a surjective morphism of 𝔞Φ-modules. Furthermore,
its kernel is isomorphic as an 𝔞Φ-module to the quotient

𝑄𝑘 := �̄�𝑘−1Φ 𝑈 (𝔤)_/�̄�𝑘Φ𝑈 (𝔤)_.

Define𝑄1 := M1, thenwt(𝑄1) = 𝑆Φ and𝑄1 is the associated direct sum of generalized
𝔞Φ-weight spaces. The natural map �̄�Φ ⊗ 𝑄𝑘−1 → 𝑄𝑘 is surjective, for 𝑘 ≥ 1. Thus, if
the 𝔞Φ-module 𝑄𝑘−1 is the direct sum of its generalized weight spaces, then so is 𝑄𝑘 ,

and wt(𝑄𝑘 ) ⊂ wt(�̄�Φ) + wt(𝑄𝑘−1). It follows by induction on 𝑘 that each 𝑄𝑘 is the
direct sum of its generalized weight spaces, and that for 𝑘 ≥ 1 each weight of 𝑄𝑘 is of
the form 𝜎 − (𝛼1 + · · · + 𝛼ℓ), where 𝜎 ∈ 𝑆Φ, ℓ < 𝑘 and 𝛼 𝑗 ∈ Σ(𝔫Φ, 𝔞Φ), for 1 ≤ 𝑗 ≤ ℓ.
For 𝑘 ≥ 2 we now have the short exact sequence of 𝔞Φ-modules

0→ 𝑄𝑘 → M𝑘 → M𝑘−1 → 0.

Here 𝑄𝑘 is the direct sum of finitely many generalized 𝔞Φ-weight spaces. If M𝑘−1
is the direct sum of finitely many weight spaces, then it follows that the moduleM𝑘

is the direct sum of finitely many weight spaces as well, while wt(M𝑘 ) ⊂ wt(𝑄𝑘 ) ∪
wt(M𝑘−1). The asserted result now follows by induction on 𝑘. 2

After this preparation, we proceed with setting up the system of differential equa-
tions. Fix 𝑘 ≥ 1. At a later stage we shall impose a condition on the magnitude of 𝑘.
The space 𝑈 (𝔞Φ)_ maps to a finite dimensonal subspace 𝐹 ofM𝑘 = Y/�̄�𝑘

Φ
Y. We fix

elements 𝑢1 = 1, 𝑢2, . . . , 𝑢𝑝 of 𝑈 (𝔞Φ) such that the images [𝑢 𝑗_] inM𝑘 form a basis
of 𝐹.
For 𝐻 ∈ 𝔞Φ we denote by 𝐵(𝐻) the transposed of the matrix of the action of 𝐻

on 𝐹 relative to this basis. Then there exist linear maps 𝑦 𝑗 : 𝔞Φ → �̄�𝑘
Φ
𝑈 (�̄�0 + 𝔪1),

(𝔪1 := 𝔪+𝔞) such that for every𝐻 ∈ 𝔞Φwe have the following identities inY = 𝑈 (𝔤)_,

𝐻𝑢 𝑗_ =

𝑝∑︁
𝑖=1

𝐵(𝐻) 𝑗𝑖𝑢𝑖_ + 𝑦 𝑗 (𝐻)_, (1 ≤ 𝑗 ≤ 𝑝).

We now define the functions 𝐹 : 𝐻∞ × 𝐴→ C𝑝 and 𝑅 : 𝑉 × 𝐴 × 𝔞Φ → C𝑝 by

𝐹𝑗 (𝜑, 𝑎) = 𝑢 𝑗_(𝜋(𝑎)−1𝑣), 𝑅 𝑗 (𝑣, 𝑎, 𝐻) = 𝑦 𝑗 (𝐻)_(𝜋(𝑎)−1𝑣), (1 ≤ 𝑗 ≤ 𝑝).

We use the decomposition (2.10) and put 8𝐴Φ := exp(8𝔞Φ), so that 𝐴 ' 8𝐴Φ𝐴Φ. Then,

𝑑

𝑑𝑡
𝐹 (𝑣, 8𝑎 exp(𝑡𝐻)) = 𝐵(𝐻)𝐹 (𝑣, 8𝑎 exp 𝑡𝐻) + 𝑅(𝑣, 8𝑎 exp 𝑡𝐻, 𝐻),

for all 8𝑎 ∈ 8𝐴Φ, 𝐻 ∈ 𝔞Φ and 𝑡 ∈ R. This equation in turn leads to

𝑑

𝑑𝑡
𝑒−𝑡𝐵(𝐻)𝐹 (𝑣, 8𝑎 exp(𝑡𝐻)) = 𝑒−𝑡𝐵(𝐻)𝑅(𝑣, 8𝑎 exp 𝑡𝐻, 𝐻).
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Finally, by integrating with respect to 𝑡 we obtain the equivalent equation

𝐹 (𝑣, 8𝑎 exp(𝑡𝐻)) = 𝑒𝑡𝐵(𝐻)𝐹 (𝑣, 8𝑎) + 𝑒𝑡𝐵(𝐻)
∫ 𝑡

0
𝑒−𝜏𝐵(𝐻)𝑅(𝑣, 8𝑎 exp(𝜏𝐻), 𝐻)𝑑𝜏. (5.6)

The domination estimate (5.1) leads to estimates of 𝐹 and 𝑅.

Lemma 5.4 There exists a constant 𝑑 ∈ N and a continuous seminorm n on 𝐻∞ such
that for all 𝑣 ∈ 𝐻∞ and all 𝑎 ∈ 𝐴,

‖𝐹 (𝑣, 𝑎)‖ ≤ 𝑎b (1 + | log 𝑎 |)𝑑 n(𝑣). (5.7)

Proof. Using that 𝐹𝑗 (𝑣, 𝑎) = 𝑢 𝑗_(𝜋(𝑎)−1𝑣) = wh_ (𝜋(𝑢∨𝑗 )𝑣) (𝑎) in combination with
the estimate (5.1) we find that the estimate (5.7) is valid with a seminorm of the form
n(𝑣) = 𝐶max 𝑗 n0(𝜋(𝑢∨𝑗 )𝑣), where n0 denotes the seminorm of (5.1). 2

In the following we will use the abbreviated notation

| (8𝑎, 𝐻) | := (1 + | log 8𝑎 |) (1 + |𝐻 |), (8𝑎 ∈ 8𝐴Φ, 𝐻 ∈ 𝔞Φ).
Lemma 5.5 Let b ∈ 𝔞∗ be as in (5.1). Then there exist 𝑁 ∈ N and a continuous
seminorm n on 𝐻∞ such that for all 𝑣 ∈ 𝐻∞, 8𝑎 ∈ 8𝐴Φ and 𝐻 ∈ 𝔞+

Φ
, 𝑡 ≥ 0,

‖𝑅(𝑣, 8𝑎 exp 𝑡𝐻, 𝐻)‖ ≤ |(8𝑎, 𝑡𝐻) |𝑁 (1 + |𝐻 |) (8𝑎)b𝑒(b−𝑘𝛽Φ) (𝑡𝐻) n(𝑣). (5.8)

Here 𝛽Φ : 𝔞+Φ → [0,∞[ is defined by 𝛽Φ(𝐻) = min𝛼∈Δ\Φ 𝛼(𝐻).
Proof. Let 𝑦 ∈ �̄�𝑘

Φ
𝑈 (�̄�0+𝔪1). Then we may express 𝑦 as a finite sum of weight vectors

𝑈 for the adjoint action of 𝔞. The weight associated with such a term 𝑈 is of the form
−` = −∑

𝛼∈Δ `𝛼 𝛼 with `𝛼 ∈ N and with ∑𝛼∈Δ\Φ `𝛼 ≥ 𝑘. It follows that

𝑈_(𝜋(8𝑎 exp 𝑡𝐻)−1𝑣) = (8𝑎 exp 𝑡𝐻)−`_(𝜋(8𝑎 exp 𝑡𝐻)−1𝑈∨𝑣).
Now there exists a finite sequence 𝛼1, . . . , 𝛼𝑞 of simple roots from Φ such that ` =

𝛼1 + · · · + 𝛼𝑞 on 8𝔞Φ. Let 𝑋𝛼 𝑗 ∈ 𝔤𝛼 𝑗 be such that 𝜒∗(𝑋𝛼 𝑗 ) = 1 for each 𝑗 and put
𝑋 = 𝑋𝛼1 · · · 𝑋𝛼𝑞 , then 𝜒∗(𝑋) = 1. Hence, 𝑋_ = _ and it follows that

𝑈_(𝜋(8𝑎 exp 𝑡𝐻)−1𝑣) = 𝑈𝑋_(𝜋(8𝑎 exp 𝑡𝐻)−1𝑣)
= (exp 𝑡𝐻)−`_(𝜋(8𝑎 exp 𝑡𝐻)−1𝑋∨𝑈∨𝑣).

Now
−`(𝐻) ≤ −𝑘𝛽Φ(𝐻), (𝐻 ∈ 𝔞+Φ),

and we see, by using the initial estimate (5.1) that there exists a continuous seminorm
𝑛0 on 𝐻∞ such that for all 𝑣 ∈ 𝐻∞, 8𝑎 ∈ 8𝐴Φ, 𝐻 ∈ 𝔞+

Φ
, 𝑡 ≥ 0

|𝑈_(𝜋(8𝑎 exp 𝑡𝐻)−1𝑣) | ≤ 𝑒−𝑘𝛽Φ (𝑡𝐻) |wh_ (𝜋(8𝑎 exp 𝑡𝐻)𝑋∨𝑈∨𝑣) |
≤ 𝑒−𝑘𝛽Φ (𝑡𝐻) (8𝑎 exp 𝑡𝐻)b | (8𝑎, 𝑡𝐻) |𝑑𝑛0(𝑣).

It follows that a similar estimate holds for each 𝑦 ∈ �̄�𝑘
Φ
𝑈 (�̄�0 + 𝔪1). Using the linear

dependence of 𝑦𝑖 (𝐻) on 𝐻 for 1 ≤ 𝑖 ≤ 𝑝 and using the above estimates with 𝑦𝑖 (𝐻)
in place of 𝑦, we infer the existence of a continuous seminorm n on 𝐻∞ such that the
asserted estimation (5.8) is valid. 2
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We now assume that 𝛼 ∈ Δ and Φ = Δ \ {𝛼}, so that 𝑃Φ is a maximal standard
parabolic subgroup. Clearly, 𝔞Φ = Rℎ𝛼, where ℎ𝛼 is defined as in the beginning of
Section 4.
We may and will assume Λ(ℎ𝛼) < b (ℎ𝛼) since otherwise b′ = b and there would

be nothing to prove. Accordingly,

b′(ℎ𝛼) = Λ(ℎ𝛼), b′|8𝔞Φ = b |8𝔞Φ . (5.9)

We now observe that 𝛽Φ(ℎ𝛼) = 1 and impose the mentioned condition on 𝑘 ∈ N that

(b − 𝑘𝛽Φ) (ℎ𝛼) = b (ℎ𝛼) − 𝑘 < Λ(ℎ𝛼). (5.10)

The spectrum of 𝐵(ℎ𝛼) is contained in the set

𝑋 := {[𝜎 − (𝛼1 + . . . + 𝛼ℓ)] (ℎ𝛼) | 0 ≤ ℓ < 𝑘, ∀ 𝑗 : 𝛼 𝑗 ∈ Σ(𝔫Φ, 𝔞Φ)}.

For 𝑥 ∈ 𝑋 we denote by 𝑃𝑥 : C𝑝 → C𝑝 the projection onto the associated generalized
weight space of 𝐵(ℎ𝛼), along the generalizedweight spaces for the eigenvalues different
from 𝑥. If 𝑥 is not an eigenvalue for 𝐵(ℎ𝛼), then 𝑃𝑥 = 0. Then it is clear from (5.7),
possibly after adaptation of 𝑑 and n that,

‖𝑃𝑥𝐹 (𝑣, 𝑎)‖ ≤ 𝑎b (1 + | log 𝑎 |)𝑑 n(𝑣), (5.11)

for all 𝑣 ∈ 𝐻∞ and 𝑎 ∈ 𝐴. Likewise, for the components 𝑃𝑥𝑅 we have estimates of the
form (5.8), with adapted 𝑁′ and 𝑛′ if necessary.
In the following we agree to write

𝑎 = 8𝑎𝑎𝑡 ,
8𝑎 ∈ 8𝐴Φ and 𝑎𝑡 = exp(𝑡ℎ𝛼), 𝑡 ∈ R.

Remark 5.6 Clearly, to finish the proof of Lemma 4.6 it suffices to prove the estimate
(5.11) with b replaced by b′. Now b′(ℎ𝛼) ≤ b (ℎ𝛼) implies that for 8𝑎 ∈ 8𝐴Φ and 𝑡 ≤ 0
we have

𝑎b = (8𝑎)b (𝑎𝑡)b ≤ (8𝑎)b (𝑎𝑡)b
′
= 𝑎b

′
,

so that the required estimate (5.11) with b′ in place of b is automatically fulfilled for 𝑎
outside 8𝐴Φ𝐴+Φ. It therefore suffices to prove the estimate for 𝑎 = 8𝑎𝑎𝑡 , 𝑡 > 0.

It is well known that there exist unique polynomial maps 𝑄𝑥 : R → End(C𝑝), for
𝑥 ∈ 𝑋, such that 𝑄𝑥 (𝑡) commutes with 𝐵(ℎ𝛼) for all 𝑡 ∈ R, hence with all the weight
space projections for 𝐵(ℎ𝛼), and satisfies 𝑃𝑥𝑄𝑥 (𝑡) = 𝑄𝑥 (𝑡) = 𝑄𝑥 (𝑡)𝑃𝑥 and

𝑒𝑡𝐵(ℎ𝛼)𝑃𝑥 = 𝑒
𝑡𝑥𝑄𝑥 (𝑡), (𝑡 ∈ R). (5.12)

Furthermore, the polynomial degrees of𝑄𝑥 are at most 𝑝, so that there exists a suitable
constant 𝐶0 > 0 such that, for all 𝑥 ∈ 𝑋,

‖𝑄𝑥 (𝑡)‖op ≤ 𝐶0(1 + |𝑡 |)𝑝, (𝑡 ∈ R). (5.13)
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We recall that 𝛽Φ(ℎ𝛼) = 1 and that Lemma 5.5 with 𝐻 = ℎ𝛼 implies the existence
of a continuous seminorm n on 𝐻∞ such that for all 𝑣 ∈ 𝐻∞, 8𝑎 ∈ 8𝐴Φ and 𝑡 ≥ 0 we
have

‖𝑅(𝑣, 8𝑎𝑎𝑡 , ℎ𝛼)‖ ≤ |(8𝑎, 𝑡ℎ𝛼) |𝑁 (8𝑎)b𝑒𝑡 [b (ℎ𝛼)−𝑘]n(𝑣). (5.14)
Writing

𝑅(𝑣, 8𝑎 exp 𝑡ℎ𝛼, ℎ𝛼) = 𝑒𝑡 [b (ℎ𝛼)−𝑘]𝑅0(𝑣, 8𝑎 exp(𝑡ℎ𝛼))
we find that the estimate (5.14) becomes

‖𝑃𝑥𝑅0(𝑣, 8𝑎 exp(𝑡ℎ𝛼))‖ ≤ |(8𝑎, 𝑡ℎ𝛼) |𝑁 (8𝑎)bn(𝑣). (5.15)

Finally, writing 𝐹𝑥 = 𝑃𝑥𝐹, formula (5.6) leads to

𝐹𝑥 (𝑣, 8𝑎 exp(𝑡ℎ𝛼)) (5.16)

= 𝑒𝑡𝑥𝑄𝑥 (𝑡)𝐹 (𝑣, 8𝑎) + 𝑒𝑡𝑥𝑄𝑥 (𝑡)
∫ 𝑡

0
𝑄𝑥 (𝜏)𝑒𝜏(−𝑥+[b (ℎ𝛼)−𝑘])𝑅0(𝑣, 8𝑎 exp 𝜏ℎ𝛼) 𝑑𝜏.

We will need to distinguish two cases depending on the position of the real number
𝑥, namely:
(a) −𝑥 + [b (ℎ𝛼) − 𝑘] < 0,

(b) −𝑥 + [b (ℎ𝛼) − 𝑘] ≥ 0.

In case (a) we will need to distinguish the subcases (a.1): 𝑥 ≤ Λ(ℎ𝛼) and (a.2):
𝑥 > Λ(ℎ𝛼). In case (b) we automatically have 𝑥 < Λ(ℎ𝛼), in view of (5.10).
Case (a) In this case the integrand of (5.16) is integrable over [0,∞[ and we find that
the expression on the right-hand side of (5.16) becomes

𝑒𝑡𝑥𝑄𝑥 (𝑡)𝐹 (𝑣, 8𝑎) + 𝑒𝑡𝑥𝑄𝑥 (𝑡)𝐼0(𝑣, 8𝑎) − 𝑒𝑡𝑥𝑄𝑥 (𝑡)𝐼𝑡 (𝑣, 𝑎′). (5.17)

where, for 𝑡 ∈ [0,∞[,

𝐼𝑡 (𝑣, 8𝑎) :=
∫ ∞

𝑡

𝑄𝑥 (𝜏)𝑒𝜏(−𝑥+[b (ℎ𝛼)−𝑘])𝑅0(𝑣, 8𝑎 exp 𝜏ℎ𝛼) 𝑑𝜏 .

From (5.11) and (5.13) we infer that

‖𝑄𝑥 (𝑡)𝐹 (𝑣, 8𝑎)‖ ≤ 𝐶0(1 + |𝑡 |)𝑝 (1 + | log 8𝑎 |)𝑑 (8𝑎)b .

We select Y > 0 such that

−𝑥 + [b (ℎ𝛼) − 𝑘] + Y < 0 and [b (ℎ𝛼) − 𝑘] + Y < Λ(ℎ𝛼).

Then

‖𝐼𝑡 (𝑣, 8𝑎)‖ ≤ 𝑒(−𝑥+[b (ℎ𝛼)−𝑘]+Y)𝑡
∫ ∞

𝑡

‖𝑄𝑥 (𝜏)‖𝑒−Y𝜏 |𝑅0(𝑣, 8𝑎 exp 𝜏ℎ𝛼) |𝑑𝜏

≤ 𝐶1𝑒
(−𝑥+[b (ℎ𝛼)−𝑘]+Y)𝑡 (1 + | log 8𝑎 |)𝑁 (8𝑎)bn(𝑣)

≤ 𝐶1𝑒
(−𝑥+Λ(ℎ𝛼))𝑡 (1 + | log 8𝑎 |)𝑁 (8𝑎)bn(𝑣)
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with
𝐶1 =

∫ ∞

0
‖𝑄𝑥 (𝜏)‖𝑒−Y𝜏 (1 + |𝜏 |)𝑁𝑑𝜏 < ∞.

For 𝑡 = 0 this leads to

‖𝐼0(𝑣, 8𝑎)‖ ≤ 𝐶1(1 + | log 8𝑎 |)𝑁 (8𝑎)bn(𝑣).

For general 𝑡 ≥ 0 this leads to

𝑒𝑥𝑡 ‖𝐼𝑡 (𝑣, 8𝑎)‖ ≤ 𝐶1𝑒𝑡Λ(ℎ𝛼) (1 + | log 8𝑎 |)𝑁 (8𝑎)bn(𝑣) (5.18)

We will now consider the two subcases (a.1) and (a.2).

Subcase (a.1) In this subcase, 𝑥 ≤ Λ(ℎ𝛼). Then from the above estimates it follows
that the norm of each term of (5.17) can be estimated by 𝐶2 := max(𝐶0, 𝐶1) times

𝑒𝑡Λ(ℎ𝛼) (1 + |𝑡 |)𝑝 (1 + | log 8𝑎 |)𝑁 (8𝑎)bn(𝑣)

There exists a constant 𝐶3 > 0 such that the above expression can be estimated by

𝐶3𝑒
𝑡Λ(ℎ𝛼) (8𝑎)b (1 + | log(8𝑎) + 𝑡ℎ𝛼 |)𝑝+𝑁n(𝑣) = 𝐶3(8𝑎𝑎𝑡)b (1 + | log(8𝑎𝑎𝑡) |)𝑝+𝑁n(𝑣).

for all 8𝑎 ∈ 8𝐴Φ and 𝑡 ≥ 0. It follows that 𝐹𝑥 satisfies the required estimate for all
𝑣 ∈ 𝐻∞ and 𝑎 = 8𝑎𝑎𝑡 with 𝑡 ≥ 0. In view of Remark 5.6 this establishes the required
estimate in the present subcase.

Subcase (a.2) In this case we have 𝑥 > Λ(ℎ𝛼). If follows from (5.16) that for 8𝑎 ∈ 8𝐴Φ
and 𝑡 ≥ 0 we have

𝐹𝑥 (𝑣, 8𝑎𝑎𝑡) − 𝑒𝑡𝑥𝑄𝑥 (𝑡)𝐼𝑡 (𝑣, 𝑎′) = 𝑒𝑡𝑥𝑄𝑥 (𝑡) [𝐹 (𝑣, 8𝑎) + 𝐼0(𝑣, 8𝑎)] (5.19)

In view of Proposition 4.2 there exists a constant 𝑑′ ∈ N and for every 𝑣 ∈ 𝐻𝐾 a constant
𝐶𝑣 > 0 such that for 8𝑎𝑎𝑡 ∈ cl(𝐴+) we have

‖𝐹𝑥 (𝑣, 8𝑎𝑎𝑡)‖ ≤ 𝐶𝑣 (1 + | log 8𝑎 |)𝑑 ′ (8𝑎)Λ(1 + |𝑡 |)𝑑 ′𝑒𝑡Λ(ℎ𝛼) . (5.20)

Write 8𝔞+
Φ
for the set of elements𝐻 ∈ 8𝔞Φ such that 𝛽(𝐻) > 0 for all 𝛽 ∈ Φ. Then this set

has non-empty interior in 8𝔞Φ. Let 8𝐴+Φ := exp(8𝔞+Φ). Then it follows that 8𝐴+Φ𝑎𝑡 ⊂ 𝐴+

for all 𝑡 > 0.
Combining (5.20) with the estimates (5.18) and (5.13) we infer that the norm of

the sum on the left-hand side of (5.19) allows for every 𝑣 ∈ 𝐻𝐾 and 8𝑎 ∈ cl(8𝐴+
Φ
)

an estimation by a constant times (1 + |𝑡 |)𝑁 ′
𝑒𝑡Λ(ℎ𝛼) , for all 𝑡 ≥ 0. On the other hand,

the expression on the right-hand side is of exponential polynomial type with exponent
𝑥 > Λ(ℎ𝛼). By uniqueness of asymptotics this implies that for 𝑣 ∈ 𝐻𝐾 , 8𝑎 ∈ 8𝐴+

Φ
and

𝑡 > 0 the expression on the right-hand side in (5.19) is zero. Hence,

𝐹𝑥 (𝑣, 8𝑎𝑎𝑡) = 𝑒𝑡𝑥𝑄𝑥 (𝑡)𝐼𝑡 (𝑣, 8𝑎) (5.21)

29



for 𝑣 ∈ 𝐻𝐾 , 8𝑎 ∈ 8𝐴+
Φ
and 𝑡 > 0.

From the definitions of 𝐹𝑥 and 𝐼𝑡 it easily follows that for 𝑣 ∈ 𝐻∞, 8𝑎 ∈ 8𝐴Φ and
𝑡 > 0,

𝐹𝑥 (𝑣, 8𝑎𝑎𝑡) = 𝐹𝑥 (𝜋(8𝑎)−1𝑣, 𝑎𝑡) and 𝐼𝑡 (𝑣, 𝑎′) = 𝐼𝑡 (𝜋(8𝑎)−1𝑣, 𝑒). (5.22)

Furthermore, from the estimates (5.11) and (5.18) it follows that for each 𝑡 > 0 the
maps 𝑣 ↦→ 𝐹𝑥 (𝑣, 𝑎𝑡) and 𝑣 ↦→ 𝐼𝑡 (𝑣, 𝑒) are continuous linear 𝑉∞ → C𝑝 . If 𝑣 is 𝐾-
finite in 𝐻 then 𝑣 is an analytic vector for 𝐻∞, so that the map 8𝑎 ↦→ 𝜋(8𝑎)−1𝑣 is
analytic 8𝐴Φ → 𝐻∞. We may now conclude that the maps 8𝑎 ↦→ 𝐹𝑥 (𝜋(8𝑎)−1𝑣, 𝑎𝑡)
and 8𝑎 ↦→ 𝐼𝑡 (𝜋(8𝑎)−1𝑣, 𝑒) are analytic 8𝐴Φ → C𝑝 . In view of (5.22) it now follows by
analytic continuation in the variable 8𝑎 that the validity of the identity (5.21) extends to
all 𝑣 ∈ 𝐻𝐾 , 8𝑎 ∈ 8𝐴Φ and 𝑡 > 0. Using that both members of (5.21) depend continuous
linearly on 𝑣 ∈ 𝐻∞, whereas 𝐻𝐾 is dense in the latter space, we conclude that (5.21) is
actually valid for all 𝑣 ∈ 𝐻∞, 8𝑎 ∈ 8𝐴Φ and 𝑡 > 0.
Using (5.13) and (5.18) to estimate the expression on the right-hand side of (5.21),

we obtain, for 𝑣 ∈ 𝐻∞, 8𝑎 ∈ 8𝐴Φ and 𝑡 > 0,

‖𝐹𝑥 (𝑣, 8𝑎𝑎𝑡)‖ ≤ 𝐶0𝐶1(1 + |𝑡 |)𝑝𝑒𝑡Λ(ℎ𝛼) (1 + | log 8𝑎 |)𝑁 (8𝑎)bn(𝑣)
≤ 𝐶3(1 + | log(8𝑎𝑎𝑡) |)2(𝑁+𝑝) (8𝑎𝑎𝑡)b

′
n(𝑣),

with 𝐶3 > 0 uniform with respect to 𝑣 ∈ 𝐻∞, 8𝑎 ∈ 8𝐴Φ and 𝑡 > 0. This gives the
required estimate for 𝐹𝑥 on 𝐻∞ × 8𝐴Φ𝐴+Φ. In view of Remark 5.6 this completes the
discussion in the present subcase.

Case (b) In this case, −𝑥 + [b (ℎ𝛼) − 𝑘] ≥ 0, and 𝑥 < Λ(ℎ𝛼). The identity (5.16) can
be rewritten as

𝐹𝑥 (𝑣, 8𝑎𝑎𝑡) = 𝑒𝑡𝑥𝑄𝑥 (𝑡) [𝐹 (𝑣, 8𝑎) + 𝐽 (𝑡, 𝑣, 8𝑎)] . (5.23)

with
𝐽 (𝑡, 𝑣, 8𝑎) :=

∫ 𝑡

0
𝑄𝑥 (𝜏)𝑒𝜏(−𝑥+[b (ℎ𝛼)−𝑘])𝑅0(𝑣, 8𝑎 exp 𝜏ℎ𝛼) 𝑑𝜏.

By a straightforward estimation of the integral defining 𝐽,we find, for 𝑣 ∈ 𝐻∞, 8𝑎 ∈ 8𝐴Φ
and 𝑡 ≥ 0, using (5.13) and (5.15) that

‖𝐽 (𝑡, 𝑣, 8𝑎)‖ ≤ 𝐶0𝑒
𝑡 (−𝑥+[b (ℎ𝛼)−𝑘])

∫ 𝑡

0
(1 + |𝜏 |)𝑝 ‖𝑅0(𝑣, 8𝑎 exp 𝜏ℎ𝛼)‖𝑑𝜏

≤ 𝐶0𝐶
𝑁𝑒𝑡 (−𝑥+[b (ℎ𝛼)−𝑘]) (1 + |𝑡 |)𝑁+𝑝+1(1 + | log 8𝑎 |)𝑁 (8𝑎)bn(𝑣),

with 𝐶 = sup(1 + |𝑡 | |ℎ𝛼 |) (1 + |𝑡 |)−1. This implies that

‖𝑒𝑡𝑥𝑄𝑥 (𝑡)𝐽 (𝑡, 𝑣, 8𝑎)‖ ≤ 𝐶20𝐶
𝑁𝑒𝑡 ( [b (ℎ𝛼)−𝑘]) (1 + |𝑡 |)2𝑁+𝑝+1(1 + | log 8𝑎 |)𝑁 (8𝑎)bn(𝑣)

≤ 𝐶20𝐶
𝑁𝑒𝑡Λ(ℎ𝛼) (1 + |𝑡 |)2𝑁+𝑝+1(1 + | log 8𝑎 |)𝑁 (8𝑎)bn(𝑣)

≤ 𝐶2(8𝑎𝑎𝑡)b
′ (1 + | log 8𝑎𝑎𝑡 |)6𝑁+2𝑝+2n(𝑣),
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see also (5.10), with 𝐶2 > 0 uniform with respect to 𝑣 ∈ 𝐻∞, 8𝑎 ∈ 8𝐴Φ and 𝑡 > 0.
On the other hand, since 𝑥 < Λ(ℎ𝛼) = b′(ℎ𝛼), see (5.9),

‖𝑒𝑡𝑥𝑄𝑥 (𝑡)𝐹 (𝑣, 8𝑎)‖ ≤ 𝐶0𝑒
Λ(ℎ𝛼) (1 + |𝑡 |)𝑝 (8𝑎)b (1 + | log 8𝑎 |)𝑑n(𝑣)

≤ 𝐶3(8𝑎𝑎𝑡)b
′ (1 + | log 8𝑎𝑎𝑡 |)2(𝑝+𝑑)n(𝑣),

with 𝐶3 > 0 uniform with respect to 𝑣 ∈ 𝐻∞, 8𝑎 ∈ 8𝐴Φ and 𝑡 ≥ 0. Combining the two
latter estimates we find that there exist a constant 𝑁′ > 0 and a continuous seminorm
n′ on 𝐻∞ such that

‖𝑃𝑥𝐹 (𝑣, 8𝑎𝑎𝑡)‖ ≤ (8𝑎𝑎𝑡)b
′ (1 + | log(8𝑎𝑎𝑡) |)𝑁

′
n′(𝑣)

for all 𝑣 ∈ 𝐻∞, 8𝑎 ∈ 8𝐴Φ and 𝑡 ≥ 0. In view of Remark 5.6 this gives the required
estimates for 𝐹𝑥 in case (b) and completes the proof of Lemma 4.6. 2

6 Parabolically induced representations
In this section we will describe the space of smooth vectors for parabolically induced
representations of the form

Ind𝐺𝑃 (b), (6.1)

where 𝑃 = 𝑀𝑃𝐴𝑃𝑁𝑃 is a parabolic subgroup of 𝐺 with the indicated Langlands
decomposition, and b a continuous representation of 𝑃 in a Hilbert space 𝐻b .

Remark 6.1 In particular we will be interested in the situation that b = 𝜎 ⊗ a ⊗ 1,
with 𝜎 a unitary representation in 𝐻𝜎 and a ∈ 𝔞∗

𝑃C
. The representation b is now given

by b (𝑚𝑎𝑛)𝑣 = 𝑎a𝜎(𝑚)𝑣 for all 𝑣 ∈ 𝐻𝜎 and (𝑚, 𝑎, 𝑛) ∈ 𝑀𝑃 × 𝐴𝑃 × 𝑁𝑃 . For technical
reasons we wish to have the possibility to tensor representations of this particular form
with finite dimensional representations of 𝑃, whence the greater generality.

We put 𝐾𝑃 := 𝐾 ∩ 𝑀𝑃 = 𝐾 ∩ 𝑃. By averaging over 𝐾𝑃 we may replace the inner
product on 𝐻b with a 𝐾𝑃-invariant inner product for which the associated norm is
equivalent to the original norm. Accordingly, we may and will assume that b |𝐾𝑃 is
unitary.
Let 𝛿𝑃 : 𝑃 → [0,∞[ be the character of 𝑃 defined by

𝛿𝛿 (𝑝) = | det[Ad(𝑝) |Lie(𝑃)] |1/2, (𝑝 ∈ 𝑃).

Then
𝛿𝑃 (𝑚𝑎𝑛) = 𝑎𝜌𝑃 , ((𝑚, 𝑎, 𝑛) ∈ 𝑀𝑃 × 𝐴𝑃 × 𝑁𝑃),

where 𝜌𝑃 ∈ 𝔞∗ is defined by 𝜌𝑃 (𝑋) = 1
2 tr (ad(𝑋) |𝔫𝑃 ), for 𝑋 ∈ 𝔞.

We denote by 𝐶 (𝐺/𝑃 : b) the Fréchet space of continuous functions 𝑓 : 𝐺 → 𝐻b
transforming according to the rule

𝑓 (𝑔𝑝) = 𝛿𝑃 (𝑝)−1b (𝑝)−1 𝑓 (𝑥), (𝑥 ∈ 𝐺, 𝑝 ∈ 𝑃).
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This space is equipped with the left regular representation 𝐿 of 𝐺. Let 8𝐻b denote the
Hilbert space𝐻b equippedwith the representation 8b of 𝑃 given by 8b (𝑝) := 𝛿𝑃 (𝑝)b (𝑝).
The group 𝑃 naturally acts on 𝐶 (𝐺, 8𝐻b) by the formula

[𝑝𝜑] (𝑔) = 8b (𝑝) [𝜑(𝑔𝑝)], (𝑔 ∈ 𝐺, 𝑝 ∈ 𝑃). (6.2)

Accordingly,
𝐶 (𝐺/𝑃 : b) = 𝐶 (𝐺, 8𝐻b)𝑃 .

Remark 6.2 In the particular case b = 𝜎 ⊗ a ⊗ 1, we write

𝐶 (𝐺/𝑃 : b) = 𝐶 (𝐺/𝑃 : 𝜎 : a).

We write𝐶 (𝐾/𝐾𝑃 : b) for the Fréchet space of continuous functions 𝜑 : 𝐾 → 𝐻b such
that

𝜑(𝑘𝑚) = b (𝑚)−1𝜑(𝑘), (𝑘 ∈ 𝐾, 𝑚 ∈ 𝐾𝑃). (6.3)
Using the decomposition 𝐺 ' 𝐾 ×𝐾𝑃 𝑀𝑃 × 𝐴𝑃 × 𝑁𝑃, given by the multiplication
map, we readily see that restriction to 𝐾 induces a 𝐾-equivariant topological linear
isomorphism

𝑟 : 𝐶 (𝐺/𝑃 : b) '−→ 𝐶 (𝐾/𝐾𝑃 : b), 𝑓 ↦→ 𝑓 |𝐾 . (6.4)
Via this isomorphism we may transfer the representation 𝐿 of 𝐺 on 𝐶 (𝐺/𝑃 : b) to a
continuous representation of 𝐺 in 𝐶 (𝐾/𝐾𝑃 : b), denoted 𝜋𝑃,b .
Remark 6.3 In case b = 𝜎 ⊗ a ⊗ 1 we will use the notation 𝜋𝑃,𝜎,a = 𝜋𝑃,b .
Let 𝑑 ¤𝑘 be the choice of a 𝐾-invariant Radon measure on 𝐾/𝐾𝑃 normalized by∫
𝐾/𝐾𝑃

𝑑 ¤𝑘 = 1. Then it follows from the isomorphism (6.4) that the sesquilinear pairing

𝐶 (𝐺/𝑃 : b) × 𝐶 (𝐺/𝑃 : b) → C (6.5)

given by
〈 𝑓 , 𝑔〉 :=

∫
𝐾/𝐾𝑃

〈 𝑓 (𝑘) , 𝑔(𝑘)〉b 𝑑 ¤𝑘 (6.6)

is a 𝐾-equivariant pre-Hilbert structure. We denote the associated norm by ‖ · ‖2.
The associated Hilbert completion is denoted by 𝐿2(𝐺/𝑃 : b). The restriction map
(6.4) induces an isometric isomorphism from this completion onto 𝐿2(𝐾/𝐾𝑃 : b), the
completion of 𝐶 (𝐾/𝐾𝑃 : b) with respect to the pre-Hilbert structure given by (6.6).
We note that a different but equivalent choice of 𝐾-invariant inner product on 𝐻b gives
rise to the same completed spaces (as topological linear spaces), with equivalence of
the Hilbert inner products.
Out next objective is to show that the representation (𝐿, 𝐶 (𝐺/𝑃 : b)) has a unique

extension to a continuous representation of 𝐺 in the Hilbert space 𝐿2(𝐺/𝑃 : b). To
prepare for the proof we start by recalling a well known result involving the represen-
tation in C given by the character 𝛿𝑃 of 𝑃. The associated space 𝐶 (𝐺/𝑃 : 𝛿𝑃) consists
of the continuous functions 𝜑 : 𝐺 → C such that

𝜑(𝑥𝑚𝑎𝑛) = 𝑎−2𝜌𝑃𝜑(𝑥), (𝑥 ∈ 𝐺, (𝑚, 𝑎, 𝑛) ∈ 𝑀𝑃 × 𝐴𝑃 × 𝑁𝑃).
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Lemma 6.4 For all 𝜑 ∈ 𝐶 (𝐺/𝑃 : 𝛿𝑃) and 𝑔 ∈ 𝐺,∫
𝐾/𝐾𝑃

𝜑(𝑔𝑘) 𝑑 ¤𝑘 =

∫
𝐾/𝐾𝑃

𝜑(𝑘) 𝑑 ¤𝑘.

There exists a choice of Haar measure 𝑑�̄� on �̄�𝑃 such that for all 𝜑 ∈ 𝐶 (𝐺/𝑃 : 𝛿𝑃),∫
𝐾/𝐾𝑃

𝜑(𝑘) 𝑑 ¤𝑘 =

∫
�̄�𝑃

𝜑(�̄�) 𝑑�̄�.

The following corollary will be useful for the ongoing discussion. We define
^𝑃 : 𝐺 → 𝐾 `𝑃 : 𝐺 → exp(𝔪𝑃 ∩ 𝔭), ℎ𝑃 : 𝐺 → 𝐴𝑃 and 𝑛𝑃 : 𝐺 → 𝑁𝑃 to be the
unique maps determined by

𝑥 = ^𝑃 (𝑥)`𝑃 (𝑥)ℎ𝑃 (𝑥)𝑛𝑃 (𝑥), (𝑥 ∈ 𝐺).

These maps are all analytic maps between the indicated analytic manifolds.

Corollary 6.5 Let 𝜔 be a bounded subset of 𝐺. Then there exists a constant 𝐶𝜔 > 0
such that for all 𝜓 ∈ 𝐶 (𝐾/𝐾𝑃) and 𝑔 ∈ 𝜔,∫

𝐾/𝐾𝑃
|𝜓(^𝑃 (𝑔𝑘)) | 𝑑 ¤𝑘 ≤ 𝐶𝜔

∫
𝐾/𝐾𝑃

|𝜓(𝑘) | 𝑑 ¤𝑘.

Proof. Consider the function 𝜑 : 𝐺 → 𝐻b defined by 𝜑(𝑘 𝑝) = 𝛿𝑃 (𝑝)−2𝜓(𝑘). Then
𝜑 ∈ 𝐶 (𝐺/𝑃 : 𝛿𝑃). Put 𝐶𝜔 := sup𝑥∈𝜔𝐾 𝛿𝑃 (𝑥)−2. Then it follows by application of
Lemma 6.4 that, for 𝑔 ∈ 𝜔,∫

𝐾/𝐾𝑃
|𝜓(^𝑃 (𝑔𝑘)) | 𝑑 ¤𝑘 =

∫
𝐾/𝐾𝑃

𝛿𝑃 (𝑘)−2 |𝜑(𝑔𝑘)) | 𝑑 ¤𝑘

≤ 𝐶𝜔

∫
𝐾/𝐾𝑃

|𝜑(𝑔𝑘) | 𝑑 ¤𝑘 = 𝐶𝜔

∫
𝐾/𝐾𝑃

|𝜑(𝑘) | 𝑑 ¤𝑘

= 𝐶𝜔

∫
𝐾/𝐾𝑃

|𝜓(𝑘) | 𝑑 ¤𝑘.
2

The following result as well as its proof are contained in [5, III.7].

Proposition 6.6 The left regular representation 𝐿 of 𝐺 in 𝐶 (𝐺/𝑃 : b) has a unique
extension to a continuous representation of 𝐺 in the Hilbert space 𝐿2(𝐺/𝑃 : b).

Proof. By the principle of uniform boundedness, the operator norm ‖8b (𝑝)‖op of
8b (𝑝) = 𝛿𝑃 (𝑝)b (𝑝) ∈ End(𝐻b) is locally bounded as a function of 𝑝 ∈ 𝑃. For the
purpose of this proof, we define the analytic map 𝑝𝑃 : 𝐺 → 𝑃 by 𝑝𝑃 = `𝑃ℎ𝑃𝑛𝑃 . Then
‖8b (𝑝𝑃 (𝑔)‖op is locally bounded as a function of 𝑔 ∈ 𝐺. For a bounded subset 𝑆 ⊂ 𝐺

let 8𝐶𝑆 > 0 be the supremum of the values ‖8b (𝑝𝑃 (𝑥−1𝑘)−1)‖op for 𝑥 ∈ 𝑆 and 𝑘 ∈ 𝐾.
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Let 𝑓 ∈ 𝐶 (𝐺/𝑃 : b) and 𝑥 ∈ 𝑆. Since b |𝐾𝑃 is unitary, it follows that the function
𝜓 : 𝑘 ↦→ ‖ 𝑓 (𝑘)‖2

b
belongs to 𝐶 (𝐾/𝐾𝑃). Hence, by application of Corollary 6.5 with

𝜔 = 𝑆−1,∫
𝐾/𝐾𝑃

‖𝐿𝑥 𝑓 (𝑘)‖2b 𝑑 ¤𝑘 =

∫
𝐾/𝐾𝑃

‖8b (𝑝𝑃 (𝑥−1𝑘)−1) 𝑓 (^𝑃 (𝑥−1𝑘)‖2b 𝑑 ¤𝑘

≤ 8𝐶2𝑆

∫
𝐾/𝐾𝑃

|𝜓(^𝑃 (𝑥−1𝑘) | 𝑑 ¤𝑘

≤ 8𝐶2𝑆𝐶𝜔

∫
𝐾/𝐾𝑃

|𝜓(𝑘) | 𝑑 ¤𝑘 = 8𝐶2𝑆𝐶𝜔

∫
𝐾/𝐾𝑃

‖ 𝑓 (𝑘)‖2b 𝑑 ¤𝑘.

Let ‖ · ‖2 denote the norm associated with the Hilbert structure on 𝐿2(𝐺/𝑃 : b). It
follows from the estimate above that the map 𝐿𝑥 is continuous with respect to the norm
‖ · ‖2 on 𝐶 (𝐺/𝑃 : b) with operator norm that is locally bounded relative to 𝑥 ∈ 𝐺.
This implies that 𝐿𝑥 has a unique continuous linear extension to a bounded map of the
Hilbert completion 𝐿2(𝐺/𝑃 : b), with locally bounded operator norm. It remains to be
shown that the associated action map 𝐺 × 𝐿2(𝐺/𝑃 : b) → 𝐿2(𝐺/𝑃 : b) is continuous.
Let 𝑓 ∈ 𝐶 (𝐺/𝑃 : b). Then it is readily checked that sup𝑘∈𝐾 ‖𝐿𝑥 𝑓 (𝑘) − 𝑓 (𝑘)‖b → 0

for 𝐺 3 𝑥 → 𝑒. This implies that 𝐿𝑥 𝑓 → 𝑓 in 𝐿2(𝐺/𝑃 : b). If 𝑓 ∈ 𝐿2(𝐺/𝑃 : b) and
𝑓0 ∈ 𝐶 (𝐺/𝑃 : b) then

‖𝐿𝑥 𝑓 − 𝑓 ‖2 ≤ ‖𝐿𝑥 ( 𝑓 − 𝑓0)‖2 + ‖𝐿𝑥 𝑓0 − 𝑓0‖2 + ‖ 𝑓0 − 𝑓 ‖2
≤ (‖𝐿𝑥 ‖op + 1) ‖ 𝑓 − 𝑓0‖2 + ‖𝐿𝑥 𝑓0 − 𝑓0‖2.

Using density of 𝐶 (𝐺/𝑃 : b) in 𝐿2(𝐺/𝑃 : b) we infer from the results obtained in the
first part of this proof that ‖𝐿𝑥 𝑓 − 𝑓 ‖2 → 0 for 𝑥 → 𝑒 in 𝐺.
Finally, let 𝑓0 ∈ 𝐿2(𝐺/𝑃 : b). Then

‖𝐿𝑥 𝑓 − 𝑓0‖2 ≤ ‖𝐿𝑥 𝑓 − 𝐿𝑥 𝑓0‖2 + ‖𝐿𝑥 𝑓0 − 𝑓0‖2
≤ ‖𝐿𝑥 ‖op‖ 𝑓 − 𝑓0‖2 + ‖𝐿𝑥 𝑓0 − 𝑓0‖2.

By what we have established above it follows that both terms in the latter sum tend to
zero as (𝑥, 𝑓 ) → (𝑒, 𝑓0) in𝐺 × 𝐿2(𝐺/𝑃 : b). Thus the action map𝐺 × 𝐿2(𝐺/𝑃 : b) →
𝐿2(𝐺/𝑃 : b) is continuous at every point of {𝑒} × 𝐿2(𝐺/𝑃 : b).
Since the operator norm of 𝐿𝑥 is locally bounded relative to 𝑥 ∈ 𝐺, the continuity

of the action map at any point of 𝐺 × 𝐿2(𝐺/𝑃 : b) follows. 2

The representation (6.1) is defined to be the unique extended representation of
Proposition 6.6. Under the (unitary) restriction map 𝜑 ↦→ 𝜑 |𝐾 , this representation is
transfered to a continuous representation of𝐺 in 𝐿2(𝐾/𝐾𝑃 : b) which extends 𝜋𝑃,b and
is denoted by the same symbol. The latter representation is called the compact picture
of (6.1).
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We are now prepared to determine the space of smooth vectors of the representation
(6.1) . We define 𝐶∞(𝐺/𝑃 : b) := 𝐶∞(𝐺, 8𝐻b) ∩𝐶 (𝐺/𝑃, b). Equivalently, this can be
expressed in terms of the action of 𝑃 on 𝐶∞(𝐺, 8𝐻b) given by formula (6.2):

𝐶∞(𝐺/𝑃 : b) = 𝐶∞(𝐺, 8𝐻b)𝑃 (6.7)

This is a closed subspace of the Fréchet space 𝐶∞(𝐺, 8𝐻b), hence a Fréchet space of
its own right. The left regular representation of 𝐺 in the first space in (6.7) is smooth,
hence restricts to a smooth representation of 𝐺 in the second space.

Theorem 6.7 The space of smooth vectors in (𝐿, 𝐿2(𝐺/𝑃 : b)), equipped with its
usual Fréchet topology is given by

𝐿2(𝐺/𝑃 : b)∞ = 𝐶∞(𝐺/𝑃 : b). (6.8)

Proof. By Fubini’s theorem and compactness of 𝐺/𝑃 it follows that

𝐿2(𝐺/𝑃 : b) = 𝐿2loc(𝐺,
8𝐻b)𝑃, (6.9)

with equality of the usual locally convex topologies; here superscript 𝑃 indicates the
space of invariants for the obvious action of 𝑃 on 𝐿2loc(𝐺, 𝐻b), described by the formula
given in (6.2). This 𝑃-action is by continuous linear maps which commute with the
left regular action of 𝐺. Hence, the space on the right of (6.9) is a closed 𝐺-invariant
subspace of 𝐿2loc(𝐺, 𝐻b). From this it readily follows that

𝐿2(𝐺/𝑃 : b)∞ = 𝐿2loc(𝐺,
8𝐻b)𝑃 ∩ 𝐿2loc(𝐺,

8𝐻b)∞. (6.10)

By the Sobolev embedding theorem we have that

𝐿2loc(𝐺,
8𝐻b)∞ = 𝐶∞(𝐺, 8𝐻b), (6.11)

with equality of the usual locally convex topologies. Combining (6.10) and (6.11) we
find that 𝐿2(𝐺/𝑃 : b)∞ = 𝐶∞(𝐺, 8𝐻b)𝑃 . In view of (6.7) this completes the proof. 2

Corollary 6.8 The left regular representation 𝐿 of 𝐺 in 𝐶∞(𝐺/𝑃 : b) is smooth.

Remark 6.9 For b = 𝜎 ⊗ a ⊗ 1 with 𝜎 a unitary representation of 𝑀𝑃 and a ∈ 𝔞∗
𝑃C

the characterisation (6.8) was used in [4], with a reference to [5, III.7.9]. However, the
characterization of 𝐿2(𝐺/𝑃 : b)∞ in [5] was different. It is presented in the lemma
below.

Lemma 6.10 The following equality of locally convex spaces is valid:

𝐶∞(𝐺, 8𝐻b)𝑃 = 𝐶∞(𝐺, 8𝐻∞
b )𝑃 . (6.12)
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Proof. We consider the Fréchet space 𝐶∞(𝑃, 8𝐻b) equipped with the 𝑃-action given
by 𝑝𝜓 = 8b (𝑝)𝐿𝑝𝜓. The action is by continuous linear maps so that the subspace of
𝑃-invariants is closed, hence Fréchet.
The proof is motivated by the observation that

8𝐻∞
b ' 𝐶∞(𝑃, 8𝐻b)𝑃 (6.13)

as topological linear spaces. The isomorphism from left to right is given by 𝛼 : 𝑣 ↦→ 𝜓𝑣,

where 𝜓𝑣 : 𝑃 → 8𝐻b is given by 𝜓𝑣 (𝑝) = 8b (𝑝)𝑣. The inverse Y is given by evaluation
at the identity. The isomorphism intertwines the 𝑃-action given by 8b on the first space
with the 𝑃-action obtained from restriction of the right regular 𝑃-action on𝐶∞(𝑃, 8𝐻b).
The idea of the proof is to establish the following sequence of topological linear

isomorpisms:

𝐶∞(𝐺, 8𝐻b)𝑃 ' 𝐶∞(𝐺 × 𝑃, 8𝐻b)𝑃×𝑃 (6.14)
' 𝐶∞(𝐺,𝐶∞(𝑃, 8𝐻b)𝑃)𝑃 (6.15)
' 𝐶∞(𝐺, 8𝐻∞

b )𝑃 (6.16)

The isomorphism (6.14) is obtained by restriction of the map

𝑆 : 𝐶∞(𝐺, 8𝐻b) → 𝐶∞(𝐺 × 𝑃, 8𝐻b)

given by 𝑆(𝜑) (𝑔, 𝑞) = 𝜑(𝑔𝑞), for 𝜑 ∈ dom(𝑆) and (𝑔, 𝑞) ∈ 𝐺 × 𝑃. The image
of 𝑆 consists of the space of invariants for the 𝑃 action on its codomain given by
[𝑝1 · 𝜓] (𝑔, 𝑞) = 𝜓(𝑔𝑝1, 𝑝−11 𝑞), for 𝜓 ∈ 𝐶∞(𝐺 × 𝑃, 8𝐻b), 𝑔 ∈ 𝐺 and 𝑝1, 𝑞 ∈ 𝑃. As the
action takes place by continuous linear maps, the image of 𝑆 is closed hence Fréchet
and it is readily verified that 𝑆 is a topological isomorphism onto its image.
There is a second action of 𝑃 on the codomain of 𝑆, given by 𝑝2 · 𝜓(𝑔, 𝑞) =

8b (𝑝2)𝜓(𝑔, 𝑞𝑝2), for 𝑔 ∈ 𝐺 and 𝑞, 𝑝2 ∈ 𝑃. This second action commutes with the
first one, hence leaves im(𝑆) invariant. The map 𝑆 intertwines the usual 𝑃-action
on its domain with the second 𝑃-action on its codomain. The associated spaces of
invariants are closed, hence Fréchet, and it follows that 𝑆 induces a topological linear
isomorphism between these spaces. This is the isomorphism (6.14).
To understand the map (6.15) we consider the map

𝑇 : 𝐶∞(𝐺 × 𝑃, 8𝐻b)
'−→ 𝐶∞(𝐺,𝐶∞(𝑃, 8𝐻b)),

given by [𝑇𝜓] (𝑔) (𝑝) = 𝜑(𝑔, 𝑝), It is well known that this map is a topological linear
isomorphism of Fréchet spaces. It is readily verified that 𝑇 intertwines the given action
of 𝑃 × 𝑃 on its domain with the action on its codomain given by

(𝑝1, 𝑝2) · 𝜗(𝑔) (𝑞) := 8b (𝑝2)𝜗(𝑔𝑝1) (𝑝−11 𝑞𝑝2),

for 𝜗 ∈ 𝐶∞(𝐺,𝐶∞(𝑃, 8𝐻b)), 𝑔 ∈ 𝐺 and 𝑞, 𝑝1, 𝑝2 ∈ 𝑃. The associated space of
invariants for {𝑒} × 𝑃 equals 𝐶∞(𝐺,𝐶∞(𝑃, 8𝐻b)𝑃). Taking the remaining action of
𝑃 × {𝑒} into account we infer that 𝑇 induces a topological linear isomorphism (6.15).
Finally, the isomorphism (6.13) induces the topological linear isomorphism (6.16). 2
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Remark 6.11 From the proof it is clear that Lemma 6.10 is valid for any triple
(𝐺, 𝑃, 8b), with 𝐺 a Lie group, 𝑃 a closed subgroup and (8b, 8𝐻b) a continuous Hilbert
representation of 𝑃.

Remark 6.12 If b = 𝜎 ⊗ a ⊗ 1 as in Remark 6.1, then the space of smooth vectors for
𝜎 in 𝐻𝜎 equals the space of smooth vectors for b in 𝐻b = 𝐻𝜎 . Hence, in this setting
the equality (6.12) becomes

𝐶∞(𝐺/𝑃 : 𝜎 : a) = 𝐶∞(𝐺, 𝐻∞
𝜎,a)𝑃

where 𝐻∞
𝜎,a denotes 𝐻∞

𝜎 equipped with the representation of 𝑃 = 𝑀𝑃𝐴𝑃𝑁𝑃 given by
(𝑚𝑎𝑛, 𝑣) ↦→ 𝑎a+𝜌𝑃𝜎(𝑚)𝑣.

In the sequel we will need the description of the space of smooth vectors for
parabolically induced representations in the compact picture. To accomodate this we
agree to write R(𝑃) for the set of (equivalence classes of) continuous Hilbert space
representations (b, 𝐻b) of 𝑃 such that the space of smooth vectors for 𝑃 in 𝐻b equals
the space of smooth vectors for its compact subgroup 𝐾𝑃 .

Lemma 6.13
(a) Any b = 𝜎 ⊗ a ⊗ 1 with 𝜎 a unitary representation of 𝑀𝑃 and a ∈ 𝔞∗

𝑃C
belongs

to R(𝑃).

(b) If b ∈ R(𝑃) and if (𝜋, 𝐹) is a finite dimensional continuous representation of 𝑃,
then b ⊗ 𝜋 ∈ R(𝑃).

Proof. Assertion (a) follows from [21, p. 3]. For (b) we first note that if 𝐿 is any Lie
group, b a continuous representation of 𝐿 in aHilbert (ormore generally quasi-complete
locally convex) space 𝐸 and (𝜋, 𝐹) a finite dimensional continuous representation of
𝐿, then

(𝐸 ⊗ 𝐹)∞ = 𝐸∞ ⊗ 𝐹. (6.17)
To prove this, we first note that 𝜋 : 𝐿 → End(𝐹) is smooth. By finite dimensionality
of 𝐹 it now follows that (1 ⊗ 𝜋) : 𝐿 → End(𝐸) ⊗ End(𝐹) ' End(𝐸 ⊗ 𝐹) is smooth.
Let 𝑇 ∈ 𝐸 ⊗ 𝐹 be a smooth vector. Then it follows that

𝑥 ↦→ (b (𝑥) ⊗ 1)𝑇 = (1 ⊗ 𝜋(𝑥−1)) (b (𝑥) ⊗ 𝜋(𝑥))𝑇

is smooth from 𝐿 to 𝐸 ⊗ 𝐹. By finite dimensionality of 𝐹 this implies that 𝑇 ∈ 𝐸∞ ⊗ 𝐹.
This shows that the space on the left in (6.17) is contained in the space on the right.
For the converse inclusion, let 𝑒 ∈ 𝐸∞ and 𝑓 ∈ 𝐹, then 𝑥 ↦→ b (𝑥)𝑒, 𝐿 → 𝐹 and

𝑥 ↦→ 𝜋(𝑥) 𝑓 , 𝐿 → 𝐹 are smooth. By finite dimensionality of 𝐹 it now follows that
𝑒 ⊗ 𝑓 is smooth. The claim follows.
Returning to (b), and letting ∞(𝑃) indicate the smooth vectors for 𝑃 and ∞(𝐾𝑃)

those for 𝐾𝑃, we see that

(𝐻b ⊗ 𝐹)∞(𝑃) = 𝐻∞(𝑃)
b

⊗ 𝐹 = 𝐻
∞(𝐾𝑃)
b

⊗ 𝐹 = (𝐻b ⊗ 𝐹)∞(𝐾𝑃) .

2
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We denote by 𝐶∞(𝐾/𝐾𝑃 : b) the Fréchet space of smooth functions 𝜑 : 𝐾 → 𝐻b
transforming according to the rule (6.3). Then clearly the isomorphism (6.4), induced
by restriction to 𝐾 , restricts to an injective continuous linear map from 𝐶∞(𝐺/𝑃 : b)
into 𝐶∞(𝐾/𝐾𝑃 : b).

Lemma 6.14 If b ∈ R(𝑃), then the restriction map 𝑓 ↦→ 𝑓 |𝐾 defines a 𝐾-equivariant
topological linear isomorphism

𝑟 : 𝐶∞(𝐺/𝑃 : b) '→ 𝐶∞(𝐾/𝐾𝑃 : b). (6.18)

See also [21, §10.1.1], or [5, Cor. III.7.9]).
Before proceedingwith the proof we notice that there exists a unique representation 𝜋∞

𝑃,b

of𝐺 in𝐶∞(𝐾/𝐾𝑃 : b) which makes the map (6.18)𝐺-equivariant. This representation
is called the compact picture of the induced representation on the level of smoooth
vectors.
Proof. Suppose b ∈ R(𝑃). In view of the closed graph theorem for Fréchet spaces,
it suffices to prove the surjectivity of the map above. Let 𝑉 denote the space of
𝑣 ∈ 𝐻b which are smooth for the restricted unitary representation b |𝐾𝑃 , equipped with
its natural topology, and let 𝐻∞

b
denote the space of smooth vectors for b. Then 𝐻∞

b
is

contained in 𝑉 with continuous inclusion map.
By assumption on b all elements of 𝑉 are smooth for 𝑃, so that𝑉 = 𝐻∞

b
as sets. By

application of the closed graph theorem for Fréchet spaces, it now follows that𝑉 = 𝐻∞
b

as Fréchet spaces. By application of Lemma 6.10 and Remark 6.11 we have

𝐶∞(𝐾/𝐾𝑃 : b) = 𝐶∞(𝐾, 𝐻∞
b )𝐾𝑃 .

Hence, if 𝜑 ∈ 𝐶∞(𝐾/𝐾𝑃 : b), we infer that the function 𝐹 : 𝐾 × 𝑃 → 𝐻b given by

𝐹 (𝑘, 𝑝) = 8b (𝑝−1) [𝜑(𝑘)]

is smooth. It factors through a smooth function

𝑓 : 𝐺 ' 𝐾 ×𝐾𝑃 𝑃 → 𝐻𝜎 .

Hence, 𝑓 : 𝐺 → 𝐻b is smooth and belongs to 𝐶∞(𝐺/𝑃 : b). Moreover, 𝑓 |𝐾 = 𝜑. 2

Finally, we will need a few results related the nilpotent picture of Ind𝐺𝑃 (b). Given
a compact subset 𝑆 ⊂ �̄�𝑃, we denote by 𝐶∞

𝑆
(�̄�𝑃, 𝐻∞

b
) the subspace of functions in

𝐶∞(�̄�𝑃, 𝐻∞
b
) with support contained in 𝑆. Let

𝐶∞
𝑆 (𝐺/𝑃 : b) := { 𝑓 ∈ 𝐶∞(𝐺/𝑃 : b) | supp( 𝑓 ) ⊂ 𝑆𝑃}.

This space is a closed subspace of 𝐶∞(𝐺/𝑃 : b) = 𝐶∞(𝐺, 8𝐻∞
b
)𝑃 . It follows that

restriction from 𝐺 to �̄�𝑃 induces a continuous linear map
𝑛𝑟 : 𝐶∞

𝑆 (𝐺/𝑃 : b) → 𝐶∞
𝑆 (�̄�𝑃, 𝐻∞

b ) (6.19)

Since the multiplication map �̄�𝑃 × 𝑃 → 𝐺 is a diffeomorphism onto the dense open
subset �̄�𝑃𝑃 of 𝐺, it is readily seen that the map (6.19) is injective.
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Proposition 6.15 The map (6.19) is a topological linear isomorphism of Fréchet
spaces.

Proof. By the closed graph theorem for Fréchet spaces, it is sufficient to show that 𝑛𝑟
is surjective. Let 𝜓 ∈ 𝐶∞

𝑆
(𝑁𝑃, 𝐻∞

b
). The map ]b : 𝐻∞

b
→ 𝐶∞(𝑃, 𝐻b) defined by

]8b (𝑣) (𝑝) = 8b (𝑝)−1𝑣, (𝑣 ∈ 𝐻∞
b , 𝑝 ∈ 𝑃),

is a continuous embedding onto the closed subspace 𝐶∞(𝑃, 8𝐻b)𝑃 . It follows that

]b ◦𝜓 : �̄�𝑃 → 𝐶∞(𝑃, 𝐻b)

is a smooth map. This implies that the function �̄�𝑃 × 𝑃 → 𝐻b ,

(�̄�, 𝑝) ↦→ ]8b (𝜓(�̄�)) (𝑝) = 8b (𝑝)−1𝜑(�̄�)

is smooth. This function has support contained in 𝑆 × 𝑃. It follows from this that the
function 𝜑 : 𝐺 → 𝐻b defined by 𝜑 = 0 on 𝐺 \ 𝑆𝑃 and by

𝜑(�̄�𝑝) = 8b (𝑝)−1𝜑(�̄�), ((�̄�, 𝑝) ∈ 𝑆 × 𝑃),

belongs to 𝐶∞
𝑆𝑃
(𝐺, 𝐻b). It is now readily seen that 𝜑 ∈ 𝐶∞

𝑆
(𝐺 : b) and that 𝑛𝑟 (𝜑) = 𝜓.

2

The inverse of the above map 𝑛𝑟 will be denoted by 𝑖b,𝑆 : 𝐶∞
𝑆
(�̄�𝑃, 𝐻∞

𝜎 ) →
𝐶∞
𝑆
(𝐺/𝑃 : 𝜎 : a). It is a continuous linear isomorphism of Fréchet spaces. We define

𝐶∞
𝑐 (�̄�𝑃, 𝐻∞

b
) as the locally convex direct limit of the Fréchet spaces 𝐶∞

𝑆
(�̄�𝑃, 𝐻∞

b
).

Then it follows that the maps 𝑖b,𝑆, for all 𝑆 ⊂ �̄�𝑃 compact, are the restrictions of a
single continuous linear map

𝑖b : 𝐶∞
𝑐 (�̄�𝑃, 𝐻∞

𝜎 ) → 𝐶∞(𝐺/𝑃 : b). (6.20)

For every compact set 𝑆 ⊂ �̄�𝑃 the natural bilinear map𝐶∞
𝑆
(�̄�𝑃) ×𝐻∞

𝜎 → 𝐶∞
𝑆
(�̄�𝑃, 𝐻b),

(𝜓, 𝑣) ↦→ 𝜓 ⊗ 𝑣 is jointly continuous. However, we warn the reader that this need not be
true for the similar bilinear map 𝐶∞

𝑐 (�̄�𝑃) × 𝐻∞
b
→ 𝐶∞

𝑐 (�̄�𝑃, 𝐻∞
b
), see [18, Cor. 4.18].

7 Generalized vectors for induced representations
We retain the notation of the previous section. In particular, 𝑃 = 𝑀𝑃𝐴𝑃𝑁𝑃 is a parabolic
subgroup of 𝐺 containing 𝐴 and (b, 𝐻b) is a continuous Hilbert space representation
of 𝑃. Without loss of generality we may assume that b |𝐾𝑃 is unitary, see the text
subsequent to (6.6).
We will now introduce a 𝐺-equivariant pairing between induced representations

which is well known for the particular case b = 𝜎 ⊗ a ⊗ 1.
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We denote by b∗ the conjugate to b in 𝐻b , which is the representation of 𝑃 in 𝐻b
defined by

〈b∗(𝑝)𝑣 , 𝑤〉 = 〈𝑣 , b (𝑝−1)𝑤〉 (𝑝 ∈ 𝑃, 𝑣, 𝑤 ∈ 𝐻b).
Thus, b∗(𝑝) equals the Hilbert adjoint of b (𝑝−1). Clearly, b is unitary if and only if
b∗ = b. In Remark 1.3 we mentioned that b∗ is a continuous representation of 𝐺 in 𝐻b .
If 𝑓 ∈ 𝐶 (𝐺/𝑃 : b) and 𝑔 ∈ 𝐶 (𝐺/𝑃 : b∗), we define the function 〈 𝑓 , 𝑔〉b : 𝐺 → C

by
〈 𝑓 , 𝑔〉b (𝑥) = 〈 𝑓 (𝑥) , 𝑔(𝑥)〉b , (𝑥 ∈ 𝐺),

where the expression 〈 · , · 〉b on the right denotes the inner product of 𝐻b . Since the
restriction of b to 𝐾𝑃 is unitary, b∗ |𝐾𝑃 = b |𝐾𝑃 , and we see that restriction of the function
〈 𝑓 , 𝑔〉b to 𝐾 belongs to 𝐶 (𝐾/𝐾𝑃). This allows us to define the sesquilinear pairing

〈 · , · 〉 : 𝐶 (𝐺/𝑃 : b) × 𝐶 (𝐺/𝑃 : b∗) → C, (7.1)

by the formula
〈 𝑓 , 𝑔〉 :=

∫
𝐾/𝐾𝑃

〈 𝑓 (𝑘) , 𝑔(𝑘)〉b 𝑑 ¤𝑘. (7.2)

Lemma 7.1 The sesquilinear pairing (7.1) is 𝐺-equivariant.

Proof. Let 𝑓 , 𝑔 ∈ 𝐶 (𝐺/𝑃 : b) × 𝐶 (𝐺/𝑃 : b∗) and define 𝜑 : 𝐺 → C by 𝜑(𝑦) =

〈 𝑓 (𝑦) , 𝑔(𝑦)〉b . Then one readily verifies that 𝜑 ∈ 𝐶 (𝐺/𝑃 : 𝛿𝑃). Using Lemma 6.4 we
infer, for 𝑥 ∈ 𝐺, that

〈𝐿𝑥 𝑓 , 𝐿𝑥𝑔〉 =
∫
𝐾/𝐾𝑃

𝜑(𝑥−1𝑘) 𝑑 ¤𝑘 =

∫
𝐾/𝐾𝑃

𝜑(𝑘) 𝑑 ¤𝑘 = 〈 𝑓 , 𝑔〉. 2

The pairing (7.1) obviously extends to a continuous sesquilinear pairing

𝐿2(𝐺/𝑃 : b) × 𝐿2(𝐺/𝑃 : b∗) → C, (7.3)

given by the same formula. By density and continuity, the extended pairing is 𝐺-
equivariant. In particular, we see again that if b is unitary then b∗ = b and the
representation (𝐿, 𝐿2(𝐺/𝑃 : b)) is unitary. In general, without the requirement that b
be unitary, the following result is valid.

Lemma 7.2 The Hermitian pairing (7.3) is a perfect pairing of Hilbert spaces, real-
izing each of them 𝐺-equivariantly as the conjugate dual of the other one.

Proof. Since b |𝐾𝑃 is unitary, b∗ and b are equal on 𝐾𝑃 . Accordingly, restriction to
𝐾 induces isometric isomorphisms 𝐿2(𝐺/𝑃 : b) ' 𝐿2(𝐾/𝐾𝑃 : b |𝐾𝑃 ) and 𝐿2(𝐺/𝑃 :
b∗) ' 𝐿2(𝐾/𝐾𝑃 : b |𝐾𝑃 ). Via these isomorphisms, the pairing ((7.3) becomes the
Hermitian pairing of 𝐿2(𝐾/𝐾𝑃 : b |𝐾𝑃 ) with itself, given by (6.5). As that pairing is
perfect, so is (7.3). The final assertion follows from the 𝐺-equivariance of (7.3). 2
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At various points in this article we will need the following description of the
equivariant pairing in terms of the nilpotent group �̄�𝑃 .

Lemma 7.3 If 𝑓 ∈ 𝐶 (𝐺/𝑃 : b) and 𝑔 ∈ 𝐶 (𝐺/𝑃 : b∗) then

〈 𝑓 , 𝑔〉 =
∫
�̄�𝑃

〈 𝑓 (�̄�) , 𝑔(�̄�)〉b 𝑑�̄�.

Proof. Since 𝜑 := 〈 𝑓 , 𝑔〉b belongs to 𝐶 (𝐺/𝑃 : 𝛿𝑃), see also the proof of Lemma 7.1,
we have, by application of Lemma 6.4, that

〈 𝑓 , 𝑔〉 =
∫
𝐾/𝐾𝑃

𝜑(𝑘) 𝑑𝑘 =

∫
�̄�𝑃

𝜑(�̄�) 𝑑�̄�,

whence the required identity. 2

Being perfect, the Hermitian pairing (7.3) induces a 𝐺-equivariant topological
linear isomorphism

𝐿2(𝐺/𝑃 : b) '−→ 𝐿2(𝐺/𝑃 : b∗) ′. (7.4)
Since 𝐶∞(𝐺/𝑃 : b∗) is a dense subspace of 𝐿2(𝐺/𝑃 : b∗), the transpose of the
associated inclusion map induces an injective continuous linear map

𝐿2(𝐺/𝑃 : b∗) ′ ↩→ 𝐶∞(𝐺/𝑃 : b∗) ′. (7.5)

Here the second space is equipped with the strong dual (locally convex) topology. The
map is given by restriction to 𝐶∞(𝐺/𝑃 : b∗).

Definition 7.4 Let (b, 𝐻b) be a continuous representation of 𝑃 in aHilbert space. Then
by𝐶−∞(𝐺/𝑃 : b)we denote the conjugate continuous linear dual𝐶∞(𝐺/𝑃 : b∗)′, given
as the second space in (7.5), equipped with the strong dual topology.

Remark 7.5 Being the strong dual of a Fréchet space, 𝐶−∞(𝐺/𝑃 : b) is a com-
plete locally convex Hausdorff space. Since the induced representation 𝜋b = 𝐿 of
𝐺 in 𝐶∞(𝐺/𝑃 : b) is smooth, it follows that the natural representation 𝜋−∞

b
of 𝐺 in

𝐶−∞(𝐺/𝑃 : b) is continuous and even smooth. See the text around (1.2).
Furthermore, the associated derived representation of 𝑈 (𝔤), also denoted 𝜋−∞

b
, is

given by
𝜋−∞b (𝑢) : 𝜑 ↦→ 𝜑 ◦ 𝜋∞b (�̄�∨)

for 𝑢 ∈ 𝑈 (𝔤). Here 𝑢 ↦→ �̄�∨ is the conjugate linear automorphism of 𝑈 (𝔤) that for
(real) 𝑋 ∈ 𝔤 is given by �̄�∨ = −𝑋.

The composition of the two maps (7.4) and (7.5) leads to the 𝐺-equivariant contin-
uous linear embedding

𝐿2(𝐺/𝑃 : b) ↩→ 𝐶−∞(𝐺/𝑃 : b). (7.6)

given by 𝑓 ↦→ 〈 𝑓 , · 〉. The elements of the latter space will be called generalized
vectors for the induced representation Ind𝐺𝑃 (b). In the sequel, we will use the map (7.6)
to identify 𝐿2(𝐺/𝑃 : b) with a subspace of 𝐶−∞(𝐺/𝑃 : b).

41



Remark 7.6 In particular, if b = 𝜎 ⊗ a ⊗ 1, with (𝜎, 𝐻𝜎) a unitary representation of
𝑀𝑃 and a ∈ 𝔞∗

𝑃C
we obtain that b∗ = 𝜎 ⊗ −ā ⊗ 1 so that 𝐶−∞(𝐺/𝑃 : 𝜎 : a) is defined

as the conjugate continuous linear dual of 𝐶∞(𝐺/𝑃 : 𝜎 : −ā).

If (b 𝑗 , 𝐻 𝑗 ) are continuous representations of 𝑃 in Hilbert spaces, for 𝑗 = 1, 2, then
any continuous linear intertwining operator 𝜑 : 𝐻1 → 𝐻2 induces the 𝐺-equivariant
continuous linear map

Ind𝐺𝑃 (𝜑) : 𝐿
2(𝐺/𝑃 : b1) → 𝐿2(𝐺/𝑃 : b2), 𝑓 ↦→ 𝜑 ◦ 𝑓 .

This map restricts to a𝐺-equivariant continuous linear map𝐶∞Ind𝐺𝑃 (𝜑) from the space
𝐶∞(𝐺/𝑃 : b1) to the space 𝐶∞(𝐺/𝑃 : b2).

Lemma 7.7 The map Ind𝐺𝑃 (𝜑) has a unique continuous linear extension to a map

𝐶−∞Ind𝐺𝑃 (𝜑) : 𝐶
−∞(𝐺/𝑃 : b1) → 𝐶−∞(𝐺/𝑃 : b2).

The extension is 𝐺-equivariant.

Proof. The conjugate map 𝜑∗ : 𝐻2 → 𝐻1 is continuous linear and intertwines b∗2 with
b∗1 . We consider the transpose 𝑇

′ of the map 𝑇 := 𝐶∞Ind𝐺𝑃 (𝜑∗). This map, given by
the formula 𝜗 ↦→ 𝜗 ◦𝑇, is 𝐺-equivariant and continuous linear 𝐶−∞(𝐺/𝑃 : b1) →
𝐶−∞(𝐺/𝑃 : b2) (use that b∗∗𝑗 = b 𝑗 ). We will proceed by establishing the claim that this
map restricts to Ind𝐺𝑃 (𝜑). Indeed, let 𝑓 ∈ 𝐿2(𝐺/𝑃 : b1). Then for 𝑔 ∈ 𝐶∞(𝐺/𝑃 : b2)
we have

〈𝑇 ′( 𝑓 ) , 𝑔〉 = 〈 𝑓 , 𝑇𝑔〉 =
∫
𝐾/𝐾𝑃

〈 𝑓 (𝑘) , 𝜑∗ ◦ 𝑔(𝑘)〉1 𝑑 ¤𝑘

=

∫
𝐾/𝐾𝑃

〈𝜑 ◦ 𝑓 (𝑘) , 𝑔(𝑘)〉2 𝑑 ¤𝑘 = 〈Ind𝐺𝑃 (𝜑) ( 𝑓 ) , 𝑔〉.

Hence 𝑇 ′ 𝑓 = Ind𝐺𝑃 (𝜑) ( 𝑓 ) for 𝑓 ∈ 𝐿2(𝐺/𝑃 : b1), establishing the claim. This settles
the existence of the continuous linear extension of Ind𝐺𝑃 (b). The uniqueness and 𝐺-
equivariance follow from the density of 𝐶∞(𝐺/𝑃 : b1) in 𝐶−∞(𝐺/𝑃 : b1). 2

We agree to identify the open right 𝑃-invariant subsets of 𝐺 with the open subsets
of 𝐺/𝑃 via the canonical projection 𝐺 → 𝐺/𝑃. Likewise, the closed right 𝑃-invariant
subsets of 𝐺 are identified with the closed subsets of 𝐺/𝑃. Accordingly, if 𝑆 ⊂ 𝐺/𝑃
is closed, we denote by 𝐶∞

𝑆
(𝐺/𝑃 : b∗) the closed subspace of 𝑓 ∈ 𝐶∞(𝐺/𝑃 : b∗)

such that supp 𝑓 ⊂ 𝑆. For a given open subset Ω ⊂ 𝐺/𝑃, we write CPT(Ω) for the
collection right 𝑃-invariant subsets of Ω which are closed, hence compact, as subsets
of 𝐺/𝑃, and put

𝐶∞
𝑐 (Ω : b∗) := ∪𝑆∈CPT(Ω) 𝐶∞

𝑆 (𝐺/𝑃 : b∗).
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Accordingly, we equip 𝐶∞
𝑐 (Ω : b∗) with the direct limit locally convex topology. Thus,

a seminorm 𝜎 on 𝐶∞
𝑐 (Ω : b∗) is continuous if and only if for every 𝑆 ∈ CPT(Ω) the

restriction of 𝜎 to 𝐶∞
𝑆
(𝐺/𝑃 : b∗) is continuous. For Ω ⊂ 𝐺/𝑃 open we define

𝐶−∞(Ω : b) := 𝐶∞
𝑐 (Ω : b∗)′, (7.7)

equipped with the strong dual topology. We will view 𝐶 (Ω : b) as a linear subspace of
𝐶−∞(Ω : b) via the map 𝑔 ↦→ 〈 · , 𝑔〉 given by the sesquilinear pairing

𝐶∞
𝑐 (Ω : b∗) × 𝐶 (Ω : b) → C, ( 𝑓 , 𝑔) ↦→ 〈 𝑓 , 𝑔〉 =

∫
𝐾/𝐾𝑃

〈 𝑓 (𝑘) , 𝑔(𝑘)〉b 𝑑 ¤𝑘.

Accordingly, the natural sesquilinear pairing associated with (7.7) will be denoted by

〈 · , · 〉 : 𝐶∞
𝑐 (Ω : b∗) × 𝐶−∞(Ω : b) → C

We denote by𝐶∞(Ω) the space of smooth right 𝑃-invariant functionsΩ → C. For each
𝜑 in this space the multiplication map 𝑔 ↦→ 𝜑𝑔, 𝐶 (Ω : b) → 𝐶 (Ω : b) has a unique
continuous linear extension to a map 𝐶−∞(Ω : b) → 𝐶−∞(Ω : b). This map, denoted
𝑢 ↦→ 𝜑𝑢, is given by

〈𝑔 , 𝜑𝑢〉 = 〈�̄�𝑔 , 𝑢〉, (𝑢 ∈ 𝐶−∞(Ω : b), 𝑔 ∈ 𝐶∞(𝐺/𝑃 : b∗)).

If Ω1 ⊂ Ω2 are open subsets of 𝐺/𝑃, the transpose of the inclusion map 𝐶∞
𝑐 (Ω1 :

b) ↩→ 𝐶∞
𝑐 (Ω2 : b) gives us the continuous linear restriction map

𝜌
Ω2
Ω1
: 𝑢 ↦→ 𝑢 |Ω1 , 𝐶−∞(Ω2 : b) → 𝐶−∞(Ω1 : b).

Together with these restriction maps, the assignment Ω ↦→ 𝐶−∞(Ω : b) defines a
presheaf of 𝐶∞(𝐺/𝑃)-modules on 𝐺/𝑃. By using smooth partitions of 1 over 𝐺/𝑃,
is readily seen that this presheaf is in fact a sheaf, as it has the following required
restriction and glueing properties, for any open covering {Ω𝑖 | 𝑖 ∈ 𝐼} of 𝐺/𝑃.
Restriction poperty. If 𝑢 ∈ 𝐶−∞(𝐺/𝑃 : b) and 𝑢 |Ω𝑖 = 0 for all 𝑖 ∈ 𝐼, then 𝑢 = 0.

Glueing property. If 𝑢𝑖 ∈ 𝐶−∞(Ω𝑖 : b) for 𝑖 ∈ 𝐼 and 𝑢𝑖 |Ω𝑖∩Ω 𝑗
= 𝑢 𝑗 |Ω𝑖∩Ω 𝑗

for all
𝑖, 𝑗 ∈ 𝐼, then there exists a 𝑢 ∈ 𝐶−∞(𝐺/𝑃 : b) such that 𝑢 |Ω𝑖 = 𝑢𝑖 for all 𝑖 ∈ 𝐼 .
Wewill finish this section by introducing a certain direct limit topology on the spaces

𝐶−∞(𝐺/𝑃 : b), assuming that both b and b∗ belong toR(𝑃).ByLemma 6.14 restriction
to 𝐾 induces a topological linear isomorphism 𝑟 : 𝐶∞(𝐺/𝑃 : b∗) → 𝐶∞(𝐾/𝐾𝑃 : b∗).
Denote the conjugate continuous linear dual of the latter space by 𝐶−∞(𝐾/𝐾𝑃 : b).
Since b |𝐾 is unitary, it follows that b∗ and b are equal on 𝐾, so that the latter two spaces
do not change if b is replaced by b∗. By transposition we obtain a topological linear
isomorphism

𝑟∗ : 𝐶−∞(𝐾/𝐾𝑃 : b)
'−→ 𝐶−∞(𝐺/𝑃 : b). (7.8)
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Themap 𝑟∗ is equivariant for a uniquel representation of𝐺 in the space𝐶−∞(𝐾/𝐾𝑃 : b)
which we denote by 𝜋−∞

𝑃,b
. This representation is called the compact picture of the

induced representation Ind𝐺𝑃 (b) on the level of generalized vectors.
In the sequel it will be important to use a specific set of continuous norms on

𝐶∞(𝐾/𝐾𝑃 : b), hence on 𝐶∞(𝐺/𝑃 : b). These are introduced as follows. We fix a
basis 𝑋1, . . . , 𝑋𝑚 of 𝔨 and use the notation 𝑋` := 𝑋

`1
1 · · · 𝑋`𝑛𝑛 ∈ 𝑈 (𝔨), for ` ∈ N𝑛 a

multi-index. For 𝑠 ∈ N the space 𝐶𝑠 (𝐾, 𝐻b) of 𝐶𝑠-functions 𝐾 → 𝐻b is a Banach
space for the norm

𝑓 ↦→ ‖ 𝑓 ‖𝑠 :=
∑︁
|` |≤𝑠
sup
𝑘∈𝐾

‖𝑅𝑋` 𝑓 (𝑘)‖𝐻b . (7.9)

The space 𝐶𝑠 (𝐾/𝐾𝑃 : b) := 𝐶𝑠 (𝐾, 𝐻b) ∩ 𝐶 (𝐾/𝐾𝑃 : b) is a closed subspace. Hence,
equipped with the norm ‖ · ‖𝑠 it is a Banach space of its own right. Clearly, the Fréchet
topology on 𝐶∞(𝐾/𝐾𝑃 : b∗) is induced by the restrictions of the norms ‖ · ‖𝑠, for
𝑠 ∈ N.
For each 𝑠 ∈ N, the conjugate continuous linear dual of 𝐶𝑠 (𝐾/𝐾𝑃 : b∗) will be

denoted by 𝐶−𝑠 (𝐾/𝐾𝑃 : b). Equipped with the dual norm ‖ · ‖−𝑠 , it is a Banach space
of its own right. The transpose of the inclusion 𝐶∞(𝐾/𝐾𝑃 : b∗) → 𝐶𝑠 (𝐾/𝐾𝑃 : b∗) is
an injective continuous linear map

𝐶−𝑠 (𝐾/𝐾𝑃 : b) ↩→ 𝐶−∞(𝐾/𝐾𝑃 : b) (7.10)

via which we shall identify elements. As the norms ‖ · ‖𝑠, (𝑠 ∈ N), induce the
topology of 𝐶∞(𝐾/𝐾𝑃 : b∗), it follows that 𝐶−∞(𝐾/𝐾𝑃 : b) is the union of the spaces
𝐶−𝑠 (𝐾/𝐾𝑃 : b), for 𝑠 ∈ N. The latter spaces increase with 𝑠, and constitute the so-
called filtration by order. The associated inclusion maps 𝐶−𝑠 → 𝐶−𝑠−𝑡 , for 𝑠, 𝑡 ∈ N,
are continuous, so that the spaces form a directed family of locally convex spaces. We
now observe that, as a linear space, 𝐶−∞(𝐾/𝐾𝑃 : b) is the direct limit of the directed
family consisting of the spaces 𝐶−𝑠 (𝐾/𝐾𝑃 : b), for 𝑠 ∈ N. We may therefore equip
𝐶−∞(𝐾/𝐾𝑃 : b) with the associated direct limit locally convex topology. Since the
natural maps 𝐶−𝑠 (𝐾/𝐾𝑃 : b) → 𝐶−∞(𝐾/𝐾𝑃 : b) are continuous for the strong dual
topologies, it follows that the direct limit locally convex topology on 𝐶−∞(𝐾/𝐾𝑃 : b)
is finer than (or equal to) the strong dual topology.

8 Whittaker vectors for induced representations
In this sectionwewill initiate our study ofWhittaker vectors for induced representations
of the form Ind𝐺

�̄�
(𝜎 ⊗ a ⊗ 1), with 𝑃 a standard parabolic subgroup of 𝐺, i.e., 𝑃 ⊃

𝑃0 = 𝑀𝐴𝑁0. Here (𝜎, 𝐻𝜎) is an irreducible unitary representation of 𝑀𝑃 and a ∈ 𝔞∗
𝑃C
.

At a later stage, 𝜎 will be assumed to belong to the discrete series 𝑀𝑃,ds of 𝑀𝑃,

i.e. the set of equivalence classes of irreducible square integrable representations of
𝑀𝑃 . Implicitly it is then assumed that 𝑃 is cuspidal. From Remark 7.6 we recall that
(𝜎 ⊗ a ⊗ 1)∗ = 𝜎 ⊗ (−ā) ⊗ 1.
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We note that 𝔞𝑃 ⊂ 𝔞, 𝑀𝑃 ⊃ 𝑀 and 𝑁𝑃 ⊂ 𝑁0. Accordingly, the set 𝑁0�̄� is open
(and dense) in 𝐺. The space of Whittaker functionals for the induced representation
Ind𝐺

�̄�
(𝜎 ⊗ −ā ⊗ 1) is denoted

Wh𝜒 (𝐿2(𝐺/�̄� : 𝜎 : −ā)∞), (8.1)

cf. (1.5). In view of and (1.5) and Theorem 6.7 the space (8.1) consists of the continuous
linear functionals [ ∈ 𝐶∞(𝐺/�̄� : 𝜎 : −ā)′ such that

[ ◦ 𝐿𝑛 = 𝜒(𝑛)[, (𝑛 ∈ 𝑁0).

In view of (1.14) and Definition 7.4 with the subsequent remark, the space ofWhittaker
vectors of Ind𝐺

�̄�
(𝜎 ⊗ −ā ⊗ 1) equals the space

𝐶−∞(𝐺/�̄� : 𝜎 : a)𝜒, (8.2)

consisting of 𝑗 ∈ 𝐶−∞(𝐺/�̄� : 𝜎 : a) transforming according to the rule

𝐿𝑛 𝑗 = 𝜒(𝑛) 𝑗 , (𝑛 ∈ 𝑁0),

in the sense of generalized functions, see also (1.14).
The following result of Harish-Chandra [12, Thm. 1, p. 143], see also [16] for a

proof, will be crucial for the determination of the space (8.2). In fact, it is crucial for
the entire Whittaker theory. If 𝑄 is a parabolic subgroup of 𝐺 we write

𝑀1𝑄 = 𝑀𝑄𝐴𝑄

for its \-stable Levi component.

Theorem 8.1 (Harish-Chandra [12]) Let 𝑄 be a standard parabolic subgroup. Then
𝑁0𝑀1𝑄 �̄�𝑄 is open in 𝐺. Let 𝜒 be regular and suppose that 𝑢 is a distribution on 𝐺
such that

𝑅�̄�𝑢 = 𝑢 and 𝐿𝑛0𝑢 = 𝜒(𝑛0)𝑢, (�̄� ∈ �̄�𝑄 , 𝑛0 ∈ 𝑁0).
If 𝑢 = 0 on 𝑁0𝑀1𝑄 �̄�𝑄 , then 𝑢 = 0 on 𝐺.

Remark 8.2 In the above, the space D′(𝐺) of distributions on 𝐺 is defined to be the
continuous linear dual of the complete locally convex spaceD(𝐺) := 𝐶∞

𝑐 (𝐺). The left
and right regular actions are defined by

𝐿𝑔𝑢 = 𝑢 ◦ 𝐿−1𝑔 , 𝑅𝑔𝑢 = 𝑢 ◦ 𝑅−1
𝑔 , (𝑢 ∈ D′(𝐺), 𝑔 ∈ 𝐺).

The following corollary is of immediate importance for our discussion. We retain
the assumption that 𝜎 is an irreducible unitary representation of 𝑀𝑃 .We will say that
an element 𝜓 ∈ 𝐶−∞(𝐺/�̄� : 𝜎 : a) vanishes on an open subset O of𝐺/�̄� if 〈 𝑓 , 𝜓〉 = 0
for all 𝑓 ∈ 𝐶∞(𝐺/�̄� : 𝜎 : −ā) with supp 𝑓 ⊂ O.
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Corollary 8.3 Let 𝜒 be regular, a ∈ 𝔞∗
𝑃C

and 𝑗 ∈ 𝐶−∞(𝐺/�̄� : 𝜎 : a)𝜒 . If 𝑗 vanishes
on the orbit 𝑁𝑃�̄� in 𝐺/�̄� then 𝑗 = 0.

Proof. Fix 𝑣 ∈ 𝐻𝜎 \ {0}. For 𝜑 ∈ 𝐶∞
𝑐 (𝐺) we define the function 𝑇𝜑 : 𝐺 → 𝐻𝜎 by

𝑇𝜑(𝑥) =
∫
𝑀𝑃

∫
𝐴𝑃

∫
�̄�𝑃

𝑎−ā−𝜌𝑃𝜑(𝑥𝑚𝑎�̄�) [𝜎(𝑚)𝑣] 𝑑𝑚𝑑𝑎𝑑�̄�.

Then it is readily verified that 𝑇 defines a continuous linear operator 𝐶∞
𝑐 (𝐺) →

𝐶∞(𝐺/�̄� : 𝜎 : −ā) which intertwines the left regular actions of 𝐺 on these spaces. It
follows that

𝑢 : 𝜑 ↦→ 〈𝑇𝜑 , 𝑗〉
defines a distribution on 𝐺. It is clear that 𝑢 is right �̄�𝑃-invariant. By equivariance of
𝑇 we see that, for 𝜑 ∈ 𝐶∞

𝑐 (𝐺) and 𝑛 ∈ 𝑁0,

𝐿𝑛𝑢(𝜑) = 𝑢(𝐿−1𝑛 𝜑) = 〈𝐿𝑛−1𝑇𝜑 , 𝑗〉 = 〈𝑇𝜑 , 𝐿𝑛 𝑗〉 = 𝜒(𝑛)−1𝑢(𝜑)

Now assume that 𝑗 = 0 on 𝑁𝑃�̄�. If supp 𝜑 ⊂ 𝑁𝑃�̄� then supp(𝑇𝜑) ⊂ 𝑁𝑃�̄�, from
which it follows that 𝑢 = 0 on 𝑁𝑃�̄�. Since 𝜒−1 is a regular character, it now follows
from Theorem 8.1 that 𝑢 = 0. This implies that 𝑗 gives zero when applied to the
space 𝑇 (𝐶∞

𝑐 (𝐺)).We will finish the proof by showing that the latter space is dense in
𝐶∞(𝐺/�̄� : 𝜎 : −ā). In view of the natural decomposition 𝐺 ' 𝐾 ×𝐾𝑃 𝑀𝑃 × 𝐴𝑃 × �̄�𝑃
it suffices to show that the operator

𝑆 : 𝐶∞
𝑐 (𝐾 ×𝐾𝑃 𝑀𝑃) → 𝐶∞(𝐾/𝐾𝑃 : 𝜎)

defined by
𝑆𝜓(𝑘) =

∫
𝑀𝑃

𝜓(𝑘, 𝑚) [𝜎(𝑚)𝑣] 𝑑𝑚

has dense image. Let 𝑓 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎) be 𝐾-finite from the left. Then it suffices
to show that 𝑓 ∈ im(𝑆). There exists a bi 𝐾-invariant finite dimensional subspace
𝐹 ⊂ 𝐶∞(𝐾) such that 𝑓 belongs to 𝐹 ⊗ (𝐻𝜎)𝐾𝑃 and is fixed under 𝑅𝑘𝑃 ⊗ 𝜎(𝑘𝑃) for all
𝑘𝑃 ∈ 𝐾𝑃 . Thus, 𝑓 is a finite sum of terms 𝑓 𝑗 ⊗ 𝑣 𝑗 , with 𝑓 𝑗 ∈ 𝐹 and 𝑣 𝑗 ∈ (𝐻𝜎)𝐾𝑃 . By
irreducibility of 𝜎, there exist left 𝐾𝑃-finite 𝜓 𝑗 ∈ 𝐶∞

𝑐 (𝑀𝑃) such that 𝜎(𝜓 𝑗 )𝑣 = 𝑣 𝑗 . Put

𝜓(𝑘, 𝑚) =
∑︁
𝑗

∫
𝐾𝑃

𝑓 𝑗 (𝑘𝑘𝑃)𝜓 𝑗 (𝑘−1𝑃 𝑚) 𝑑𝑘𝑃,

where 𝑑𝑘𝑃 denotes normalized Haar measure on 𝐾𝑃 . Then it is readily verified that 𝜓
defines an element of 𝐶∞

𝑐 (𝐾 ×𝐾𝑃 𝑀𝑃) which has image 𝑓 . 2

In the following it is not required that 𝜒 is regular. We denote by 𝐶 (𝐺, 8𝐻−∞
𝜎,a ) �̄� the

space of continuous functions 𝑓 : 𝐺 → 𝐻−∞
𝜎 such that

𝑓 (𝑥𝑚𝑎�̄�) = 𝑎−a+𝜌𝑃𝜎−∞(𝑚−1) 𝑓 (𝑥),
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for 𝑥 ∈ 𝐺 and (𝑚, 𝑎, �̄�) ∈ 𝑀𝑃 × 𝐴𝑃 × �̄�𝑃 . Furthermore, we define

𝐶 (𝐺, 8𝐻−∞
𝜎,a ) �̄�fs (8.3)

to be the subspace consisting of 𝑓 ∈ 𝐶 (𝐺, 8𝐻−∞
𝜎,a ) �̄� such that the support of 𝑓 is

contained in 𝑁𝑃�̄� and
dim span 𝑓 (𝑁𝑃) < ∞.

Lemma 8.4 If 𝑓 ∈ 𝐶 (𝐺, 8𝐻−∞
𝜎,a ) �̄�, then for every 𝜑 ∈ 𝐶∞(𝐺/�̄� : 𝜎 : −ā) the function

𝑥 ↦→ 〈𝜑(𝑥) , 𝑓 (𝑥)〉𝜎 belongs to 𝐶 (𝐺/�̄� : 𝛿�̄�).

Proof. This is straightforward. 2

It follows that for 𝑓 as in the lemma, we may define the linear functional

∨𝑓∗ : 𝐶∞(𝐺/�̄� : 𝜎 : −ā) → C, 𝜑 ↦→
∫
𝐾/𝐾𝑃

〈𝜑(𝑘) , 𝑓 (𝑘)〉𝜎 𝑑𝑘.

Lemma 8.5 If 𝑓 ∈ 𝐶 (𝐺, 8𝐻−∞
𝜎,a ) �̄�fs, then ∨𝑓∗ is continuous hence is the image of a unique

𝑓∗ ∈ 𝐶−∞(𝐺/𝑃 : 𝜎 : a). Furthermore, the associated map 𝑓 ↦→ 𝑓∗ is a linear injection

𝐶 (𝐺, 8𝐻−∞
𝜎,a ) �̄�fs ↩→ 𝐶−∞(𝐺/𝑃 : 𝜎 : a).

Proof. For brevity, we write b for the continuous representation 𝜎 ⊗ −ā ⊗ 1 of 𝑃 in
𝐻𝜎 . There exists a compact subset 𝑆 ⊂ 𝑁𝑃 such that supp 𝑓 ⊂ 𝑆�̄�. From Lemmas 8.4
and 6.4 it follows that, for every 𝜑 ∈ 𝐶∞(𝐺/�̄� : b),

∨𝑓∗(𝜑) =
∫
𝑁𝑃

〈𝜑(𝑛) , 𝑓 (𝑛)〉𝜎 𝑑𝑛 =
∫
𝑆

〈𝜑(𝑛) , 𝑓 (𝑛)〉𝜎 𝑑𝑛. (8.4)

In view of the hypothesis, the span 𝐸 of 𝑓 (𝑁𝑃) is a finite dimensional subspace of
𝐻−∞
𝜎 . The natural pairing 𝐸 ×𝐻∞

𝜎 → C is continuous. It follows that there exist a norm
‖ · ‖𝐸 on 𝐸 and a continuous seminorm 𝑞 on 𝐻∞

𝜎 such that |〈𝑣 , `〉| ≤ ‖`‖𝐸𝑞(𝑣) for
all ` ∈ 𝐸 and 𝑣 ∈ 𝐻∞

𝜎 . Using (8.4) we now infer that, for 𝜑 ∈ 𝐶∞(𝐺/�̄� : b),

|∨𝑓∗(𝜑) | ≤ 𝐶 sup
𝑆

𝑞(𝜑(𝑛))

where 𝐶 := sup𝑛∈𝑆 ‖ 𝑓 (𝑛)‖𝐸 . Let ^ : 𝐺 → 𝐾 be the Iwasawa map associated with the
decomposition 𝐺 = 𝐾𝐴�̄�0, and let 𝑝�̄� : 𝐺 → �̄� be defined by 𝑝�̄� (𝑥) = ^(𝑥)−1𝑥. Then
it follows that 𝑝�̄� (𝑆) is a compact subset of 𝑃. By uniform boundedness, there exists a
continuous seminorm 𝑟 on the Fréchet space 𝐻∞

𝜎 such that

𝑞(8b (𝑝�̄� (𝑛))−1𝑣) ≤ 𝑟 (𝑣), (𝑛 ∈ 𝑆, 𝑣 ∈ 𝐻∞
𝜎 ).

It now follows that, for 𝜑 ∈ 𝐶∞(𝐺/�̄� : b) and 𝑛 ∈ 𝑆,

𝑞(𝜑(𝑛)) ≤ 𝑟 (𝜑(^(𝑛))) ≤ sup
𝑘∈𝐾

𝑟 (𝜑(𝑘)). (8.5)
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Via the natural isomorphisms 𝐶∞(𝐾, 𝐻∞
𝜎 )𝐾𝑃 ' 𝐶∞(𝐾/𝐾𝑃 : b) ' 𝐶∞(𝐺/�̄� : b)

we see that the expression on the right of (8.5) defines a continuous seminorm on
𝐶∞(𝐺/�̄� : b). The asserted continuity of ∨𝑓∗ follows.
The element 𝑓∗ is now defined by ∨𝑓∗ = 〈 · , 𝑓∗〉. Since 𝑓 ↦→ ∨𝑓∗ is conjugate linear,

linearity of 𝑓 ↦→ 𝑓∗ is obvious. For injectivity, assume 𝑓∗ = 0. Let 𝜑 ∈ 𝐶∞
𝑐 (𝑁𝑃) and

𝑣 ∈ 𝐻∞
𝜎 be arbitrary. Then there exists a unique �̃� ∈ 𝐶∞(𝐺/�̄� : b) with support in

𝑁𝑃�̄� such that �̃� |𝑁𝑃 = 𝜑 ⊗ 𝑣. From 〈�̃� , 𝑓∗〉 = 0 it follows by using (8.4) that∫
𝑁𝑃

𝜑(𝑛)〈𝑣 , 𝑓 (𝑛)〉𝜎 𝑑𝑛 = 0.

Hence, for every 𝑣 ∈ 𝐻∞
𝜎 the continuous function 𝑛 ↦→ 〈𝑣 , 𝑓 (𝑛)〉𝜎 vanishes on 𝑁𝑃 and

we conclude that 𝑓 = 0. 2

Theorem 8.6 Let a ∈ 𝔞∗
𝑃C

and 𝑗 ∈ 𝐶−∞(𝐺/�̄� : 𝜎 : a)𝜒 . There exists a unique
element [ ∈ 𝐻−∞

𝜎 such that the restriction of 𝑗 to 𝑁𝑃�̄� equals the continuous function
𝑗[ : 𝑁𝑃�̄� → 𝐻−∞

𝜎 given by

𝑗[ (𝑛𝑃𝑚𝑃𝑎𝑃�̄�𝑃) = 𝑎−a+𝜌𝑃𝑃
𝜒(𝑛𝑃)−1𝜎(𝑚𝑃)−1[. (8.6)

Moreover,
[ ∈ (𝐻−∞

𝜎 )𝜒 |𝑁0∩𝑀𝑃 . (8.7)

Remark 8.7 By the assertion that the restriction of 𝑗 to 𝑁𝑃�̄� equals the continuous
function 𝑗[ : 𝑁𝑃�̄� → 𝐻−∞

𝜎 it is meant that for every𝜓 ∈ 𝐶∞(𝐺/�̄�) with supp𝜓 ⊂ 𝑁𝑃�̄�

we have (𝜓 𝑗[)∗ = 𝜓 𝑗 .
Proof. Let 𝑖𝜎,−ā : 𝐶∞

𝑐 (𝑁𝑃, 𝐻∞
𝜎 ) → 𝐶∞(𝐺/�̄� : 𝜎 : −ā) be the continuous linear

map defined as in (6.20) with �̄� in place of 𝑃 and with b = 𝜎 ⊗ (−ā). Thus, if
𝑓 ∈ 𝐶∞

𝑐 (𝑁𝑃, 𝐻∞
𝜎 ) then 𝑖𝜎,−ā ( 𝑓 ) ∈ 𝐶∞(𝐺 : 𝜎 : −ā) is uniquely determined by

supp 𝑖𝜎,−ā ( 𝑓 ) ⊂ 𝑁𝑃�̄� and by
𝑖𝜎,−ā ( 𝑓 ) |𝑁𝑃 = 𝑓 .

Given 𝑣 ∈ 𝐻∞
𝜎 and 𝜑 ∈ 𝐶∞

𝑐 (𝑁𝑃) we define

𝑣 𝑗 (𝜑) := 〈𝑖𝜎,−ā (𝜑 ⊗ 𝑣) , 𝑗〉.
Then 𝑣 𝑗 defines a continuous linear functional on 𝐶∞

𝑐 (𝑁𝑃), i.e., a distribution on 𝑁𝑃,
which depends linearly on 𝑣 ∈ 𝐻∞

𝜎 .

Lemma 8.8 The map (𝜑, 𝑣) ↦→ 𝑣 𝑗 (𝜑) is continuous bilinear 𝐶∞
𝑐 (𝑁𝑃) × 𝐻∞

𝜎 → C.
Proof. Let us denote the above bilinear map by 𝑏. For every compact set 𝑆 ⊂ 𝑁𝑃 the
bilinear map (𝜑, 𝑣) ↦→ 𝜑 ⊗ 𝑣 evidently has a continuous restriction to 𝐶∞

𝑆
(𝑁𝑃) × 𝐻∞

𝜎 .

This implies that the restricted bilinear map 𝑏 : 𝐶∞
𝑆
(𝑁𝑃) × 𝐻∞

𝜎 → C is continuous.
Since 𝐿𝑛 𝑗 = 𝜒(𝑛) 𝑗 , (𝑛 ∈ 𝑁𝑃), it follows that

𝑏(𝐿𝑛𝜑, 𝑣) = 𝜒(𝑛)𝑏(𝜑, 𝑣), ((𝜑, 𝑣) ∈ 𝐶∞
𝑐 (𝑁𝑃) × 𝐻∞

b , 𝑛 ∈ 𝑁𝑃).
Taking into account that the manifold 𝑁𝑃 is diffeomorphic to R𝑛 for a certain 𝑛, it now
follows by application of Lemma 8.9 that 𝑏 is continuous. 2
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Lemma 8.9 Let 𝑉 be a (Hausdorff) locally convex space, and 𝑏 : 𝐶∞
𝑐 (R𝑛) × 𝑉 → C

a bilinear map. Suppose that there exists a compact neighborhood K of 0 in R𝑛 such
that the restriction of 𝑏 to 𝐶∞

K (R𝑛) × 𝑉 is continuous. Suppose in addition that for
every 𝑥 ∈ R𝑛 exists a diffeomorphism ℓ𝑥 from an open neighborhood 𝜔′

𝑥 of 0 to an open
neighborhood 𝜔𝑥 of 𝑥 and a constant 𝐶𝑥 > 0 such that

|𝑏(𝜑, 𝑣) | ≤ 𝐶𝑥 |𝑏(ℓ∗𝑥𝜑, 𝑣) | (8.8)

for all 𝜑 ∈ 𝐶∞
𝑐 (𝜔𝑥) and 𝑣 ∈ 𝑉. Then 𝑏 is (jointly) continuous.

Proof. By hypothesis, there exist continuous seminorms 𝑝 on𝐶∞
K (R𝑛) and 𝑞 on𝑉 such

that
|𝑏(𝜑, 𝑣) | ≤ 𝑝(𝜑)𝑞(𝑣), (𝜑 ∈ 𝐶∞

K (R𝑛), 𝑣 ∈ 𝑉). (8.9)

For 𝑆 ⊂ R𝑛 compact and 𝑘 ≥ 0 we define the seminorm 𝑝𝑆,𝑘 on 𝐶∞(R𝑛) by

𝑝𝑆,𝑘 (𝜑) := max
|𝛼 |≤𝑘

sup
𝑆

|𝜕𝛼𝜑 |.

There exist constants 𝑘 ∈ N and 𝑐 > 0 such that 𝑝 ≤ 𝑐𝑝K,𝑘 on 𝐶∞
K (R𝑛). From now on

we will keep 𝑘 fixed and write 𝑝𝑆 for 𝑝𝑆,𝑘 .
Let 𝑥 ∈ R𝑛 be arbitrary and fix ℓ𝑥 : 𝜔′

𝑥 → 𝜔𝑥 with the property mentioned in the
hypothesis. We select a compact neighborhood 𝑆𝑥 of 𝑥 such that 𝑆𝑥 ⊂ ℓ𝑥 (𝜔𝑥 ∩ K).
Then there exists a constant 𝐷𝑥 > 0 such that for all 𝜑 ∈ 𝐶∞

𝑆𝑥
(R𝑛)

𝑝K (ℓ∗𝑥𝜑) ≤ 𝐷𝑥 𝑝𝑆𝑥 (𝜑).

Combining this with (8.8) and (8.9) we find that, for all 𝜑 ∈ 𝐶∞
𝑆𝑥
(R𝑛) and 𝑣 ∈ 𝑉,

|𝑏(𝜑, 𝑣) | ≤ 𝑐 𝐶𝑥 𝑝K (ℓ∗𝑥𝜑)𝑞(𝑣) ≤ 𝑐 𝐶𝑥𝐷𝑥 𝑝𝑆𝑥 (𝜑)𝑞(𝑣).

The sets int(𝑆𝑥) cover R𝑛. By paracompactness of the latter space, there exists a 𝐶∞

partition of unity {𝜓𝑖 | 𝑖 ∈ 𝐼} ⊂ 𝐶∞
𝑐 (R𝑛) subordinate to the mentioned cover. Thus,

for each 𝑖 ∈ 𝐼, there exists 𝑥𝑖 ∈ R𝑛 such that 𝜎𝑖 := supp𝜓𝑖 ⊂ int(𝑆𝑥𝑖 ). Moreover,∑
𝑖∈𝐼 𝜓𝑖 = 1, with locally finite sum. Write 𝑆𝑖 := 𝑆𝑥𝑖 . Then for each 𝑖 ∈ 𝐼 it follows by
application of the Leibniz formula to 𝜕𝛼 (𝜓𝑖𝜑) that there exists a constant 𝑑𝑖 > 0 such
that for all 𝜑 ∈ 𝐶∞(R𝑛),

𝑝𝑆𝑖 (𝜓𝑖𝜑) ≤ 𝑑𝑖𝑝𝜎𝑖 (𝜑).
Noting that {𝜎𝑖 |𝑖 ∈ 𝐼} is a locally finite collection of compact sets, we define the
seminorm 𝑝 on 𝐶∞

𝑐 (R𝑛) by

𝑝 :=
∑︁
𝑖∈𝐼

𝑐 𝐶𝑥𝑖𝐷𝑥𝑖𝑑𝑖 𝑝𝜎𝑖 .
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By a simple argument it follows that 𝑝 is continuous on 𝐶∞
𝑆
(R𝑛) for every compact

subset 𝑆 ⊂ R𝑛. Hence 𝑝 is continuous on𝐶∞
𝑐 (R𝑛). Furthermore, for every 𝜑 ∈ 𝐶∞

𝑐 (𝑅𝑛)
and 𝑣 ∈ 𝑉 we have

𝑏(𝜑, 𝑣) =
∑︁
𝑖∈𝐼

𝑏(𝜓𝑖𝜑, 𝑣)

≤
∑︁
𝑖∈𝐼

𝑐𝐶𝑥𝑖𝐷𝑥𝑖 𝑝𝑆𝑖 (𝜓𝑖𝜑)𝑞(𝑣)

≤
∑︁
𝑖∈𝐼

𝑐𝐶𝑥𝑖𝐷𝑥𝑖𝑑𝑖𝑝𝜎𝑖 (𝜑)𝑞(𝑣) = 𝑝(𝜑)𝑞(𝑣).

This establishes the continuity of 𝑏. 2

Completion of the proof of Theorem 8.6. From Lemma 8.9 it follows that the
map 𝑣 ↦→ 𝑣 𝑗 is continuous linear 𝐻∞

b
→ D′(𝑁𝑃) = 𝐶∞

𝑐 (𝑁𝑃)′. Let 𝐿∨ denote the
contragredient of the left regular representation 𝐿 of 𝑁𝑃 in 𝐶∞

𝑐 (𝑁𝑃). Since the map
𝑖𝜎,−ā is equivariant for the left regular actions of 𝑁𝑃, it follows that

𝐿∨𝑛 (𝑣 𝑗) = 𝜒(𝑛)−1𝑣 𝑗 , (𝑛 ∈ 𝑁𝑃).

We fix 𝜓 ∈ 𝐶∞
𝑐 (𝑁𝑃) such that ∫

𝑁𝑃

𝜓(𝑛)𝜒(𝑛)−1 𝑑𝑛 = 1.

Then it follows that

𝑣 𝑗 =

∫
𝑁𝑃

𝜓(𝑛)𝐿∨𝑛 (𝑣 𝑗) 𝑑𝑛 = 𝐿∨(𝜓) (𝑣 𝑗).

In view of Lemma 8.10 below, it now follows that for every 𝑣 ∈ 𝐻∞
𝜎 there exists a

unique function 𝐽𝑣 ∈ 𝐶∞(𝑁𝑃) such that

𝑣 𝑗 (𝜑) =
∫
𝑁𝑃

𝐽𝑣 (𝑛)𝜑(𝑛) 𝑑𝑛, (𝜑 ∈ 𝐶∞
𝑐 (𝑁𝑃)).

Moreover, by the same lemma, the map 𝑣 ↦→ 𝐽𝑣 is continuous linear 𝐻∞
𝜎 → 𝐶∞(𝑁𝑃).

By uniqueness, 𝐽𝑣 (𝑛′𝑛) = 𝜒(𝑛′)𝐽𝑣 (𝑛), for all 𝑛, 𝑛′ ∈ 𝑁𝑃, hence 𝐽𝑣 (𝑛) = 𝜒(𝑛)𝐽𝑣 (𝑒).
Define _ : 𝐻∞

𝜎 → C by
_(𝑣) := 𝐽𝑣 (𝑒), (𝑣 ∈ 𝐻∞

𝜎 ).
Since 𝛿𝑒 : 𝐶∞(𝑁𝑃) → C is continuous, it follows that _ ∈ (𝐻∞

𝜎 )′. We now apply
the isomorphism (1.12) in the setting 𝜋1 = 𝜋2 = 𝜎 and with (1.7) given by the inner
product on 𝐻𝜎 which makes 𝜎 unitary. It follows that there exists a unique [ ∈ 𝐻−∞

𝜎

such that
_(𝑣) = 〈𝑣 , [〉, (𝑣 ∈ 𝐻∞

𝜎 ).
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Define 𝑗[ : 𝑁𝑃�̄� → 𝐻−∞
𝜎 as in (8.6). Then it easily follows that 𝑗[ is continuous.

Furthermore, 𝑗[ (𝑁𝑃) ⊂ C[. Let 𝜓 ∈ 𝐶∞(𝐺/�̄�) have support contained in 𝑁𝑃�̄�. Then
it follows that 𝜓 𝑗[ ∈ 𝐶 (𝐺, 𝐻∞

𝜎,a) �̄�fs, see (8.3). In view of Remark 8.7 it suffices to show
that (𝜓 𝑗[)∗ = 𝜓 𝑗 . Let 𝜑 ∈ 𝐶∞

𝑐 (𝑁𝑃) and 𝑣 ∈ 𝐻∞
𝜎 . Then

〈𝑖𝜎,−ā (𝜑 ⊗ 𝑣) , (𝜓 𝑗[)∗〉 = 〈𝑖𝜎,−ā (𝜑 ⊗ 𝑣) , 𝜓 𝑗[〉 =
∫
𝑁𝑃

𝜓(𝑛)〈𝜑(𝑛)𝑣 , 𝑗[ (𝑛)〉 𝑑𝑛

=

∫
𝑁𝑃

𝜓(𝑛)𝜑(𝑛)𝜒(𝑛)〈𝑣 , [〉 𝑑𝑛 =
∫
𝑁𝑃

𝜓(𝑛)𝜑(𝑛)𝜒(𝑛)𝐽𝑣 (𝑒) 𝑑𝑛

=

∫
𝑁𝑃

𝜓(𝑛)𝜑(𝑛)𝐽𝑣 (𝑛) 𝑑𝑛 = 𝑣 𝑗 (�̄�𝜑)

= 〈𝑖𝜎,−ā (�̄�𝜑 ⊗ 𝑣) , 𝑗〉 = 〈𝑖𝜎,−ā (𝜑 ⊗ 𝑣) , 𝜓 𝑗〉.

Therefore, the continuous linear functional ℎ : 𝐶∞(𝐺/�̄� : 𝜎 : −ā) → C defined by
ℎ := 〈 · , 𝜓 𝑗 − (𝜓 𝑗[)∗〉 vanishes on 𝑖𝜎,−ā (𝐶∞

𝑐 (𝑁𝑃) ⊗ 𝐻∞
𝜎 ); here the algebraic tensor

product has been taken.
Let 𝑆1 ⊂ 𝑁𝑃 be compact. We select 𝑆2 ⊂ 𝑁𝑃 compact such that 𝑆1 ⊂ int (𝑆2);

then 𝐶∞
𝑆1
(𝑁𝑃, 𝐻∞

b
) is contained in the closure of 𝐶∞

𝑆2
(𝑁𝑃) ⊗ 𝐻∞

b
in 𝐶∞

𝑆2
(𝑁𝑃, 𝐻∞

b
).

Since 𝑖𝜎,−ā restricts to a topological isomorphism from 𝐶∞
𝑆 𝑗
(𝑁𝑃, 𝐻∞

b
) onto the space

𝐶∞
𝑆 𝑗
(𝐺/�̄� : 𝜎 : −ā), it follows that ℎ vanishes on 𝐶∞

𝑆1
(𝐺/�̄� : 𝜎 : −ā). As this is valid

with 𝑆1 an arbitrary compact subset of 𝑁𝑃, we may assume that 𝑆1 contains an open
neighborhood𝜔 of supp𝜓 in 𝑁𝑃 . ThenΩ1 := 𝜔�̄� andΩ2 := 𝐺 \supp𝜓 �̄� form an open
cover of 𝐺/�̄� such that 𝜓 𝑗 − (𝜓 𝑗[)∗ restricts to 0 on Ω 𝑗 , ( 𝑗 = 1, 2). By the restriction
property mentioned in the text following (7.7) it follows that 𝜓 𝑗 = (𝜓 𝑗[)∗.
This establishes the existence of [ such that (8.6) is valid. If [′ is a similar element,

let𝜓 ∈ 𝐶∞(𝐺/�̄�) have support in 𝑁𝑃�̄� and satisfy𝜓( [𝑒]) ≠ 0. Then [𝜓( 𝑗[− 𝑗[′)]∗ = 0.
By injectivity of the map 𝑓 ↦→ 𝑓∗ it follows that 𝜓( 𝑗[− 𝑗[′) = 0. Evaluating this identity
at 𝑒 we obtain 𝜓( [𝑒]) ([ − [′) = 0 and conclude [ = [′. Uniqueness of [ follows.
It remains to show (8.7). For this we note that, for 𝑛0 ∈ 𝑁0 ∩ 𝑀𝑃, conjugation by

𝑛0 leaves 𝑁𝑃 invariant and

𝐿𝑛0𝑖𝜎,a (𝜑 ⊗ 𝑣) = 𝑖𝜎,a (𝐿𝑛0𝑅𝑛0𝜑 ⊗ 𝜎(𝑛0)𝑣).

From the definition of 𝑣 𝑗 it now follows that

𝜒(𝑛0) 𝑣 𝑗 (𝜑) = 𝜎(𝑛0)𝑣 𝑗 (𝐿𝑛0𝑅𝑛0𝜑).

This implies, in turn,

𝜒(𝑛0)𝐽𝑣 (𝑛) = 𝐽𝜎(𝑛0)𝑣 (𝑛0𝑛𝑛−10 ), (𝑛 ∈ 𝑁𝑃).

Evaluation at 𝑛 = 𝑒 gives

𝜒(𝑛0)〈𝑣 , [〉𝜎 = 〈𝜎(𝑛0)𝑣 , [〉𝜎,
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for all 𝑣 ∈ 𝐻∞
𝜎 and 𝑛0 ∈ 𝑁0 ∩ 𝑀𝑃 . Finally, this gives

𝜎−∞(𝑛0)−1[ = 𝜒(𝑛0)−1[, (𝑛0 ∈ 𝑁0 ∩ 𝑀𝑃),

and (8.7) follows. This finishes the proof of Theorem 8.6. 2

In the next lemma, we assume that 𝐻 is a Lie group, equipped with a left Haar
measure 𝑑𝑥. We equip 𝐶∞

𝑐 (𝐻) with the left regular representation 𝐿 of 𝐻, and its
dual D′(𝐻) with the contragredient representation 𝐿∨. Accordingly, we define, for
𝜓 ∈ 𝐶∞

𝑐 (𝐻), the continuous linear map 𝐿∨(𝜓) : D′(𝐻) → D′(𝐻) by

𝐿∨(𝜓) (𝑢) =
∫
𝐻

𝜓(𝑥) 𝑢 ◦ 𝐿−1𝑥 𝑑𝑥.

For 𝑣 ∈ 𝐶∞(𝐻) we define 𝑖(𝑣) ∈ D′(𝐻) by

𝑖(𝑣) ( 𝑓 ) =
∫
𝐻

𝑓 (𝑥)𝑣(𝑥)𝑑𝑥, ( 𝑓 ∈ 𝐶∞
𝑐 (𝐻)).

Then 𝑖 : 𝐶∞(𝐻) → D′(𝐻) is an equivariant injective continuous linear map with
dense image. In particular, 𝑖 ◦ 𝐿 (𝜓) = 𝐿∨(𝜓) ◦ 𝑖.

Lemma 8.10 If 𝜓 ∈ 𝐶∞
𝑐 (𝐻), then 𝐿∨(𝜓) is a smoothing operator in the sense that

there exists a unique continuous linear map 𝑇𝜓 : D′(𝐻) → 𝐶∞(𝐻) such that

𝐿∨(𝜓) = 𝑖 ◦𝑇𝜓 . (8.10)

Proof. Uniqueness is obvious, since 𝑖 is injective. For 𝑦 ∈ 𝐻 we define 𝑅𝑦 (�̌�) ∈ 𝐶∞
𝑐 (𝐻)

by
𝑅𝑦−1 (�̌�) (𝑥) := �̌�(𝑥𝑦−1) = 𝜓(𝑦𝑥−1), (𝑥 ∈ 𝐻).

Let Δ : 𝐻 →]0,∞[ be defined by Δ(𝑥) = | det Ad(𝑥) |. Then the map 𝑦 ↦→ Δ𝑅𝑦−1 (�̌�) is
smooth 𝐻 → 𝐶∞

𝑐 (𝐻). Thus, if 𝑢 ∈ D′(𝐻) then 𝑇𝜓 (𝑢) : 𝑦 ↦→ 𝑢(Δ𝑅𝑦−1 (�̌�)) is a smooth
function on 𝐻.Moreover, the map 𝑢 ↦→ 𝑇𝜓 (𝑢) is continuous linear D′(𝐻) → 𝐶∞(𝐻).
We will show that it satisfies (8.10). Since the expressions on both sides of (8.10)
are continuous linear endomorphisms of D′(𝐻), it suffices to establish the equality
on the dense subspace of elements of the form 𝑢 = 𝑖(𝑣), with 𝑣 ∈ 𝐶∞(𝐻). Since
𝐿∨(𝜓) ◦ 𝑖 = 𝑖 ◦ 𝐿 (𝜓) and since 𝑖 is injective, it suffices to show that

𝐿 (𝜓) (𝑣) = 𝑇𝜓 ◦ 𝑖(𝑣).

This identity of functions in 𝐶∞(𝐻) is established as follows. If 𝑦 ∈ 𝐻, then

𝐿 (𝜓) (𝑣) (𝑦) =

∫
𝐻

𝜓(𝑥)𝑣(𝑥−1𝑦) 𝑑𝑥 =
∫
𝐻

𝜓(𝑦𝑥)𝑣(𝑥−1)𝑑𝑥

=

∫
𝐻

𝜓(𝑦𝑥−1)𝑣(𝑥)Δ(𝑥)𝑑𝑥 =
∫
𝐻

Δ(𝑥)𝑅𝑦−1 (�̌�) (𝑥)𝑣(𝑥) 𝑑𝑥

= 𝑖(𝑣) (Δ𝑅𝑦−1 (�̌�)) = 𝑇𝜓 (𝑖(𝑣)) (𝑦).

2
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We return to the setting of Theorem 8.6. Given 𝑗 ∈ 𝐶−∞(𝐺/�̄� : 𝜎 : a)𝜒 we denote
by by ev𝑒 ( 𝑗) the associated element [ ∈ 𝐻−∞

𝜎 such that 𝑗 = 𝑗[ on 𝑁𝑃�̄�. Then by
uniqueness of [ combined with (8.7), we find that ev𝑒 defines a linear map

ev𝑒 : 𝐶−∞(𝐺/�̄� : 𝜎 : a)𝜒 → (𝐻−∞
𝜎 )𝜒 |𝑁0∩𝑀𝑃 . (8.11)

Corollary 8.11 If 𝜒 is regular, then the map (8.11) is injective.

Proof. Let 𝑗 ∈ 𝐶−∞(𝐺/�̄� : 𝜎 : a)𝜒 and suppose that ev𝑒 ( 𝑗) = 0. Then it follows from
Theorem 8.6 that 𝑗 = 0 on 𝑁𝑃�̄�. By Corollary 8.3 this implies that 𝑗 = 0. 2

We retain the assumption that 𝜒 is regular. Then 𝜒 |𝑁0∩𝑀𝑃
is regular with respect

to the roots of ∗𝔞𝑃 in 𝔫0 ∩ 𝔪. Indeed, for each such root 𝛼, the associated root space
satisfies 𝔤𝛼 ⊂ 𝔪𝑃 ∩ 𝔫0.We agree to use the abbreviated notation

𝐻−∞
𝜎,𝜒𝑃

:= (𝐻−∞
𝜎 )𝜒 |𝑁0∩𝑀𝑃 . (8.12)

For 𝑅 ∈ R we put

𝔞∗𝑃C(𝑃, 𝑅) := {a ∈ 𝔞∗𝑃C | ∀𝛼 ∈ Σ(𝔫𝑃, 𝔞) : 〈Re a , 𝛼〉 > 𝑅}. (8.13)

Given [ ∈ 𝐻−∞
𝜎,𝜒𝑃

and a ∈ 𝔞∗
𝑃C
(𝑃, 0), we define the function 𝑗a = 𝑗 (𝑃, 𝜎, a, [) : 𝐺 →

𝐻−∞
𝜎 by 𝑗a = 0 on 𝐺 \ 𝑁𝑃�̄� and by

𝑗 (𝑃, 𝜎, a, [) (𝑛𝑚𝑎�̄�) = 𝑎−a+𝜌𝑃 𝜒(𝑛)−1𝜎(𝑚)−1[, (8.14)

for 𝑛 ∈ 𝑁𝑃, 𝑚 ∈ 𝑀𝑃, 𝑎 ∈ 𝐴𝑃 and �̄� ∈ �̄�𝑃, see also (8.6).

Proposition 8.12 Suppose that 𝜎 ∈ 𝑀𝑃,ds and let [ ∈ 𝐻−∞
𝜎,𝜒𝑃

.

(a) If a ∈ 𝔞∗
𝑃C
(𝑃, 0) then the function 𝑗a = 𝑗 (𝑃, 𝜎, a, [) : 𝐺 → 𝐻−∞

𝜎 satisfies

𝑗a (𝑛0𝑥𝑚𝑎�̄�) = 𝜒(𝑛0)−1 𝑎−a+𝜌𝑃𝜎−∞(𝑚)−1 𝑗a (𝑥), (8.15)

for all 𝑥 ∈ 𝐺, 𝑛0 ∈ 𝑁0, 𝑚 ∈ 𝑀𝑃, 𝑎 ∈ 𝐴𝑃, and �̄� ∈ �̄�𝑃 .

(b) The function 𝑗a is continuous 𝐻−∞
𝜎 -valued on K := 𝐾 ∩ 𝑁𝑃�̄�. There exists a

continuous seminorm 𝑠𝜎 on 𝐻∞
𝜎 , and for every 𝑅 > 0 a Lebesgue integrable

function 𝐿𝑅 : 𝐾 → [0,∞[ such that

|〈𝑣 , 𝑗 (�̄�, 𝜎, a, [) (𝑘)〉𝜎 | ≤ 𝐿𝑅 (𝑘)𝑠𝜎 (𝑣),

for all a ∈ 𝔞∗
𝑃C
(𝑃, 𝑅), 𝑘 ∈ 𝐾 and 𝑣 ∈ 𝐻∞

𝜎 .
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Proof. Since 𝑁𝑃�̄� is left 𝑁0-invariant, so is the complement 𝐺 \ 𝑁𝑃�̄�, where 𝑗a equals
zero. Hence 𝑗a satisfies (8.15) for 𝑥 ∈ 𝐺 \ 𝑁𝑃�̄� and all values of 𝑛0, 𝑚, 𝑎, �̄�.
For 𝑥 ∈ 𝑁𝑃�̄�, the rule (8.14) implies (8.15) for 𝑚 ∈ 𝑀𝑃, 𝑎 ∈ 𝐴𝑃, �̄� ∈ �̄�𝑃 and all

𝑛0 ∈ 𝑁𝑃 . To obtain the rule for all 𝑛0 ∈ 𝑁0 we use that 𝑁0 = (𝑁0 ∩ 𝑀𝑃)𝑁𝑃, and note
that for 𝑛0 ∈ 𝑁0 ∩ 𝑀𝑃 and 𝑛𝑚𝑎�̄� ∈ 𝑁𝑃𝑀𝑃𝐴𝑃�̄�𝑃 we have, taking into account that
𝑛0𝑛𝑛

−1
0 ∈ 𝑁𝑃,

𝑗a (𝑛0𝑛𝑚𝑎𝑛) = 𝑗a (𝑛0𝑛𝑛−10 (𝑛0𝑚)𝑎𝑛)
= = 𝑎−a+𝜌𝑃 𝜒(𝑛0𝑛𝑛−10 )−1𝜎−∞(𝑛0𝑚)−1[
= 𝑎−a+𝜌𝑃 𝜒(𝑛)−1𝜎−∞(𝑚)−1 [𝜒(𝑛0)−1[]
= 𝜒(𝑛0)−1 𝑗a (𝑛𝑚𝑎𝑛).

Rule (8.15) now follows, and we turn to proving (b).
Let 𝑃′0 be the minimal parabolic subgroup containing 𝐴 with 𝑁𝑃′

0
= (𝑁0 ∩𝑀𝑃)�̄�𝑃 .

We consider the maps ^′ : 𝐺 → 𝐾, ℎ′ : 𝐺 → 𝐴 and 𝑛′ : 𝐺 → 𝑁𝑃′
0
associated with the

Iwasawa decomposition
𝐺 = 𝐾𝐴𝑁𝑃′

0
, (8.16)

and put 𝐻′ := log ◦ ℎ′ : 𝐺 → 𝔞.

The natural map 𝑁𝑃 → 𝐺/�̄� is an embedding onto a dense open subset. Via
the natural diffeomorphism 𝐾/𝐾𝑃 ' 𝐺/�̄� we have a corresponding open embedding
𝑁𝑃 → 𝐾/𝐾𝑃 . Since 𝑃′0 ⊂ �̄�, this open embedding is given by 𝑛 ↦→ ^′(𝑛)𝐾𝑃 . The
associated open embedding 𝑁𝑃 ×𝐾𝑃 → 𝐾 , given by (𝑛, 𝑘𝑃) ↦→ ^′(𝑛)𝑘𝑃, has imageK .
By transformation of variables it is well known that a function 𝑓 : 𝐾 → C is absolutely
integrable if and only if∫

𝑁𝑃×𝐾𝑃
| 𝑓 (^′(𝑛)𝑘𝑃) |𝑒2𝜌𝑃𝐻

′(𝑛) 𝑑𝑘𝑃𝑑𝑛 < ∞ (8.17)

Furthermore, if (8.17) holds then ‖ 𝑓 ‖𝐿1 (𝐾) equals the given integral (up to a positive
scalar factor, depending on the normalization of measures).
In the following we put ∗𝐴 := 𝑀𝑃 ∩ 𝐴 and ∗𝑁0 := 𝑀𝑃 ∩ 𝑁0, so that

𝑀𝑃 = 𝐾𝑃
∗𝐴∗𝑁0 (8.18)

is the Iwasawa decomposition of 𝑀𝑃 associated with its minimal parabolic subgroup
𝑃′0∩𝑀𝑃 = 𝑃0∩𝑀𝑃 . Therefore, this Iwasawa decomposition for 𝑀𝑃 is compatible with
the decomposition (8.16). Let ∗𝜌 ∈ 𝔞∗ and 𝜌′ ∈ 𝔞∗ be defined by

∗𝜌(𝐻) = 1
2 tr [ad(𝐻) |∗𝔫0], 𝜌′(𝐻) = 1

2 tr [ad(𝐻) |𝔫𝑃′0 ],

for 𝐻 ∈ 𝔞. Then
𝜌′ = ∗𝜌 − 𝜌𝑃 (8.19)

and this decomposition is compatible with 𝔞 = ∗𝔞𝑃 ⊕ 𝔞𝑃 in the sense that ∗𝜌 = 0 on 𝔞𝑃
and 𝜌𝑃 = 0 on ∗𝔞𝑃 .
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We chose 𝑁 ∈ N sufficiently large (the precise condition will appear later). By
Corollary 4.8 applied to 𝑀𝑃 in place of 𝐺, and with _ = 〈 · , [〉 ∈ Wh𝜒𝑃 (𝐻∞

𝜎 ), there
exists a continuous seminorm 𝑞 on 𝐻∞

𝜎 such that

|〈𝜎(𝑚)−1𝑣 , [〉| ≤ (1 + |∗𝐻 (𝑚) |)−𝑁𝑒−∗𝜌(∗𝐻 (𝑚))𝑞(𝑣) (8.20)

for all 𝑣 ∈ 𝐻∞
𝜎 and 𝑚 ∈ 𝑀𝑃 . Here ∗𝐻 denotes the Iwasawa projection 𝑀𝑃 → ∗𝔞

associated with the decomposition (8.18).
In accordance with the decomposition 𝔞 = ∗𝔞 ⊕ 𝔞𝑃, we decompose the Iwasawa

projection 𝐻′(𝑥) of an element 𝑥 ∈ 𝐺 as

𝐻′(𝑥) = ∗𝐻′(𝑥) + 𝐻′
�̄�
(𝑥). (8.21)

Furthermore, we agree to write ∗ℎ′ = exp ◦ ∗𝐻′ and ℎ′
�̄�
= exp ◦𝐻′

�̄�
. By compatibility

of the decompositions (8.16) and (8.18) we note that ∗𝐻′|𝑀𝑃
= ∗𝐻.

We now observe that for 𝑛 ∈ 𝑁𝑃 we have ^′(𝑛) = 𝑛𝑛′(𝑛)−1ℎ′(𝑛)−1. For 𝑣 ∈ 𝐻∞
𝜎

and a ∈ 𝔞∗
𝑃C
(𝑃, 0) the function 𝑥 ↦→ 〈𝑣 , 𝑗a (𝑥)〉𝜎 is left 𝑁0-equivariant and right

�̄�𝑃-invariant. Hence, for 𝑛 ∈ 𝑁𝑃 and 𝑘𝑃 ∈ 𝐾𝑃,

〈𝑣 , 𝑗a (^′(𝑛)𝑘𝑃)〉𝜎 = 𝜒(𝑛)−1 〈𝜎(𝑘𝑃)𝑣 , 𝑗a (ℎ′(𝑛)−1)〉𝜎
= 𝜒(𝑛)−1 𝑒(a−𝜌𝑃)𝐻

′
�̄�
(𝑛) 〈𝜎(∗ℎ′(𝑛))−1𝜎(𝑘𝑃)𝑣 , [〉𝜎 (8.22)

Fom (8.21) we see that (a − 𝜌𝑃)𝐻′
�̄�
(𝑛) = (a − 𝜌𝑃)𝐻′(𝑛) for all a ∈ 𝔞∗

𝑃C
. Furthermore,

∗𝜌∗𝐻′(𝑛) = ∗𝜌𝐻′(𝑛). Applying the estimate (8.20) to (8.22) we now find that for all
a ∈ 𝔞∗

𝑃C
(𝑃, 0) and 𝑣 ∈ 𝐻∞

𝜎 , all 𝑛 ∈ 𝑁𝑃 and 𝑘𝑃 ∈ 𝐾𝑃,

|〈𝑣 , 𝑗a (^′(𝑛)𝑘𝑃)〉𝜎 | 𝑒2𝜌𝑃𝐻
′(𝑛)

≤ 𝑒(Re a+𝜌𝑃) 𝐻
′(𝑛) (1 + |∗𝐻′(𝑛) |)−𝑁𝑒−∗𝜌∗𝐻 ′(𝑛) 𝑞(𝜎(𝑘𝑃)𝑣)

≤ 𝑒(Re a) 𝐻
′(𝑛) (1 + |∗𝐻′(𝑛) |)−𝑁𝑒−𝜌′𝐻 ′(𝑛)𝑠𝜎 (𝑣). (8.23)

For the last inequality we have applied (8.19). Furthermore, 𝑠𝜎 is a continuous semi-
norm on 𝐻∞

𝜎 such that 𝑞(𝜎(𝑘𝑃)𝑣) ≤ 𝑠𝜎 (𝑣) for all 𝑣 ∈ 𝐻∞
𝜎 and 𝑘𝑃 ∈ 𝐾𝑃; it exists by

compactness of 𝐾𝑃 .
Since �̄� contains 𝑃′0 it follows by Lemma 8.13 below, with 𝑃

′
0 and �̄� in place of 𝑃0

and 𝑄 respectively, that 𝐻′(𝑁𝑃) equals the closed convex cone Γ spanned by the root
vectors 𝐻𝛼 for 𝛼 ∈ Σ(�̄�𝑃, 𝔞) (here 𝐻𝛼 ∈ 𝔞∩ (ker𝛼)⊥ and 𝛼(𝐻𝛼) = 2). If 𝛼 ∈ Σ(�̄�𝑃, 𝔞),
then 𝜌𝑃 (𝐻𝛼) < 0 and for all a ∈ 𝔞∗

𝑃C
(𝑃, 𝑅) we have

𝜌𝑃 (𝐻𝛼)−1Re a(𝐻𝛼) = 〈𝜌𝑃 , −𝛼〉−1〈Re a , −𝛼〉 > 〈𝜌𝑃 , −𝛼〉−1𝑅 ≥ Y𝑅,

where Y > 0 is the minimal value of 〈𝜌𝑃 , 𝛽〉−1, for 𝛽 ∈ Σ(𝔫𝑃, 𝔞). It follows that

Re a(𝐻) ≤ Y𝑅𝜌𝑃 (𝐻)
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for all 𝐻 ∈ Γ. This implies the existence of a constant 𝐶𝑅,𝑁 > 0 such that for all
a ∈ 𝔞∗

𝑃C
(𝑃, 𝑅) and all 𝐻 ∈ Γ we have

𝑒Re a(𝐻) ≤ 𝐶𝑅,𝑁 (1 − 𝜌𝑃 (𝐻))−𝑁 .

Since −𝜌𝑃 > 0 on Γ \ {0} there exists a constant 𝛾 > 0 such that

𝛾 |𝐻 | ≤ −𝜌𝑃 (𝐻), (𝐻 ∈ Γ).

If𝐻 ∈ 𝔞,wewrite𝐻 = ∗𝐻+𝐻𝑃 according to the (orthogonal) decomposition 𝔞 = ∗𝔞+𝔞𝑃 .
Then |𝐻𝑃 | ≤ |𝐻 |. It follows that for all a ∈ 𝔞∗

𝑃C
(𝑃, 𝑅) and all 𝐻 ∈ Γ we have

𝑒Re a(𝐻) ≤ 𝐶𝑅,𝑁 (1 + 𝛾 |𝐻𝑃 |)−𝑁 ≤ �̃�𝑅,𝑁 (1 + |𝐻𝑃 |)−𝑁 ;

here �̃�𝑅,𝑁 = 𝐶𝑅,𝑁 sup𝑡≥1 | (1 + 𝑡)−1(1 + 𝛾𝑡) |−𝑁 . Finally, we infer that for 𝐻 ∈ Γ and
a ∈ 𝔞∗

𝑃C
(𝑃, 𝑅) we have the estimate

𝑒Re a(𝐻) (1 + |∗𝐻 |)−𝑁 ≤ �̃�𝑅,𝑁 (1 + |𝐻𝑃 |)−𝑁 (1 + |∗𝐻 |)−𝑁 ≤ �̃�𝑅,𝑁 (1 + |𝐻 |)−𝑁 .

Observing that in (8.23) the element 𝐻′(𝑛) belongs to Γ, we infer that for all a ∈
𝔞∗
𝑃C
(𝑃, 𝑅) and all 𝑣 ∈ 𝐻∞

𝜎 we have

|〈𝑣 , 𝑗a (^′(𝑛)𝑘𝑃)〉𝜎 | 𝑒2𝜌𝑃𝐻
′(𝑛) ≤ �̃�𝑅,𝑁𝑒−𝜌

′𝐻 ′(𝑛) (1 + | log𝐻′(𝑛) |)−𝑁 𝑠𝜎 (𝑣), (8.24)

If 𝑁 is sufficiently large, then the integral of the latter function over 𝑁𝑃 is absolutely
integrable, see Lemma 8.13 (b). For such a choice of 𝑁 the function 𝐿 : K → [0,∞[
defined by

𝐿𝑅 (^′(𝑛)𝑘𝑃) = �̃�𝑅,𝑁𝑒−𝜌
′𝐻 ′(𝑛) (1 + | log𝐻′(𝑛) |)−𝑁𝑒−2𝜌𝑃𝐻 ′(𝑛) (8.25)

satsfies the required conditions. 2

Given a root 𝛼 ∈ Σ we denote by 𝐻𝛼 the element of 𝔞 determined by 𝐻𝛼 ⊥ ker𝛼
and 𝛼(𝐻𝛼) = 2.

Lemma 8.13 Let 𝑄 be a standard parabolic subgroup. Then
(a) 𝐻 (�̄�𝑄) equals the cone Γ(Σ(𝔫𝑄 , 𝔞)) spanned by the elements 𝐻𝛼 for 𝛼 ∈

Σ(𝔫𝑄 , 𝔞).

(b) There exists a constant 𝑚 ∈ N such that∫
�̄�𝑄

𝑒−𝜌𝐻 (�̄�) (1 + |𝐻 (�̄�) |)−𝑚 𝑑�̄� < ∞.

Proof. We consider the minimal parabolic subgroup 𝑅 of 𝐺 determined by 𝑁𝑅 =

(𝑀𝑄 ∩ 𝑁0)�̄�𝑄 . Then it is well-known, see e.g. [6, Lemma 4.9], that 𝐻 (𝑁𝑅 ∩ �̄�0)
equals the cone spanned by the elements 𝐻𝛼 for 𝛼 ∈ Σ(�̄�𝑅 ∩ 𝔫0). Now 𝑁𝑅 ∩ �̄�0 = �̄�𝑄
and �̄�𝑅 ∩ 𝔫0 = 𝔫𝑄 and (a) follows.
The validity of (b) is due to Harish-Chandra, see e.g. [10, §31]. 2
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It follows from Proposition 8.12 that for every 𝜑 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎) and a ∈
𝔞∗
𝑃C
(𝑃, 0) the function

𝑘 ↦→ 〈𝜑(𝑘) , 𝑗 (�̄�, 𝜎, a, [) (𝑘)〉𝜎

is continuous on K = 𝐾 ∩ 𝑁𝑃�̄� and dominated by a Lebesgue integrable function,
hence integrable over 𝐾. Accordingly, we define the linear functional ∨𝑗∗(�̄�, 𝜎, a, [) :
𝐶∞(𝐾/𝐾𝑃 : 𝜎) → C by

∨𝑗∗(�̄�, 𝜎, a, [) (𝜑) :=
∫
𝐾

〈𝜑(𝑘) , 𝑗 (�̄�, 𝜎, a, [) (𝑘)〉𝜎 𝑑𝑘. (8.26)

It follows from the estimate (8.24) that

|∨𝑗∗(�̄�, 𝜎, a, [) (𝜑) | ≤ 𝐼 (𝐿𝑅) sup
𝑘∈𝐾

𝑠𝜎 (𝜑(𝑘)), (a ∈ 𝔞∗𝑃C(𝑃, 𝑅)), (8.27)

where 𝐼 (𝐿𝑅) :=
∫
𝐾
𝐿𝑅 (𝑘) 𝑑𝑘. In particular, we see that ∨𝑗∗(�̄�, 𝜎, a, [) ∈ 𝐶∞(𝐾/𝐾𝑃 :

𝜎)′ hence equals 〈 · , 𝑗∗(�̄�, 𝜎, a, [)〉 for a unique element 𝑗∗(�̄�, 𝜎, a, [) ∈ 𝐶−∞(𝐾/𝐾𝑃 :
𝜎), for a ∈ 𝔞∗

𝑃C
(𝑃, 0). From the text subsequent to (7.9) we recall that 𝐶−∞(𝐾/𝐾𝑃 : 𝜎)

is the union of the Banach spaces 𝐶−𝑠 (𝐾/𝐾𝑃 : 𝜎), for 𝑠 ∈ N.

Proposition 8.14 If 𝑅 > 0 there exists a constant 𝑟 > 0 such that the following
assertions hold for all [ ∈ 𝐻−∞

𝜎,𝜒𝑃
.

(a) There exists a bounded subset of 𝐶−𝑟 (𝐾/𝐾𝑃 : 𝜎) to which 𝑗∗(�̄�, 𝜎, a, [) belongs
for every a ∈ 𝔞∗

𝑃C
(𝑃, 𝑅).

(b) The map a ↦→ 𝑗∗(�̄�, 𝜎, a, [) is holomorphic as a function on 𝔞∗
𝑃C
(𝑃, 𝑅) with

values in the Banach space 𝐶−𝑟 (𝐾/𝐾𝑃 : 𝜎).

Proof. Let [ and 𝑅 be fixed. Let 𝑠𝜎 and 𝐿𝑅 be as in Proposition 8.12. Then is it readily
verified that 𝜑 ↦→ sup𝑘∈𝐾 𝑠𝜎 (𝜑(𝑘)) is a continuous seminorm on 𝐶∞(𝐾/𝐾𝑃 : 𝜎). As
the topology on the latter space is generated by the seminorms ‖ · ‖𝑟 , for 𝑟 ∈ N, see
the text accompanying (7.9), there exists a constant 𝐶 > 0 such that

sup
𝑘∈𝐾

𝑠𝜎 (𝜑(𝑘)) ≤ 𝐶‖𝜑‖𝑟 (8.28)

for all 𝜑 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎). Thus, from the estimate (8.27) it follows that there exists
a constant 𝑟 ∈ N such that 𝑗∗(�̄�, 𝜎, a, [) ∈ 𝐶−𝑟 (𝐾/𝐾𝑃 : 𝜎) for all a ∈ 𝔞∗

𝑃C
(𝑃, 𝑅). By

linearity in [ and finite dimensionality of 𝐻−∞
𝜎,𝜒𝑃

the constant 𝑟 may be taken the same
for all [, and (a) follows, with the mentioned boundedness.
For (b) we will first show that the map a ↦→ 𝑗∗(�̄�, 𝜎, a, [) is continuous from

𝔞∗
𝑃C
(𝑃, 𝑅) to 𝐶−𝑟 (𝐾/𝐾𝑃 : 𝜎). Let a0 ∈ 𝔞∗

𝑃C
(𝑃, 𝑅) be fixed. Then it suffices to show

that
‖ 𝑗∗(�̄�, 𝜎, a, [) − 𝑗∗(�̄�, 𝜎, a0, [)‖−𝑟 → 0 (a → a0). (8.29)
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In the notation of the proof of Proposition 8.12 we define, for ` ∈ 𝔞∗
𝑃C
the function

Y` : 𝐾 → C by Y` = 0 outside K and by

Y` (^′(𝑛)𝑘𝑃) = 𝑒`𝐻
′(𝑛) , (𝑛 ∈ 𝑁𝑃, 𝑘𝑃 ∈ 𝐾𝑃).

If ` ∈ 𝔞∗
𝑃C
(𝑃, 0) then Re ` ≤ 0 on the cone Γ = 𝐻′(𝑁𝑃) so that |Y` (𝑘) | ≤ 1 for all

𝑘 ∈ 𝐾. From (8.22) combined with the definitions in the proof of Proposition 8.12 it is
now readily checked that, for 0 < 𝑐 < 1,

𝑗∗(�̄�, 𝜎, a, [) − 𝑗∗(�̄�, 𝜎, a0, [) =
[
Ya−𝑐a0 − Ya0−𝑐a0

]
𝑗∗(�̄�, 𝜎, 𝑐a0, [).

Fix 𝑐 sufficiently close to 1, so that 𝑐a0 ∈ 𝔞∗
𝑃C
(𝑃, 𝑅). Then combining (8.24) and (8.25)

it follows that, for 𝑣 ∈ 𝐻𝜎,

|〈
[
Ya−𝑐a0 − Ya0−𝑐a0

]
𝑗∗(�̄�, 𝜎, 𝑐a0, [) , 𝑣〉| ≤

��Ya−𝑐a0 − Ya0−𝑐a0 �� 𝐿𝑅 · 𝑠𝜎 (𝑣).
Substituting 𝑣 = 𝜑(𝑘), integrating over 𝐾 and using the estimate (8.28) we find, for all
𝜑 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎) and all a ∈ 𝔞∗

𝑃C
(𝑃, 𝑅) that

|〈 𝑗∗(�̄�, 𝜎, a, [) − 𝑗∗(�̄�, 𝜎, a0, [) , 𝜑〉| ≤ 𝐶𝐼 ( |Ya−𝑐a0 − Ya0−𝑐a0 | · 𝐿𝑅) ‖𝜑‖𝑟 ,

where 𝐼 denotes the integral over 𝐾. It follows by application of the dominated conver-
gence theorem that

𝐼 ( |Ya−𝑐a0 − Ya0−𝑐a0 | · 𝐿𝑅) → 0, (a → a0).

The continuity (8.29) now follows.
Now that the continuity has been established, it follows by a simple application of

the Cauchy integral formula that it suffices to prove the holomorphy of

a ↦→ 〈 𝑗∗(�̄�, 𝜎, a, [) , 𝜑〉, 𝔞∗𝑃C(𝑃, 𝑅) → C (8.30)

for a fixed 𝜑 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎). According to (8.26) we have that

〈 𝑗∗(�̄�, 𝜎, a, [) , 𝜑〉 =
∫
𝐾

〈 𝑗 (�̄�, 𝜎, a, [) (𝑘) , 𝜑(𝑘)〉𝜎 𝑑𝑘. (8.31)

By Proposition 8.12 (b) the integrand is Lebesgue integrable in 𝑘 for every a ∈
𝔞∗
𝑃C
(𝑃, 0), holomorphic in a ∈ 𝔞∗

𝑃C
(𝑃, 𝑅) for every 𝑘 ∈ 𝐾 and uniformly dominated

by the Lebesgue integrable function [sup𝑘∈𝐾 𝑠𝜎 (𝜑(𝑘))] · 𝐿𝑅 for a ∈ 𝔞∗
𝑃C
(𝑃, 𝑅). This

implies that the integral in (8.31) defines a holomorphic function of a ∈ 𝔞∗
𝑃C
(𝑃, 𝑅). 2

From now on we will omit the ∗ in the notation of the functional defined by
(8.26), thus identifying the function 𝑗 (�̄�, 𝜎, a, [) : 𝐾 → 𝐻−∞

𝜎 with an element of
𝐶−∞(𝐾/𝐾𝑃 : 𝜎) for every a ∈ 𝔞∗

𝑃C
(𝑃, 0). For such a we will also write 𝑗 (�̄�, 𝜎, a) for

the element of

(𝐻−∞
𝜎,𝜒𝑃

)∗ ⊗ 𝐶−∞(𝐾/𝐾𝑃 : 𝜎) ' Hom(𝐻−∞
𝜎,𝜒𝑃

, 𝐶−∞(𝐾/𝐾𝑃 : 𝜎)) (8.32)

defined by [ ↦→ 𝑗 (�̄�, 𝜎, a, [).
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Proposition 8.15 Let a ∈ 𝔞∗
𝑃C
(𝑃, 0). Then the following assertions are valid.

(a) If [ ∈ 𝐻−∞
𝜎,𝜒𝑃

, then 𝑗 (�̄�, 𝜎, a, [) ∈ 𝐶−∞(𝐺/�̄� : 𝜎 : a)𝜒 .

(b) The map
𝑗 (�̄�, 𝜎, a) : 𝐻−∞

𝜎,𝜒𝑃
→ 𝐶−∞(𝐺/�̄� : 𝜎 : a)𝜒 (8.33)

is bijective with inverse ev𝑒 .

Proof. Let [ ∈ 𝐻−∞
𝜎,𝜒𝑃

. Then for (a) it suffices to show that

𝜋−∞
�̄�,𝜎,a

(𝑛0) 𝑗 (�̄�, 𝜎, a, [) = 𝜒(𝑛0) 𝑗 (�̄�, 𝜎, a, [), (𝑛0 ∈ 𝑁0).

Let 𝜑 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎) and let 𝜑−ā denote the unique function in 𝐶∞(𝐺/�̄� : 𝜎 : −ā)
which restricts to 𝜑 on 𝐾. For 𝑛0 ∈ 𝑁0 we may write 𝑛0 = 𝑛1𝑛2 with 𝑛1 ∈ 𝑀𝑃 ∩𝑁0 and
𝑛2 ∈ 𝑁𝑃 . Accordingly, in view of Lemma 6.4,

〈𝜑 , 𝜋−∞
�̄�,𝜎,a

(𝑛0) 𝑗 (�̄�, 𝜎, a, [)〉 = 〈𝜋�̄�,𝜎,−ā (𝑛0)−1𝜑 , 𝑗 (�̄�, 𝜎, a, [)〉

=

∫
𝑁𝑃

〈𝜑−ā (𝑛0𝑛) , 𝑗 (�̄�, 𝜎, a, [) (𝑛)〉𝜎 𝑑𝑛

=

∫
𝑁𝑃

𝜒(𝑛) 〈𝜑−ā (𝑛1𝑛2𝑛) , [〉𝜎 𝑑𝑛

=

∫
𝑁𝑃

𝜒(𝑛−12 𝑛) 〈𝜑−ā (𝑛1𝑛) , [〉𝜎 𝑑𝑛.

Using that 𝑛1 normalizes 𝑁𝑃 with Jacobian 1, whereas 𝜒(𝑛−12 𝑛) = 𝜒(𝑛−12 𝑛
−1
1 𝑛𝑛1), we

infer that

〈𝜑 , 𝜋−∞
�̄�,𝜎,a

(𝑛0) 𝑗 (�̄�, 𝜎, a, [)〉 =

∫
𝑁𝑃

𝜒(𝑛−12 𝑛) 〈𝜑−ā (𝑛) , 𝜎(𝑛1)[〉𝜎 𝑑𝑛

= 𝜒(𝑛0)−1〈𝜑 , 𝑗 (�̄�, 𝜎, a, [)〉.

This establishes (a). For (b) we note that from (8.14) and the definition of ev𝑒 in (4.5)
it follows that ev𝑒 ◦ 𝑗 (�̄�, 𝜎, a, [) = [. This implies that the map (8.33) is injective, with
ev𝑒 as left inverse. Therefore, ev𝑒 is surjective onto 𝐻−∞

𝜎,𝜒𝑃
. In view of Cor. 8.11 it now

follows that ev𝑒 is bijective with two-sided inverse 𝑗 (�̄�, 𝜎, a). 2

9 The Whittaker integral
We will now reformulate the results of the previous section in terms of what Wallach
[21, §15.4.1] calls the Jacquet integral. Given 𝑓 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎) we write 𝑓�̄�,a for
the unique function in 𝐶∞(𝐺/�̄� : 𝜎 : a) whose restriction to 𝐾 equals 𝑓 . Thus,

𝑓�̄�,a (𝑘𝑚𝑎𝑛) = 𝑎−a+𝜌𝑃𝜎(𝑚)−1 𝑓 (𝑘), (9.1)
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for 𝑘 ∈ 𝐾 , (𝑚, 𝑎, 𝑛) ∈ 𝑀𝑃 × 𝐴𝑃 × �̄�𝑃 . We recall the definition of the continuous
linear isomorphism [ ↦→ ∨[ from 𝐻−∞

𝜎,𝜒𝑃
onto Wh𝜒𝑃 (𝐻∞

𝜎 ) as given in (1.13) with
(𝑀𝑃, 𝑁0 ∩ 𝑃, 𝜒𝑃) in place of (𝐺, 𝑁0, 𝜒), and with 𝜋1 = 𝜋2 = 𝜎.

Lemma 9.1 Let 𝜒 be regular, 𝜎 ∈ 𝑀𝑃ds and a ∈ 𝔞∗
𝑃C
(𝑃, 0). Then for all 𝑓 ∈

𝐶∞(𝐾/𝐾𝑃 : 𝜎) we have

〈 𝑓�̄�,−ā , 𝑗 (�̄�, 𝜎, a, [)〉 =
∫
𝑁𝑃

𝜒(𝑛) ∨[( 𝑓�̄�,−ā (𝑛)) 𝑑𝑛,

with absolutely convergent integral.

Proof. By the substitution of variables used in (8.17) it follows that, with absolutely
convergent integrals,

〈 𝑓�̄�,−ā , 𝑗 (�̄�, 𝜎, a, [)〉 =

∫
𝐾/𝐾𝑃

〈 𝑓 (𝑘) , 𝑗 (�̄�, 𝜎, _, [) (𝑘)〉𝜎 𝑑𝑘

=

∫
𝑁𝑃

〈 𝑓 (^′(𝑛) , 𝑗 (�̄�, 𝜎, a, [) (^′(𝑛))〉𝜎 𝑒2𝜌𝑃𝐻
′(𝑛) 𝑑𝑛

=

∫
𝑁𝑃

〈 𝑓�̄�,−ā (𝑛) , 𝑗 (�̄�, 𝜎, a, [) (𝑛)〉𝜎 𝑑𝑛

=

∫
𝑁𝑃

〈 𝑓�̄�,−ā (𝑛) , 𝜒(𝑛)−1[〉𝜎 𝑑𝑛

=

∫
𝑁𝑃

𝜒(𝑛) ∨[( 𝑓�̄�,−ā (𝑛)) 𝑑𝑛.

2

If Re a is �̄�-dominant, and _ ∈ Wh𝜒
𝑃
(𝐻∞

𝜎 ), this motivates the definition of the
Jacquet integral

𝐽 (�̄�, 𝜎, a, _) ( 𝑓 ) :=
∫
𝑁𝑃

𝜒(𝑛)_( 𝑓�̄�,a (𝑛)) 𝑑𝑛, (9.2)

for 𝑓 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎).
From Lemma 9.1 we see that this integral is absolutely convergent for �̄�-dominant

a ∈ 𝔞∗
𝑃C
and defines a Whittaker functional for 𝐶∞(𝐺/�̄� : 𝜎 : a). In fact, the assertion

of that lemma may be reformulated as

∨𝑗 (�̄�, 𝜎, a, [) = 𝐽 (�̄�, 𝜎,−ā, ∨[). (9.3)

Here the expression on the left is viewed as an element of𝐶∞(𝐾/𝐾𝑃 : 𝜎)′ according to
the compact picture, see (6.18). It follows fromWallach’swork [21, Thm15.4.1] that the
Jacquet integral has a weakly holomorphic extension to a map 𝔞∗

𝑃C
→ 𝐶∞(𝐾/𝐾𝑃 : 𝜎)′.

Furthermore, for every a ∈ 𝔞∗
𝑃C
the extension gives a linear isomorphism

Wh𝜒
𝑃
(𝐻∞

𝜎 ) →Wh𝜒 (𝐶∞(𝐺/�̄�, 𝜎, a)), b ↦→ 𝐽 (𝑃, 𝜎, _, b)
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At a later stage we will strengthen this result by deriving a functional equation for
𝑗 (𝑃, 𝜎, a) and applying it to show that for every [ ∈ 𝐻−∞

𝜎,𝜒𝑃
the function 𝑗 (𝑃, 𝜎, ·, [)

extends to a holomorphic function 𝔞∗
𝑃C

→ 𝐶−∞(𝐾/𝐾𝑃, 𝜎), where the image space is
equippedwith the direct limit topology. By analytic continuation of the𝑁0-equivariance
of 𝑗 (𝑃, 𝜎, ·, [) combined with Corollary 8.11, it then follows that for every a ∈ 𝔞∗

𝑃C
the

map
𝑗 (𝑃, 𝜎, a, · ) : 𝐻−∞

𝜎,𝜒𝑃
→ 𝐶−∞(𝐺/�̄�, 𝜎, a)𝜒

is a linear isomorphism.
Given a representation 𝜋 of the discrete series of 𝐺, we note that by Lemma

1.2 and Corollary 4.8 the linear map `𝜋 : 𝐻∞
𝜋 ⊗ 𝐻−∞

𝜋,𝜒 → 𝐶∞(𝐺/𝑁0 : 𝜒) given by
`𝜋 (𝑣⊗[) (𝑥) = 〈𝜋(𝑥)−1𝑣 , [〉 for 𝑥 ∈ 𝐺, is actually continuous linear into C(𝐺/𝑁0 : 𝜒).
Its image is denoted by C(𝐺/𝑁0 : 𝜒)𝜋 . We denote the closure of this subspace of
𝐿2(𝐺/𝑁0 : 𝜒𝑃) by 𝐿2(𝐺/𝑁0 : 𝜒𝑃)𝜋 . Clearly the latter space is invariant under the left
regular representation 𝐿 of 𝐺. The following result is contained in [21, Thm. 15.3.4].

Lemma 9.2 The map `𝜋 has a unique extension to a topological linear isomorphism

𝐻𝜋 ⊗ 𝐻−∞
𝜋,𝜒

'−→ 𝐿2(𝐺/𝑁0 : 𝜒)𝜋 . (9.4)

This extension intertwines 𝜋 ⊗ 𝐼 with 𝐿.

Corollary 9.3 If 𝜋1, 𝜋2 ∈ 𝐺ds and 𝜋1 � 𝜋2 then 𝐿2(𝐺/𝑁0 : 𝜒)𝜋1 ⊥ 𝐿2(𝐺/𝑁0 : 𝜒)𝜋2

Proof. Let ]1 denote the inclusion of the first of the spaces into 𝐿2(𝐺/𝑁0 : 𝜒) and let
𝑝2 denote the orthogonal projection onto the second of these spaces. Then 𝑝2 ◦ 𝑖1 is
a 𝐺-equivariant operator 𝐿2(𝐺/𝑁0 : 𝜒)𝜋1 → 𝐿2(𝐺/𝑁0 : 𝜒)𝜋2 . From Lemma 9.2 and
the inequivalence of 𝜋1 and 𝜋2 it readily follows that 𝑝2 ◦ 𝑖1 = 0. 2

Lemma 9.4 Let (𝜋, 𝐻) be an irreducible unitary representation of a Lie group 𝐿,

and let 𝑉 be a finite dimensional linear space. Suppose that 𝐻 ⊗ 𝑉 is equipped with a
Hermitian inner product 〈 · , · 〉𝐻⊗𝑉 for which 𝜋 ⊗ 1𝑉 is a unitary representation of 𝐿.
Then there exists a unique inner product 〈 · , · 〉𝑉 on 𝑉 such that

〈𝑥1 ⊗ 𝑣1 , 𝑥2 ⊗ 𝑣2〉𝐻⊗𝑉 = 〈𝑥1 , 𝑥2〉𝐻 〈𝑣1 , 𝑣2〉𝑉 , (𝑥1, 𝑥2 ∈ 𝐻, 𝑣1, 𝑣2 ∈ 𝑉). (9.5)

Proof. We equip �̄�′ with the contragredient conjugate representation �̄�∨ of 𝐿, and 𝑉
and �̄� ′ with the trivial representation of 𝐿.
By finite dimensionality of𝑉, it readily follows that the natural map (𝐴, 𝐵) ↦→ 𝐴⊗𝐵

induces a linear isomorphism

Hom𝐿 (𝐻, �̄�′) ⊗ Hom(𝑉, �̄� ′) ' Hom𝐿 (𝐻 ⊗ 𝑉, �̄�′ ⊗ �̄� ′).

By Schur’s lemma, the space on the left equals

C𝑖 ⊗ Hom(𝑉, �̄� ′) ' Hom(𝑉, �̄� ′),
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where 𝑖 : 𝐻 → �̄�′, 𝑥 ↦→ 〈𝑥 , · 〉𝐻 . We consider the 𝐿-equivariant linear map ℎ :
𝐻 ⊗ 𝑉 → �̄�′ ⊗ �̄� ′ determined by ℎ(𝑥 ⊗ 𝑣) (𝑦 ⊗ 𝑤) = 〈𝑥 ⊗ 𝑣 , 𝑦 ⊗ 𝑤〉. By the above
isomorphism there exists a unique linear map 𝑗 : 𝑉 → �̄� ′ such that 𝑖 ⊗ 𝑗 is mapped
onto ℎ. It is now readily checked that for all 𝑣, 𝑤 ∈ 𝑉 we have 𝑗 (𝑣) (𝑤) = 𝑗 (𝑤) (𝑣) and
𝑗 (𝑣) (𝑣) > 0. Thus, 〈 · , · 〉𝑉 : 𝑉 × �̄� → C, (𝑣, 𝑤) ↦→ 𝑗 (𝑣) (𝑤) defines a Hermitian inner
product which satisfies the requirement. Conversely, if such an inner product is given
then 𝑗 : 𝑣 ↦→ 〈𝑣 , · 〉 is such that 𝑖 ⊗ 𝑗 is mapped onto ℎ, and uniqueness of 〈 · , · 〉𝑉
follows. 2

We retain the notation of Lemma 9.2.

Corollary 9.5 There exists a unique Hermitian inner product on 𝐻−∞
𝜋,𝜒 such that the

isomorphism (9.4) becomes an isometry.

Proof. Use Lemma 1.2 and apply Lemma 9.4 with 𝐿 = 𝐺, 𝑉 = 𝐻−∞
𝜋,𝜒 'Wh𝜒 (𝐻∞

𝜋 ) and
with 𝐻𝜋 ⊗ 𝑉 equipped with the pull-back of the 𝐿2-inner product under `𝜋 . 2

From now on, we assume that the finite dimensional spaces of Whittaker vectors
𝐻−∞
𝜎,𝜒𝑃

, for 𝜎 ∈ 𝑀𝑃,ds, are equipped with the Hermitian inner products satisfying the
assertion of Corollary 9.5.
We are now prepared to introduce Harish-Chandra’s Whittaker integral, which is

an appropriate analogue of the Eisenstein integral for groups and symmetric spaces.
Let 𝜏 be a unitary representation of 𝐾 in a finite dimensional complex Hilbert space
𝑉𝜏 .

We write 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒) for the space of smooth functions 𝑓 : 𝐺 → 𝑉𝜏 such
that 𝑓 (𝑘𝑥𝑛) = 𝜒(𝑛)−1𝜏(𝑘) 𝑓 (𝑥), for all 𝑥 ∈ 𝐺, 𝑘 ∈ 𝐾, 𝑛 ∈ 𝑁0. Via the inverse of the
natural isomorphism 𝐶∞(𝐺) ⊗ 𝑉𝜏 → 𝐶∞(𝐺,𝑉𝜏) we have

𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒) ' (𝐶∞(𝐺/𝑁0 : 𝜒) ⊗ 𝑉𝜏)𝐾 .

Accordingly, we define the associated space of 𝜏-spherical Whittaker Schwartz func-
tions by

C(𝜏 : 𝐺/𝑁0 : 𝜒) := 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒) ∩ [C(𝐺/𝑁0 : 𝜒) ⊗ 𝑉𝜏]

Furthermore, we put

A2(𝜏 : 𝐺/𝑁0 : 𝜒)𝜋 := C(𝜏 : 𝐺/𝑁0 : 𝜒) ∩ [C(𝐺/𝑁0 : 𝜒)𝜋 ⊗ 𝑉𝜏] .

and
A2(𝜏 : 𝐺/𝑁0 : 𝜒) := ⊕

𝜋∈𝐺dsA(𝜏 : 𝐺/𝑁0 : 𝜒)𝜋 . (9.6)

Note that this direct sum has only finitely many non-zero terms, since (𝑉𝜏 ⊗ 𝐻𝜋)𝐾 ≠ 0
for only finitely many 𝜋 ∈ 𝐺ds.Moreover, each of the components is finite dimensional
since 𝜋 is admissible and 𝐻−∞

𝜋,𝜒 is finite dimensional. It follows that the space (9.6) is
finite dimensional. In particular, for each 𝜋 the corresponding summand is a closed
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subspace of 𝐿2(𝐺/𝑁0 : 𝜒)𝜋 ⊗ 𝑉𝜏. In view of Corollary 9.3 it follows that (9.6) is
a finite orthogonal direct sum of finite dimensional subspaces of the Hilbert space
𝐿2(𝐺/𝑁0 : 𝜒)) ⊗ 𝑉𝜏 . Accordingly, we equip the space A2(𝜏 : 𝐺/𝑁0 : 𝜒) with the
restricted Hilbert structure.

Remark 9.6 It is a result of both Harish-Chandra [12] andWallach [21] that the space
(9.6) equals the space ofℨ-finite functions inC(𝜏 : 𝐺/𝑁0 : 𝜒).Equivalently, thismeans
that the irreducible unitary representations which appear discretely in 𝐿2(𝐺/𝑁0 : 𝜒)
belong to 𝐺ds. However, we shall not need this in the present paper.

Let 𝑃 = 𝑀𝑃𝐴𝑃𝑁𝑃 be a standard parabolic subgroup of 𝐺. We recall that 𝜒𝑃 :=
𝜒 |𝑀𝑃∩𝑁0 is regular relative to (𝑀𝑃, 𝑀𝑃 ∩ 𝑁0), put 𝜏𝑃 = 𝜏 |𝐾𝑃 and define the finite
dimensional space

A2,𝑃 := A2(𝜏𝑃 : 𝑀𝑃/𝑀𝑃 ∩ 𝑁0 : 𝜒𝑃) (9.7)

as above. Then

A2,𝑃 = ⊕
𝜎∈𝑀𝑃,ds

A2(𝜏𝑃 : 𝑀𝑃/𝑀𝑃 ∩ 𝑁0 : 𝜒𝑃)𝜎 . (9.8)

To keep notation manageable we will denote the summands byA2,𝑃,𝜎 . Since 𝜏 will be
kept fixed, this will not cause any ambiguity.

Remark 9.7 Note that for 𝑃 = 𝑃0 minimal we have 𝑀𝑃 ∩ 𝑁0 = {𝑒} so that

A2,𝑃0 = 𝐶∞(𝜏𝑀 : 𝑀) ' 𝑉𝜏 .

At the other extreme, for 𝑃 = 𝐺 we have 𝑀𝑃 = ◦𝐺, so that 𝑀𝑃 ∩ 𝑁0 = 𝑁0 and

A2,𝐺 = ⊕
𝜎∈◦̂𝐺dsC(𝜏 :

◦𝐺/𝑁0 : 𝜒)𝜎 .

We return to the setting of a parabolic subgroup 𝑃 containing 𝐴. For 𝜎 ∈ 𝑀𝑃,ds we
define 𝐶∞(𝜏𝑃 :𝐾/𝐾𝑃 :𝜎) to be the space of smooth functions 𝜑 : 𝐾 → 𝐻∞

𝜎 ⊗ 𝑉𝜏 such
that

𝜑(𝑘1𝑘𝑚) = [𝜏(𝑘1) ⊗ 𝜎(𝑚)−1]𝜑(𝑘), (𝑘 ∈ 𝐾, 𝑘1, 𝑚 ∈ 𝐾𝑃). (9.9)

We equip this space with the pre-Hilbert structure induced by the 𝐿2-inner product on
𝐿2(𝐾, 𝐻𝜎 ⊗ 𝑉𝜏), with respect to the Haar measure 𝑑𝑘 on 𝐾 normalized by

∫
𝐾
𝑑𝑘 = 1.

For a finite subset 𝜗 ⊂ 𝐾𝑃 we denote by 𝐻𝜎,𝜗 the sum of the 𝐾𝑃-isotypical
components of 𝐻𝜎 for the 𝐾𝑃-types in 𝜗. We note that (9.9) implies that 𝜑(𝑒) ∈
(𝐻∞

𝜎 ⊗ 𝑉𝜏)𝐾𝑃 ⊂ 𝐻𝜎,𝜗 ⊗ 𝑉𝜏, with

𝜗 = {𝛿 | Hom𝐾𝑃 (𝛿∨, 𝜏) ≠ 0}.

By sphericality this implies that 𝐶∞(𝜏𝑃 : 𝐾/𝐾𝑃 : 𝜎) equals the space of smooth
𝜑 : 𝐾 → 𝐻𝜎,𝜗 ⊗ 𝑉𝜏 such that (9.9). In particular it is finite dimensional, hence Hilbert
for the given pre-Hilbert structure.

63



We define, for 𝜎 ∈ 𝑀𝑃,ds and 𝑇 = 𝑓 ⊗ [ ∈ 𝐶∞(𝜏 : 𝐾/𝐾𝑃 : 𝜎) ⊗𝐻−∞
𝜎,𝜒𝑃 , the function

𝜓𝑇 : 𝑀𝑃 → 𝑉𝜏 by

𝜓𝑇 (𝑚) = 𝛾 ◦ (∨[ ⊗ 𝐼) ◦ (𝜎(𝑚)−1 ⊗ 𝐼) ( 𝑓 (𝑒)). (9.10)

Here 𝑓 is viewed as a function with values in 𝐻∞
𝜎 ⊗ 𝑉𝜏, ∨[ ∈ Wh𝜒 (𝐻∞

𝜎 ) is defined by
𝑣 ↦→ 〈𝑣 , [〉 and 𝛾 denotes the canonical linear map C ⊗ 𝑉𝜏 → 𝑉𝜏 . It is readily verified
that 𝜓𝑇 ∈ A2(𝜏𝑃 : 𝑀𝑃/𝑀𝑃 ∩ 𝑁0 : 𝜒𝑃 )𝜎 .

Lemma 9.8 The linear map 𝑇 ↦→ 𝜓𝑇 is an isometric linear isomorphism

𝐶∞(𝜏 : 𝐾/𝐾𝑃 : 𝜎) ⊗ 𝐻−∞
𝜎,𝜒𝑃

'−→ A2(𝜏𝑃 : 𝑀𝑃/𝑀𝑃 ∩ 𝑁0 : 𝜒𝑃 )𝜎 . (9.11)

This is analogous to a result of Harish-Chandra in the case of the group, see [11,
Lemmas 7.1, 9.1]. It is also analogous to [1, Lemma 4.1] in the setting of symmetric
spaces.

Proof. We equip 𝐿2(𝐾,𝑉𝜏) with the natural 𝐿2-inner product corresponding to the
fixed normalized Haar measure 𝑑𝑘. By restriction this induces an inner product on
𝐶∞(𝜏 : 𝐾). Clearly, the map 𝐶∞(𝜏 : 𝐾) → 𝑉𝜏, 𝑓 ↦→ 𝑓 (𝑒), is a linear isomorphism
which is 𝐾-equivariant for 𝑅 and 𝜏. Furthermore, for 𝑓 , 𝑔 ∈ 𝐶∞(𝜏 : 𝐾) we have, by
sphericality,

〈 𝑓 , 𝑔〉 =
∫
𝐾

〈 𝑓 (𝑒) , 𝑔(𝑒)〉 𝑑𝑘 = 〈 𝑓 (𝑒) , 𝑔(𝑒)〉.

Thus 𝑓 ↦→ 𝑓 (𝑒) defines an isometric linear isomorphism 𝐶∞(𝜏 : 𝐾) '→ 𝑉𝜏 .

It now follows that

𝐶∞(𝜏 : 𝐾/𝐾𝑃 : 𝜎) ⊗ 𝐻−∞
𝜎,𝜒

𝑃
= [𝐶∞(𝜏 : 𝐾) ⊗ 𝐻𝜎]𝐾𝑃 ⊗ 𝐻−∞

𝜎,𝜒
𝑃

' [𝑉𝜏 ⊗ 𝐻𝜎]𝐾𝑃 ⊗ 𝐻−∞
𝜎,𝜒

𝑃

' [𝑉𝜏 ⊗ C(𝑀𝑃/𝑀𝑃 ∩ 𝑁0)𝜎]𝐾𝑃
= A2,𝑃 (𝜏𝑃 : 𝑀𝑃/𝑀𝑃 ∩ 𝑁0)𝜎 .

In the above array the identity signs indicate isometric isomorphisms via which
spaces are naturally identified. The composition of the first two isomorphisms is given
by 𝑓 ⊗ [ ↦→ 𝑓 (𝑒) ⊗ [. By what we said in the above, this is an isometric isomorphism.
The application of the third isomorphismmaps 𝑓 (𝑒) ⊗[ to the function𝑀𝑃 → 𝑉𝜏 given
by𝑚 ↦→ ∨[(𝜎(𝑚)−1 𝑓 (𝑒)) = 〈𝜎(𝑚)−1 𝑓 (𝑒) , [〉,which gives an isometric isomorphism
in view of Corollary 9.5. From these descriptions it follows that the composition of the
isomorphisms in the array is isometric and gives 𝑇 ↦→ 𝜓𝑇 . 2

We now assume that 𝑃 is a standard parabolic subgroup of 𝐺. For 𝜓 ∈ A2,𝑃, see
(9.7), we define the associated Whittaker integral by

Wh(𝑃, 𝜓, a) (𝑥) =
∫
𝑁𝑃

𝜒(𝑛) 𝜓�̄�,−a (𝑥𝑛) 𝑑𝑛, (9.12)
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where a ∈ 𝔞∗
𝑃C
and where 𝜓�̄�,−a ∈ 𝐶∞(𝐺/�̄�, 𝜎,−a) ⊗ 𝑉𝜏 is defined by

𝜓�̄�,−a (𝑘𝑚𝑎�̄�) = 𝑎a+𝜌𝑃𝜏(𝑘)𝜓(𝑚),
for 𝑘 ∈ 𝐾, (𝑚, 𝑎, �̄�) ∈ 𝑀𝑃 × 𝐴𝑃 × �̄�𝑃 . This is precisely the definition given by
Harish-Chandra, [12, §1.7, p.147]. By rewriting this integral in terms of the Jacquet
integral, we will see that it converges absolutely for a ∈ 𝔞∗

𝑃C
with 〈Re a , 𝛼〉 > 0 for all

a ∈ Σ(𝑃, 𝔞𝑃).
The Whittaker integral can be related to matrix coefficients, hence to the Jacquet

integral, as follows. For 𝜎 a discrete series representation of 𝑀𝑃 and 𝑇 = 𝑓 ⊗ [ ∈
𝐶∞(𝜏 : 𝐾/𝐾𝑃 : 𝜎) ⊗ 𝐻−∞

𝜎,𝜒𝑃 , let 𝜓𝑇 : 𝑀𝑃 → 𝑉𝜏 be defined as in (9.10).
We note that 𝛾 ◦ (𝐽 (𝑃, 𝜎, a, _) ⊗ 𝐼𝑉𝜏 ) defines a continuous linear map from 𝐶∞(𝜏 :

𝐾/𝐾𝑃 : 𝜎) to 𝑉𝜏 which we shall denote by
𝐽 (𝑃, 𝜎, a, _)𝜏 : 𝐶∞(𝜏 : 𝐾/𝐾𝑃 : 𝜎) → 𝑉𝜏 .

Accordingly, we have the following relation of the Whittaker integral with the Jacquet
integral.

Lemma 9.9 Let 𝑃 = 𝑀𝑃𝐴𝑃𝑁𝑃 be standard and 𝜎 ∈ 𝑀𝑃,ds. Let 𝑓 ∈ 𝐶∞(𝜏 : 𝐾/𝐾𝑃 :
𝜎) and [ ∈ 𝐻−∞

𝜎,𝜒𝑃
. If a ∈ 𝔞∗

𝑃C
(𝑃, 0), then

Wh(𝑃, 𝜓 𝑓 ⊗[ , a) (𝑥) = 𝐽 (�̄�, 𝜎,−a, ∨[)𝜏 (𝜋�̄�,𝜎,−a (𝑥)−1 𝑓 ),
with absolutely convergent integral for the Whittaker integral on the left. Here we have
abused notation, by writing 𝜋�̄�,𝜎,−a (𝑥) for 𝜋�̄�,𝜎,−a (𝑥) ⊗ 𝐼𝑉𝜏 .
Proof. We put 𝜓 := 𝜓 𝑓 ⊗[ and define 𝜓�̄�,−a : 𝐺 → 𝑉𝜏 by

𝜓�̄�,−a (𝑘𝑚𝑎𝑛) := 𝑎a+𝜌𝑃𝜏(𝑘)𝜓(𝑚).
Furthermore, we define 𝑓�̄�,−a : 𝐺 → 𝐻𝜎 ⊗ 𝑉𝜏 by

𝑓�̄�,−a (𝑘𝑚𝑎𝑛) := 𝑎a+𝜌𝑃 [𝜎(𝑚)−1 ⊗ 𝐼] 𝑓 (𝑘).
Then

𝜓�̄�,−a (𝑘𝑚𝑎𝑛) = 𝑎a+𝜌𝑃𝜏(𝑘)𝛾 [∨[ ◦𝜎(𝑚)−1 ⊗ 𝐼] 𝑓 (𝑒)
= 𝛾 [∨[ ⊗ 𝐼]𝑎a+𝜌𝑃 [𝜎(𝑚)−1 ⊗ 𝜏(𝑘)] 𝑓 (𝑒)
= 𝛾 [∨[ ⊗ 𝐼]𝑎a+𝜌𝑃 [𝜎(𝑚)−1 ⊗ 𝐼] 𝑓 (𝑘)
= 𝛾 [∨[ ⊗ 𝐼] 𝑓�̄�,−a (𝑘𝑚𝑎𝑛).

This in turn implies that

𝐿𝑥−1𝜓�̄�,−a = 𝛾 [∨[ ⊗ 𝐼] ( [𝜋�̄�,𝜎,−a (𝑥−1) ⊗ 𝐼] 𝑓 )�̄�,−a . (9.13)

The function on the right-hand side is integrable over 𝑁𝑃 with integral

𝐽 (�̄�, 𝜎,−a, ∨[)𝜏 ( [𝜋�̄�,𝜎,−a (𝑥−1) ⊗ 𝐼] 𝑓 )
(abusing notation). It follows that the function on the left-hand side of (9.13) is also
integrable over 𝑁𝑃, with integral being equal toWh(𝑃, 𝜓 𝑓 ⊗b , a) (𝑥), see (9.12). 2

65



Corollary 9.10 Let the setting be as in Lemma 9.9. Then

Wh(𝑃, 𝜓 𝑓 ⊗[ , a) (𝑥) = 〈𝜋�̄�,𝜎,−a (𝑥)−1 𝑓 , 𝑗 (�̄�, 𝜎, ā, [)〉.

Here we have abused notation in the expression on the left, by suppressing trivial actions
on the tensor component𝑉𝜏 and the role of the canonical isomorphism 𝛾 : C⊗𝑉𝜏 → 𝑉𝜏 .

Proof. This follows from Lemma 9.9 combined with (9.3). 2

Corollary 9.11 Let 𝑃 = 𝑀𝑃𝐴𝑃𝑁𝑃 be standard. If 𝜓 ∈ A2(𝜏𝑃 : 𝑀𝑃/𝑀𝑃 ∩ 𝑁0 : 𝜒𝑃 ),
then for every a ∈ 𝔞∗

𝑃C
(𝑃, 0) we have

Wh(𝑃, 𝜓, a) ∈ 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒).

Furthermore, a ↦→Wh(𝑃, 𝜓, a) is a holomorphic function on 𝔞∗
𝑃C
(𝑃, 0) with values in

𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒).

Proof. By decomposition (9.8) and linearity, we may assume that 𝜓 belongs to the
space A2(𝜏𝑃 : 𝑀𝑃/𝑀𝑃 ∩ 𝑁0 : 𝜒𝑃 )𝜎 with 𝜎 a representation of the discrete series
of 𝑀𝑃 . In view of the isomorphism we may further assume that 𝜓 = 𝜓 𝑓 ⊗[, with 𝑓
and [ as in Lemma 9.9. The result now follows by application of Corollary 9.10 and
Proposition 8.14 (recall that in the compact picture, 𝑗∗ is 𝑗 viewed as an element of
𝐶−∞(𝐾/𝐾𝑃 : 𝜎)). 2

For 𝑍 ∈ ℨ we note that the endomorphism 𝑅𝑍 of 𝐶∞(𝐺) leaves the subspace
𝐶∞(𝐺/𝑁0 : 𝜒) invariant and induces a differential operator on that space, viewed as the
space of smooth section of the associated bundle 𝐺 ×𝑁0 C𝜒 . This differential operator
is denoted 𝑅𝑍 as well. The associated endomorphism 𝐼 ⊗ 𝑅𝑍 of 𝑉𝜏 ⊗ 𝐶∞(𝐺/𝑁0 : 𝜒)
restricts to an endomorphism of 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒). In a similar fashion we may equip
the latter space with a left action 𝐼 ⊗ 𝐿𝑍 . Since 𝐼 ⊗ 𝐿𝑍∨ = 𝐼 ⊗ 𝑅𝑍 , we see that the latter
operator preserves A2(𝜏 : 𝐺/𝑁0 : 𝜒).
Let 𝑃 ∈ P(𝐴). We agree to equip A2,𝑃 with the structure of ℨ(𝔪𝑃)-module

induced by the right regular representation of𝔪𝑃 on 𝐶∞(𝑀𝑃), as in the preceding text
with 𝐺 replaced by 𝑀𝑃 .

Let
`𝑃 : ℨ → ℨ(𝔪1𝑃)

be the canonical embedding. The decomposition𝔪1𝑃 = 𝔪𝑃 ⊕𝔞𝑃 induces the canonical
isomorphisms

ℨ(𝔪1𝑃) ' 𝑆(𝔞𝑃) ⊗ ℨ(𝔪𝑃) ' 𝑃(𝔞∗𝑃) ⊗ ℨ(𝔪𝑃).
Thus, if 𝑍 ∈ ℨ then `𝑃 (𝑍) may be viewed as a polynomial function on 𝔞∗𝑃C with values
in ℨ(𝔪𝑃). Accordingly, for a ∈ 𝔞∗

𝑃C
we put `𝑃 (𝑍, a) := `𝑃 (𝑍) (a).We agree to denote

by `
𝑃
(𝑍, a) the endomorphism by which `𝑃 (𝑍, a) acts onA2,𝑃 . Then `

𝑃
( · , a) may be

viewed as an algebra homomorphism ℨ → End(A2,𝑃), with polynomial dependence
on a.
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Lemma 9.12 Let 𝑃 ∈ P(𝐴) be standard, 𝑍 ∈ ℨ, 𝜓 ∈ A2,𝑃 . Then for every a ∈
𝔞∗
𝑃C
(𝑃, 0) we have

𝑅𝑍Wh(𝑃, 𝜓, a) =Wh(𝑃, `
𝑃
(𝑍, a)𝜓, a). (9.14)

Proof. By linearity it suffices to fix a representation 𝜎 of the discrete series of 𝑀𝑃 and
to establish the identity for 𝜓 = 𝜓 𝑓 ⊗[, with 𝑓 ∈ 𝐶∞(𝜏𝑃 : 𝐾/𝐾𝑃 : 𝜎) and [ ∈ 𝐻−∞

𝜎,𝜒𝑃
.

From Corollary 9.10 it follows that

𝑅𝑍Wh(𝑃, 𝜓, a) (𝑥) = 〈𝜋�̄�,𝜎,−a (𝑥)−18𝑓 , 𝑗 (�̄�, 𝜎, ā, [)〉
= Wh(𝑃, 𝜓8𝑓 ⊗[, a) (𝑥), (9.15)

with
8𝑓 (𝑘) = 𝜋�̄�,𝜎,−a (𝑍∨) 𝑓 (𝑘) = 𝑓�̄�,𝜎,−a (𝑘; 𝑍) = 𝜎(`�̄� (𝑍, a)∨) 𝑓 (𝑘).

From the definition of 𝜓, see (9.10) it follows that

𝜓8𝑓 ⊗b = 𝑅`�̄� (𝑍,a)𝜓 = 𝑅`𝑃 (𝑍,a)𝜓 = `
𝑃
(𝑍, a)𝜓.

Substituting this in (9.15), we obtain (9.14). 2

As mentioned in the introduction, the main purpose of the present paper is to show
that the Whittaker integrals extend holomorphically in the variable a ∈ 𝔞∗

𝑃C
and, for

imaginary a, satisfy estimates of a uniformly tempered type.
A first step into this direction is the following estimate, for Re a 𝑃-dominant. The

proof given below corresponds to the proof in [12, Lemma 9.22.1].

Lemma 9.13 For every 𝜓 ∈ A2,𝑃 there exists a constant 𝑚 > 0 and for every 𝑅 > 0
a constant 𝐶 > 0 such that for all 𝑎 ∈ 𝐴 and all a ∈ 𝔞∗

C
(𝑃, 𝑅),

‖Wh(𝑃, 𝜓, a) (𝑎)‖𝜏 ≤ 𝐶 (1 + | log 𝑎 |)𝑚𝑎Re a−𝜌 .

Proof. Since 𝜓 ∈ A2,𝑃 there exists for every 𝑚 > 0 a constant 𝐶𝑚 > 0 such that

‖𝜓(∗𝑎)‖ ≤ 𝐶𝑚 (1 + | log ∗𝑎 |)−𝑚 (∗𝑎)−∗𝜌𝑃 , (9.16)

for ∗𝑎 ∈ ∗𝐴𝑃 := 𝑀𝑃 ∩ 𝐴.
In the following we write 𝜓−a = 𝜓�̄�,−a . Furthermore, we write 𝑎 = ∗𝑎𝑎𝑃 according

to the decomposition 𝐴 = ∗𝐴𝑃𝐴𝑃 . Then from (9.12) with 𝑥 = 𝑎,we find, by substituting
𝑎𝑛𝑎−1 for 𝑛 that

Wh(𝑃, 𝜓, a) (𝑎) = 𝑎a−𝜌𝑃
𝑃

∫
𝑁𝑃

𝜒(𝑎−1𝑛𝑎))𝜓−a (𝑛 ∗𝑎)𝑑𝑛.

Let 𝑃′0 be theminimal parabolic subgroup𝑀𝐴(𝑀𝑃∩𝑁0)�̄�𝑃 as in (8.16) and let ^′, ℎ′, 𝑛′
be the projection maps for the associated Iwasawa decomposition. Decomposing
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𝑛 = ^′(𝑛)ℎ′(𝑛)𝑛′(𝑛) and ℎ′(𝑛) = ∗ℎ′(𝑛)ℎ′
𝑃
(𝑛) according to 𝐴 = ∗𝐴𝑃𝐴𝑃, as well as

𝑛′(𝑛) = ∗𝑛′(𝑛)�̄�′
𝑃
(𝑛) according to 𝑁𝑃′

0
= (𝑀𝑃 ∩ 𝑁0)�̄�𝑃, we find

𝜓−a (𝑛∗𝑎) = 𝜏(^′(𝑛)) 𝜓−a (ℎ′(𝑛)𝑛′(𝑛)∗𝑎)
= 𝜏(^′(𝑛)) 𝜓−a (∗ℎ′(𝑛)∗𝑛′(𝑛)ℎ′𝑃 (𝑛)∗𝑎)
= ℎ′𝑃 (𝑛)a+𝜌𝑃 𝜒(∗𝑎−1∗𝑛′(𝑛)∗𝑎)−1 𝜏(^′(𝑛)) 𝜓(∗ℎ′(𝑛)∗𝑎).

In view of the unitarity of 𝜏 and 𝜒 this leads to the estimate

‖Wh(𝑃, 𝜓, a) (𝑎)‖ ≤ 𝑎Re a−𝜌𝑃
𝑃

∫
𝑁𝑃

‖𝜓(∗ℎ′(𝑛)∗𝑎)‖ ℎ′𝑃 (𝑛)Re a+𝜌𝑃𝑑𝑛. (9.17)

From (9.16) it follows, taking account that 𝑎a
𝑃
= 𝑎a and 𝑎𝜌𝑃

𝑃
(∗𝑎)∗𝜌 = 𝑎𝜌, that

𝑎
Re a−𝜌𝑃
𝑃

‖𝜓(∗ℎ′(𝑛)∗𝑎)‖ ℎ′𝑃 (𝑛)Re a+𝜌𝑃

≤ 𝐶𝑚 𝑎
Re a−𝜌 (1 + | log ∗𝑎 |)𝑚 (1 + | log ∗ℎ′(𝑛) |)−𝑚ℎ′(𝑛)−𝜌′ℎ′𝑃 (𝑛)Re a .

Applying Lemma 8.13 (a) with 𝑃′0 in place of 𝑃0 and �̄� in place of 𝑄, we see that the
image log ◦ ℎ′

𝑃
(𝑁𝑃) is contained in the cone in 𝔞𝑃 spanned by the elements −pr𝑃𝐻𝛼,

for 𝛼 ∈ Σ(𝔫𝑃, 𝔞); here pr𝑃 denote the orthogonal projection 𝔞 → 𝔞𝑃 . This implies that
there exists a constant 𝐶𝑚,𝑅 > 0 such that, for all a ∈ 𝔞∗

𝑃C
(𝑃, 𝑅),

ℎ′𝑃 (𝑛)Re a ≤ 𝐶𝑚,𝑅 (1 + | log ℎ′𝑃 (𝑛) |)−𝑚, (𝑛 ∈ 𝑁𝑃).

Therefore,

𝑎
Re a−𝜌𝑃
𝑃

‖𝜓(∗ℎ′(𝑛)∗𝑎)‖ ℎ′𝑃 (𝑛)Re a+𝜌𝑃

≤ 𝐶𝑚𝐶𝑚,𝑅 𝑎
Re a−𝜌 (1 + | log ∗𝑎 |)𝑚 (1 + | log ℎ′(𝑛) |)−𝑚ℎ′(𝑛)−𝜌′ . (9.18)

In view of Lemma 8.13 (b) we may fix 𝑚 > 0 such that

𝐼𝑚 :=
∫
𝑁𝑃

(1 + | log ℎ′(𝑛) |)−𝑚ℎ′(𝑛)−𝜌′ 𝑑𝑛 < ∞. (9.19)

Combining (9.17) with (9.18) and (9.19) we find that, for a ∈ 𝔞∗
𝑃C
(𝑃, 𝑅) and 𝑎 ∈ 𝐴,

‖Wh(𝑃, 𝜓, a) (𝑎)‖ ≤ 𝐶𝑚𝐶𝑚,𝑅 𝐼𝑚 𝑎Re a−𝜌𝑃𝑃
(1 + | log ∗𝑎 |)𝑚 .

2

10 Finite dimensional spherical representations
We assume that 𝔥 is a \-stable Cartan subalgebra of 𝔤 containing 𝔞. Then 𝔥 = 𝔱 ⊕ 𝔞

with 𝔱 a maximal torus in𝔪. Accordingly, we may naturally identify 𝔞∗
C
with the space

of _ ∈ 𝔥∗C such that _ |𝔱 = 0.
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The recall the definition of 𝐵 from (2.1), and denote its restriction to 𝔥 as well as
the complex bilinear extension to 𝔥C by ( · , · ). The latter restricts to a positive definite
inner product on 𝔥R := 𝑖𝔱 ⊕ 𝔞. Its complexified dual, denoted by ( · , · ) as well, is
positive definite on 𝔥∗R := 𝑖𝔱∗ +𝔞∗. The restriction of ( · , · ) to 𝔞∗ coincides with the dual
of the restriction of the inner product 〈 · , · 〉 defined by (2.2).
We denote by 𝑅(𝔥) ⊂ 𝔥∗C the root system of 𝔥 in 𝔤C and select a positive system

𝑅+(𝔥) which is compatible with Σ+. The latter means that if 𝛼 ∈ 𝑅(𝔥) and 𝛼 |𝔞 ∈ Σ+

then 𝛼 ∈ 𝑅+(𝔥).
Let Λ(𝔥) denote the collection of weights of the pair (𝔤C, 𝔥C), i.e., the collection of

_ ∈ 𝔥∗C such that 2(_, 𝛼)/(𝛼, 𝛼) ∈ Z for all 𝛼 ∈ 𝑅(𝔥). Let Λ+(𝔥) ⊂ 𝔥∗C be the associated
collection of dominant weights, i.e., the weights _ ∈ Λ(𝔥) such that (_, 𝛼) ≥ 0 for all
𝛼 ∈ 𝑅+(𝔥).
By the Cartan–Helgason classification [14, Ch. 5, Thm. 4.1], a finite dimensional

irreducible representation 𝜋 of 𝐺 is spherical, i.e., has a 𝐾-fixed vector, if and only if
𝑀 acts trivially on its highest weight space. Furthermore, the latter condition implies
that the highest weight of 𝜋 is an element of the set

Λ+(𝔞) = {` ∈ 𝔞∗C | ∀𝛼 ∈ Σ+ :
(`, 𝛼)
(𝛼, 𝛼) ∈ N}.

Conversely, Λ+(𝔞) ⊂ Λ+(𝔥) and if ` ∈ Λ+(𝔞), then up to equivalence there is a unique
spherical representation of 𝐺 of highest weight `.
In [14] these results are proven for 𝐺 connected semisimple with finite center.

The extension of this result to groups of the Harish-Chandra class is straightforward.
Given an element ` ∈ Λ(𝔞) we denote by 𝜋` the associated irreducible spherical
representation of 𝐺.
The following result is well-known.

Lemma 10.1 2(Λ+(𝔥) ∩ 𝔞∗
C
) ⊂ Λ+(𝔞).

Proof. Let 𝛼 ∈ Σ and let �̃� ∈ 𝑅(𝔥) be such that 𝛼 = �̃� |𝔞. Then (�̃�, �̃�) = 𝑚(𝛼, 𝛼), for
a certain 𝑚 ∈ {1, 2, 4}; if 𝑚 = 4 then 2𝛼 ∈ Σ, see [13, Ch. VII, Lemma 8.4]. Let
_ ∈ Λ+(𝔥) ∩ 𝔞∗

C
. Then (_, 𝛼) = (_, �̃�), so that

(2_, 𝛼)
(𝛼, 𝛼) = 2𝑚

(_, �̃�)
(�̃�, �̃�) ∈ 𝑚N ⊂ N.

2

In the rest of this section we assume that 𝑃 is a standard parabolic subgroup of 𝐺.
We write ∗𝔥𝑃 = 𝔥 ∩ 𝔪𝑃 . Then ∗𝔥𝑃 is a real \-stable Cartan subspace of 𝔪𝑃, which
decomposes as ∗𝔥𝑃 = 𝔱 ⊕ (𝔞 ∩ 𝔪𝑃) Note that 𝔥 = ∗𝔥𝑃 ⊕ 𝔞𝑃, so that we may identify
∗𝔥∗
𝑃C
and 𝔞∗

𝑃C
with subspaces of 𝔥∗C. We denote by 𝑅(∗𝔥𝑃) the root system of ∗𝔥𝑃 in

𝔪𝑃C. Then 𝑅(∗𝔥𝑃) consists of the roots in 𝑅(𝔥) which vanish on 𝔞𝑃 . Furthermore,
𝑅+(∗𝔥𝑃) = 𝑅(∗𝔥𝑃) ∩ 𝑅+(𝔥) is a positive system. The associated weight lattice is
denoted by Λ(∗𝔥𝑃) and the subset of dominant ones by Λ+(∗𝔥𝑃).
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Via the decomposition 𝔞 = (𝔞∩𝔪𝑃) ⊕ 𝔞𝑃 we view 𝔞∗
𝑃C
as the linear subspace of 𝔞∗

C
consisting of all ` ∈ 𝔞∗

C
that vanish on (𝔞 ∩𝔪𝑃). Accordingly, we define

Λ+(𝔞𝑃) := Λ+(𝔞) ∩ 𝔞∗𝑃C.

Lemma 10.2 Let ` ∈ Λ+(𝔞) and let 𝜋` be the irreducible spherical representation of
𝐺 of highest weight `. Then the following assertions are equivalent.

(a) 𝑀𝑃 acts trivially on the highest weight space of 𝜋`;

(b) ` ∈ Λ+(𝔞𝑃).

Proof. Let 𝐹 be a finite dimensional complex linear space on which 𝜋` is realized. Let
𝑒` ∈ 𝐹` \ {0} be a non-zero highest weight vector.
Assume (a). Then 𝐴 ∩ 𝑀𝑃 acts trivially 𝑒`, hence ` = 0 on 𝔞 ∩𝔪𝑃, which implies

(b).
For the converse, assume (b). Then 𝑀𝑃 = (𝑀𝑃)𝑒𝑀 , so that it suffices to show that

𝔪𝑃C annihilates 𝑒` . Let 𝔟 be the Borel subalgebra of 𝔪𝑃C determined by the positive
system 𝑅+(∗𝔥𝑃). Then 𝔟 is contained in 𝔪 + (𝔞 ∩𝔪𝑃) + 𝔫0 hence annihilates 𝑒` . This
implies that 𝑈 (𝔪𝑃)𝑒` is a finite dimensional cyclic highest weight 𝔪𝑃C-module of
highest weight 0. Therefore,𝑈 (𝔪𝑃)𝑒` = C𝑒` from which we obtain 𝔪𝑃𝑒` = 0. 2

We define

Λ++(𝔞𝑃) := {` ∈ Λ+(𝔞𝑃) | ∀𝛼 ∈ Σ(𝔫𝑃, 𝔞𝑃) : (`, 𝛼) > 0}. (10.1)

The following lemma guarantees in particular that the set (10.1) is non-empty.

Lemma 10.3 The element 4𝜌𝑃 belongs to Λ++(𝔞𝑃).

Proof. Let \C denote the complex linear extension of the Cartan involution to 𝔤C. It
restricts to a linear automorphism of 𝔥C whose inverse transpose 𝔥∗C → 𝔥∗C is denoted by
\C as well. The latter map preserves both 𝑅(𝔥) and 𝑅(∗𝔥𝑃). Since 𝑅+(𝔥) is compatible
with Σ+ it follows that −\C preserves the set Σ̃+ := {𝛼 ∈ 𝑅+(𝔥) | 𝛼 |𝔞 ≠ 0}.
We define 𝛿𝑃 = 𝛿 − 𝛿𝔪𝑃

where 𝛿 and 𝛿𝔪𝑃
are half the sums of the positive roots

from 𝑅+(𝔥) and 𝑅+(∗𝔥𝑃), respectively. Then 𝛿𝑃 equals half the sum of the positive
roots from 𝑅+(𝔥) \ 𝑅+(∗𝔥𝑃). The latter set equals Σ̃+ \ 𝑅(∗𝔥𝑃) hence is invariant under
the map −\C. It follows that −\C𝛿𝑃 = 𝛿𝑃, so that 𝛿𝑃 ∈ 𝔞∗

C
. Since clearly 𝛿𝑃 |𝔞 = 𝜌𝑃, we

find that
𝛿𝑃 = 𝜌𝑃 .

In particular this implies that 2𝜌𝑃 ∈ Λ(𝔥). Let 𝛽 be a simple root from 𝑅+(𝔥). If it
vanishes on 𝔞𝑃, then clearly, (𝜌𝑃, 𝛽) = 0. If 𝛽 does not vanish on 𝔞𝑃 then the simple
roots 𝛾 from 𝑅+(∗𝔥𝑃) are simple for 𝑅+(𝔥) and not equal to 𝛽, hence satisfy (𝛾, 𝛽) ≤ 0.
For such a root 𝛽 we thus have (𝛽, 𝛿𝔪𝑃

) ≤ 0 so that

(𝛽, 𝛿𝑃) ≥ (𝛽, 𝛿) = (𝛽, 𝛽) > 0.
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We thus conclude that 2𝜌𝑃 ∈ Λ+(𝔥) ∩𝔞∗
C
. By application of Lemma 10.1 it now follows

that 4𝜌𝑃 ∈ Λ+(𝔞) ∩ 𝔞∗
𝑃C

= Λ+(𝔞𝑃).
We finish the proof by establishing the inequalities of (10.1). Let 𝛼 ∈ Σ(𝔫𝑃, 𝔞).

Then 𝛼 is the restriction to 𝔞 of a root �̂� ∈ 𝑅+(𝔥) which does not vanish on 𝔞𝑃 . Now �̂�
can be written as a sum of simple roots 𝛽 ∈ 𝑅+(𝔥). For all these we have (𝛿𝑃, 𝛽) ≥ 0,
see above. For those not vanishing on 𝔞𝑃 we have (𝛿𝑃, 𝛽) > 0. Therefore,

(𝜌𝑃, 𝛼) = (𝛿𝑃, �̂�) > 0

2

11 Projection along infinitesimal characters
Let 𝑉 be an admissible (𝔤, 𝐾)-module and suppose that ℨ, the center of 𝑈 (𝔤), acts
on 𝑉 in a finite way. By this we mean that 𝑉 decomposes into a finite direct sum of
generalized weight spaces for ℨ. If b belongs to the set ℨ̂ of characters of ℨ, we denote
the associated generalized weight space by 𝑉 [b] . Obviously, 𝑉 [b] is an admissible
(𝔤, 𝐾)-submodule of 𝑉. Let 𝑋 be the set of b ∈ ℨ̂ such that 𝑉 [b] ≠ 0; then 𝑋 is finite
and 𝑉 is the direct sum of the weight spaces 𝑉 [b] for b ∈ 𝑋. For each b ∈ ℨ̂ the
associated ℨ-equivariant projection map 𝑉 → 𝑉 with image 𝑉 [b] is denoted 𝑝𝑉

b
= 𝑝b .

It is readily checked that 𝑝b is (𝔤, 𝐾)-equivariant. If 𝔥 is a Cartan subalgebra of 𝔤 and
_ ∈ 𝔥∗C, then we agree to write 𝑉 [_] := 𝑉 [b_] and 𝑝_ := 𝑝b_; here b_ : 𝑍 ↦→ 𝛾(𝑍, _) is
the character of ℨ defined via the canonical isomorphism 𝛾 : ℨ → 𝑃(𝔞∗).
Similar definitions can be given if 𝑉 is a complete locally convex space on which

𝐺 has a smooth admissible representation 𝜋 such that ℨ acts finitely. This leads again
to a finite decomposition into a sum of generalized weight spaces

𝑉 = ⊕b∈𝑋𝑉 [b]

withℨ-equivariant projectionmaps 𝑝𝑉
b
: 𝑉 → 𝑉 with image𝑉 [b] . For a character b ∈ ℨ̂

the associated generalized weight space is the intersection of the spaces ker(𝑍−b (𝑍))𝑝,
for 𝑍 ∈ ℨ, and 𝑝 ≥ 1. As these spaces are all 𝐺-invariant and closed, it follows that
𝑉 [b] is𝐺-invariant and closed. This in turn implies that 𝑝b : 𝑉 → 𝑉 is a𝐺-equivariant
continuous projection, for every b ∈ ℨ̂. In view of admissibility we note that

𝑉 [b] ∩𝑉𝐾 = 𝑉𝐾 [b], 𝑉 [b] = cl𝑉𝐾 [b]).

Furthermore, 𝑝b |𝑉𝐾 is the projection 𝑝
𝑉𝐾
b
associated with 𝑉𝐾 and 𝑝b .

We now assume (𝜌, 𝐸) to be a smooth representation of 𝐺 in a complete locally
convex space which is admissible and of finite length. The following result follows
immediately from [17, Thm. 5.1]. We assume that (𝜋, 𝐹) is a finite dimensional
irreducible representation of 𝐺 of highest weight ` ∈ 𝔥∗C.
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Lemma 11.1 Let (𝜌, 𝐸) be as above and have infinitesimal character _ ∈ 𝔥∗C. Let
{`1 = `, `2, . . . , `𝑚} ⊂ 𝔥∗C be the set of distinct weights of the finite dimensional
representation (𝜋, 𝐹). Then for every 𝑍 ∈ ℨ,

𝑚∏
𝑘=1

(𝑍 − 𝛾(𝑍, _ + `𝑘 )) acts by zero on 𝐸 ⊗ 𝐹.

Proof. The reference [17, Thm. 5.1] gives this result for 𝐸𝐾 × 𝐹, where 𝐸𝐾 is the
𝑈 (𝔤)-module of 𝐾-finite vectors in 𝐸. The required result now follows by density of
𝐸𝐾 in 𝐸 and continuity of the action of ℨ on 𝐸. 2

Let 𝑄 a parabolic subgroup of 𝐺 containing 𝐴 and let 𝜔 be a continuous represen-
tation of 𝑄 in a Hilbert space 𝐻𝜔. If (𝜋, 𝐹) is a finite dimensional representation of 𝐺,
we have a natural 𝐺-equivariant topological linear isomorphism

𝜑 : 𝐶∞(𝐺/𝑄 : 𝜔) ⊗ 𝐹 '−→ 𝐶∞(𝐺/𝑄 : 𝜔 ⊗ 𝜋 |𝑄) (11.1)

given by the formula

𝜑( 𝑓 ⊗ 𝑣) (𝑥) = 𝑓 (𝑥) ⊗ 𝜋(𝑥)−1𝑣, (𝑥 ∈ 𝐺),

for 𝑓 ∈ 𝐶∞(𝐺/𝑄 : 𝜔) and 𝑣 ∈ 𝐹. The inverse to this isomorphism is given by
𝜑−1( 𝑓 ) (𝑥) = (1 ⊗ 𝜋(𝑥)) 𝑓 (𝑥), for 𝑓 ∈ 𝐶∞(𝐺/𝑄 : 𝜔 ⊗ 𝜋 |𝑄) and 𝑥 ∈ 𝐺. Clearly, all
these assertions also hold with the bigger spaces of continuous functions that arise from
replacing 𝐶∞ by 𝐶 everywhere.

Lemma 11.2 The isomorphism (11.1) has a unique extension to a continuous linear
map

𝜑−∞ : 𝐶−∞(𝐺/𝑄 : 𝜔) ⊗ 𝐹 → 𝐶−∞(𝐺/𝑄 : 𝜔 ⊗ 𝜋 |𝑄). (11.2)

This extension is a 𝐺-equivariant topological linear isomorphism.

Proof. Uniqueness is obvious, by density and continuity. For existence, let ∗𝜑 denote
the isomorphism (11.1) for the conjugate representations (𝜔∗, 𝐻𝜔) and (𝜋∗, 𝐹) in place
of (𝜔, 𝐻𝜔) and (𝜋, 𝐹) (we assume 𝐹 to be equipped with a 𝐾𝑄-invariant inner product).
Then by taking the transpose of the isomorphism

(∗𝜑)−1 : 𝐶∞(𝐺/𝑄 : 𝜔∗ ⊗ 𝜋∗ |𝑄)
'−→ 𝐶∞(𝐺/𝑄 : 𝜔∗) ⊗ 𝐹

one obtains an extension of (11.1) to a 𝐺-equivariant topological linear isomorphism.
2

At a later stage we will use the notation 𝜑a for the map 𝜑 of (11.1) in the case that
𝜔 = 𝜎 ⊗ a ⊗ 1, with 𝜎 a unitary representation of 𝑀𝑄 and a ∈ 𝔞∗

𝑄C
.
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Let 𝔥 be a \-stable Cartan subalgebra of 𝔤 containing 𝔞 and retain the notation of
the beginning of Section 10. In particular, 𝔱 = 𝔪 ∩ 𝔥 and

𝔥∗R := {b ∈ 𝔥∗C | b (𝑖𝔱 + 𝔞) ⊂ R} = 𝑖𝔱∗ ⊕ 𝔞∗.

We denote by𝑊𝑄 (𝔥) the centralizer of 𝔞𝑄 in𝑊 (𝔥).
Recall the definition of the complex bilinear form 〈 · , · 〉 on 𝔞∗

C
in the text following

(2.2). We denote by Σ(𝔫𝑄 , 𝔞𝑄) the set of 𝔞𝑄-weights in 𝔫𝑄 .
Definition 11.3 By an affine Σ(𝔫𝑄 , 𝔞𝑄)-hyperplane in 𝔞∗𝑄C we mean a hyperplane of
the form

ℌ𝛼,𝑐 = {a ∈ 𝔞∗𝑄C | 〈a , 𝛼〉 = 𝑐}, (𝛼 ∈ Σ(𝔫𝑄 , 𝔞𝑄), 𝑐 ∈ C). (11.3)
The hyperplane is said to be real if ℌ𝛼,𝑐 ∩ 𝔞∗

𝑄
≠ ∅, which is equivalent to 𝑐 ∈ R.

Lemma 11.4 Let 𝑃 be a parabolic subgroup of 𝐺 containing 𝐴 and let 𝑋 ⊂ 𝔥∗C be
finite. Then there exists a finite collection H = H(𝑋) of affine Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes
such that for each b1, b2 ∈ 𝑋 , 𝑤 ∈ 𝑊 (𝔥), and all a ∈ 𝔞∗

𝑃C
\ ∪H ,

𝑤(b1 + a) = b2 + a ⇒ 𝑤 ∈ 𝑊𝑃 (𝔥).
If 𝑋 ⊂ 𝔥∗R, then H may be chosen to consist of real Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes.

Proof. It is easily verified that it suffices to prove the lemma for the case that 𝔤 is
semisimple. Assume this to be the case.
Let a ∈ 𝔞∗

𝑃C
, 𝑤 ∈ 𝑊𝑐

𝑃
:= 𝑊 (𝔥) \𝑊𝑃 (𝔥), and b1, b2 ∈ 𝑋 , and assume that 𝑤(b1 + a) =

b2 + a. Put 𝑋𝑤 := 𝑤(𝑋) − 𝑋. Then (𝐼 − 𝑤) (a) ∈ 𝑋𝑤, hence a ∈ (𝐼 − 𝑤)−1(𝑋𝑤) ∩ 𝔞∗
𝑃C
.

It is sufficient to show that the latter set is contained in a finite collection H𝑤 of
Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes. ThenH = ∪𝑤∈𝑊𝑐

𝑃
H𝑤 fulfils the requirements.

By our assumption on 𝑤, the linear space ker(𝐼 − 𝑤) ∩ 𝔞∗
𝑃
is properly contained in

𝔞∗
𝑃
, and therefore has a non-zero linear complement 𝑇 in 𝔞∗

𝑃
.We find that

a ∈ (𝑇C ∩ (𝐼 − 𝑤)−1(𝑋𝑤)) + (ker(𝐼 − 𝑤) ∩ 𝔞∗𝑃C). (11.4)
We claim that the first of these sets is finite. For this we note that the map (𝐼 − 𝑤) ∈
End(𝔥∗C) preserves 𝔥∗R. Since 𝑇 ⊂ 𝔞∗

𝑃
⊂ 𝔥∗R and ker(𝐼 − 𝑤) ∩ 𝑇 = 0, it follows that

ker(𝐼 − 𝑤) ∩ 𝑇C = 0 as well. This implies that the first set in (11.4) has cardinality at
most #𝑋𝑤 and establishes the claim.
If b ∈ ker(𝐼 − 𝑤) ∩ 𝔞∗

𝑃C
, then 𝑤 can be written as a product of reflections in 𝔥-

roots vanishing on b. At least one of these roots, say �̂�, does not vanish on 𝔞𝑃, so
that 𝛼 = �̂� |𝔞∗

𝑃
∈ Σ(𝔫𝑃, 𝔞𝑃). We see that b ∈ ker𝛼. It follows that the set in (11.4) is

contained in ∪H𝑤, whereH𝑤 is the collection of all hyperplanes of the form [ + ℌ𝛼,0,
with [ ∈ (𝑇C ∩ (𝐼 − 𝑤)−1(𝑋𝑤)) and 𝛼 ∈ Σ(𝔫𝑃, 𝔞𝑃).
For the proof of the last assertion assume that 𝑋 ⊂ 𝔥∗R. Then 𝑋𝑤 ⊂ 𝔥∗R. Let

[ ∈ 𝑇C ∩ (𝐼 − 𝑤)−1(𝑋𝑤).
Then it suffices to show that [ ∈ 𝑇. Write [ = [1 + 𝑖[2. Then (𝐼 − 𝑤) ([ 𝑗 ) ∈ 𝔥∗R
and by considering real and imaginary parts we conclude that (𝐼 − 𝑤) ([2) = 0. Now
𝑇 ∩ ker(𝐼 − 𝑤) = 0 and we infer [2 = 0. 2
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We now fix a standard parabolic subgroup 𝑃 and a unitary representation (𝜎, 𝐻𝜎)
of 𝑀𝑃, which is admissible and of finite length, and such that 𝐻∞

𝜎 is quasi-simple with
infinitesimal character determined by Λ ∈ (𝔥 ∩𝔪𝑃)∗C.
Furthermore, we fix ` ∈ Λ++(𝔞𝑃), see (10.1), and denote the associated irreducible

finite dimensional representation of highest weight ` by (𝜋, 𝐹). Let {`1, . . . , `𝑚} be
the set of 𝔥-weights of 𝜋, ordered in such a way that `1 = `.
Our goal is to describe the projection 𝑝Λ+a+` on the space 𝐶−∞(𝐺/𝑄 : 𝜎 : a) ⊗ 𝐹

of generalized vectors of the representation Ind𝐺
𝑄
(𝜎 ⊗ a ⊗ 1) ⊗ 𝜋, for𝑄 ⊂ 𝐺 a parabolic

subgroupwith split component 𝐴𝑄 = 𝐴𝑃 .The (finite) set of all such parabolic subgroups
is denoted by P(𝐴𝑃).

Lemma 11.5 For every 𝑗 > 1 the elements Λ + ` 𝑗 and Λ + ` are not conjugate under
𝑊𝑃 (𝔥), the centralizer of 𝔞𝑃 in𝑊 (𝔥).

Proof. Let 𝑒` be a (non-zero) highest-weight vector of 𝐹. Then 𝑀𝑃 acts trivially on
𝑒`, see Lemma 10.2, so that 𝑈 (�̄�𝑃)𝑒` = 𝑈 (𝔤)𝑒` is a subspace of 𝐹 which is invariant
under the action of 𝐺𝑒 and under the action of 𝑀𝑃𝐴𝑃, hence under the action of 𝐺. By
irreducibility it follows that 𝑈 (�̄�𝑃)𝑒` = 𝐹. We thus see that each ` 𝑗 , for 𝑗 > 1, is of
the form ` 𝑗 = ` − b 𝑗 , where b 𝑗 ∈ Σ(𝔫𝑃, 𝔥) \ {0}. The latter implies that b 𝑗 does not
vanish identically on 𝔞𝑃 .
If 𝑤 ∈ 𝑊𝑃 (𝔥) and 𝑗 > 1, then 𝑤(Λ+ `) − (Λ+ ` 𝑗 ) = 𝑤(Λ) −Λ+ b 𝑗 . Now 𝑤(Λ) −Λ

vanishes identically on 𝔞𝑃, and b 𝑗 does not, so that 𝑤(Λ + `) − (Λ + ` 𝑗 ) ≠ 0. 2

Corollary 11.6 There exists a finite collection H of affine Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes
such that for all a ∈ 𝔞∗

𝑃C
\ ∪H and all 𝑗 > 1 the element Λ + a + ` 𝑗 does not belong to

𝑊 (𝔥) (Λ + a + `).
If Λ ∈ 𝔥∗R, the assertion is valid with the additional requirement that H consists of

real Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes.

Proof. Put 𝑋 = {Λ+ ` 𝑗 | 𝑗 ≥ 1}. Then 𝑋 ⊂ Λ+𝔥∗R ⊂ 𝔥∗C. LetH be the finite collection
of affine Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes satisfying the conclusions of Lemma 11.4.
If a ∈ 𝔞∗

𝑃C
\ ∪H and Λ + a + ` 𝑗 ∈ 𝑊 (𝔥) (Λ + a + `) for 𝑗 > 1, then it would follow

that Λ + ` 𝑗 ∈ 𝑊𝑃 (𝔥) (Λ + `), violating the assertion of Lemma 11.5. 2

Let 𝛾 : ℨ → 𝑃(𝔥∗C)𝑊 (𝔥) be Harish-Chandra’s canonical isomorphism. Following
the notation of [1] we define, for 𝑍 ∈ ℨ, the polynomial mapΠ(𝑍) = Π` (𝑍) : 𝔞∗𝑃C → ℨ

by
Π(𝑍, a) :=

∏
𝑗>1

[𝑍 − 𝛾(𝑍,Λ + a + ` 𝑗 )] (11.5)

Lemma 11.7 Let H be a finite collection of affine Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes as in Corol-
lary 11.6. Let 𝑄 ∈ P(𝐴𝑃). If a ∈ 𝔞∗

𝑃C
\ ∪H , then

[Ind𝐺𝑄 (𝜎 ⊗ a ⊗ 1) ⊗ 𝜋] (Π(𝑍, a)) = 0 on ker(𝑝Λ+a+`). (11.6)
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Proof. Fix a ∈ 𝔞∗
𝑃C

\ ∪H and put 𝜌 = Ind𝐺
𝑄
(𝜎 ⊗ a ⊗ 1) ⊗ 𝜋. Write Π(𝑍) := Π(𝑍, a),

for 𝑍 ∈ ℨ. For each 𝑍 ∈ ℨ the operator 𝜌(𝑍) commutes with 𝑝Λ+a+` hence leaves the
kernel of the latter invariant. Let 𝛿 ∈ 𝐾. Since the operator 𝜌(𝑍) is 𝐺-equivariant,
it restricts to an endomorphism 𝜌(𝑍)𝛿 of the finite dimensional isotypical component
K𝛿 := ker(𝑝Λ+a+`)𝛿 . For each character b of ℨ let K𝛿,b denote the associated union of
the spaces ker(𝜌(𝑍)𝛿 − b (𝑍))𝑘 , for 𝑘 ≥ 1. Let 𝔛 be the set of characters 𝜒 for which
K𝛿,b is non-zero. Then K𝛿 is the finite direct sum of the generalized weight spaces
K𝛿,b , for b ∈ 𝔛.

Fix b ∈ 𝔛. For each 𝑍 ∈ ℨ, the endomorphism 𝜌(𝑍) restricts to an endomorphism
𝜌(𝑍)𝛿,b of K𝛿,b . It suffices to show that 𝜌(Π(𝑍))𝛿,b = 0 for all 𝑍 ∈ ℨ. Let E be a finite
dimensional linear subspace of ℨ which generates the algebra ℨ. Since ℨ is the union
of such subspaces, it suffices to show that 𝜌(Π(𝑍))𝛿,b = 0 for all 𝑍 ∈ E .
For 𝑍 ∈ ℨ we define 𝑙 (𝑍) = 𝑍 − 𝛾(𝑍,Λ+ a + `). Then it follows from Lemma 11.1

with Λ + a in place of _ that

𝜌(𝑙 (𝑍))𝛿,b𝜌(Π(𝑍))𝛿,b = 0. (11.7)

For 𝑍 ∈ ℨ the endomorphism 𝜌(𝑍)𝛿,b has the single eigenvalue b (𝑍), so that the
endomorphism 𝜌(𝑙 (𝑍))𝛿,b = 𝜌(𝑍)𝛿,b − 𝛾(𝑍,Λ + a + `) has the single eigenvalue
b (𝑍) − 𝛾(𝑍,Λ + a + `).
By definition of 𝑝Λ+a+` each character from𝔛 is different from 𝑍 ↦→ 𝛾(𝑍,Λ+a+`).

Since E generates the algebra ℨ there must be an element 𝑍 ∈ E such that 𝛾(𝑍,Λ+ a +
`) ≠ b (𝑍). It follows that the subspace E0 of 𝑍 ∈ E such that 𝛾(𝑍,Λ + a + `) = b (𝑍)
is a proper hyperplane in E . For 𝑍 ∈ E \ E0 the endomorphism 𝜌(𝑙 (𝑍))𝛿,b has a
single non-zero eigenvalue, hence is invertible. Taking (11.7) into account we infer
that 𝜌(Π(𝑍))𝛿,b = 0 for all 𝑍 ∈ E \ E0. By density this extends to all 𝑍 ∈ E. 2

From now on we assume that 𝜎 is a representation from the discrete series of 𝑀𝑃 .

In particular, its infinitesimal character Λ belongs to 𝔥∗R and is regular.

Lemma 11.8 Let 𝑄 ∈ P(𝔞𝑃) and ` ∈ Λ++(𝔞𝑃). Then there exists a locally finite
collection H = H(𝑄, 𝜎, `) of affine Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes in 𝔞∗

𝑃C
such that, for every

a ∈ 𝔞∗
𝑃C

\ ∪H ,

𝑝Λ+a+` [𝐶 (𝐺/𝑄 : 𝜎 : a)𝐾 ⊗ 𝐹] ' 𝐶 (𝐺/𝑄 : 𝜎 : a + `)𝐾
as (𝔤, 𝐾)-modules.

Proof. We first assume that 𝑄 = 𝑃 and denote by 𝜑a the isomorphism (11.1) for
𝜔 = ba := 𝜎 ⊗ a ⊗ 1. Then 𝜑a restricts to an equivariant isomorphism

𝐶 (𝐺/𝑃 : 𝜎 : a)𝐾 ⊗ 𝐹 '−→ 𝐶 (𝐺/𝑃 : ba ⊗ 𝜋 |𝑃)𝐾
and therefore 𝑝Λ+a+` ◦ 𝜑a = 𝜑a ◦ 𝑝Λ+a+` . Since ` is 𝑃-dominant, the highest weight
space 𝐹` is a 𝑃-submodule of 𝐹. Let H0 be the finite collection of affine Σ(𝔫𝑃, 𝔞𝑃)-
hyperplanes of Cor. 11.6. We claim that for a ∈ 𝔞∗

𝑃C
\ ∪H0 we have

𝑝Λ+a+` (𝐶 (𝐺/𝑃 : 𝐻𝜎,a ⊗ 𝐹)𝐾) = 𝐶 (𝐺/𝑃 : 𝐻𝜎,a ⊗ 𝐹`)𝐾 .
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As the latter space is isomorphic to 𝐶 (𝐺/𝑃 : 𝜎 : a + `)𝐾 , the result for 𝑄 = 𝑃 will
follow from the claim. To prove the claim, we use exactness of the induction functor
𝜔 ↦→ Ind𝐺𝑃 (𝜔) from the category of admissible (𝔪1𝑃⊕𝔫𝑃, 𝐾𝑃)-modules to the category
of (𝔤, 𝐾)-modules. Let 𝐹1 ⊂ 𝐹2 be a sequence of 𝑃-submodules of 𝐹 containing 𝐹`,
such that 𝐹2/𝐹1 is irreducible. Then by the mentioned exactness it suffices to show that
𝑝Λ+a+` = 0 on Ind𝐺𝑃 (𝐻𝜎,a ⊗ (𝐹2/𝐹1)).
It follows from the irreducibility that 𝑁𝑃 acts trivially on 𝐹2/𝐹1 and that the 𝑀1𝑃-

action is irreducible, with a set of 𝔥-weights of the form {` 𝑗 | 𝑗 ∈ 𝐽} with 𝐽 ⊂
{2, . . . , 𝑚}. Note that ` 𝑗 |𝔞𝑃 is independent of 𝑗 ∈ 𝐽. It follows from Lemma 11.1 that
the infinitesimal characters of ℨ(𝔪1𝑃) in 𝐻𝜎 ⊗ (𝐹2/𝐹1) are all of the form Λ+ ` 𝑗 , with
𝑗 ∈ 𝐽.We conclude that the infinitesimal characters appearing in Ind𝐺𝑃 (𝐻𝜎,a⊗ (𝐹2/𝐹1))
are all of the form 𝛾( · ,Λ + ` 𝑗 + a), with 𝑗 > 1. By our choice ofH0 these characters
are different from 𝛾( · ,Λ + ` + a) for a ∈ 𝔞∗

𝑃C
\ ∪H0. Hence 𝑝Λ+a+` vanishes on

Ind𝐺𝑃 (𝐻𝜎,a ⊗ (𝐹2/𝐹1)). This establishes the result for 𝑄 = 𝑃.

Let now𝑄 ∈ P(𝐴𝑃) be arbitrary. Then by the rank one product formula there exists
a locally finite collection H𝑄 of affine Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes such that the standard
intertwining operator 𝐴(𝑄, 𝑃, 𝜎, a) is regular and invertible for a ∈ 𝔞∗

𝑃C
\ ∪H𝑄 .

Then
Ind𝐺𝑄 (𝜎 ⊗ a ⊗ 1) ⊗ 𝜋 ' Ind𝐺𝑃 (𝜎 ⊗ a ⊗ 1) ⊗ 𝜋

and
Ind𝐺𝑄 (𝜎 ⊗ (a + `) ⊗ 1) ' Ind𝐺𝑃 (𝜎 ⊗ (a + `) ⊗ 1)

for a ∉ ∪H𝑄 ∪ (−` + ∪H𝑄). The required result now follows with the hyperplane
collection

H(𝑄, 𝜎, `) = H𝑄 ∪ (−` + H𝑄) ∪ H0;
here we have written −` + H𝑄 = {−` + 𝐻 | 𝐻 ∈ H𝑄}. 2

Remark 11.9 In this paper we shall not need the deep result that the collection H𝑄

in the preceding proof may be chosen to consist of real affine Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes.
Indeed, the singular sets of the standard intertwining operators a ↦→ 𝐴(𝑄, 𝑃, 𝜎, a) are
locally finite unions of real affine Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes. For this it is only required
that 𝜎 is irreducible unitary with real infinitesimal character, see [15, Thm. 6.6]. The
mentioned deep result requires in addition that the zero set of a ↦→ [(𝑄, 𝑃, 𝜎, a) be con-
tained in a locally finite union or real affine Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes. If 𝜎 belongs to the
discrete series of 𝑀𝑃, then Harish-Chandra’s explicit determination of the Plancherel
measure, see [11, Lemma 35.3], guarantees this.

For 𝑍 ∈ ℨ we define the polynomial function 𝑏(𝑍) : 𝔞∗
𝑃C

→ C by

𝑏(𝑍, a) :=
∏
𝑗>1

[𝛾(𝑍,Λ + a + `) − 𝛾(𝑍,Λ + a + ` 𝑗 )] .
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Corollary 11.10 Let H be a finite set of affine Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes in 𝔞∗
𝑃C

as in
Corollary 11.6. If a ∈ 𝔞∗

𝑃C
is such that the function 𝑏( · , a) vanishes identically on ℨ,

then a ∈ ∪H .

Proof. Assume that a satisfies the hypothesis, then it follows that 𝑏(𝑍, a) vanishes for
all 𝑍 ∈ ℨ. Sinceℨ is finitely generated, we may fix a finite dimensional linear subspace
ℨ0 of ℨ which generates ℨ. Since 𝑍 ↦→ 𝑏(𝑍, a),ℨ0 → C is a polynomial function
on ℨ0 which vanishes identically on ℨ0 it follows that there exists 𝑗 > 1 such that the
factor

𝑍 ↦→ 𝛾(𝑍,Λ + a + `) − 𝛾(𝑍,Λ + a + ` 𝑗 )
vanishes identically onℨ0. Since 𝛾 is an algebra homomorphism, whereasℨ0 generates
ℨ, it follows that the above factor vanishes identically on ℨ. In turn, this implies that
Λ + a + ` and Λ + a + ` 𝑗 are𝑊 (𝔥) conjugate. By application of Corollary 11.6 it now
follows that a ∈ ∪H . 2

Lemma 11.11 There exists a locally finite collection H = H𝜎,` of affine Σ(𝔫𝑃, 𝔞𝑃)-
hyperplanes in 𝔞∗

𝑃C
such that for all a ∈ 𝔞∗

𝑃C
\ ∪H and 𝑍 ∈ ℨ,

𝑏(𝑍, a) 𝑝Λ+a+` = [Ind𝐺𝑄 (𝜎 ⊗ a ⊗ 1) ⊗ 𝜋] (Π(𝑍, a))

on 𝐶−∞(𝐺/𝑄 : 𝜎 : a) ⊗ 𝐹.

Proof. The two mentioned maps are continuous linear, hence by density and continuity
it suffices to prove the identity on the level of 𝐾-finite vectors. Let H1 be a finite
collection of affine Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes as in Lemma 11.7. Let H2 be a locally
finite collection of such hyperplanes as in Lemma 11.8. We will prove the result with
H = H1∪H2. Let a ∈ 𝔞∗

𝑃C
\∪H . Then by Lemma 11.7 the required identity is valid on

ker 𝑝Λ+a+` . By Lemma 11.8 the image of 𝑝Λ+a+` is isomorphic to𝐶 (𝐺/𝑄 : 𝜎 : a+`)𝐾
on which 𝑍 ∈ ℨ acts by the scalar 𝛾(𝑍,Λ + a + `). Therefore, the identity is also valid
on the image of 𝑝Λ+a+` . Since 𝑝Λ+a+` is a projection (on the level of 𝐾-finite vectors),
the result follows. 2

The induced representation Ind𝐺
𝑄
(𝜎⊗ a⊗1) has infinitesimal characterΛ+a, hence

it follows from Lemma 11.1 that

(𝑍 − 𝛾(Λ + a + `))Π(𝑍, a) = 0 on 𝐶−∞(𝐺/𝑄 : 𝜎 : a) ⊗ 𝐹.

If 𝑄 ∈ P(𝐴𝑃) we define the algebra homomorphism

𝐼𝑄,a : ℨ → End(𝐶 (𝐾/𝐾𝑃 : 𝜎)𝐾 ⊗ 𝐹), 𝑍 ↦→ [Ind𝐺𝑄 (𝜎 ⊗ a ⊗ 1) ⊗ 𝜋] (𝑍).

Note that 𝐼𝑄,a (𝑍) depends polynomially on a, for fixed 𝑍 ∈ ℨ.
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Lemma 11.12 There exists a polynomial map Z` : 𝔞
∗
𝑃C

→ ℨ and a polynomial
function 𝑞 ∈ 𝑃(𝔞∗

𝑃
) which is a finite product of factors of the form 〈𝛼 , · 〉 − 𝑐, with

𝛼 ∈ Σ(𝔫𝑃, 𝔞𝑃) and 𝑐 ∈ C, such that for every 𝑄 ∈ P(𝐴𝑃),

𝑏(𝑍, a) Z` (a) − 𝑞(a)Π(𝑍, a) ∈ ker(𝐼𝑄,a)

for all 𝑍 ∈ ℨ and a ∈ 𝔞∗
𝑃C
.

Proof. We first assume that 𝑄 = 𝑃 and follow the ideas of [1, proof of Prop. 8.3]. It
follows from Lemma 11.11 that for all 𝑍1, 𝑍2 ∈ ℨ

𝑏(𝑍2, a)Π(𝑍1, a) − 𝑏(𝑍1, a)Π(𝑍2, a) ∈ ker(𝐼𝑃,a)

for a in an open dense subset of 𝔞∗
𝑃C
. By continuity the above identity actually holds

for all a ∈ 𝔞∗
𝑃C
.

Let I be the ideal in the ring 𝑆(𝔞𝑃) ' 𝑃(𝔞∗
𝑃
) generated by the polynomials 𝑏(𝑍),

for 𝑍 ∈ ℨ. Let𝑉I be the associated common zero set in 𝔞∗𝑃C. LetH be a finite collection
of affine Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes in 𝔞∗𝑃C as in Corollary 11.10. Then it follows from the
mentioned corollary that

𝑉I ⊂ ∪H .

We select 𝑞 ∈ 𝑃(𝔞∗
𝑃
) a product of linear factors of the form 〈𝛼 , · 〉 − 𝑐, with

𝛼 ∈ Σ(𝔫𝑃, 𝔞𝑃) and 𝑐 ∈ C, such that 𝑞 vanishes on ∪H . Then it follows that 𝑞 vanishes
on 𝑉I . By Hilbert’s Nulstellen Satz, there exists a positive integer 𝑁 such that 𝑞 := 𝑞𝑁
belongs to I. By the Noetherian property, the ideal I is already generated by finitely
many of its elements, say 𝑏(𝑍1), . . . , 𝑏(𝑍𝑙). It follows that there exist 𝑎 𝑗 ∈ 𝑆(𝔞𝑃) such
that, for all a ∈ 𝔞∗

𝑃C
,

𝑞(a) =
𝑙∑︁
𝑗=1
𝑎 𝑗 (a)𝑏(𝑍 𝑗 , a).

We define

Z` (a) :=
𝑙∑︁
𝑗=1
𝑎 𝑗 (a) Π(𝑍 𝑗 , a).

Then for all 𝑍 ∈ ℨ and a ∈ 𝔞∗
C
we have that, modulo ker(𝐼𝑃,a),

𝑞(a) Π(𝑍, a) =

𝑙∑︁
𝑗=1
𝑎 𝑗 (a)𝑏(𝑍 𝑗 , a) Π(𝑍, a)

≡
𝑙∑︁
𝑗=1
𝑎 𝑗 (a)𝑏(𝑍, a) Π(𝑍 𝑗 , a)

= 𝑏(𝑍, a) Z` (a).

This establishes the result for𝑄 = 𝑃.The general result follows from an easy application
of the standard intertwining operator 𝐴(a) = 𝐴(𝑄, 𝑃, 𝜎, a), by noting that 𝐼𝑄,a =

𝐴(a) ◦ 𝐼𝑃,a for generic a, combined with a density argument. 2
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Corollary 11.13 Let 𝑄 ∈ P(𝔞𝑃). Then there exists a locally finite collection H of
affine Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes in 𝔞∗

𝑃C
such that, for all a ∈ 𝔞∗

𝑃C
\ ∪H ,

𝑞(a)𝑝Λ+a+` = [Ind𝐺𝑄 (𝜎 ⊗ a ⊗ 1) ⊗ 𝜋] ( Z` (a))

on 𝐶−∞(𝐾/𝐾𝑄 : 𝜎) ⊗ 𝐹.

Proof. By a simple density argumentwe see that it suffices to establish the identity on the
𝐾-finite level. In that case, let H𝜎,` be the collection of affine Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes
of Lemma 11.11. Then it follows from combining that lemma with Lemma 11.12 that

𝑞(a)𝑏(𝑍, a)𝑝Λ+a+` = 𝑏(𝑍, a)𝐼𝑄,a ( Z` (a))

on𝐶 (𝐾/𝐾𝑄 : 𝜎)⊗𝐹, for all 𝑍 ∈ ℨ and all a ∈ 𝔞∗
𝑃C
\∪H𝜎,a . LetH2 be a finite collection

of affine Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes as in Corollary 11.10. Then for a ∈ 𝔞∗
𝑃C

\ ∪H2
there exists 𝑍 ∈ ℨ such that 𝑏(𝑍, a) ≠ 0. The required result now follows with
H = H𝜎,` ∪H2. 2

Remark 11.14 It follows from Corollary 11.13 that if Z′` : 𝔞
∗
𝑃C

→ ℨ is a second
polynomial map as in Lemma 11.12, then for all 𝑄 ∈ P(𝔞𝑃) and all a ∈ 𝔞∗

𝑃C
we have

Z` (a) − Z′` (a) ∈ ker(𝐼𝑄,a).

12 The functional equation
We retain the assumption of the previous section that 𝑃 is a standard parabolic subgroup
of 𝐺, that 𝜎 is a representation of the discrete series of 𝑀𝑃, that ` ∈ Λ++(𝔞𝑃), and that
(𝜋, 𝐹) is the irreducible finite dimensional spherical representation of highest weight
`.

Let 𝑒𝐾 ∈ 𝐹 be a nonzero 𝐾-fixed vector, and 𝑒−` ∈ 𝐹∗ a non-zero lowest weight
vector. We define the matrix coefficient map 𝑖` : 𝐹 → 𝐶∞(𝐺) by

𝑖` (𝑣) (𝑥) = 〈𝑣 , 𝜋(𝑥)𝑒−`〉, (𝑥 ∈ 𝐺). (12.1)

Then 𝑖` intertwines 𝜋 with the left regular representation and is readily seen to define
a 𝐺-equivariant embedding

𝑖` : 𝐹 ↩→ 𝐶∞(𝐺/�̄� : 1 : ` + 𝜌𝑃). (12.2)

In particular, we note that 𝑖` (𝑒𝐾) (𝑘𝑎𝑛) = 𝑎−`〈𝑒𝐾 , 𝑒−`〉, for (𝑘, 𝑎, 𝑛) ∈ 𝐾 × 𝐴 × �̄�0,
and see that 𝑖` (𝑒𝐾) is a nowhere vanishing function on 𝐺. By renormalizing 𝑒𝐾 we
may arrange that 〈𝑒𝐾 , 𝑒−`〉 = 𝑖` (𝑒𝐾) (1) = 1. Accordingly, we define the map

M` : 𝐶−∞(𝐺/�̄� : 𝜎 : a + `) → 𝐶−∞(𝐺/�̄� : 𝜎 : a) ⊗ 𝐹 (12.3)
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by 𝑓 ↦→ 𝑖` (𝑒𝐾)−1 𝑓 ⊗ 𝑒𝐾 . In the compact picture of the induced representations,M`

corresponds to the map

𝐶−∞(𝐾/𝐾𝑃 : 𝜎) → 𝐶−∞(𝐾/𝐾𝑃 : 𝜎) ⊗ 𝐹, 𝑓 ↦→ 𝑓 ⊗ 𝑒𝐾 .

We fix a non-zero highest weight vector 𝑒` ∈ 𝐹. In order to emphasize the feature that
it is 𝑁0-fixed, we agree to also write 𝑒𝑁0 = 𝑒` . Likewise, we denote by 𝑒𝑁0 a fixed
choice of non-zero highest weight vector in the complex linear dual space 𝐹∗.
We now define the map

Y𝑁0 := 𝑚 ◦ (𝐼 ⊗ 𝑒𝑁0) : 𝐶−∞(𝐺/�̄� : 𝜎 : a) ⊗ 𝐹 → 𝐶−∞(𝐺/�̄� : 𝜎 : a), (12.4)

where 𝑚 denotes the natural linear isomorphism from 𝐶−∞(𝐺/�̄� : 𝜎 : a) ⊗ C onto
𝐶−∞(𝐺/�̄� : 𝜎 : a), induced by multiplication. In the compact picture, this becomes a
map Y𝑁0 : 𝐶−∞(𝐾/𝐾𝑃 : 𝜎) ⊗ 𝐹 → 𝐶−∞(𝐾/𝐾𝑃 : 𝜎), constant in the variable a ∈ 𝔞∗

𝑃C
.

For a ∈ 𝔞∗
𝑃C
we define the endomorphism Z�̄�,` (a) of 𝐶−∞(𝐺/�̄� : 𝜎 : a) ⊗ 𝐹 by

Z�̄�,` (a) := [Ind𝐺
�̄�
(𝜎 ⊗ a ⊗ 1) ⊗ 𝜋] ( Z` (a)), (12.5)

with Z` : 𝔞
∗
𝑃C

→ ℨ a polynomial map as in Lemma 11.12. Note that the endomorphism
(12.5) is independent of the particular choice of Z`, in view of Remark 11.14.
Finally, we define the operator

𝐷` (𝜎, a) : 𝐶−∞(𝐺/�̄� : 𝜎 : a + `) → 𝐶−∞(𝐺/�̄� : 𝜎 : a)

by
𝐷` (𝜎, a) = Y𝑁0 ◦ Z�̄�,` (a) ◦M`, (12.6)

Proposition 12.1 The operator 𝐷` (𝜎, a), viewed as an endomorphism of the space
𝐶−∞(𝐾/𝐾𝑃 : 𝜎) is continuous and depends polynomially on a ∈ 𝔞∗

𝑃C
. There exists a

constant 𝑑 ∈ N such that the following is valid.
There exists an 𝑟 ∈ N and for every 𝑠 ∈ N a constant𝐶 > 0 such that for all a ∈ 𝔞∗

𝑃C

the endomorphism 𝐷` (𝜎, a) maps the Banach space 𝐶−𝑠 (𝐾/𝐾𝑃 : 𝜎) continuously to
the Banach space 𝐶−𝑠−𝑟 (𝐾/𝐾𝑃 : 𝜎) with operator norm satisfying the estimate

‖𝐷` (𝜎, a)‖op ≤ 𝐶 (1 + |a |)𝑑 .

For the proof we need the following lemma.

Lemma 12.2 Let 𝑢 ∈ 𝑈 (𝔤) be an element of degree at most 𝑑. Then for every a ∈ 𝔞∗
𝑃C

the endomorphism 𝜋∞
�̄�,𝜎,a

(𝑢) of 𝐶∞(𝐾/𝐾𝑃 : 𝜎) is continuous and support preserving.
Furthermore, the following assertions are valid.

(a) The function a ↦→ 𝜋∞
�̄�,𝜎,a

(𝑢) is polynomialEnd(𝐶∞(𝐾/𝐾𝑃 : 𝜎))-valued of degree
at most 𝑑.
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(b) There exists a constant 𝑡 ∈ N and for every 𝑠 ∈ N a constant 𝐶 > 0 such that for
all 𝑓 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎),

‖𝜋∞
�̄�,𝜎,a

(𝑢) 𝑓 ‖𝑠 ≤ 𝐶 (1 + |a |)𝑑 ‖ 𝑓 ‖𝑠+𝑡 .

Proof. See [4, Lemma 2.1]. 2

Corollary 12.3 Let 𝑢 ∈ 𝑈 (𝔤) be an element of degree at most 𝑑. Then for every
a ∈ 𝔞∗

𝑃C
the endomorphism 𝜋−∞

�̄�,𝜎,a
(𝑢) of 𝐶−∞(𝐾/𝐾𝑃 : 𝜎) is continuous and support

preserving. Furthermore,
(a) The map a ↦→ 𝜋−∞

�̄�,𝜎,a
(𝑢) is polynomial End(𝐶−∞(𝐾/𝐾𝑃 : 𝜎))-valued of degree

at most 𝑑.

(b) There exists a constant 𝑡 ∈ N and for every 𝑠 ∈ N a constant 𝐶 > 0 such that
for all a ∈ 𝔞∗

𝑃C
the endomorphism 𝜋−∞

�̄�,𝜎,a
(𝑢) maps 𝐶−𝑠 (𝐾/𝐾𝑃 : 𝜎) continuous

linearly into 𝐶−𝑠−𝑡 (𝐾/𝐾𝑃 : 𝜎) with operator norm

‖𝜋−∞
�̄�,𝜎,a

(𝑢)‖op ≤ 𝐶 (1 + |a |)𝑑 .

Proof. This follows from Lemma 12.2 by taking adjoints. 2

Proof of Proposition 12.1. We start by observing that Z` : 𝔞
∗
𝑃C

→ ℨ is polynomial in
the variable a. For 𝑍 ∈ ℨ we define

𝐷 (𝑍) (a) := Y𝑁0 ◦ [𝜋−∞
�̄�,𝜎,a

⊗ 𝜋`] (𝑍) ◦M` .

Then it clearly suffices to prove the assertions of the proposition for 𝐷 (𝑍) in place of
𝐷` (a). 2

In terms of the above maps we can now present the functional equation for the
Whittaker vectors. We will stay close to the notation of [1, Thm. 9.3] in order to
emphasize the strong analogy. Recall the definition of 𝐷` (𝜎, a) in (12.6).

Theorem 12.4 (Functional equation) Let ` ∈ Λ++(𝔞𝑃). Then there exists a rational
End(𝐻−∞

𝜎,𝜒𝑃
)-valued function a ↦→ 𝑅` (𝜎, a) on 𝔞∗

𝑃C
such that

𝑗 (�̄�, 𝜎, a) = 𝐷` (𝜎, a) ◦ 𝑗 (�̄�, 𝜎, a + `) ◦ 𝑅` (𝜎, a). (12.7)

Remark 12.5 In the next section we will show that a ↦→ 𝑝(a)𝑅` (𝜎, a) is polynomial
for a suitable polynomial function 𝑝 : 𝔞∗

𝑃C
→ C which can be written as a product of

linear factors of the form a ↦→ 〈a , 𝛼〉 + 𝑐, 𝛼 ∈ Σ(𝔫𝑃, 𝔞𝑃) and 𝑐 ∈ C.

We will prove Theorem 12.4 in a sequence of lemmas occupying the rest of this
section and the next. A key ingredient in our proof is the map

Φ` (a) : 𝐶−∞(𝐺/�̄� : 𝜎 : a) ⊗ 𝐹 → 𝐶−∞(𝐺/�̄� : 𝜎 : a + `), 𝑓 ⊗ 𝑣 ↦→ 𝑖` (𝑣) 𝑓 ,

with 𝑖` as in (12.2), which is readily verified to be 𝐺-equivariant.
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Definition 12.6 We will say that an assertion depending on a parameter a ∈ 𝔞∗
𝑃C

holds for Σ(𝔫𝑃, 𝔞𝑃)-generic a, if there exists a locally finite collectionH of Σ(𝔫𝑃, 𝔞𝑃)-
hyperplanes in 𝔞∗

𝑃C
such that the assertion is valid for all a ∈ 𝔞∗

𝑃C
\ ∪H .

Lemma 12.7 For Σ(𝔫𝑃, 𝔞𝑃)-generic a ∈ 𝔞∗
𝑃C

,

Φ` (a) ◦ 𝑝Λ+a+` = Φ` (a). (12.8)

Proof. By equivariance of Φ`, we have

Φ` (a) ◦ 𝑝Λ+a+` = 𝑝Λ+a+` ◦Φ` (a).

The map on the right of this equation equals Φ` (a), since Ind𝐺�̄� (𝜎 ⊗ (a + `) ⊗ 1) has
infinitesimal character Λ + a + `. 2

The following identity, for a ∈ 𝔞∗
C
, is a straightforward consequence of the defini-

tions,
Φ` (a) ◦M` = 𝐼 on 𝐶−∞(𝐺/�̄� : 𝜎 : a). (12.9)

The mapM` is not equivariant. However, for the map

Ψ` (a) := 𝑞(a)−1 Z�̄�,` (a) ◦M` (12.10)

we have the following result.

Lemma 12.8 The map a ↦→ 𝑞(a)Ψ` (a) is polynomial as a map with values in the
space of equivariant continuous linear operators from (𝐶−∞(𝐾/𝐾𝑃 : 𝜎), 𝜋�̄�,𝜎,a) to
(𝐶−∞(𝐾/𝐾𝑃 : 𝜎) ⊗ 𝐹, 𝜋�̄�,𝜎,a ⊗ 𝜋). Furthermore, for all a ∈ 𝔞∗

𝑃C
\ 𝑞−1(0),

Φ` (a) ◦Ψ` (a) = 𝐼, (12.11)
Ψ` (a) ◦Φ` (a) = 𝑞(a)−1 Z�̄�,` (a). (12.12)

Proof. We first observe that from the definitions it follows that a ↦→ 𝑞(_)Ψ` (a) is
polynomial as a map into the space of continuous linear operators 𝐶−∞(𝐾/𝐾𝑃 : 𝜎) →
𝐶−∞(𝐾/𝐾𝑃 : 𝜎) ⊗𝐹. The equivariance of the operators in the image of that polynomial
map will be addressed in a moment.
In view of Corollary 11.13 we have

𝑞(a)−1 Z�̄�,` (a) = 𝑝Λ+a+` on 𝐶−∞(𝐺/�̄� : 𝜎 : a) ⊗ 𝐹, (12.13)

for Σ(𝔫𝑃, 𝔞𝑃)-generic a ∈ 𝔞∗
C
. From (12.10) it now follows that

Φ` (a) ◦Ψ` (a) = Φ` (a) ◦ prΛ+a+` ◦M` .

Taking (12.8) into account we infer the validity of (12.11), for Σ(𝔫𝑃, 𝔞𝑃)-generic
a ∈ 𝔞∗

𝑃C
. By analytic continuation the identity (12.11) follows for all a ∈ 𝔞∗

𝑃C
\ 𝑞−1(0).
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It follows from (12.9) thatΦ` (a) is surjective for all a. Furthermore, for Σ(𝔫𝑃, 𝔞𝑃)-
generic a, the image im(𝑝Λ+a+`) ⊂ 𝐶−∞(𝐺/�̄� : 𝜎 : a) ⊗ 𝐹 is a closed 𝐺-invariant
subspace, which satisfies

im(𝑝Λ+a+`)𝐾 ' 𝐶−∞(𝐺/�̄� : 𝜎 : a + `)𝐾 (12.14)

as (𝔤, 𝐾)-modules, in view of Lemma 11.8. From (12.8) we see, still for Σ(𝔫𝑃, 𝔞𝑃)-
generic a, that Φ` (a) is a 𝐺-equivariant surjective continuous linear map from the
space im(𝑝Λ+𝜎+a) onto 𝐶−∞(𝐺/�̄� : 𝜎 : a + `), which by (12.14) is injective, hence
bijective.
It follows from (12.13) and (12.10) that Ψ` (a) maps into im(𝑝Λ+a+`), for generic

a, so the equivariance of Ψ` (a) follows from (12.11) and the equivariance of Φ` (a),
for generic a ∈ 𝔞∗

𝑃C
. By analytic continuation the equivariance of 𝑞(a)Ψ` (a) follows

for all a ∈ 𝔞∗
𝑃C
.

We finally turn to proving the identity (12.12). By analytic continuation, it suffices
to establish that identity for Σ(𝔫𝑃, 𝔞𝑃)-generic a ∈ 𝔞∗

𝑃C
. Since the maps on both sides of

(12.12) map into the space im(𝑝Λ+a+`), on which Φ` (a) restricts to an injective map,
for generic a, it suffices to check that

Φ` (a) ◦Ψ` (a) ◦Φ` (a) = Φ` (a) ◦ 𝑞(a)−1 Z�̄�,` (a).

The expression on the left simplifies to Φ` (a), in view of (12.11). The expression on
the right equals Φ` (a) ◦ 𝑝Λ+a+` by (12.13), and Φ` (a) by (12.8). 2

Recall from (12.1) that 𝑒−` ∈ 𝐹∗ is a non-zero lowest weight vector (of 𝔞-weight
−`) and put

𝑚` := 𝑖` (𝑒𝑁0) (1) = 〈𝑒𝑁0 , 𝑒−`〉.
From 𝑚` = 0 it would follow that 𝑖` (𝑒𝑁0) vanishes on 𝑁0�̄� hence on 𝐺, contradicting
the injectivity of 𝑖` . Therefore, 𝑚` is a nonzero complex number.

Lemma 12.9 For every [ ∈ 𝐻−∞,𝜒
𝜎 and all a ∈ 𝔞∗

C
with 〈Re a , 𝛼〉 > 0, (𝛼 ∈ Σ(𝔫𝑃, 𝔞)),

Φ` (a) [ 𝑗 (�̄�, 𝜎, a, [) ⊗ 𝑒𝑁0] = 𝑗 (�̄�, 𝜎, a + `) (𝑚`[). (12.15)

Proof. It is readily verified that the expression on the left belongs to 𝐶−∞(𝐺/�̄� : 𝜎 :
a+ `)𝜒 hence is of the form 𝑗 (�̄�, 𝜎, a+ `) ([′) for some [′ ∈ 𝐻−∞,𝜒

𝜎 . On the other hand,
on 𝑁𝑃�̄� the expression on the left hand side is the continuous 𝐻−∞

𝜎 -valued function
whose value at the unit element 𝑒 = 1 is

ev𝑒 𝑗 (�̄�, 𝜎, a, [) 𝑖` (𝑒𝑁0) (1) = 𝑚`[.

It follows that [′ = 𝑚`[. 2
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Completion of the proof of Theorem 12.4. Applying the operator 𝑞(a)Y𝑁0 ◦Ψ` (a)
to (12.15) and taking into account Lemma 12.8 we obtain

Y𝑁0 ◦ Z�̄�,` (a) [ 𝑗 (�̄�, 𝜎, a)[ ⊗ 𝑒𝑁0] = 𝑞(a)Y
𝑁0 ◦Ψ` (a) 𝑗 (�̄�, 𝜎, a + `) (𝑚`[).

From (12.6) and (12.10) we see that 𝑞(a)Y𝑁0 ◦Ψ` (a) = 𝐷` (𝜎, a). Hence,

Y𝑁0 ◦ Z�̄�,` (a) [ 𝑗 (�̄�, 𝜎, a)[ ⊗ 𝑒𝑁0] = 𝐷` (𝜎, a) 𝑗 (�̄�, 𝜎, a + `) (𝑚`[),

for all [ ∈ 𝐻−∞
𝜎,𝜒𝑃

and all a ∈ 𝔞∗
𝑃C
with Re a 𝑃-dominant. The functional equation now

follows with 𝑅` (𝜎, a) = 𝑀` (𝜎, a)−1𝑚` by application of Proposition 12.10 below. 2

Proposition 12.10 There exists a unique polynomial function 𝑀` = 𝑀` (𝜎, · ) :
𝔞∗
𝑃C

→ End(𝐻−∞
𝜎,𝜒𝑃

) such that for all a ∈ 𝔞∗
𝑃C
(𝑃, 0) we have

Y𝑁0 ◦ Z�̄�,` (a) [ 𝑗 (�̄�, 𝜎, a)[ ⊗ 𝑒𝑁0] = 𝑗 (�̄�, 𝜎, a) (𝑀` (a)[).

The polynomial function det ◦𝑀` : 𝔞∗𝑃C → C is not identically zero.

To prepare for the proof, we introduce the space 𝐶∞
𝑐,𝑁𝑃

(𝐺/�̄� : 𝜎 : a) of functions
𝑓 ∈ 𝐶∞(𝐺/�̄� : 𝜎 : a) whose support supp 𝑓 has compact intersection with 𝑁𝑃 .
Restriction to 𝑁𝑃 induces a linear isomorphism 𝑟a from 𝐶∞

𝑐,𝑁𝑃
(𝐺/�̄� : 𝜎 : a) onto

𝐶∞
𝑐 (𝑁𝑃, 𝐻∞

𝜎 ).We note that𝐶∞
𝑐,𝑁𝑃

(𝐺/�̄� : 𝜎 : a) is invariant under the left regular action
by𝑈 (𝔤) and denote by 𝑛𝜋�̄�,𝜎,a the unique representation of𝑈 (𝔤) in 𝐶∞

𝑐 (𝑁𝑃, 𝐻∞
𝜎 ) such

that 𝑟a intertwines the left regular representation of𝑈 (𝔤) with 𝑛𝜋�̄�,𝜎,a .
Our first step in the proof of Proposition 12.10 is the following observation.

Lemma 12.11 Let 𝜑 ∈ 𝐶∞
𝑐 (𝑁𝑃, 𝐻∞

𝜎 ). Then for each element 𝑢 ∈ 𝑈 (𝔤) the function
𝔞∗
𝑃C

→ 𝐶∞
𝑐 (𝑁𝑃, 𝐻∞

𝜎 ), a ↦→ 𝑛𝜋�̄�,𝜎,a (𝑢)𝜑 is polynomial, i.e., it belongs to the space
𝑃𝑘 (𝔞∗𝑃C) ⊗ 𝐶∞

𝑐 (𝑁𝑃, 𝐻∞
𝜎 ) for some 𝑘 ∈ N.

Proof. It suffices to prove this assertion for 𝑢 = 𝑋 ∈ 𝔤, with 𝑘 = 1. Let Ω be a
bounded open neighborhood of supp 𝜑 in 𝑁𝑃 . Let 𝑋 ∈ Lie(�̄�). Then there exists an
open interval 𝐼 3 0 inR such that for every 𝑡 ∈ 𝐼 and 𝑛 ∈ Ωwe have exp(−𝑡𝑋)𝑛 ∈ 𝑁𝑃�̄�.
Consequently, there exist smooth functions 𝑈 : 𝐼 × Ω → 𝑁𝑃 and 𝑉 : 𝐼 × Ω → �̄� such
that

exp(−𝑡𝑋)𝑛 = 𝑛𝑈 (𝑡, 𝑛)𝑉 (𝑡, 𝑛), (𝑛 ∈ Ω, 𝑡 ∈ 𝐼).
We note that𝑈 (0, 𝑛) = 𝑒 = 𝑉 (0, 𝑛) for all 𝑛 ∈ 𝑁𝑃 . Let 𝜑a ∈ 𝐶∞(𝐺/�̄�, 𝜎, a) be defined
by supp𝜑a ⊂ Ω�̄� and

𝜑a (𝑛𝑚𝑎�̄�) := 𝑎−a+𝜌𝑃𝜎(𝑚)−1𝜑(𝑛), ((𝑛, 𝑚, 𝑎, �̄�) ∈ 𝑁𝑃 × 𝑀𝑃 × 𝐴𝑃 × �̄�𝑃).

Then 𝜑a |𝑁𝑃 = 𝜑, so that 𝑛𝜋�̄�,𝜎,a (𝑋)𝜑(𝑛) = 𝐿𝑋𝜑a (𝑛). For 𝑛 ∈ 𝑁𝑃 and 𝑡 ∈ 𝐼 we have

𝜑a (exp(−𝑡𝑋)𝑛) = 𝜑a (𝑛𝑈 (𝑡, 𝑛)𝑉 (𝑡, 𝑛))
= [𝜎 ⊗ (−a + 𝜌𝑃) ⊗ 1] (𝑉 (𝑡, 𝑛))−1𝜑(𝑛𝑈 (𝑡, 𝑛)).
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Differentiating this expression in 𝑡 at 𝑡 = 0 we find, for 𝑛 ∈ Ω,

𝑛𝜋�̄�,𝜎,a (𝑋)𝜑(𝑛) = 𝐿𝑋 (𝜑a) (𝑛)
= −[𝜎 ⊗ (−a + 𝜌𝑃) ⊗ 1] (𝜕𝑡𝑉 (0, 𝑛))𝜑(𝑛) + 𝑅𝜕𝑡𝑈 (0,𝑛)𝜑(𝑛).

We thus see that a ↦→ 𝑛𝜋�̄�,𝜎,a (𝑋)𝜑 belongs to 𝑃1(𝔞∗𝑃C) ⊗ 𝐶∞
𝑐 (Ω, 𝐻∞

𝜎 ). 2

The next step in the proof of Proposition 12.10 is formulated in the following
lemma.

Lemma 12.12 For 𝑍 ∈ ℨ and a ∈ 𝔞∗
𝑃C
(𝑃, 0) there exists a unique endomorphism

𝑚(𝑍, a) ∈ End(𝐻−∞
𝜎,𝜒𝑃

) such that, for all [ ∈ 𝐻−∞
𝜎,𝜒𝑃

,

Y𝑁0 [𝜋�̄�,𝜎,a ⊗ 𝜋`] (𝑍) [ 𝑗 (�̄�, 𝜎, a, [) ⊗ 𝑒𝑁0] = 𝑗 (�̄�, 𝜎, a, 𝑚(𝑍, a) ([)). (12.16)

The map a ↦→ 𝑚(𝑍, a) is polynomial on 𝔞∗
𝑃C

with values in End(𝐻−∞
𝜎,𝜒𝑃

).

Proof. For a as stated, the expression on the left-hand side belongs to the space
𝐶−∞(𝐺/�̄� : 𝜎 : a)𝜒, hence by Proposition 8.15 (b) can be written as the expression on
the right-hand side, with a uniquely determined 𝑚(𝑍, a) ([) ∈ 𝐻−∞

𝜎,𝜒𝑃
. By uniqueness,

𝑚(𝑍, a) ([) depends linearly on [, hence, 𝑚(𝑍, a) ∈ End(𝐻−∞
𝜎,𝜒𝑃

).
It remains to be shown that𝑚(𝑍, · ) is polynomial. Let [ ∈ 𝐻−∞

𝜎,𝜒𝑃
and let 𝑣 ∈ 𝐻∞

𝜎 be
an arbitrary element. Then it suffices to show that a ↦→ 〈𝑚(𝑍, a)[ , 𝑣〉𝜎 is polynomial
in the indicated range. See (1.11) for the definition of the pairing used. For this we
recall that for a in that range, 𝑗 (�̄�, 𝜎, a) ([) restricted to 𝑁𝑃 is the continuous function
𝑁𝑃 → 𝐻−∞

𝜎,𝜒𝑃
given by 𝑛 ↦→ 𝜒(𝑛)−1[. Fix a function 𝜓 ∈ 𝐶∞

𝑐 (𝑁0) such that∫
𝑁𝑃

𝜒(𝑛)𝜓(𝑛) 𝑑𝑛 = 1.

We define 𝑓 ∈ 𝐶∞
𝑐 (𝑁𝑃, 𝐻∞

𝜎 ) by 𝑓 (𝑛) = 𝜓(𝑛)𝑣 for 𝑛 ∈ 𝑁𝑃 . Furthermore, we denote by
𝑓−ā the extension of 𝑓 to an element of 𝐶∞(𝐺/�̄� : 𝜎 : −ā) with support contained in
𝑁𝑃�̄�. Then, for [′ ∈ 𝐻−∞

𝜎,𝜒𝑃
,

〈 𝑗 (�̄�, 𝜎, a) ([′) , 𝑓−ā〉 =
∫
𝑁𝑃

𝜒(𝑛)−1〈[′ , 𝜓(𝑛)𝑣〉𝜎 𝑑𝑛 = 〈[′ , 𝑣〉𝜎 .

Substituting [′ = 𝑚(𝑍, a)[ and combining the result with (12.16) we now find that

〈𝑣 , 𝑚(𝑍, a)[〉𝜎 = 〈Y𝑁0 [𝜋�̄�,𝜎,a ⊗ 𝜋`] (𝑍) [ 𝑗 (�̄�, 𝜎, a, [) ⊗ 𝑒𝑁0] , 𝑓−ā〉.

By the Leibniz rule for tensors, the expression on the right-hand side is a sum of terms
of the form

〈Y𝑁0𝜋�̄�,𝜎,a (𝑈) 𝑗 (�̄�, 𝜎, a) ([) ⊗ 𝜋` (𝑉)𝑒𝑁0 , 𝑓−ā〉,
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with (𝑈,𝑉) ranging over a subset of 𝑈 (𝔤) ×𝑈 (𝔤) independent of a. The above term
may be rewritten as

Y𝑁0 (𝜋` (𝑉)𝑒𝑁0) · 〈𝜋�̄�,𝜎,a (𝑈) 𝑗 (�̄�, 𝜎, a) ([) , 𝑓−ā〉.

Thus, it suffices to show that the latter expression is polynomial in a.We now observe
that

〈𝜋�̄�,𝜎,a (𝑈) 𝑗 (�̄�, 𝜎, a) ([) , 𝑓−ā〉 = 〈 𝑗 (�̄�, 𝜎, a) ([) , 𝜋�̄�,𝜎,−ā (𝑈∗) 𝑓−ā〉
= 〈 𝑗 (�̄�, 𝜎, a) ([) , (𝑛𝜋�̄�,𝜎,−ā (𝑈∗) 𝑓 )−ā〉

=

∫
𝑁𝑃

𝜒(𝑛)〈[ , 𝑛𝜋�̄�,𝜎,−ā (𝑈∗) 𝑓 (𝑛)〉𝜎 𝑑𝑛.

By virtue of Lemma 12.11 the latter integral depends polynomially on a. 2

Proof of Proposition 12.10. We note that the map 𝔞∗
𝑃C

→ ℨ, a ↦→ Z` (a) is
polynomial. Moreover,

Z�̄�,` (a) = [𝜋�̄�,𝜎,a ⊗ 𝜋`] ( Z` (a)).

By application of Lemma 12.12 the first assertion now follows with

𝑀` (a) = 𝑚( Z` (a), a).

For completing the proof of Proposition 12.10 it thus remains to establish the lemma
below. 2

Lemma 12.13 The polynomial function 𝔞∗
𝑃C

→ C, a ↦→ det𝑀` (a) is not identically
zero.

Proof. It suffices to show that a ↦→ det𝑀` (a) is non-zero for a suitable a. For this
it suffices to show that there exists a a ∈ 𝔞∗

𝑃C
(𝑃, 0) such that 𝑀` (a) is an injective

endomorphism of 𝐻−∞
𝜎,𝜒𝑃

. Taking the characterization of 𝑀` in Proposition 12.10 into
account and using that

Z�̄�,` (a) = 𝑞(a)𝑝Λ+a+` on 𝐶−∞(𝐺/�̄� : 𝜎 : a) ⊗ 𝐹 (12.17)

we infer that it suffices to show that for generic a ∈ 𝔞∗
𝑃C
themap 𝑗 ↦→ Y𝑁0 𝑝Λ+a+` ( 𝑗⊗𝑒𝑁0)

is an injective endomorphism from 𝐶−∞(𝐺/�̄� : 𝜎 : a)𝜒 to itself. The latter statement
follows from Lemma 12.14 below, which will be proven in the next section. 2

Lemma 12.14 Let 𝑄 ∈ {𝑃, �̄�}. Then for Σ(𝔫𝑃, 𝔞𝑃)-generic a ∈ 𝔞∗
𝑃C

the map

𝑗 ↦→ Y𝑁0 ◦ 𝑝Λ+a+` ( 𝑗 ⊗ 𝑒𝑁0) (12.18)

is an injective linear endomorphism of 𝐶−∞(𝐺/𝑄 : 𝜎 : a)𝜒 .
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13 Proof of Lemma 12.14
We retain the notation of the previous section. The following lemma serves as a first
step in the proof of Lemma 12.14.

Lemma 13.1 Let 𝑄 ∈ {𝑃, �̄�}. For Σ(𝔫𝑃, 𝔞𝑃)-generic a ∈ 𝔞∗
𝑃C

, the map

𝑗 ↦→ 𝑝Λ+a+` [ 𝑗 ⊗ 𝑒𝑁0] : 𝐶−∞(𝐺/𝑄 : 𝜎 : a)𝜒 → 𝐶−∞(𝐺/𝑄 : 𝜎 : a) ⊗ 𝐹

is injective with values in (𝐶−∞(𝐺/𝑄 : 𝜎 : a) ⊗ 𝐹)𝜒 .

Proof. That the given map attains values in (𝐶−∞(𝐺/𝑄 : 𝜎 : a) ⊗ 𝐹)𝜒 is a straightfor-
ward consequence of the 𝐺-equivariance of 𝑝_+a+` .We therefore focus on the asserted
injectivity.
There exists a locally finite union H of affine Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes such that for

a ∈ 𝔞∗
𝑃C

\ ∪H the standard intertwining operator

𝐴(a) = 𝐴(�̄�, 𝑄, 𝜎, a) : 𝐶−∞(𝐺/𝑄 : 𝜎 : a) → 𝐶−∞(𝐺/�̄� : 𝜎 : a)

is bijective and maps the subspace 𝐶−∞(𝐺/𝑄 : 𝜎 : a)𝜒 bijectively onto 𝐶−∞(𝐺/�̄� :
𝜎 : a)𝜒 . Furthermore, by the intertwining property of 𝐴(a) we have, for such a, that

(𝐴(a) ⊗ 𝐼) ◦ 𝑝Λ+a+` [ 𝑗 ⊗ 𝑒𝑁0] = 𝑝Λ+a+` [𝐴(a) 𝑗 ⊗ 𝑒𝑁0] .

We thus see that it suffices to establish the assertion for 𝑄 = �̄�. Then by Lemma 12.7
we have

Φ` (a)𝑝Λ+a+` ( 𝑗 ⊗ 𝑒𝑁0) = Φ` (a) ( 𝑗 ⊗ 𝑒𝑁0) = 𝑖a (𝑒𝑁0) 𝑗 ,
for Σ(𝔫𝑃, 𝔞𝑃)-generic a ∈ 𝔞∗

𝑃C
and 𝑗 ∈ 𝐶−∞(𝐺/�̄� : 𝜎 : a)𝜒 . Since the function 𝑖a (𝑒𝑁0)

is non-zero on 𝑁0�̄�, it follows that the expression on the right of the above equality is
zero if and only if 𝑗 |𝑁0�̄� = 0. By Corollary 8.3 this in turn is equivalent to 𝑗 = 0. The
asserted injectivity follows. 2

To prepare for the proof of Lemma 12.14, we need to introduce certain particular
subspaces of generalized vectors of induced representations. Let 𝑄 be any parabolic
subgroup of 𝐺 containing 𝐴.We consider a continuous Hilbert representation (b, 𝐻b)
of 𝑄.
Wedenote by𝑊𝑄 (𝔞) the centralizer of 𝔞𝑄 in𝑊 (𝔞). From theBruhat decompositions

for 𝐺 and 𝑀1𝑄 it follows that the map 𝑣 ↦→ 𝑁0𝑣𝑄, 𝑁𝐾 (𝔞) → 𝑁0\𝐺/𝑄 induces a
bijection from 𝑊 (𝔞)/𝑊𝑄 (𝔞) onto the double coset space 𝑁0\𝐺/𝑄. Precisely one of
these cosets is open in 𝐺; it will be denoted by O𝑄 . In fact, for 𝑣 ∈ 𝑊 (𝔞) we have

𝑁0𝑣𝑄 = O𝑄 ⇐⇒ 𝑣�̄�𝑣−1 ⊃ 𝑃0.

Definition 13.2
𝐶−∞(𝐺/𝑄 : b)𝑁0 ⊂ 𝐶−∞(𝐺/𝑄 : b) (13.1)

is defined to be the subspace of elements 𝑢 ∈ 𝐶−∞(𝐺/𝑄 : b) such that
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(a) 𝑢 is 𝑁0-finite from the left;

(b) 𝑢 |O𝑄 is a continuous function O𝑄 → 𝐻−∞
b

Assertion (b)means that there exists a continuous function �̃� : O𝑄 → 𝐻−∞
b
such that

�̃�(𝑛𝑣𝑞) = 8b−∞(𝑞)−1�̃�(𝑛𝑣) (𝑞 ∈ 𝑄, 𝑛 ∈ 𝑁0) and such that for all 𝜓 ∈ 𝐶∞(𝐺/𝑄 : b∗)
with supp𝜓 ⊂ O𝑄 , the following identity is valid:

〈𝑢 , 𝜓〉 = 〈�̃� , 𝜓〉𝐾 :=
∫
𝐾/𝐾𝑄

〈�̃� , 𝜓〉b (𝑘) 𝑑 ¤𝑘. (13.2)

Note that the integrand is a continuous complex valued function with support contained
in 𝐾 ∩ O𝑄 . Note also that �̃� is uniquely determined.
If 𝑣 ∈ O𝑄 , the evaluation map

ev
𝑣
: 𝑢 ↦→ �̃�(𝑣), 𝐶−∞(𝐺/𝑄 : b)𝑁0 → H−∞

b

is well defined and linear.
In the special setting b = 𝜎 ⊗ a with 𝜎 a unitary representation of 𝑀𝑄 and a ∈ 𝔞∗

𝑄C
,

the space on the left in (13.1) is also denoted by 𝐶∞(𝐺/𝑄 : 𝜎 : a)𝑁0 .
The following observation will allow us to connect to the case that �̄� is standard.

Let 𝑣 ∈ 𝑁𝐾 (𝔞) be such that 𝑣�̄�𝑣−1 is standard. Then O𝑄 = 𝑁0𝑣𝑄. We write 𝑣b for the
representation of 𝑣𝑄𝑣−1 in 𝐻b given by 𝑣b (𝑞) = b (𝑣−1𝑞𝑣). Then the right regular action
by 𝑣 induces a 𝐺-equivariant topological linear isomorphism

𝑅𝑣 : 𝐶−∞(𝐺/𝑄 : b) '−→ 𝐶−∞(𝐺/𝑣𝑄𝑣−1 : 𝑣b). (13.3)

If 𝑓 belongs to the subspace𝐶∞(𝐺/𝑄 : b) then 𝑅𝑣 𝑓 is given by 𝑥 ↦→ 𝑓 (𝑥𝑣) and belongs
to 𝐶∞(𝐺/𝑣𝑄𝑣−1 : 𝑣b).

Lemma 13.3 The isomorphism (13.3) restricts to a linear isomorphism

𝑅𝑣 : 𝐶
−∞(𝐺/𝑄 : b)𝑁0

'−→ 𝐶−∞(𝐺/𝑣𝑄𝑣−1 : 𝑣b)𝑁0 .

Furthermore, ev
𝑒
◦ 𝑅𝑣 = ev𝑣.

Proof. This is a straightforward consequence of the definitions. 2

Lemma 13.4 Let 𝑄 ∈ P(𝐴), 𝜎 a unitary representation of 𝑀𝑄 and a ∈ 𝔞∗
𝑄C
. Then

(a) 𝐶−∞(𝐺/𝑄 : 𝜎 : a)𝜒 ⊂ 𝐶−∞(𝐺/𝑄 : 𝜎 : a)𝑁0 .

(b) If �̄� is standard, then the evaluation map ev𝑒 defined on the space on the left is
the restriction of ev

𝑒
defined on the space on the right.
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(c) Let 𝑣 ∈ 𝑁𝐾 (𝔞) be such that O𝑄 = 𝑁0𝑣𝑄. Then the evaluation map ev
𝑣

restricts
to a linear map

ev𝑣 : 𝐶−∞(𝐺/𝑄 : 𝜎 : a)𝜒 → (𝐻−∞
𝑣𝜎 )𝜒 |

𝑁0∩𝑣𝑀𝑄𝑣−1
. (13.4)

If 𝜒 is regular, the map (13.4) is injective.

Proof. We will first prove (a) - (c) under the assumption that 𝑄 = �̄� with 𝑃 standard.
Then assertions (a) and (b) follow by application of Theorem 8.6, Equation (13.1) with
b = 𝜎 ⊗ a and the definitions of ev𝑒 and ev𝑒 . Assertion (c) follows from Corollary 8.11.
Now assume that 𝑄 is general and fix 𝑣 ∈ 𝑁𝐾 (𝔞) as in (c). Then 𝑣𝑄𝑣−1 = �̄�,

with 𝑃 standard. We consider the isomorphism 𝑅𝑣 of (13.3) for b := 𝜎 ⊗ a. Note
that 𝑣b = 𝑣𝜎 ⊗ 𝑣a. By Lemma 13.3, 𝑅𝑣 maps 𝐶−∞(𝐺/𝑄 : 𝜎 : a)𝑁0 onto the space
𝐶−∞(𝐺/𝑣𝑄𝑣−1 : 𝑣𝜎 : 𝑣a)𝑁0 and the evaluation maps in 𝑣 and 𝑒 respectively are related
by 𝑒𝑣𝑒 ◦ 𝑅𝑣 = 𝑒𝑣𝑣.
By 𝐺-equivariance it also follows that 𝑅𝑣 restricts to a linear isomorphism

𝑅𝑣 : 𝐶−∞(𝐺/𝑄 : 𝜎 : a)𝜒
'−→ 𝐶−∞(𝐺/𝑣𝑄𝑣−1 : 𝑣𝜎 : 𝑣a)𝜒 .

As the space on the right is contained in 𝐶−∞(𝐺/𝑣𝑄𝑣−1 : 𝑣𝜎 : 𝑣a)𝑁0 by the first part of
the proof, it follows that the space on the left is contained in 𝐶−∞(𝐺/𝑄 : 𝜎 : a)𝑁0 and
we have the following commutative diagram with evaluation maps:

𝐶−∞(𝐺/𝑄 : 𝜎 : a)𝜒
𝑅𝑣−→ 𝐶−∞(𝐺/𝑣𝑄𝑣−1 : 𝑣𝜎 : 𝑣a)𝜒

ev𝑣 ↓ ↓ ev𝑒
(𝐻−∞

𝑣𝜎 )𝜒 |
𝑁0∩𝑣𝑀𝑄𝑣−1

𝐼−→ (𝐻−∞
𝑣𝜎 )𝜒 |

𝑁0∩𝑣𝑀𝑄𝑣−1

If 𝜒 is regular, then ev𝑒 is injective, and the injectivity of ev𝑣 follows. 2

We return to the setting that 𝑄 ∈ P(𝐴) and that (b, 𝐻b) is a continuous Hilbert
representation of 𝑄. The representation b∗ of 𝑄 in 𝐻b is defined as in Remark 1.3.

Proposition 13.5 The subspace𝐶−∞(𝐺/𝑄 : b)𝑁0 of𝐶−∞(𝐺/𝑄 : b) is invariant under
the left action by 𝔤.

Proof. We fix 𝑣 ∈ 𝑁𝐾 (𝔞) such that 𝑣𝑄𝑣−1 = �̄�, with 𝑃-standard. By Lemma 13.3 and
since 𝑅𝑣 of (13.3) is 𝔤-equivariant, it suffices to establish the assertion of the proposition
with 𝑣𝑄𝑣−1 in place of 𝑄. In other words, without loss of generality we may and will
assume from the start that 𝑄 = �̄�, with 𝑃 standard.
We recall that the left action by an element 𝑋 ∈ 𝔤 on 𝑢 ∈ F := 𝐶−∞(𝐺/�̄� : b) is

defined by
〈𝐿𝑋𝑢 , 𝜓〉 = 〈𝑢 , 𝐿𝑋∨𝜓〉,

for all 𝜓 ∈ 𝐶∞(𝐺/𝑄 : b∗).
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It is sufficient to show that for 𝑢 ∈ F0 := F𝑁0 and 𝑋 ∈ 𝔤 the element 𝐿𝑋𝑢 ∈ F
restricts to a continuous 𝐻−∞

b
-valued function on 𝑁0�̄�. Indeed the 𝑁0-finiteness is

obvious, since 𝐿𝑛𝐿𝑋 = 𝐿Ad(𝑛)𝑋𝐿𝑛 for all 𝑛 ∈ 𝑁0. For the first statement we need a
suitable interpretation of 𝐿𝑋 on the space F𝑁0 .
Let 𝑢 ∈ F0. The span 𝐸 of the left 𝑁0-translates of 𝑢 is a finite dimensional subspace

of F0. The restriction of 𝐿 |𝑁0 to 𝐸 is a finite dimensional representation of 𝑁0, which
we denote by 𝜔. As 𝜔 is the restriction of the continuous representation 𝐿−∞ |𝑁0 to 𝐸 , it
is continuous. By finite dimensionality it follows that (𝜔, 𝐸) is smooth. We claim that
for 𝑋 ∈ 𝔫0, we have 𝐿𝑋 = 𝜔(𝑋) on 𝐸. To see this, note that for 𝜓 ∈ 𝐶∞(𝐺/�̄� : b∗),

〈𝐿𝑋𝑢 , 𝜓〉 = 〈𝑢 , −𝐿𝑋𝜓〉 =
𝑑

𝑑𝑡

����
𝑡=0

〈𝑢 , 𝐿−1exp 𝑡𝑋𝜓〉

=
𝑑

𝑑𝑡

����
𝑡=0

〈𝐿exp 𝑡𝑋𝑢 , 𝜓〉 =
𝑑

𝑑𝑡

����
𝑡=0

〈𝜔(exp 𝑡𝑋)𝑢 , 𝜓〉

= 〈𝜔(𝑋)𝑢 , 𝜓〉.

It follows from this that 𝐿𝑋𝑢 ∈ F0, hence 𝐿𝑋𝑢 is continuous on 𝑁0�̄�, for all 𝑢 ∈ F0 and
𝑋 ∈ 𝔫0.
We now fix a general element 𝑋 ∈ 𝔤 and will establish the continuity asssertion for

𝐿𝑋𝑢. Since 𝑁0�̄� = 𝑁𝑃�̄�, the assertion of continuity of 𝑢 ∈ F on 𝑁0𝑃 means that there
exists a unique continuous function �̃� : 𝑁𝑃�̄� → 𝐻−∞

b
such that �̃�(𝑥𝑝) = 8b (𝑝)−1�̃�(𝑥)

(𝑥 ∈ 𝑁𝑃�̄�, 𝑝 ∈ �̄�) and such that (13.2) is valid. By the usual transformation of variables
corresponding to the open embedding 𝑁𝑃 → 𝐺/�̄� ' 𝐾/𝐾𝑃 that equation is equivalent
to

〈𝑢 , 𝜓〉 = 〈�̃� , 𝜓〉𝑁𝑃 :=
∫
𝑁𝑃

〈�̃� , 𝜓〉b (𝑛) 𝑑𝑛.

Since 𝔤 = 𝔫𝑃 ⊕ Lie(�̄�) it follows that for every 𝑛 ∈ 𝑁𝑃 we may write

Ad(𝑛)−1𝑋 = Ad(𝑛)−1𝑌 (𝑛) + 𝑍 (𝑛)

with 𝑌 : 𝑁𝑃 → 𝔫𝑃 and 𝑍 : 𝑁𝑃 → Lie(�̄�) smooth functions. Let 𝑌1, . . . , 𝑌𝑘 be a basis
for 𝔫𝑃 . Then we see that 𝑌 (𝑛) =

∑
𝑖 𝑦
𝑖 (𝑛)𝑌𝑖 with 𝑦𝑖 : 𝑁𝑃 → R smooth functions.

Let now 𝜓 ∈ 𝐶∞(𝐺/�̄� : b∗) have support contained in 𝑁𝑃�̄�. Then

〈𝐿𝑋𝑢 , 𝜓〉 = −〈𝑢 , 𝐿𝑋𝜓〉 = −〈�̃� , 𝐿𝑋𝜓〉.

Furthermore, for 𝑛 ∈ 𝑁𝑃,

𝐿𝑋𝜓(𝑛) = [𝐿𝑌 (𝑛)𝜓] (𝑛) + [𝐿Ad(𝑛)𝑍 (𝑛)𝜓] (𝑛)
=

∑︁
𝑖

𝑦𝑖 (𝑛)𝐿𝑌𝑖𝜓(𝑛) − [𝑅𝑍 (𝑛)𝜓] (𝑛)

=
∑︁
𝑖

𝐿𝑌𝑖 [𝑦𝑖𝜓] (𝑛) −
∑︁
𝑖

𝐿𝑌𝑖 (𝑦𝑖) (𝑛)𝜓(𝑛) + 8b (𝑍 (𝑛))𝜓(𝑛).
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By what we established above, 𝐿𝑌𝑖𝑢 = 𝜔(𝑌𝑖)𝑢 is given by a continuous function �̃�𝑖 on
𝑁0�̄�. Let �̂�𝑖 denote the unique element of 𝐶∞(𝑁𝑃�̄�) given by �̂�𝑖 (𝑛𝑝) = 𝑦𝑖 (𝑛). Then
�̂�𝑖𝜓 ∈ 𝐶∞(𝐺/�̄� : b∗) (extension by zero outside 𝑁𝑃�̄�), and we see that, for each
1 ≤ 𝑖 ≤ 𝑘,

−〈�̃� , 𝐿𝑌𝑖 [𝑦𝑖𝜓]〉𝑁𝑃 = 〈𝐿𝑌𝑖𝑢 , �̂�𝑖𝜓〉 = 〈�̃�𝑖 , �̂�𝑖𝜓〉𝑁0 = 〈𝑦𝑖�̃�𝑖 , 𝜓〉𝑁0 .

This leads to

−〈𝐿𝑋𝑢 , 𝜓〉 = 〈
∑︁
𝑖

𝑦𝑖�̃�𝑖 − 𝐿𝑌𝑖 (𝑦𝑖)�̃� − [8b ◦ 𝑍]�̃� , 𝜓〉𝑁0 .

As 𝜓 |𝑁𝑃 ranges over all functions of 𝐶∞
𝑐 (𝑁𝑃, 𝐻∞

b
), it follows that on 𝑁0�̄� = 𝑁𝑃�̄�, the

generalized function −𝐿𝑋𝑢 is represented by∑︁
𝑖

[𝑦𝑖�̃�𝑖 − 𝐿𝑌𝑖 (𝑦𝑖)�̃�] − [8b ◦ 𝑍]�̃�.

The latter function is obviously continuous 𝑁0�̄� → 𝐻−∞
b
. 2

We now assume that 𝑄 ∈ P(𝐴), that 𝜎 is a unitary representation of 𝑀𝑄 , and that
a ∈ 𝔞∗

𝑄C
, and define the representation ba of 𝑄 = 𝑀𝑄𝐴𝑄𝑁𝑄 in 𝐻𝜎 by

ba = 𝜎 ⊗ a ⊗ 1.

Furthermore, we assume that (𝜋, 𝐹) is a continuous finite dimensional representation
of 𝐺. From (11.2) we recall the existence of a unique 𝐺-equivariant topological linear
isomorphism

𝜑−∞a : 𝐶−∞(𝐺/𝑄 : ba) ⊗ 𝐹
'−→ 𝐶−∞(𝐺/𝑄 : ba ⊗ 𝜋 |𝑄) (13.5)

determined by
𝜑−∞a (𝑢 ⊗ 𝑒) = (1 ⊗ 𝜋( · )−1) (𝑢 ⊗ 𝑒)

on the subspaces with 𝐶∞ in place of 𝐶−∞. The inverse is given by 𝑤 ↦→ (𝐼 ⊗ 𝜋( · ))𝑤
on the mentioned subspaces.

Corollary 13.6 For Σ(𝔫𝑄 , 𝔞𝑄)-generic a ∈ 𝔞∗
𝑄C

, the endomorphism 𝑝Λ+`+a of the
space 𝐶−∞(𝐺/𝑄 : ba ⊗ 𝜋 |𝑄) preserves the subspace 𝐶−∞(𝐺/𝑄 : ba ⊗ 𝜋 |𝑄)𝑁0 .

Proof. This follows by combining Proposition 13.5 applied to b = ba and the charac-
terization of 𝑝Λ+a+` in Corollary 11.13. 2

Lemma 13.7 Let 𝑄 ∈ P(𝐴) and let 𝑣 ∈ 𝑁𝐾 (𝔞) be such that 𝑣�̄�𝑣−1 is standard. The
map 𝜑−∞a of (13.5) restricts to a (𝔤, 𝑁0)-equivariant linear isomorphism

𝜑
a
: 𝐶−∞(𝐺/𝑄 : 𝜎 : a)𝑁0 ⊗ 𝐹

'−→ 𝐶−∞(𝐺/𝑄 : ba ⊗ 𝜋 |𝑄)𝑁0 (13.6)

which satisfies
ev
𝑣
◦ 𝜑

a
= ev

𝑣
⊗ 𝜋(𝑣)−1. (13.7)
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Proof. We note that (ba)∗ = 𝜎 ⊗ −ā = b−ā . We assume that 𝐹 is equipped with
a Hermitian inner product, and 𝐹∗ denote the finite dimensional Hilbert space 𝐹,
equipped with the conjugate representation 𝜋∗. Let ∗𝜑a be the equivariant isomorphism
from 𝐶∞(𝐺/𝑄 : b−ā) ⊗ 𝐹∗ onto 𝐶∞(𝐺/𝑄 : b−ā ⊗ 𝜋∗ |𝑄) as defined in (11.1).
Let 𝑓 ∈ 𝐶−∞(𝐺/𝑄 : 𝜎 : a)𝑁0 ⊗ 𝐹. Then the restriction of 𝑓 to O𝑄 = 𝑁0𝑣𝑄 is

continuous O𝑄 → 𝐻−∞
𝜎 ⊗ 𝐹. It follows from the definition of 𝜑−∞a as in (11.2) that

〈𝜑−∞a ( 𝑓 ) , 𝑔〉 = 〈 𝑓 , (∗𝜑a)−1(𝑔)〉,

for all 𝑔 ∈ 𝐶∞(𝐺/𝑄 : b−ā) ⊗ 𝐹∗. In particular this is true for all such 𝑔 with support
contained in 𝑁0𝑣𝑄. In that case the above equality tells us that

〈𝜑−∞a ( 𝑓 ) , 𝑔〉 =

∫
𝐾/𝐾𝑄

〈 𝑓 (𝑘) , (∗𝜑a)−1(𝑔) (𝑘)〉𝜎 𝑑 ¤𝑘

=

∫
𝐾/𝐾𝑄

〈 𝑓 (𝑘) , (𝐼 ⊗ 𝜋∗(𝑘))𝑔(𝑘)〉𝜎 𝑑 ¤𝑘

=

∫
𝐾/𝐾𝑄

〈(𝐼 ⊗ 𝜋(𝑘)−1) 𝑓 (𝑘) , 𝑔(𝑘)〉𝜎 𝑑 ¤𝑘.

It follows from this that, for 𝑥 ∈ 𝐾 ∩ O𝑄 ,

𝜑−∞a ( 𝑓 ) (𝑥) = (1 ⊗ 𝜋(𝑥))−1(ev𝑥 ⊗ 𝐼) ( 𝑓 ). (13.8)

By𝑄-equivariance this equality is true for all 𝑥 ∈ O𝑄 . From this it is immediately clear
that 𝜑−∞a ( 𝑓 ) belongs to the space on the right in (13.6). Moreover, by substituting 𝑥 = 𝑣
in (13.8) we obtain (13.7) when applied to 𝑓 .
By using a similar argument involving the maps [𝜑−∞a ]−1 and ∗𝜑a one sees that the

map 𝜑
a
is a linear isomorphism as asserted.

Finally, the (𝔤, 𝑁0)-equivariance of 𝜑
a
follows from the similar equivariance of 𝜑a

combined with Proposition 13.5. 2

Corollary 13.8 For Σ(𝔫𝑄 , 𝔞𝑄)-generic a ∈ 𝔞∗
𝑄C

, the endomorphism 𝑝Λ+`+a of the
space 𝐶−∞(𝐺/𝑄 : 𝜎 : a) ⊗ 𝐹 preserves the subspace 𝐶−∞(𝐺/𝑄 : 𝜎 : a)𝑁0 ⊗ 𝐹.

Proof. Since the map 𝜑−∞a of (13.5) is a 𝐺-equivariant isomorphism from the space
𝐶−∞(𝐺/𝑄 : 𝜎 : a) ⊗ 𝐹 onto 𝐶−∞(𝐺/𝑄 : (𝜎 ⊗ a) ⊗ 𝜋 |𝑄), we have 𝜑−∞a ◦ 𝑝Λ+`+a =

𝜑−∞a ◦ 𝑝Λ+`+a . The result now follows by combining Corollary 13.6 with Lemma 13.7.
2

Finally, we are prepared to complete the proof announced in the title of this section.

Proof of Lemma 12.14. By application of standard intertwining operators as in the
proof of Lemma 13.1, we may reduce to the case that 𝑄 = 𝑃 (recall that 𝑃 is standard).
In this case, we argue as follows. For a ∈ 𝔞∗

𝑃C
we denote by 8𝐻𝜎,a the space 𝐻𝜎 on

which 𝑃 = 𝑀𝑃𝐴𝑃𝑁𝑃 acts by 𝑚𝑎𝑛 ↦→ 𝑎a+𝜌𝑃𝜎(𝑚). The space C𝑒𝑁0 is a 𝑃-invariant
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subspace of 𝐹, on which 𝑃 acts by 𝑚𝑎𝑛 ↦→ 𝑎` .We write 𝜋 |𝑃,C𝑒𝑁0 for the restriction of
𝜋 |𝑃 to this subspace. The inclusion map C𝑒𝑁0 → 𝐹 is 𝑃-equivariant, hence induces a
𝐺-equivariant continuous linear map

]a : 𝐶−∞(𝐺/𝑃 : ba ⊗ 𝜋 |𝑃,C𝑒𝑁0 ) ↩→ 𝐶−∞(𝐺/𝑃 : ba ⊗ 𝜋 |𝑃),

see Lemma 7.7 for details.
In the sequel we shall briefly write 𝑝a for 𝑝Λ+`+a . Since 𝐻𝜎,a ⊗ C𝑒𝑁0 is naturally

isomorphic to 𝐻𝜎,a+` as a 𝑃-module, it follows that for (Σ(𝔫𝑃, 𝔞𝑃)-)generic a ∈ 𝔞∗
𝑃C

the projection
𝑝a ∈ End(𝐶−∞(𝐺/𝑃 : ba ⊗ 𝜋 |𝑃)) (13.9)

equals the identity on the image of ]a . On the other hand, it follows from Lemma
11.8 combined with the isomorphism Ind𝐺𝑃 (ba) ⊗ 𝜋 ' Ind𝐺𝑃 (ba ⊗ 𝜋 |𝑃) that for generic
a ∈ 𝔞∗

𝑃C
,

im(𝑝a)𝐾 ' 𝐶 (𝐺/𝑃 : 𝜎 : ` + a)𝐾 ' im(]a)𝐾 ,
as (𝔤, 𝐾)-modules. Since (13.9) is a continuous projection its image im(𝑝a) is a closed
subspace of 𝐶−∞(𝐺/𝑃 : ba ⊗ 𝜋 |𝑃).We now infer that for generic a ∈ 𝔞∗

𝑃C
we have

im(𝑝a) = cl(im(]a)𝐾),

where cl indicates that the closure in 𝐶−∞(𝐺/𝑃 : ba ⊗ 𝜋 |𝑃) is taken. To characterize
this closure in a useful way, we fix a Hermitian inner product on 𝐹 and define the
continuous representation 𝜋∗ of 𝐺 on it by 𝜋∗(𝑝) = 𝜋(𝑝−1)∗. The restriction of 𝜋∗ |𝑃 to
the 𝜋∗(𝑃)-invariant subspace 𝐸 = (C𝑒𝑁0)⊥ of 𝐹 is denoted by 𝜋∗𝐸 . Clearly, C𝑒𝑁0 = 𝐸⊥.
We view 𝐶∞(𝐺/𝑃 : b−ā ⊗ 𝜋∗𝐸 ) as an invariant subspace of 𝐶∞(𝐺/𝑃 : b−ā ⊗ 𝜋∗𝐸 ). Via
the sesquilinear pairing

𝐶−∞(𝐺/𝑃 : ba ⊗ 𝜋) × 𝐶∞(𝐺/𝑃 : b−ā ⊗ 𝜋∗) → C (13.10)

we accordingly define Anna to be the annihilator of 𝐶∞(𝐺/𝑃 : b−ā ⊗ 𝜋∗𝐸 ) in the first
of the spaces in (13.10). This annihilator is closed and on the 𝐾-finite level it is
readily seen that (Anna)𝐾 = im(]a)𝐾 . It follows that the annihilator equals the closure
of im(]a)𝐾 . Hence,

im(𝑝a) = Anna .
We now select 𝑣 ∈ 𝑁𝐾 (𝔞) such that O𝑃 = 𝑁0𝑣𝑃 is open in 𝐺. Note that O𝑃 = 𝑣�̄�𝑃𝑃.

Lemma 13.9 Let a ∈ 𝔞∗
𝑃C
, write ba = 𝜎 ⊗ a ⊗ 1 and let 𝑢 ∈ 𝐶−∞(𝐺/𝑃 : ba ⊗ 𝜋 |𝑃)𝑁0 .

If 𝑢 ∈ Anna then 𝑢 |O𝑃 ∈ 𝐶 (O𝑃, 𝐻−∞
𝜎 ⊗ C𝑒𝑁0)𝑃 .

Proof. Let 𝑢 fulfill the hypothesis. Then it follows from Definition 13.2 that the
restriction of 𝑢 to O𝑃 is continuous with values in 𝐻−∞

𝜎 ⊗ 𝐹. This means that there
exists a continuous function �̃� ∈ 𝑁0𝑣𝑃 → 𝐻−∞

𝜎 ⊗ 𝐹 such that �̃�(𝑛𝑣𝑝) = [8b−∞(𝑝) ⊗
𝜋(𝑝)]−1�̃�(𝑛𝑣) (𝑝 ∈ 𝑃, 𝑛 ∈ 𝑁0), and such that for all 𝜓 ∈ 𝐶∞(𝐺/𝑃 : b−ā ⊗ 𝜋∗)
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with support contained in O𝑃 we have (13.2), which by the substitution of variables
𝑘 = 𝑣^𝑃 (�̄�)𝐾𝑃 may be rewritten as

〈𝑢 , 𝜓〉 =
∫
�̄�𝑃

〈�̃�(𝑣�̄�) , 𝜓(𝑣�̄�)〉𝜎⊗𝜋 𝑑�̄�.

Let now ℎ ∈ 𝐻∞
𝜎 , 𝑓 ∈ 𝐸 = (C𝑒𝑁0)⊥ and 𝜙 ∈ 𝐶∞

𝑐 (�̄�𝑃), and define 𝜓 ∈ 𝐶∞(𝐺/𝑃 :
b−ā ⊗ 𝜋∗) by the requirements

𝜓(𝑣�̄�) = 𝜙(�̄�) (ℎ ⊗ 𝑓 ), 𝜓 = 0 on 𝐺 \ 𝑣�̄�𝑃𝑃.

Then it follows from 𝑢 ∈ Anna that∫
�̄�𝑃

𝜙(𝑛)〈�̃�(𝑣�̄�) , ℎ ⊗ 𝑓 〉 𝑑�̄� = 0.

As this is valid for all 𝜙 as above, the continuous function �̄� ↦→ 〈�̃�(𝑣�̄�) , ℎ ⊗ 𝑓 〉 is zero.
This implies that for each �̄� ∈ �̄�𝑃 the element �̃�(𝑣�̄�) ∈ 𝐻−∞

𝜎 ⊗ 𝐹 satisfies

〈�̃�(𝑣�̄�) , ℎ ⊗ 𝑓 )〉 = 0, (ℎ ∈ 𝐻∞
𝜎 , 𝑓 ∈ 𝐸).

This in turn implies that 𝑢(𝑣�̄�) ∈ 𝐻−∞
𝜎 ⊗ 𝐸⊥ = 𝐻−∞

𝜎 ⊗ C𝑒𝑁0 . Since 𝑣�̄�𝑃𝑃 = 𝑁0𝑣𝑃 this
finishes the proof. 2

We proceed with the completion of the proof of Lemma 12.14. From Lemma 13.1
it follows that for generic a ∈ 𝔞∗

𝑃C
the map

𝑗 ↦→ 𝜑−∞a ◦ 𝑝a ( 𝑗 ⊗ 𝑒𝑁0) (13.11)

is injective from 𝐶−∞(𝐺/𝑃 : 𝜎 : a)𝜒 to 𝐶−∞(𝐺/𝑃 : (𝜎 ⊗ a) ⊗ 𝜋 |𝑃)𝜒 . Furthermore,
since 𝜑a is an intertwining isomorphism, it follows that

𝜑−∞a ◦ 𝑝a = 𝑝a ◦ 𝜑
−∞
a .

We thus see that the map (13.11) maps 𝐶−∞(𝐺/𝑃 : 𝜎 : a)𝜒 injectively to

im(𝑝a) ∩ 𝐶−∞(𝐺/𝑃 : (𝜎 ⊗ a) ⊗ 𝜋 |𝑃)𝜒 ⊂ Anna ∩ 𝐶−∞(𝐺/𝑃 : (𝜎 ⊗ a) ⊗ 𝜋 |𝑃)𝑁0 .

Applying Lemmas 13.4 and 13.9 we now see that the map

𝑗 ↦→ ev𝑣 [𝜑−∞a ◦ 𝑝Λ+a+` ( 𝑗 ⊗ 𝑒𝑁0)]

is injective from 𝐶−∞(𝐺/𝑃 : 𝜎 : a)𝜒 to 𝐻−∞
𝜎 ⊗ C𝑒𝑁0 . Put

𝑒𝑣 := 𝑒𝑁0 ◦ 𝜋(𝑣) ∈ 𝐹∗; (13.12)

then 𝑒𝑣 (𝑒𝑁0) ≠ 0, since otherwise the matrix coefficient 𝑥 ↦→ 𝑒𝑣 (𝜋(𝑥)𝑒𝑁0) would be
zero on 𝑁0𝑣𝑃 hence on 𝐺, contradicting the irreducibility of 𝜋. It thus follows that

𝑗 ↦→ (𝐼 ⊗ 𝑒𝑣) [ev𝑣 [𝜑−∞a ◦ 𝑝a ( 𝑗 ⊗ 𝑒𝑁0)]] (13.13)
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is injective 𝐶−∞(𝐺/𝑃 : 𝜎 : a)𝜒 → 𝐻−∞
𝜎 ⊗ C. On the other hand, 𝑗 ↦→ 𝑗 ⊗ 𝑒𝑁0 maps

𝐶−∞(𝐺/𝑃 : 𝜎 : a)𝜒 into 𝐶−∞(𝐺/𝑃 : 𝜎 : a)𝑁0 ⊗ 𝐹. By Lemmas 13.4, 13.7 and
Corollary 13.8 it now follows that (13.13) equals

𝑗 ↦→ (𝐼 ⊗ 𝑒𝑣) ◦ ev
𝑣
◦ 𝜑

a
◦ 𝑝

a
( 𝑗 ⊗ 𝑒𝑁0) (13.14)

which is therefore an injective map 𝐶−∞(𝐺/𝑃 : 𝜎 : a)𝜒 → 𝐻−∞
𝜎,a . By Lemma 13.7 the

above map (13.14) equals

𝑗 ↦→ (𝐼 ⊗ 𝑒𝑣) ◦ (ev
𝑣
⊗ 𝜋(𝑣)−1) ◦ 𝑝

a
( 𝑗 ⊗ 𝑒𝑁0)

= (ev
𝑣
⊗ 𝐼) ◦ (𝐼 ⊗ 𝑒𝑁0) ◦ 𝑝

a
( 𝑗 ⊗ 𝑒𝑁0).

The injectivity of the latter map implies the injectivity of

𝑗 ↦→ (𝐼 ⊗ 𝑒𝑁0) ◦ 𝑝
a
( 𝑗 ⊗ 𝑒𝑁0) = (𝐼 ⊗ 𝑒𝑁0) ◦ 𝑝a ( 𝑗 ⊗ 𝑒𝑁0).

as amap from𝐶−∞(𝐺/𝑃 : 𝜎 : a)𝜒 to𝐶−∞(𝐺/𝑃 : 𝜎 : a)⊗C. Since Y𝑁0 = 𝑚 ◦ (𝐼⊗𝑒𝑁0),
with 𝑚 injective, see (12.4), the required injectivity of the map (12.18) follows. 2

14 Holomorphy and uniformly moderate estimates
In this section, we assume that 𝑃 is a standard parabolic subgroup and (𝜎, 𝐻𝜎) a
discrete series representation of 𝑀𝑃 . We will first prove the following result which is
inspired by Wallach [21, Thm. 15.4]. Let 𝛿 > 0.

Theorem 14.1 For every 𝑅 ≤ 𝛿 the function a ↦→ 𝑗 (�̄�, 𝜎, a), originally defined for
a ∈ 𝔞∗

𝑃C
(𝑃, 𝛿) allows a meromorphic extension to 𝔞∗

𝑃C
(𝑃, 𝑅) as a function with values

in the space (𝐻−∞
𝜎,𝜒𝑃

)∗ ⊗ 𝐶−∞(𝐾/𝐾𝑃 : 𝜎).
Furthermore, there exists a non-trivial polynomial function 𝑝𝑅 ∈ 𝑃(𝔞∗

𝑃
) and con-

stants 𝑠, 𝑁 ∈ N and 𝐶 > 0 such that for all [ ∈ 𝐻−∞
𝜎,𝜒𝑃

the extended function
a ↦→ 𝑝𝑅 (a) 𝑗 (�̄�, 𝜎, a, [) is holomorphic 𝐶−𝑠 (𝐾/𝐾𝑃 : 𝜎)-valued on 𝔞∗

𝑃C
(𝑃, 𝑅) and

satisfies the estimate

‖𝑝𝑅 (a) 𝑗 (�̄�, 𝜎, a, [)‖−𝑠 ≤ 𝐶 (1 + |a |)𝑁 ‖[‖, (a ∈ 𝔞∗𝑃C(𝑃, 𝑅)).

Proof. First of all, by Proposition 8.14 the above result is true for 𝑅 = 𝛿,with 𝑠 = 𝑁 = 0
Let ` ∈ Λ++(𝔞𝑃). Then 〈` , 𝛼〉 > 0 for all 𝛼 ∈ Σ(𝔫𝑃, 𝔞𝑃). Let 𝑚 > 0 be fixed and
strictly smaller than the minimum of the numbers 〈` , 𝛼〉, for 𝛼 ∈ Σ(𝔫𝑃, 𝔞𝑃). Then

𝔞∗𝑃C(𝑃, 𝑅 − 𝑚) + ` ⊂ 𝔞∗𝑃C(𝑃, 𝑅).

We will show that if the assertions of the theorem are valid for 𝑅 ≤ 𝛿, they are also
valid with 𝑅 replaced by 𝑅 − 𝑚. The result then follows by induction.
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Assume the result to be proven for a given 𝑅, with constants 𝑠, 𝑁𝑅 and 𝐶𝑅 in place
of 𝑠, 𝑁, 𝐶. Let 𝐷` (𝜎, a) and 𝑅` (𝜎, a) be as in Theorem 12.4. By holomorphic con-
tinuation, this functional equation is still valid on 𝔞∗

𝑃C
(𝑃, 𝑅) for the extended function

𝑗 (�̄�, 𝜎, · ). Let 𝑞 : 𝔞∗
𝑃C

→ C be a non-trivial polynomial function such that 𝑞𝑅` (𝜎, · )
is polynomial of degree 𝑑′, with values in End(𝐻−∞

𝜎,𝜒𝑃
).

For a ∈ 𝔞∗
𝑃C
(𝑅 − 𝑟) we define

𝑗𝑒 (�̄� : 𝜎 : a) ([) = 𝐷` (𝜎, a) 𝑗 (𝑃, 𝜎, a + `)𝑅` (𝜎, a)[.

Let 𝑟, 𝑑, 𝐶 ∈ N be the constants of Proposition 12.1. Then it follows by application of
the mentioned proposition that a ↦→ 𝑞(a)𝑝𝑅 (a + `) 𝑗𝑒 (�̄� : 𝜎 : a) ([) is holomorphic
on 𝔞∗

𝑃C
(𝑃, 𝑅 − 𝑚) with values in 𝐶−𝑠−𝑟 (𝐾/𝐾𝑃 : 𝜎). Furthermore,

‖𝑞(a)𝑝𝑅 (a + `) 𝑗𝑒 (�̄� : 𝜎 : a) ([)‖−𝑠−𝑟
≤ 𝐶 (1 + |a |)𝑑 ‖𝑝𝑅 (` + a) 𝑗 (𝑃, 𝜎, a + `, 𝑞(a)𝑅` (𝜎, a)[)‖−𝑠
≤ 𝐶𝐶𝑅 (1 + |a |)𝑑 (1 + |a + ` |)𝑁𝑅 ‖𝑞(a)𝑅` (𝜎, a)‖op‖[‖
≤ 𝐶𝑅−𝑚 (1 + |a |)𝑑+𝑁𝑅+𝑑 ′‖[‖,

with 𝐶𝑅−𝑚 > 0 a constant which is uniform for a ∈ 𝔞∗
𝑃C
(𝑃, 𝑅 − 𝑚). By the functional

equation of Theorem 12.4 it follows that

𝑞(a)𝑝𝑅 (a + `) 𝑗𝑒 (�̄�, 𝜎, a) ([) = 𝑞(a)𝑝𝑅 (a + `) 𝑗 (�̄�, 𝜎, a) ([)

for all a ∈ 𝔞∗
𝑃C
(𝑃, 𝑅). This shows that the (𝐻−∞

𝜎𝜒𝑃
)∗ ⊗𝐶−∞(𝐾/𝐾𝑃 : 𝜎)-valued function

a ↦→ 𝑗𝑒 (�̄�, 𝜎, a) is the meromorphic extension of the original H−∞
𝜎,𝜒𝑃
-valued function

𝑗 (�̄�, 𝜎, · ) defined on 𝔞∗
𝑃C
(𝑃, 𝛿). The proof is complete. 2

It follows from the above result that as a (𝐻−∞
𝜎,𝜒𝑃

)∗ ⊗ 𝐶−∞(𝐾/𝐾𝑃 : 𝜎)-valued
function, the function a ↦→ 𝑗 (�̄�, 𝜎, a) has a meromorphic extension to all of 𝔞∗

𝑃C
. This

meromorphic extension will be denoted by the same symbol.

Lemma 14.2 For [ ∈ 𝐻−∞
𝜎,𝜒𝑃

and a regular point a ∈ 𝔞∗
𝑃C

the element 𝑗 (�̄�, 𝜎, a, [) ∈
𝐶−∞(𝐾/𝐾𝑃 : 𝜎) satisfies the transformation rule

𝜋−∞
�̄�,𝜎,a

(𝑛) 𝑗 (�̄�, 𝜎, a, [) = 𝜒(𝑛) 𝑗 (�̄�, 𝜎, a, [), (𝑛 ∈ 𝑁0).

Proof. This follows by analytic continuation. 2

Lemma 14.3 Let 𝜑 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎) have compact support contained in the set
𝐾∩𝑁0�̄�. Then for every [ ∈ 𝐻−∞

𝜎,𝜒𝑃
, the meromorphic function a ↦→ 〈 𝑗 (�̄�, 𝜎, a) ([) , 𝜑〉

is holomorphic.
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Proof. It follows from the definition of 𝑗 (�̄�, 𝜎, a, [) for a ∈ 𝔞∗
𝑃C
(𝑃, 0) that the restriction

𝑗 (�̄�, 𝜎, a, [) |𝐾∩𝑁𝑃 �̄� is given by the continuous function 𝐾 ∩ 𝑁0�̄� → H−∞
𝜎 described

by the formula

𝑗[ (a) : 𝑘 ↦→ 𝑎(𝑘)−a+𝜌𝑃 𝜒(𝑛𝑃 (𝑘))𝜎(`𝑃 (𝑘))−1[. (14.1)

By this we mean that for a function 𝜑 ∈ 𝐶∞(𝐾/𝐾𝑃 :𝜎) with compact support contained
in 𝐾 ∩ 𝑁0�̄� we have

〈 𝑗 (�̄�, 𝜎, a) ([) , 𝜑〉 =
∫
𝐾/𝐾𝑃

〈 𝑗[ (a) (𝑘) , 𝜑(𝑘)〉𝜎𝑑𝑘

From
𝑗[ (_) = 𝑎( · ) (a−_) 𝑗[ (a), (_ ∈ 𝔞∗𝑃C),

we see that 𝑗[ extends to a holomorphic function from 𝔞∗
𝑃C
to 𝐶 (𝐾 ∩ 𝑁0�̄�, 𝐻

−∞
𝜎 ).

Accordingly, it follows that for 𝜑 ∈ 𝐶−∞(𝐾/𝐾𝑃 : 𝜎) with compact support in 𝐾 ∩𝑁𝑃�̄�
the C-valued function

a ↦→ 〈 𝑗 (�̄�, 𝜎, a) ([) , 𝜑〉
is holomorphic on 𝔞∗

𝑃C
. 2

Theorem 14.4 The map a ↦→ 𝑗 (�̄�, 𝜎, a) is holomorphic as a function on 𝔞∗
𝑃C

with
values in the complete locally convex space (𝐻−∞

𝜎,𝜒𝑃
)∗ ⊗ 𝐶−∞(𝐾/𝐾𝑃 : 𝜎). Here

𝐶−∞(𝐾/𝐾𝑃 : 𝜎) is understood to be equipped with the direct limit topology, see the
text below (7.10).

Proof. Let 𝑅 ≤ 0 and let 𝑝 = 𝑝𝑅 be as in Theorem 14.1. Let Ω := 𝔞∗
𝑃C
(𝑃, 𝑅) and

let 𝑋 be the zero set of 𝑝 in Ω. Fix [ ∈ 𝐻−∞
𝜎,𝜒𝑃

. It follows from the theorem that
𝑗 : a ↦→ 𝑗 (�̄�, 𝜎, a) is holomorphic as a function from Ω \ 𝑋 to the complete locally
convex space 𝑉 := 𝐶−∞(𝐾/𝐾𝑃 : 𝜎).
By Theorem 18.1 (Appendix) it suffices to show that 𝑗 admits an extension to a

holomorphic function Ω \ 𝑋𝑠 → 𝑉, with 𝑋𝑠 = 𝑋 \ 𝑋𝑟 , where 𝑋𝑟 is the set of points
a0 ∈ 𝑋 at which 𝑋 is a complex differentiable submanifold of co-dimension 1. It is
readily verified that 𝑋𝑟 is open in 𝑋; therefore, 𝑋𝑠 is closed in 𝑋 hence in Ω.
Let a0 ∈ 𝑋𝑟 . Then it suffices to show that there exists an open neighborhood Ω0 of

a0 in Ω such that 𝑗 |Ω0\𝑋 admits an extension to a holomorphic function Ω0 → 𝑉. See
also Lemma 18.3 (Appendix).
By definition of 𝑋𝑟 there exists an open neighborhood 𝜔 of a0 in Ω such that

𝑋0 := 𝑋 ∩𝜔 is a connected complex differentiable submanifold of codimension 1. Let
b ∈ 𝔞∗

𝑃C
be such that

𝑇a0𝑋0 ⊕ Cb = 𝔞∗𝑃C.

Then it follows that the map 𝜑 : (a, 𝑧) ↦→ a+ 𝑧b is a local holomorphic diffeomorphism
at (a0, 0). Replacing 𝜔 by a smaller neighborhood if necessary, and taking 𝑟 > 0
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sufficiently small, we arrive at the situation that 𝜑 : 𝑋0×𝐷 (0, 𝑟) → 𝔞∗
𝑃C
is a holomorphic

diffeomorphism onto an open neighborhood Ω0 of a0 in 𝔞∗𝑃C and that 𝜑(𝑋0 × {0}) =
𝑋 ∩Ω0.
Put 𝐷 = 𝐷 (0, 𝑟). Then 𝑗∗ = 𝑗 ◦ 𝜑|𝑋0×𝐷\{0} is a holomorphic function 𝑋0 × 𝐷 \

{0} → 𝑉 and it suffices to show that this function extends to a holomorphic function
𝑋0 × 𝐷 → 𝑉.

Since 𝑗∗ : (a, 𝑧) ↦→ 𝑗 (a + 𝑧b) is holomorphic on 𝑋0 × (𝐷 \ {0}) it has a Laurent
series expansion in 𝑧 of the form

𝑗 (a + 𝑧b) =
∑︁
𝑘∈Z

𝑐𝑘 (a)𝑧𝑘 ,

with 𝑐𝑘 : 𝑋0 → 𝑉 holomorphic, for all 𝑘 ∈ Z. Thus, it suffices to show that 𝑐𝑘 = 0 for
𝑘 < 0.
The zero set of 𝑝 ◦ 𝜑 equals 𝜑−1(𝑋) = 𝑋0 × {0}. Hence, there exists a constant

𝑑 ≥ 1 such that 𝑝(a + 𝑧b) = 𝑧𝑑𝑞(a, 𝑧), with 𝑞 : 𝑋0 × 𝐷 → C a holomorphic function
that is not identically zero on 𝑋0 × {0}. Let 𝑋′

0 be the open dense subset of a ∈ 𝑋0 such
that 𝑞(a, 0) ≠ 0. Fix a ∈ 𝑋′

0, an open neighborhood 𝑋1 of a whose closure is contained
in 𝐷′

0 and a disk 𝐷
′ ⊂ 𝐷 centered at 0 such that 𝑞(a, 𝑧) ≠ 0 for all a ∈ 𝑋1 and 𝑧 ∈ 𝐷′.

Then for every a ∈ 𝑋1 the function 𝑧 ↦→ 𝑧𝑑 𝑗 (a + 𝑧b) extends to a holomorphic function
𝐷′ → 𝑉. It follows that 𝑐𝑘 (a) = 0 for 𝑘 < −𝑑 and a ∈ 𝑋1. By analytic continuation it
now follows that 𝑐𝑘 = 0 on 𝑋0 for 𝑘 < −𝑑.
Let 𝑚 ∈ Z be the maximal number such that 𝑐−𝑚 ≠ 0. Arguing by contradiction we

will show that 𝑚 ≤ 0, thereby completing the proof. Thus, suppose 𝑚 > 0. Then there
exists a1 ∈ 𝑋0 such that 𝑐−𝑚 (a1) ∈ 𝑉 \ {0}.We claim that for 𝑛 ∈ 𝑁0 we have

𝜋−∞a1 (𝑛)𝑐−𝑚 (a1) = 𝜒(𝑛)𝑐−𝑚 (a1). (14.2)

Indeed, fix 𝑛 ∈ 𝑁0 and 𝜓 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎). Then it suffices to prove the identity
evaluated at 𝜓. Writing 𝜋a = 𝜋�̄�,𝜎,a, we start with the known identity expressing that
𝑗 (a) is a Whittaker vector in the induced representation:

〈 𝑗 (a) , 𝜋∞−ā (𝑛−1)𝜓〉 = 𝜒(𝑛)〈 𝑗 (a) , 𝜓〉,

for a ∈ Ω \ 𝑋. Substituting a = a1 + 𝑧b for 𝑧 ∈ 𝐷 \ {0}, we obtain the identity

〈𝑧𝑚 𝑗 (a1 + 𝑧b) , 𝜋∞−ā1−𝑧b̄ (𝑛
−1)𝜓〉 = 𝜒(𝑛)〈𝑧𝑚 𝑗 (a1 + 𝑧b) , 𝜓〉 (14.3)

of holomorphic functions on 𝐷 (0, 𝑟) \ {0}.We observe that we may write

𝑧𝑚 𝑗 (a1 + 𝑧b) = 𝑐−𝑚 (a1) + 𝑧𝑅(𝑧),

as an identity of holomorphic𝑉-valued functions in 𝑧 ∈ 𝐷 (0, 𝑟),with 𝑅 : 𝐷 (0, 𝑟) → 𝑉

holomorphic. We may also write

𝜋∞
a1−𝑧b̄

(𝑛−1)𝜓 = 𝜋∞a1 (𝑛
−1)𝜓 + 𝑧Ψ(𝑧), (𝑧 ∈ 𝐷 (0, 𝑟)),
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with Ψ a holomorphic function 𝐷 (0, 𝑅) → 𝐶∞(𝐾/𝐾𝑃 : 𝜎). Substituting these expres-
sions in (14.3) we obtain

〈𝑐−𝑚 (a1) , 𝜋∞a1 (𝑛
−1)𝜓〉 = 𝜒(𝑛)〈𝑐−𝑚 (a1) , 𝜓〉 + 𝑧𝐹 (𝑧), (14.4)

where 𝐹 : 𝐷 (0, 𝑟) → C is given by

𝐹 (𝑧) = 〈𝑅(𝑧) , 𝜒(𝑛)𝜓 − 𝜋a1 (𝑛−1)𝜓 − 𝑧Ψ(𝑧)〉 − 〈𝑐−𝑚 (a1) , Ψ(𝑧)〉.

If 𝑧 is restricted to a compact neighborhood of 0 in𝐷 (0, 𝑟), thenΨ(𝑧) stays in a bounded
subset of 𝐶∞(𝐾/𝐾𝑃 : 𝜎) and 𝑅(𝑧) stays in a bounded subset of 𝐶−∞(𝐾/𝐾𝑃 : 𝜎). This
implies that 𝐹 (𝑧) remains bounded, so that lim𝑧→0 𝑧𝐹 (𝑧) = 0. By taking the limit of
(14.4) we find that (14.2) is valid after pairing both sides with 𝜓 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎).
Since 𝑛 and 𝜓 were arbitrary, (14.2) follows. Thus, in the induced picture we have

𝑐−𝑚 (a1) ∈ 𝐶−∞(�̄� : 𝜎 : a1)𝜒 .

Furthermore, by application of Lemma 14.3, the generalized function 𝑐−𝑚 (a1) vanishes
on the open orbit 𝑁0�̄�. In view of Corollary 8.3 applied to 𝑐−𝑚 (a1) in place of 𝑗 it
finally follows that 𝑐−𝑚 (a1) = 0, contradicting the condition involved in the choice of
a1. 2

Corollary 14.5 For every a ∈ 𝔞∗
𝑃C

the map

𝑗 (�̄�, 𝜎, a) : 𝐻−∞
𝜎,𝜒𝑃

→ 𝐶−∞(𝐺/�̄� : 𝜎 : a)𝜒

is a linear isomorphism with inverse equal to the map ev𝑒 defined in (8.11).

Proof. It follows from the definition of 𝑗 (�̄�, 𝜎, a) ([) for a ∈ 𝔞∗
𝑃C
(𝑃, 0) that the

restriction of 𝑗 (�̄�, 𝜎, a) ([) to 𝐾 ∩ 𝑁𝑃�̄� is equal to the continuous function 𝑗[ (a) :
𝐾 ∩ 𝑁𝑃�̄� → 𝐻−∞

𝜎 defined in (14.1). In the proof of Lemma 14.3 it is shown that 𝑗[ (a)
extends to a holomorphic function of a ∈ 𝔞∗

𝑃C
with values in 𝐶 (𝐾 ∩ 𝑁𝑃�̄�, 𝐻−∞

𝜎 ). By
analytic continuation it follows that 𝑗 (�̄�, 𝜎, a, [) |𝐾∩𝑁𝑃 �̄� is given by the function 𝑗[ (a).
It now follows that ev𝑒 𝑗 (�̄�, 𝜎, a, [) = [. Hence, ev𝑒 is a left inverse to 𝑗 (�̄�, 𝜎, a) and
we see that 𝑒𝑣𝑒 is surjective 𝐶−∞(𝐺/�̄� : 𝜎 : a)𝜒 → 𝐻−∞

𝜎,𝜒𝑃
. If we combine this with

the injectivity of ev𝑒, asserted in Corollary 8.11, the required result follows. 2

Lemma 14.6 Let 𝑀` = 𝑀` (𝜎, · ) : 𝔞∗𝑃C → End(𝐻−∞
𝜎,𝜒𝑃

) be the polynomial function
𝔞∗
𝑃C

→ End(𝐻−∞
𝜎,𝜒𝑃

) introduced in Proposition 12.10. Then the function det𝑀` is a
non-zero constant times a finite product of first order polynomial functions on 𝔞∗

𝑃C
of

the form a ↦→ 〈a , 𝛼〉 + 𝑐 with 𝛼 ∈ Σ(𝔫𝑃, 𝔞𝑃) and 𝑐 ∈ C.

Proof. We observe that det𝑀` is a polynomial function 𝔞∗𝑃C → C. By Proposition
17.1 it suffices to show that det𝑀` is non-zero on the complement of a locally finite
collectionH of affine Σ(𝔫𝑃, 𝔞𝑃)-hyperplanes. IncreasingH we may assume that ∪H
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contains the zero set of the polynomial function 𝑞 : 𝔞∗
𝑃C

→ C introduced in Lemma
11.12. From Lemma 12.14 we know that there exists such a collection of hyperplanes
such for a ∈ 𝔞∗

𝑃C
\ ∪H the map

𝜓a : 𝑗 ↦→ Y𝑁0 ◦ 𝑝Λ+a+` ( 𝑗 ⊗ 𝑒𝑁0) (14.5)

is a bijective endomorphism of 𝐶−∞(𝐺/�̄� : 𝜎 : a)𝜒 . By Corollary 14.5 this implies
the existence of a unique linear automorphism 𝑏a of 𝐻−∞

𝜎,𝜒𝑃
such that

𝜓` ( 𝑗 (�̄�, 𝜎, a)) = 𝑗 (�̄�, 𝜎, a) ◦ 𝑏a .

Since 𝑞(a) ≠ 0 it follows from (12.17) that 𝑝Λ+`+a = 𝑞(a)−1𝑍�̄�,`(a) on 𝐶−∞(𝐺/�̄� : 𝜎 :
a) ⊗ 𝐹. If we combine this with (14.5) and Proposition 12.10 we find that

𝜓` ( 𝑗 (�̄�, 𝜎, a)) = 𝑗 (�̄�, 𝜎, a) ◦ [𝑞(a)−1𝑀` (a)],

for Σ(𝔫𝑃, 𝔞𝑃)-generic a. By uniqueness, this implies 𝑞(a)−1𝑀` (a) = 𝑏a for Σ(𝔫𝑃, 𝔞𝑃)-
generic a.We conclude that det𝑀` (a) ≠ 0 for a outside ∪H . 2

Corollary 14.7 There exists a polynomial function 𝑝 : 𝔞∗
𝑃C

→ C which is a finite
product of linear factors of the form 〈𝛼 , · 〉 − 𝑐, with 𝛼 ∈ Σ(𝔫𝑃, 𝔞𝑃) and 𝑐 ∈ C such
that 𝑝𝑅` (𝜎, · ) is a polynomial End(𝐻−∞

𝜎,𝜒𝑃
)-valued map.

Proof. Let 𝑝 = det𝑀`, then by Lemma 14.6 the function 𝑝 has the required form.
By application of Cramer’s rule the result now follows from the formula 𝑅` (𝜎, a) =
𝑀` (a)−1𝑚`, given at the end of the proof of Theorem 12.4 just before Proposition
12.10. 2

Theorem 14.8 For every 𝑅 ≤ 0 there exist constants 𝐶 > 0, 𝑁 ∈ N and 𝑟 ∈ N such
that for all [ ∈ 𝐻−∞

𝜎,𝜒𝑃
and a ∈ 𝔞∗

𝑃C
(𝑃, 𝑅) we have 𝑗 (�̄�, 𝜎, a)[ ∈ 𝐶−𝑟 (𝐾/𝐾𝑃 : 𝜎) and

‖ 𝑗 (�̄�, 𝜎, a)[‖−𝑟 ≤ 𝐶 (1 + |a |)𝑁 ‖[‖.

Proof. We agree to write 𝑗 (a, [) = 𝑗 (�̄�, 𝜎, a)[. Following the induction in the proof
of Theorem 14.1 one sees that its assertion is valid with 𝑝 = 𝑝𝑅 a polynomial function
𝔞∗
𝑃C

→ C which is a finite product of linear factors of the form 𝑙𝛼,𝑐 : a ↦→ 〈a , 𝛼〉 − 𝑐
with 𝛼 ∈ Σ(𝔫𝑃, 𝔞𝑃) and 𝑐 ∈ C. From the mentioned theorem we know that there exist
constants 𝐶′ > 0 and 𝑠, 𝑁 ∈ N such that for all [ ∈ 𝐻−∞

𝜎,𝜒𝑃
and all a ∈ 𝔞∗

𝑃C
(𝑃, 𝑅) we

have that a ↦→ 𝑝(a) 𝑗 (a, [) is holomorphic on 𝔞∗
𝑃C
(𝑃, 0) with values in 𝐶−𝑠 (𝑘/𝐾𝑃 : 𝜎)

and satisfies the estimate

‖𝑝(a) 𝑗 (a, [)‖−𝑠 ≤ 𝐶′(1 + |a |)𝑁 ‖[‖. (14.6)

Let 𝑙 : 𝔞∗
𝑃C

→ C, a ↦→ 〈a , 𝛼〉 − 𝑐 be a linear polynomial dividing 𝑝. Then it suffices
to prove the assertion and estimate of the above type with 8𝑝 = 𝑝/𝑙 in place of 𝑝 and
2𝑁+1𝐶′ in place of 𝐶′.
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Put b = 𝛼/|𝛼 | and let 𝐻 = 𝑙−1(0). Then 𝜑 : 𝐻 × C → 𝔞∗
𝑃C
, (a0, 𝑧) ↦→ a0 + 𝑧b

is an affine isomorphism such that 𝑙 ◦ 𝜑(a0, 𝑧) = 𝑧. Then clearly, (a0, 𝑧) ↦→ 8𝑝(a0 +
𝑧b) 𝑗 (a0 + 𝑧b, [) is holomorphic on 𝐻 ×C \ {0}. Furthermore, for a in the complement
of 𝜑(𝐻 × 𝐷 (0, 12 )) we have the estimate (14.6) with

8𝑝 in place of 𝑝 and 2𝐶′ in place
of 𝐶′.
Let now (a0, 𝑧) ∈ 𝐻 × 𝐷 (0, 12 ). Then by the Cauchy integral formula we have

8𝑝(a0 + 𝑧b) 𝑗 (a0 + 𝑧b, [) =
1
2𝜋𝑖

∫
|𝑤 |=1

8𝑝(a0 + 𝑤b) 𝑗 (a0 + 𝑤b, [)
(𝑤 − 𝑧) 𝑑𝑤

=
1
2𝜋𝑖

∫
|𝑤 |=1

𝑝(a0 + 𝑤b) 𝑗 (a0 + 𝑤b, [)
𝑤(𝑤 − 𝑧) 𝑑𝑤.

The formula holds a priori as an integral formula of𝐶−∞(𝐾/𝐾𝑃 : 𝜎)-valued functions.
However, as the integrand has values in𝐶−𝑠 (𝐾/𝐾𝑃 : 𝜎), it readily follows that 8𝑝 𝑗 ( · , [)
is 𝐶−𝑠 (𝐾/𝐾𝑃 : 𝜎)-valued. Furthermore, by a straightforward estimation we obtain:

‖8𝑝(a0 + 𝑧b) 𝑗 (a0 + 𝑧b, [)‖−𝑠 ≤ sup
|𝑤 |=1

𝐶′(1 + |a0 + 𝑤b |)𝑁
|𝑤 | − |𝑧 | ≤ 2𝐶′(2 + |a0 |)𝑁

≤ 2𝑁+1𝐶′(1 + |a0 + 𝑧b |)𝑁 .
2

The above estimates give rise to the following uniformly moderate estimates for
matrix coefficients of Whittaker vectors with smooth vectors.

Theorem 14.9 Let 𝑅 ∈ R. Then there exist constants 𝑁 ∈ N, 𝑟, 𝑠 > 0 and a continuous
seminorm 𝑛 on 𝐶∞(𝐾/𝐾𝑃 : 𝜎) such that for all 𝑓 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎), all [ ∈ 𝐻∞,𝜒

𝜎 ,
a ∈ 𝔞∗

𝑃C
(𝑃, 𝑅) and 𝑥 ∈ 𝐺,

|〈 𝑓 , 𝜋�̄�,𝜎,a (𝑥) 𝑗 (�̄�, 𝜎, a, [)〉| ≤ (1 + |a |)𝑁𝑒𝑠 |Re a | |𝐻 (𝑥) |𝑒𝑟 |𝐻 (𝑥) |𝑛( 𝑓 ).
We prepare for the proof with a few lemmas.

Lemma 14.10 There exists a constant 𝑠 > 0 such that for all 𝑔 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎),
a ∈ 𝔞∗

𝑃C
and 𝑎 ∈ 𝐴,

‖𝜋�̄�,𝜎,a (𝑎−1)𝑔‖0 ≤ 𝑒𝑠( |Re a |+|𝜌𝑃 |) | log 𝑎 | ‖𝑔‖0.
Proof. The constant 𝑠 is built in to make the assertion independent of the choice of
norms on 𝔞 and 𝔞∗. Here we will need that |a(𝐻) | ≤ 𝑠 |a | |𝐻 | for a ∈ 𝔞∗

𝑃
and 𝐻 ∈ 𝔞.

Define 𝑔a : 𝐺 → 𝐻𝜎 by

𝑔a (𝑘𝑚𝑎𝑃�̄�) = 𝑎−a+𝜌𝑃𝑃
𝜎(𝑚−1)𝑔(𝑘)

for (𝑘, 𝑚, 𝑎𝑃, �̄�) ∈ 𝐾 × 𝑀𝑃 × 𝐴𝑃 × �̄�𝑃 . Then for 𝑘 ∈ 𝐾 we have [𝜋�̄�,𝜎,a (𝑎−1)𝑔] (𝑘) =
𝑔a (𝑎𝑘) from which it follows that

‖ [𝜋�̄�,𝜎,a (𝑎−1)𝑔] (𝑘)‖𝜎 ≤ 𝑒(−Re a+𝜌𝑃) (𝐻�̄� (𝑎𝑘)) ‖𝑔(^�̄� (𝑎𝑘))‖𝜎
≤ 𝑒𝑠 |Re a−𝜌𝑃 | |𝐻�̄� (𝑎𝑘) | ‖𝑔‖0.

Since |𝐻�̄� (𝑎𝑘) | ≤ | log 𝑎 | the required estimate follows. 2
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Lemma 14.11 Let 𝑢 ∈ 𝑈 (𝔤). Then there exist constants 𝑁 ∈ N, 𝑟 > 0 and 𝑡 ∈ N such
that for all 𝑓 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎), a ∈ 𝔞∗

𝑃C
and 𝑎 ∈ 𝐴,

‖𝜋�̄�,𝜎,a (𝑢)𝜋�̄�,𝜎,a (𝑎−1) 𝑓 ‖0 ≤ (1 + |a |)𝑁𝑒𝑠 |Re a | | log 𝑎 |𝑒𝑟 | log 𝑎 | ‖ 𝑓 ‖𝑡 .

Proof. In view of the PBW theorem we may assume that 𝔞 acts via the adjoint action
by a weight b on 𝑢. Accordingly we have, for 𝑎 ∈ 𝐴,

‖𝜋�̄�,𝜎,a (𝑢)𝜋�̄�,𝜎,a (𝑎−1) 𝑓 ‖0 ≤ 𝑎b |𝜋�̄�,𝜎,a (𝑎−1)𝜋�̄�,𝜎,a (𝑢) 𝑓 ‖0
≤ 𝑒𝑠( |Re a |+|𝜌𝑃 |) | log 𝑎 |𝑒b (log 𝑎) ‖𝜋�̄�,𝜎,a (𝑢) 𝑓 ‖0

by application of the previous lemma. The proof is finished by application of Lemma
12.2. 2

Completion of the proof of Theorem 14.9. It is clear that it suffices to prove the estimate
for 𝑥 = 𝑎 ∈ 𝐴. By Theorem 14.8 there exists a constant 𝑁 > 0 and a finite collection
𝐹 ⊂ 𝑈 (𝔤) such that for all 𝑓 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎), all a ∈ 𝔞∗

𝑃C
(𝑃, 𝑅) and all 𝑎 ∈ 𝐴,

|〈 𝑓 , 𝜋�̄�,𝜎,a (𝑎) 𝑗 (�̄�, 𝜎, a, [)〉| ≤ (1 + |a |)𝑁 ‖[‖max
𝑢∈𝐹

‖𝜋�̄�,𝜎,a (𝑢)𝜋�̄�,𝜎,a (𝑎−1) 𝑓 ‖0.

The proof is now readily completed by application of Lemma 14.11. 2

15 Uniformly tempered estimates
The purpose of this section is to obtain uniformly tempered estimates for holomorphic
families of Whittaker functions satisfying requirements of moderate growth.
Let 𝑃 be a standard parabolic subgroup of 𝐺 and (𝜎, 𝐻𝜎) a representation of the

discrete series of 𝑀𝑃 . For Y > 0 we put

𝔞∗𝑃C(Y) = {a ∈ 𝔞∗𝑃C | |Re (a) | < Y}.

Definition 15.1 By a holomorphic family of Whittaker maps associated with (𝑃, 𝜎)
and Y0 > 0 we mean a family of maps

wha : 𝐶∞(𝐾/𝐾𝑃 : 𝜎) → 𝐶∞(𝐺/𝑁0 : 𝜒), (a ∈ 𝔞∗𝑃C(Y0)), (15.1)

given by the matrix coefficient formula

wha ( 𝑓 ) (𝑥) = 〈𝜋�̄�,𝜎,−a (𝑥)−1 𝑓 , 𝑗ā〉 (15.2)

with 𝑗ā ∈ 𝐶−∞(�̄� : 𝜎 : ā)𝜒, (a ∈ 𝔞∗
𝑃C
(Y0)), such that a ↦→ 𝑗a is holomorphic as a

𝐶−∞(𝐾/𝐾𝑃 : 𝜎)-valued function.

Remark 15.2 Let (wha)a∈𝔞∗
𝑃C

(Y0) be a holomorphic family ofWhittakermaps as above.
We note that the following assertions are valid.
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(a) The map (a, 𝑓 ) ↦→ wha ( 𝑓 ), 𝔞∗𝑃C(Y0) × 𝐶∞(𝐾/𝐾𝑃 : 𝜎) → 𝐶∞(𝐺/𝑁0 : 𝜒) is
continuous and holomorphic in the variable a.

(b) For each a ∈ 𝔞∗
𝑃C
(Y0) the map (15.1) intertwines the generalized principal series

𝜋�̄�,𝜎,−a with the left regular representation 𝐿.

Remark 15.3 It follows from Theorem 14.4 that for any Y0 > 0 and all b ∈ 𝐻−∞
𝜎,𝜒𝑃

the
family (wha)a∈𝔞∗

𝑃C
(Y0) of maps 𝐻∞

𝜎 → 𝐶∞(𝐺/𝑁0 : 𝜒) defined by

wha ( 𝑓 ) (𝑥) = 〈𝜋�̄�,𝜎,−a (𝑥)−1 𝑓 , 𝑗 (�̄�, 𝜎, ā, b)〉

is a holomorphic family of Whittaker maps associated with (𝑃, 𝜎). Furthermore, by
Theorem 14.9 it satisfies the condition of uniform moderate growth mentioned below.

To keep notation manageable, we will write

𝐼∞𝑃,𝜎 := 𝐶
∞(𝐾/𝐾𝑃 : 𝜎). (15.3)

Furthermore, we will use the notation

| (a, 𝑎) | := (1 + |a |) (1 + | log 𝑎 |),

for 𝑎 ∈ 𝐴 and a ∈ 𝔞∗
𝑃C
.

Definition 15.4 AWhittaker family (wha) as in Definition 15.1 is said to have uniform
moderate growth if there exist constants 𝑟, 𝑠, 𝑁 > 0 and a continuous seminorm 𝑛 on
𝐼∞
𝑃,𝜎
such that

|wha ( 𝑓 ) (𝑎) | ≤ |(a, 𝑎) |𝑁𝑒𝑠 |Re a | | log 𝑎 |𝑒𝑟 | log 𝑎 |𝑛( 𝑓 ) (15.4)
for all 𝑓 ∈ 𝐼∞

𝑃,𝜎
, a ∈ 𝔞∗

𝑃C
(Y0) and 𝑎 ∈ 𝐴.

If we combine the estimate (15.4) with Lemma 2.5, then we see that for any linear
functional b ∈ 𝔞∗ with b ≥ 𝑟 | · | on 𝔞+ we may adapt the continuous seminorm 𝑛 so
that for all 𝑓 ∈ 𝐼∞

𝑃,𝜎
we have

|wha ( 𝑓 ) (𝑎) | ≤ |(a, 𝑎) |𝑁𝑒𝑠 |Re a | | log 𝑎 |𝑎b𝑛( 𝑓 ) (15.5)

for all 𝑎 ∈ 𝐴 and a ∈ 𝔞∗
𝑃C
(Y0).We fix such a choice of b and observe that in particular

b ≥ −𝜌 on 𝔞+.
The above estimate can be improved to amuch sharper estimate of uniform tempered

growth for Y0 > 0 taken sufficiently small. More precisely, we have the following result.

Theorem 15.5 Let 𝐺 = ◦𝐺, and let (wha)a∈𝔞∗
𝑃C

(Y0) be a holomorphic family of Whit-
taker maps as in Definition 15.1. Assume the family satisfies the condition of uniform
moderate growth formulated in (15.4). Then for Y > 0 sufficiently small there exist
constants 𝑠 > 0, 𝑁 > 0 and a continuous seminorm 𝑛 on 𝐼∞

𝑃,𝜎
such that for all 𝑓 ∈ 𝐼∞

𝑃,𝜎
,

all a ∈ 𝔞∗
𝑃C
(Y) and all 𝑎 ∈ 𝐴,

|wha ( 𝑓 ) (𝑎) | ≤ |(a, 𝑎) |𝑁𝑒𝑠 |Re a | | log 𝑎 |𝑎−𝜌𝑛( 𝑓 ). (15.6)
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Before turning to its proof, we first formulate a useful consequence of the above
result.

Corollary 15.6 Let hypotheses be as in Theorem 15.5 and let Y > 0 be such that the
conclusions of the theorem are valid.

Let 𝑢 ∈ 𝑈 (𝔤). Then there exist 𝑠 > 0, 𝑁 > 0 and a continuous seminorm 𝑛 on 𝐼∞
𝑃,𝜎

such that for all 𝑓 ∈ 𝐼∞
𝑃,𝜎

, all a ∈ 𝔞∗
𝑃C
(Y) and all 𝑥 ∈ 𝐺,

|𝐿𝑢 [wha ( 𝑓 )] (𝑥) | ≤ (1 + |a |)𝑁 (1 + |𝐻 (𝑥) |)𝑁𝑒𝑠 |Re a | |𝐻 (𝑥) |𝑒−𝜌𝐻 (𝑥)𝑛( 𝑓 ). (15.7)

Proof. In view of Remark 15.2 (b) and since 𝜋∞
�̄�,𝜎,−a (𝑢) acts continuously on 𝐼

∞
𝑃,𝜎
, with

polynomial dependence on a, the estimate (15.6) gives rise to an estimate

|𝐿𝑢 [wha ( 𝑓 )] (𝑎) | ≤ |(a, 𝑎) |𝑁𝑒𝑠 |Re a | | log 𝑎 |𝑎−𝜌𝑛( 𝑓 ), (15.8)

for all 𝑓 ∈ 𝐼∞
𝑃,𝜎
, all a ∈ 𝔞∗

𝑃C
(Y) and all 𝑎 ∈ 𝐴, provided 𝑁 and 𝑛 are suitably enlarged.

For a given finite subset 𝑆 ⊂ 𝑈 (𝔤) we may enlarge 𝑁 and 𝑛 further to arrange that
the estimate (15.8) is valid for all 𝑢 ∈ 𝑆 and all 𝑓 , a, 𝑎 as before.
For 𝑘 ∈ 𝐾, 𝑎 ∈ 𝐴 and 𝑛 ∈ 𝑁0 we have

|𝐿𝑢 (wha ( 𝑓 )) (𝑘𝑎𝑛) | = |𝐿𝑘−1𝐿𝑢 (wha ( 𝑓 )) (𝑎) | = |𝐿Ad(𝑘−1)𝑢wha (𝐿𝑘−1 𝑓 ) (𝑎) |.

We may write Ad(𝑘−1)𝑢 =
∑
𝑖 𝑐𝑖 (𝑘)𝑢𝑖 with 𝑆 = {𝑢𝑖} a finite subset of 𝑈 (𝔤) and such

that 𝑐𝑖 : 𝐾 → C are functions with sup-norm bounded by 𝐶 > 0.
We may enlarge 𝑁 and 𝑛 so that the estimate (15.8) is valid with 𝑢 replaced by any

element of 𝑆 and for all 𝑓 , a, 𝑎. There exist a continuous seminorm 𝑛′ on 𝐼∞
𝑃,𝜎
such that

𝑛 ◦ 𝐿𝑘 ≤ 𝑛′ for all 𝑘 ∈ 𝐾. From the last estimate mentioned above we now readily infer
that for all 𝑓 ∈ 𝐼∞

𝑃,𝜎
, all a ∈ 𝔞∗

𝑃C
(Y) and all (𝑘, 𝑎, 𝑛) ∈ 𝐾 × 𝐴 × 𝑁0,

|𝐿𝑢 (wha ( 𝑓 )) (𝑘𝑎𝑛) | ≤ |(a, 𝑎) |𝑁𝑒𝑠 |Re a | | log 𝑎 |𝑒−𝜌 log 𝑎 𝐶 |𝑆 |𝑛′( 𝑓 ).

Enlarging 𝑁 and 𝑛 once more, we obtain the required estimate (15.7). 2

In the proof of Theorem 15.5 the following terminology will be useful.

Definition 15.7 We will say that a functional b ∈ 𝔞∗ dominates the given Whittaker
family (wha) if there exist Y > 0, 𝑠 > 0, 𝑁 > 0 and 𝑛 as above such that the estimate
(15.5) is valid for all 𝑓 ∈ 𝐼∞

𝑃,𝜎
, a ∈ 𝔞∗

𝑃C
(Y) and 𝑎 ∈ 𝐴.

Proof of Theorem 15.5. Clearly it is sufficient to prove that −𝜌 dominates the
Whittaker family (wha).Wewill achieve this by improving b in a finite number of steps,
each step corresponding to a simple root 𝛼 ∈ Δ, by using the asymptotic behavior of
wha ( 𝑓 ) along standard maximal parabolic subgroups.
Since ◦𝐺 = 𝐺, the collection Δ of simple roots in Σ+ is a basis of 𝔞∗. Let (ℎ𝛼)𝛼∈Δ

be the dual basis in 𝔞. We will now establish an improvement step for each 𝛼 ∈ Δ.
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Put Φ = Δ \ {𝛼}. Then 𝑃Φ is a maximal parabolic subgroup with split component
𝐴Φ = exp(Rℎ𝛼).
We define the partial ordering � on 𝔞∗ by

_ � ` ⇐⇒ _(𝐻) ≤ `(𝐻) for all 𝐻 ∈ 𝔞+. (15.9)

The condition on the right is equivalent to _(ℎ𝛼) ≤ `(ℎ𝛼) for all 𝛼 ∈ Δ.

Given b ∈ 𝔞∗ we write 𝑖𝛼 (b) for the element in b + R𝛼 satisfying 𝑖𝛼 (b) (ℎ𝛼) =

−𝜌(ℎ𝛼). Equivalently, 𝑖𝛼 (b) ∈ 𝔞∗ is determined by

𝑖𝛼 (b) (ℎ𝛽) =
{
b (ℎ𝛽) for 𝛽 ∈ Δ \ {𝛼};
−𝜌(ℎ𝛼) for 𝛽 = 𝛼.

Lemma 15.8 If b � −𝜌, then for every simple root 𝛼 ∈ Δ it holds that 𝑖𝛼 (b) � −𝜌.

Proof. This is straightforward. 2

Lemma 15.9 (Improvement step) Suppose that b ∈ 𝔞∗ dominates the Whittaker
family (wha) and satisfies b � −𝜌. Let 𝛼 ∈ Δ.

(a) If b (ℎ𝛼) − 1 ≥ −𝜌(ℎ𝛼) then for every 𝑐 ∈ [0, 1), the functional b′ := b − 𝑐𝛼
dominates (wha) and satisfies b′ � −𝜌.

(b) If b (ℎ𝛼) − 1 < −𝜌(ℎ𝛼), then 𝑖𝛼 (b) dominates (wha) and satisfies 𝑖𝛼 (b) � −𝜌.

The rest of this section will be dedicated to establishing this lemma. Before turning to
the proof of the lemma we will show how Theorem 15.5 can be deduced from it.

Completion of the proof of Theorem 15.5. Let 𝛼 ∈ Δ and assume that b ∈ 𝔞∗

dominates (wha) and satisfies b � −𝜌. Then b (ℎ𝛼) ≥ −𝜌(ℎ𝛼). Let 𝑘 be the smallest
natural number such that b (ℎ𝛼) − 𝑘 < −𝜌(ℎ𝛼). Then there exists a 𝑐 ∈ [0, 1) such that
b (ℎ𝛼) − 𝑘𝑐 = −𝜌(ℎ𝛼). By applying (a) of the above lemma 𝑘-times successively, we
find that b′′ := b − 𝑘𝑐𝛼 dominates (wha), while b′′ � −𝜌. Since b′′(ℎ𝛼) − 1 < −𝜌(ℎ𝛼),
we may apply (b) of the above lemma to conclude that 𝑖𝛼 (b′′) dominates (wha) and
satisfies 𝑖𝛼 (b′′) � −𝜌 Since 𝑖𝛼 (b′′) = 𝑖𝜎 (b), we conclude that 𝑖𝛼 (b) dominates (wha)
and satisfies 𝑖𝛼 (b) � −𝜌.
Let now 𝛼1, . . . , 𝛼𝑟 be a numbering of the simple roots from Δ. Then by the above

reasoning it follows that b′′′ := 𝑖𝛼𝑟 ◦ · · · ◦ 𝑖𝛼1 (b) dominates (wha) while b′′′ � −𝜌.
Since (ℎ𝛼)𝛼∈Δ is the basis of 𝔞 dual to Δ, it is readily verified that b′′′ = −𝜌. 2

Start of proof of Lemma 15.9. We assume that (wha)a∈𝔞∗
𝑃C

(Y) is a Whittaker family
associatedwith (𝑃, 𝜎)which is dominated by b ∈ 𝔞∗.Moreoverwe assume that b � −𝜌.
We fix a simple root 𝛼 ∈ Δ and put Φ := Δ \ {𝛼}. Our goal is to establish the two
assertions (a) and (b) of Lemma 15.9. For this we will need a proper exploitation of
the differential equations satisfied by the given Whittaker family.
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For 𝑋 ∈ 𝔤C we denote by �̄� the complex conjugate of 𝑋 relative to the real form 𝔤.

Let𝑈 (𝔤) denote the universal enveloping algebra of 𝔤C. The map 𝑋 ↦→ �̄� has a unique
extension to a conjugate linear algebra isomorphism 𝑈 (𝔤) → 𝑈 (𝔤), which is denoted
by 𝑢 ↦→ �̄�. In particular, this means that 𝑢𝑣 = �̄��̄� for 𝑢, 𝑣 ∈ 𝑈 (𝔤).
For 𝑋 ∈ 𝔤 we have

𝑅𝑋 [wha ( 𝑓 )] (𝑥) = 〈𝜋(𝑥−1) 𝑓 , 𝜋�̄�,𝜎,ā ( �̄�) 𝑗ā〉, (15.10)

for 𝑓 ∈ 𝐼∞
𝑃,𝜎
, a ∈ 𝔞∗

𝑃C
(Y) and 𝑥 ∈ 𝐺. By complex linearity (15.10) is valid for all

𝑋 ∈ 𝔤C, which leads to the similar formula with 𝑋 replaced by a general element of
𝑈 (𝔤). Let 𝔱 be a maximal torus in 𝔪1; then

𝔥 := 𝔱 ⊕ 𝔞

is a Cartan subalgebra of 𝔤.We put 𝔥∗R := 𝑖𝔱∗ ⊕ 𝔞∗. Then 𝔥∗R is the real span of the roots
of 𝔥C in 𝔤C. Let 𝛾 : ℨ → 𝑃(𝔥)𝑊 (𝔥) be the Harish-Chandra isomorphism for (𝐺, 𝔥)
and let 𝛾𝑀1𝑃 : ℨ(𝑀1𝑃) → 𝑆(𝔥)𝑊𝑃 (𝔥) be the similar isomorphism for (𝑀1𝑃, 𝔥). Let
Λ𝜎 ∈ 𝔥∗C ∩ 𝔪∗

𝑃C
be an infinitesimal character for the representation 𝜎 of the discrete

series of 𝑀𝑃, by which we mean that 𝛾1𝑃 ( · ,Λ𝜎) is the character of ℨ(𝑀𝑃) by which
it acts on 𝐻∞

𝜎 .We note that Λ𝜎 belongs to the real span of the roots of (𝔪1𝑃, 𝔥), hence
to 𝑖𝔱∗ ⊕ ∗𝔞∗

𝑃
. Applying formula (15.10) with 𝑍 ∈ ℨ in place of 𝑋, we find that

𝑅𝑍 [wha ( 𝑓 )] = 𝛾(�̄� ,Λ𝜎 + ā) wha ( 𝑓 ) = 𝛾(𝑍,−Λ𝜎 + a) wha ( 𝑓 ), (15.11)

for all 𝑍 ∈ ℨ. Following an idea similar to the one in Section 4, but with dependence
on parameters, we will exploit this system to establish the improvement step of Lemma
15.9.
The standard parabolic subgroup 𝑃Φ has split component 𝐴Φ := exp 𝔞Φ = expRℎ𝛼 .

We agree to write 8𝔞Φ for the real linear span of the elements ℎ𝛽 with 𝛽 ∈ Φ and,
accordingly, 8𝐴Φ = exp(8𝔞Φ). We note that 𝔞 = 8𝔞Φ ⊕ 𝔞Φ and 𝐴 = 8𝐴Φ𝐴Φ, see also
(2.10).
We denote by ℨ1Φ = ℨ𝔪1Φ the center of 𝑈 (𝔪1Φ). In view of the PBW theorem

we have 𝑈 (𝔤) = 𝑈 (𝔪1Φ) ⊕ (�̄�Φ𝑈 (𝔤) +𝑈 (𝔤)𝔫Φ). The associated projection 𝑈 (𝔤) →
𝑈 (𝔪1Φ), restricted to ℨ, defines an algebra homomorphism

𝑝 : ℨ → ℨ1Φ.

It is well known that 𝑝 is injective and that ℨ1Φ is a free 𝑝(ℨ)-module of finite rank.
Let 𝑢1, . . . , 𝑢ℓ be a free basis of this module, and let 𝐸Φ the complex linear span of this
basis. Then it follows that

ℨ1Φ = 𝐸Φ𝑝(ℨ).
Moreover, the map (𝑢, 𝑍) ↦→ 𝑢𝑝(𝑍) induces a linear isomorphism 𝐸Φ ⊗ ℨ ' ℨ1Φ.
In the formulation of the following lemma, 𝔥 is a \-stable Cartan subalgebra of 𝔤
containing 𝔞. Thus, 𝔥 = 𝔱 ⊕ 𝔞 with 𝔱 a maximal torus in 𝔪.
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Lemma 15.10 If 𝐼 is a cofinite ideal of ℨ, then 𝐼Φ := 𝐸Φ𝑝(𝐼) is a cofinite ideal in
ℨ1Φ. Furthermore, if _Φ ∈ 𝔥∗C is an infinitesimal character for ℨ1Φ appearing in the
quotient module ℨ1Φ/𝐼Φ, then there exists an infinitesimal character _ ∈ 𝔥∗C for the
ℨ-module ℨ/𝐼 such that

_Φ ∈ 𝑊 (𝔥)_ − 𝜌Φ. (15.12)

Proof. Let 𝑢 ∈ 𝐸Φ and𝑊 ∈ ℨ1Φ then𝑊𝑢 =
∑
𝑗 𝑢 𝑗 𝑝(𝑍 𝑗 ) with 𝑍 𝑗 ∈ ℨ. It follows that

𝑊𝑢𝑝(𝐼) ⊂ ∑
𝑗 𝑢 𝑗 𝑝(𝑍 𝑗 )𝑝(𝐼) =

∑
𝑗 𝑢 𝑗 𝑝(𝑍 𝑗 𝐼) ⊂ 𝐸Φ𝑝(𝐼). This shows that 𝐸Φ𝑝(𝐼) is an

ideal. In view of the linear isomorphism 𝐸Φ ⊗ ℨ → ℨ1Φ we have ℨ1Φ/𝐸Φ𝑝(𝐼) =

𝐸Φ𝑝(𝑍)/𝑝(𝐼) as complex vector spaces. Since 𝑝(𝑍)/𝑝(𝐼) is finite dimensional, the
cofiniteness of 𝐼Φ follows.
Let b ∈ ℨ̂1Φ be a character appearing in ℨ1Φ/𝐼Φ. Then there exists a 𝑘 ∈ N and

an element 𝑣 ∈ ℨ1Φ \ 𝐼Φ such that (𝑊 − b (𝑊))𝑘𝑣 ∈ 𝐼Φ for all𝑊 ∈ ℨ1Φ. In particular
the latter is valid for𝑊 = 𝑝(𝑍), 𝑍 ∈ ℨ. Decompose 𝑣 =

∑
𝑢𝑖𝑝(𝑍𝑖) with 𝑍𝑖 ∈ ℨ. Then

it follows that [𝑝(𝑍) − b (𝑝(𝑍))]𝑘 𝑝(𝑍𝑖) ∈ 𝑝(𝐼) for all 𝑍 ∈ ℨ and all 1 ≤ 𝑖 ≤ ℓ. By
injectivity of 𝑝 this implies that

[𝑍 − b (𝑝(𝑍))]𝑘𝑍𝑖 ∈ 𝐼, (15.13)

for all 𝑍 ∈ ℨ and all 𝑖. On the other hand, 𝑣 ∉ 𝐼Φ implies that 𝑍𝑖 ∉ 𝐼 for at least one 𝑖.
Combining this with (15.13) we infer that the character b ◦ 𝑝 ∈ ℨ̂ appears in ℨ/𝐼 .
Let 𝛾 : ℨ → 𝑃(𝔥∗C)𝑊 (𝔥) and 𝛾1Φ : ℨ1𝜙 → 𝑃(𝔥∗C)𝑊1Φ (𝔥) denote the canonical

isomorphisms. Then it is well known that

𝛾1Φ ◦ 𝑝 = 𝑇𝜌Φ ◦ 𝛾,

where 𝑇𝜌Φ ∈ Aut(𝑃(𝔥∗C)) is the translation 𝑝 ↦→ 𝑝( · + 𝜌Φ).
Let _Φ be as stated. Then b = 𝛾1Φ( · , _Φ) is a character of ℨ1Φ which appears in

ℨ1Φ/𝐼Φ. It follows that b ◦ 𝑝 is a character of ℨ appearing in ℨ/𝐼 hence of the form
𝛾( · , _), with _ ∈ 𝔥∗C.We now conclude that for all 𝑍 ∈ ℨ we have

𝛾(𝑍, _Φ + 𝜌Φ) = 𝛾(𝑍, _).

This in turn implies that _Φ + 𝜌Φ ∈ 𝑊 (𝔥)_. 2

If 𝐼 C ℨ is cofinite, we denote by spec(ℨ/𝐼) the (finite) collection of infinitesimal
characters appearing in ℨ/𝐼 . Since 𝑈 (𝔞Φ) is a submodule of ℨ1Φ, the ℨ1Φ-module
ℨ1Φ/𝐸Φ𝑝(𝐼) is a𝑈 (𝔞Φ)-module as well.

Corollary 15.11 Let 𝐼 C ℨ be cofinite. Then the set of 𝔞Φ-weights in ℨ1Φ/𝐸Φ𝑝(𝐼) is
contained in

∪_∈spec(ℨ/𝐼)𝑊 (𝔥)_ |𝔞Φ − 𝜌Φ.

Proof. Apply Lemma 15.10. 2
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We now specialize to the ideal 𝐼a = ker 𝛾( · ,−Λ𝜎 + a) for a ∈ 𝔞∗
𝑃C
. Then

spec(ℨ/𝐼a) = 𝑊 (𝔥) (−Λ𝜎 + a).

Corollary 15.12 The inclusion map induces a linear isomorphism

𝐸Φ

'−→ ℨ1Φ/ℨ1Φ𝑝(𝐼a). (15.14)

The set wt(a) of (generalized) 𝔞Φ-weights in the displayed quotient equals

wt(a) = 𝑊 (𝔥) (−Λ𝜎 + a) |𝔞Φ − 𝜌Φ.

We write 𝐸Φ,a for the space 𝐸Φ equipped with the 𝔞Φ action for which the map
(15.14) becomes an isomorphism of 𝔞Φ modules. We agree to write 𝐵1(a) for the
linear map by which ℎ𝛼 acts on 𝐸Φ,a . There exist unique 𝑍 𝑘𝑗 ∈ ℨ such that

ℎ𝛼𝑢 𝑗 =

ℓ∑︁
𝑘=1

𝑢𝑘 𝑝(𝑍 𝑘𝑗 ), (1 ≤ 𝑗 ≤ ℓ). (15.15)

Since 𝑍 𝑘
𝑗
− 𝛾(𝑍 𝑘

𝑗
,−Λ𝜎 + a) ∈ 𝐼a it follows that, for all a ∈ 𝔞∗

𝑃C
,

𝐵1(a)𝑢 𝑗 ∈
∑︁
𝑘

𝛾(𝑍 𝑘𝑗 ,−Λ𝜎 + a)𝑢𝑘 + ℨ1Φ𝑝(𝐼a).

Therefore, the matrix of 𝐵1(a) relative to the basis 𝑢1, . . . , 𝑢ℓ of 𝐸Φ is given by

𝐵1(a)𝑘𝑗 = 𝛾(𝑍 𝑘𝑗 ,−Λ𝜎 + a). (15.16)

In particular, it follows that a ↦→ 𝐵1(a) is polynomial 𝔞∗𝑃C → End(𝐸Φ).
Let 𝐼𝜒 denote the left ideal in𝑈 (𝔤) generated by the elements𝑌 − 𝜒∗(𝑌 ) for𝑌 ∈ 𝔫0.

Let 𝐼𝜎,a denote the left ideal in𝑈 (𝔤) generated by the ideal 𝐼a.

Lemma 15.13 There exist elements 𝑣 𝑗 ∈ �̄�Φ𝑈 (�̄�0 +𝔪1) such that

ℎ𝛼𝑢 𝑗 − 𝐵1(a)𝑢 𝑗 − 𝑣 𝑗 ∈ 𝐼𝜒 + 𝐼𝜎,a, (1 ≤ 𝑗 ≤ ℓ).

Proof. Let 𝑍 𝑘
𝑗
∈ ℨ be as in (15.15). Now 𝑝(𝑍 𝑘

𝑗
)−𝑍 𝑘

𝑗
∈ �̄�Φ𝑈 (𝔤), and since 𝑢 𝑗 ∈ 𝑈 (𝔪1Φ)

it follows that also

𝑢𝑘 𝑝(𝑍 𝑘𝑗 ) − 𝑢𝑘𝑍 𝑘𝑗 ∈ �̄�Φ𝑈 (𝔤) = �̄�Φ𝑈 (�̄�0 +𝔪1)𝑈 (𝔫0).

We note that any𝑊 ∈ 𝑈 (𝔫0) equals 𝜒∗(𝑊) modulo 𝐼𝜒, hence

𝑢𝑘 𝑝(𝑍 𝑘𝑗 ) − 𝑢𝑘𝑍 𝑘𝑗 ∈ 𝑣𝑘𝑗 + 𝐼𝜒,

with 𝑣𝑘
𝑗
∈ �̄�Φ𝑈 (�̄�0 +𝔪1). It follows that for all a ∈ 𝔞∗

𝑃C
,

𝑢𝑘 𝑝(𝑍 𝑘𝑗 ) − 𝑢𝑘𝛾(𝑍 𝑘𝑗 ,−Λ𝜎 + a) − 𝑣𝑘𝑗 ∈ 𝐼𝜒 + 𝐼𝜎,a .

Summing the above over 𝑘 , putting 𝑣 𝑗 =
∑
𝑘 𝑣

𝑘
𝑗
and using (15.16) we obtain the desired

assertion. 2
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We proceed with the proof of the improvement step of Lemma 15.9. For 𝑓 ∈ 𝐼∞
𝑃,𝜎

and a ∈ 𝔞∗
𝑃C
(Y) we define the function 𝐹 ( 𝑓 , a) : 𝐴→ Cℓ by

𝐹 ( 𝑓 , a, 𝑎) 𝑗 := 〈𝜋−a (𝑎)−1 𝑓 , 𝜋ā (𝑢 𝑗 ) 𝑗ā〉,

where we briefly wrote 𝜋a for 𝜋�̄�,𝜎,a . We define the function 𝑅( 𝑓 , a) : 𝐴 → End(Cℓ)
by

𝑅( 𝑓 , a, 𝑎) 𝑗 := 〈𝜋−a (𝑎)−1 𝑓 , 𝜋ā (𝑣 𝑗 ) 𝑗ā〉.

Furthermore, let 𝐵(a) ∈ End(Cℓ) be the endomorphism with matrix equal to 𝐵1(ā)
T
.

For the following result we recall the decomposition 𝐴 = 8𝐴Φ𝐴Φ. It allows us to
decompose any element 𝑎 ∈ 𝐴 in a unique way as

𝑎 = 8𝑎𝑎𝑡 ,

with 8𝑎 ∈ 8𝐴Φ and with 𝑎𝑡 = exp 𝑡ℎ𝛼, (𝑡 ∈ R).

Lemma 15.14 The function 𝐹 introduced above satisfies the equation

𝑑

𝑑𝑡
𝐹 ( 𝑓 , a, 8𝑎𝑎𝑡) = 𝐵(a)𝐹 ( 𝑓 , a, 8𝑎𝑎𝑡) + 𝑅( 𝑓 , a, 8𝑎𝑎𝑡),

for every 𝑓 ∈ 𝐼∞
𝑃,𝜎

and all a ∈ 𝔞∗
𝑃C
(Y0), 8𝑎 ∈ 𝐴Φ and 𝑡 ∈ R.

Here 𝐵 is a polynomial function 𝔞∗
𝑃C

→ End(Cℓ). For every a ∈ 𝔞∗
𝑃C

the spectrum
of 𝐵(a) satsfies

spec(𝐵(a)) ⊂ {𝑤(−Λ𝜎 + a) (ℎ𝛼) − 𝜌(ℎ𝛼) | 𝑤 ∈ 𝑊 (𝔥)}, (a ∈ 𝔞∗𝑃C).

Proof. Noting that 𝐼𝜎,ā and 𝐼𝜒 vanish on 𝑗ā, we obtain that the functions 𝐹𝑗 introduced
above satisfy the equations

𝑑

𝑑𝑡
𝐹𝑗 ( 𝑓 , a, 8𝑎𝑎𝑡) = 〈𝜋−a (𝑎)−1 𝑓 , 𝜋ā (ℎ𝛼𝑢 𝑗 ) 𝑗ā〉

= 〈𝜋−a (𝑎)−1 𝑓 , 𝜋ā (𝐵1(ā)𝑢 𝑗 + 𝑣 𝑗 ) 𝑗ā〉,

for all 𝑓 ∈ 𝐼∞
𝑃,𝜎
, a ∈ 𝔞∗

𝑃C
(Y0), 8𝑎 ∈ 8𝐴Φ and 𝑡 ∈ R. This gives the required equation,

with 𝐵(a) as asserted. The spectrum of 𝐵(a) equals that of 𝐵1(ā) hence consists of
the elements

𝑤(−Λ𝜎 + ā) (ℎ𝛼) − 𝜌Φ(ℎ𝛼), (15.17)

for 𝑤 ∈ 𝑊 (𝔥). Since Λ𝜎 ∈ 𝔥∗R = 𝑖𝔱∗ ⊕ 𝔞∗ whereas𝑊 (𝔥) leaves 𝔥R invariant, it follows
that for each 𝑤 ∈ 𝑊 (𝔥) the value 𝑤(−Λ𝜎) (ℎ𝛼) = −Λ𝜎 (𝑤−1ℎ𝛼) is real. Likewise,
it follows that 𝑤ā(ℎ𝛼) = 𝑤a(ℎ𝛼). Finally, since 𝜌(ℎ𝛼) = 𝜌Φ(ℎ𝛼), it follows that the
element (15.17) equals 𝑤(−Λ𝜎 + a) (ℎ𝛼) − 𝜌(ℎ𝛼). 2
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By integration the equation of Lemma 15.14 leads to the equality

𝐹 ( 𝑓 , a, 8𝑎𝑎𝑡) = 𝑒𝑡𝐵(a)𝐹 (8𝑎) + 𝑒𝑡𝐵(a)
∫ 𝑡

0
𝑒−𝜏𝐵(a)𝑅( 𝑓 , a, 𝑎) 𝑑𝜏, (15.18)

for 𝑓 ∈ 𝐼∞
𝑃,𝜎
, a ∈ 𝔞∗

𝑃C
(Y0), 8𝑎 ∈ 𝐴Φ and 𝑡 ∈ R.We will first derive estimates for 𝐹 and

𝑅, following from the information that b ∈ 𝔞∗ dominates wh = (wha). This means that
there exist Y > 0, 𝑠 > 0, 𝑁 > 0 and a continuous seminorm 𝑛 on 𝐼∞

𝑃,𝜎
such that (15.5)

is valid for all 𝑓 ∈ 𝐼∞
𝑃,𝜎
, a ∈ 𝔞∗

𝑃C
(Y) and 𝑎 ∈ 𝐴.

Lemma 15.15 There exist Y > 0, 𝑠 > 0, 𝑁 > 0 and a continuous seminorm 𝑛 on 𝐼∞
𝑃,𝜎

such that
‖𝐹 ( 𝑓 , a, 𝑎)‖ ≤ |(a, 𝑎) |𝑁𝑒𝑠 |Re a | | log 𝑎 |𝑎b𝑛( 𝑓 ) (15.19)

for all 𝑓 ∈ 𝐼∞𝜎 , a ∈ 𝔞∗(Y) and 𝑎 ∈ 𝐴.

Proof. We take Y > 0 sufficiently small such that the estimate (15.5) is valid. Since

𝐹 ( 𝑓 , a, 𝑎) 𝑗 = 〈𝜋−a (𝑎)−1𝜋−a (�̄�∨𝑗 ) 𝑓 , 𝑗ā〉 = wha (𝜋−a (�̄�∨𝑗 ) 𝑓 ) (𝑎)

the estimate (15.19) follows from (15.5) with the same 𝑠 and possibly enlarged constant
𝑁 > 0 and enlarged seminorm 𝑛. 2

Remark 15.16 (structure of proof). Throughout the proof of Lemma 15.9 we will
prove assertions of the form

∃(Y, 𝑠, 𝑁, 𝑛) : 𝐴(Y, 𝑠, 𝑁, 𝑛) (15.20)

where 𝐴(Y, 𝑠, 𝑁, 𝑛) is an assertion (usually containing an estimate) depending on
positive constants Y, 𝑠, 𝑁 and a continuous seminorm 𝑛 on 𝐼∞

𝑃,𝜎
.Moreover, the assertion

has the property that for any (Y′, 𝑠′, 𝑁′, 𝑛′) with Y′ ≤ Y, 𝑠′ ≥ 𝑠, 𝑁′ ≥ 𝑁 and 𝑛′ ≥ 𝑛,

𝐴(Y, 𝑠, 𝑁, 𝑛) ⇒ 𝐴(Y′, 𝑠′, 𝑁′, 𝑛′). (15.21)

A typical assertion of this type is the assertion

∀( 𝑓 ∈ 𝐼∞𝑃,𝜎, a ∈ 𝔞∗𝑃C, 𝑎 ∈ 𝐴) : ‖𝐹 ( 𝑓 , a, 𝑎)‖ ≤ |(a, 𝑎) |𝑁𝑒𝑠 |Re a | | log 𝑎 |𝑎b𝑛( 𝑓 )

of Lemma 15.15. The proofs of assertions of this type will make use of finitely many
valid similar assertions∃(Y, 𝑠, 𝑁, 𝑛) : 𝐴𝑖 (Y, 𝑠, 𝑁, 𝑛), for 𝑖 ∈ 𝐼,with 𝐼 a finite index set. If
all 𝐴𝑖 have the property (15.21) then it follows that also ∃(Y, 𝑠, 𝑁, 𝑛) : ∧𝑖∈𝐼𝐴𝑖 (Y, 𝑠, 𝑁, 𝑛)
is valid. Indeed, if 𝐴𝑖 (Y𝑖, 𝑠𝑖, 𝑁𝑖, 𝑛𝑖) is true for every 𝑖 ∈ 𝐼, then 𝐴𝑖 (Y, 𝑠, 𝑁, 𝑛), for 𝑖 ∈ 𝐼,
are simultaneously valid as soon as Y ≤ min𝑖 Y𝑖, 𝑠 ≥ max𝑖 𝑠𝑖, 𝑁 ≥ max𝑖 𝑁𝑖 and
𝑛 ≥ max𝑖 𝑛𝑖 . In the proof we shall indicate this informally by saying that 𝐴𝑖 (Y, 𝑠, 𝑁, 𝑛)
are valid for sufficiently small Y and sufficiently large 𝑠, 𝑁 and 𝑛. A logical reasoning
will then give the validity of 𝐴(Y′, 𝑠′, 𝑁′, 𝑛′) for suitably chosen Y′, 𝑠′, 𝑁′, 𝑛′, which
finally allows the conclusion that (15.20) is valid.

110



Lemma 15.17 There exist Y > 0, 𝑠 > 0, 𝑁 > 0 and a continuous seminorm 𝑛 on 𝐼∞
𝑃,𝜎

such that
‖𝑅( 𝑓 , a, 𝑎)‖ ≤ |(a, 𝑎) |𝑁𝑒𝑠 |Re a | | log 𝑎 |𝑎b−𝛼𝑛( 𝑓 ) (15.22)

for all 𝑓 ∈ 𝐼∞
𝑃,𝜎

, a ∈ 𝔞∗
𝑃C
(Y) and 𝑎 ∈ 𝐴.

Proof. We recall that 𝑅( 𝑓 , a) is the Cℓ-valued function defined by

𝑅( 𝑓 , a, 𝑎) 𝑗 := 〈𝜋−a (𝑎)−1 𝑓 , 𝜋ā (𝑣 𝑗 ) 𝑗ā〉.

We will now derive the estimate for 𝑅 with the required properties of uniformity. For
this we note that 𝜋ā (𝑣 𝑗 ) 𝑗ā may be written as a finite sum of terms of the form 𝜋ā (𝑈) 𝑗ā,
with 𝑈 ∈ 𝑈 (�̄�Φ)𝑈 (�̄�0 +𝔪1) of 𝔞-weight −` ∈ −∑

𝛽∈ΔN𝛽 such that `(ℎ𝛼) ≥ 1. Each
corresponding term 𝑟 ( 𝑓 , a, 𝑎) in 𝑅( 𝑓 , a, 𝑎) 𝑗 may be rewritten as

𝑟 ( 𝑓 , a, 𝑎) = 〈𝜋−a (𝑈∗)𝜋−a (8𝑎𝑎𝑡)−1 𝑓 , 𝑗ā〉
= (8𝑎𝑎𝑡)−`〈𝜋−a (8𝑎𝑎𝑡)−1𝜋−a (𝑈∗) 𝑓 , 𝑗ā〉.

We note that the restriction of ` to 8𝔞Φ equals the restriction of `Φ :=
∑
𝛽∈Φ `𝛽𝛽 to

this space. For each 𝛽 ∈ Φ we may select a simple root vector 𝑋𝛽 ∈ 𝔤𝛽 such that
𝜒∗(𝑋𝛽) = 1. The product 𝑋 :=

∏
𝛽∈Φ 𝑋

`𝛽

𝛽
belongs to 𝑈 (𝔫0), satisfies 𝜒∗(𝑋) = 1 and

has 𝔞-weight `Φ. Therefore,

Ad(8𝑎𝑎𝑡)𝑋 = (8𝑎)`𝑋

and it follows that

𝑟 ( 𝑓 , a, 𝑎) = (8𝑎𝑎𝑡)−`〈𝜋−a (𝑋∗)𝜋−a (8𝑎𝑎𝑡)−1𝜋−a (𝑈∗) 𝑓 , 𝑗ā〉
= (𝑎𝑡)−`〈𝜋−a (8𝑎𝑎𝑡)−1𝜋−a (𝑋∗𝑈∗) 𝑓 , 𝑗ā〉
= (𝑎𝑡)−`wha (𝜋−a (𝑋∗𝑈∗) 𝑓 ) (8𝑎𝑎𝑡).

We now select Y, 𝑠, 𝑁 > 0 and 𝑛 a continuous seminorm on 𝐼∞
𝑃,𝜎
which make (15.5)

valid for 𝑓 , a, 𝑎 in the indicated sets. Then it follows that there exists a constant𝐶` > 0,
only depending on `, such that

|𝑟 ( 𝑓 , a, 𝑎) | ≤ 𝐶` (𝑎𝑡)` (8𝑎𝑎𝑡)b | (a, 𝑎) |𝑁𝑒𝑠 |Re a | | log(
8𝑎𝑎𝑡 ) |𝑛(𝜋−a (𝑋∗𝑈∗) 𝑓 )

≤ (8𝑎𝑎𝑡)b−𝛼 | (a, 𝑎) |𝑁𝑒𝑠 |Re a | | log(
8𝑎𝑎𝑡 ) |𝑛′( 𝑓 )

with 𝑛′ a seminorm on 𝐼∞
𝑃,𝜎
, independent of 𝑓 . Combining the above estimates and

enlarging 𝑛, 𝑁 if necessary, we find that

‖𝑅( 𝑓 , a, 𝑎)‖ ≤ |(a, 𝑎) |𝑁𝑒𝑠 |Re a | | log 𝑎 |𝑎b−𝛼𝑛( 𝑓 ),

for all 𝑓 ∈ 𝐼∞
𝑃,𝜎
, a ∈ 𝔞∗

𝑃C
(Y) and 𝑎 ∈ 𝐴. 2
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Our next goal is to show how this stronger estimate on the remainder term leads to
an improved estimate of 𝐹, hence ofwha ( 𝑓 ) = 𝐹1( 𝑓 , a). For this we need to decompose
the formula (15.18) into parts corresponding to the spectrum of 𝐵(a). In the course of
the argument we will impose finitely many conditions on the constant Y > 0, ensuring
it is sufficiently small.
Let us first analyze the spectrum of 𝐵(a), in particular its dependence on a. For

𝑤 ∈ 𝑊 (𝔥) we write 𝑥𝑤 = −𝑤(Λ𝜎) (ℎ𝛼) − 𝜌(ℎ𝛼) which is a real number as shown in the
proof of Lemma 15.14. For every a ∈ 𝔞∗

𝑃C
the spectrum of 𝐵(a) consists of complex

numbers of the form
𝑥𝑤 + 𝑤(a) (ℎ𝛼),

for 𝑤 ∈ 𝑊 (𝔥). Put
𝑋 := {𝑥𝑤 | 𝑤 ∈ 𝑊 (𝔥)}.

Let 𝛾 > 0 be a positive real number such that all distinct elements 𝑥1 and 𝑥2 of 𝑋 satisfy
|𝑥1 − 𝑥2 | > 2𝛾. Fix Y1 > 0 such that

Y1 <
1
2
𝛾 |ℎ𝛼 |−1.

In the course of this section we will always assume that 0 < Y ≤ Y1.
We note that 𝑊 (𝔥) preserves the subspace 𝔥R = 𝑖𝔱 + 𝔞 of 𝔥C. Let 𝑝𝔞 denote the

projection 𝔥R → 𝔞 along 𝑖𝔱. Then for all a ∈ 𝔞∗
𝑃C
(Y) and 𝑤 ∈ 𝑊 (𝔥) we have

|Re (𝑤a(ℎ𝛼)) | = |Re [a(𝑤−1(ℎ𝛼))] |
= |Re [a(𝑝𝔞(𝑤−1(ℎ𝛼)))] |
≤ |Re a | |𝑝𝔞(𝑤−1(ℎ𝛼)) | ≤ |Re a | |ℎ𝛼 |.

Likewise, for all a ∈ 𝔞∗
𝑃C
we have

|Im (𝑤a(ℎ𝛼)) | ≤ |Im a | |ℎ𝛼 |.

Given 𝑥 ∈ 𝑋 and 𝑤 ∈ 𝑊 (𝔥) such that 𝑥𝑤 = 𝑥 we thus see that for all a ∈ 𝔞∗
𝑃C
(Y) we

have
|Re (𝑥𝑤 + 𝑤a(ℎ𝛼)) − 𝑥 | ≤ |Re a | |ℎ𝛼 | < 𝛾/2, (15.23)

and
|Im (𝑥𝑤 + 𝑤a(ℎ𝛼)) | ≤ |Im (a) | |ℎ𝛼 |. (15.24)

For 𝑡 ∈ R and a ∈ 𝔞∗
𝑃C
we define

𝐶𝑡,a :=
𝛾

2
(1 + |𝑡 |)−1(1 + |a |)−1.

and the rectangle 𝑅(𝑡, a) ⊂ C to be the set of points 𝑧 ∈ C such that

|Re 𝑧 | ≤ |Re a | |ℎ𝛼) | + 𝐶𝑡,a, |Im 𝑧 | ≤ |Im a | |ℎ𝛼 | + 𝐶𝑡,a .
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Then it is readily seen that, for 𝑡 ∈ R and a ∈ 𝔞∗
𝑃C
(Y), 𝑅(𝑡, a) ⊂ [−𝛾, 𝛾] + 𝑖R, from

which it readily follows that the translated rectangles 𝑥 + 𝑅(𝑡, a) are mutually disjoint.
For a ∈ 𝔞∗

𝑃C
(Y) we define 𝑆(a) to be the rectangle of points with

|Re 𝑧 | ≤ |Re a | |ℎ𝛼) |, |Im 𝑧 | ≤ |Im a | |ℎ𝛼 |.

Then it is clear that 𝑆(a) is contained in the interior of 𝑅(𝑡, a) so that the translated
rectangles 𝑥 + 𝑆(a), (𝑥 ∈ 𝑋), are mutually disjoint as well. Furthermore, it follows
from the estimates (15.23) and (15.24) that

spec 𝐵(a) =
⋃
𝑥∈𝑋

spec 𝐵(a) ∩ [𝑥 + 𝑆(a)] . (15.25)

For 𝑥 ∈ 𝑋 and a ∈ 𝔞∗
𝑃C
(Y) we denote by 𝑃𝑥 (a) the spectral projection of 𝐵(a)

onto the sum of the generalized eigenspaces corresponding to the eigenvalues from
spec 𝐵(a) ∩ [𝑥 + 𝑆(a)] . Then 𝑃𝑥 is a holomorphic function on 𝔞∗𝑃C(Y) with values in
End(Cℓ).We note that

𝐼 =
∑︁
𝑥∈𝑋

𝑃𝑥 (a).

Lemma 15.18 There exists a 𝐶 > 0 such that for every 𝑥 ∈ 𝑋 , all 𝑡 ∈ R and
a ∈ 𝔞∗

𝑃C
(Y1),

‖𝑒𝑡𝐵(a)𝑃𝑥 (a)‖ ≤ 𝐶 (1 + |𝑡 |)𝑝 (1 + |a |)𝑝𝑒𝑥𝑡+|ℎ𝛼 | |Re a | |𝑡 | . (15.26)

Proof. Since for all 𝑡 ∈ R, a ∈ 𝔞∗
𝑃C
(Y1) we have that

spec 𝐵(a) ∩ (𝑥 + 𝑅(𝑡, a)) ⊂ 𝑥 + 𝑆(a) ⊂ int(𝑥 + 𝑅(𝑡, a)), (15.27)

it follows that

𝑃𝑥 (a)𝑒𝑡𝐵(a) =
1
2𝜋𝑖

∫
𝑥+𝜕𝑅(𝑡,a)

𝑒𝑡𝑧 (𝑧𝐼 − 𝐵(a))−1 𝑑𝑧.

We will complete the proof by estimation of the integral. First of all, the length of the
boundary of 𝑥 + 𝑅(𝑡, a) is estimated by

length(𝜕𝑅(𝑡, a)) ≤ 2Y |ℎ𝛼 | + 2|a | |ℎ𝛼 | + 4𝐶𝑡,a ≤ 3𝛾Y−1(1 + |a |). (15.28)

For 𝑧 ∈ 𝑥 + 𝜕𝑅𝑡,a we have

|𝑒−𝑡𝑥𝑒𝑡𝑧 | ≤ 𝑒 |𝑡 | |Re 𝑧−𝑥 | ≤ 𝑒 |𝑡 | |Re a | |ℎ𝛼 |+|𝑡 |𝐶𝑡 ,a ,

so that
|𝑒𝑡𝑧 | ≤ 𝑒𝑡𝑥𝑒 |𝑡 | |Re a | |ℎ𝛼 |𝑒𝛾/2. (15.29)
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If 𝑥, 𝑥′ ∈ 𝑋 then the distance from 𝑥 + 𝜕𝑅(𝑡, a) to 𝑥′+ 𝑆(a) is at least𝐶𝑡,a . From (15.25)
and (15.27) we now see that for 𝑧 ∈ 𝑥 + 𝜕𝑅𝑡,a the distance of 𝑧 to the spectrum of 𝐵(a)
is at least 𝐶𝑡,a so that

| det(𝑧𝐼 − 𝐵(a)) |−1 ≤ 𝐶−ℓ
𝑡,a ≤ (2/𝛾)ℓ (1 + |𝑡 |)ℓ (1 + |a |)ℓ .

In view of Cramer’s rule, there exists a constant 𝐶ℓ > 0 such that, for all 𝐴 ∈ GL(ℓ,C),

‖𝐴−1‖ ≤ 𝐶ℓ | det 𝐴|−1(1 + ‖𝐴‖)ℓ−1.

Applying this with 𝐴 = (𝑧𝐼 − 𝐵(a)) we see that for 𝑧 ∈ 𝑥 + 𝜕𝑅(𝑡, a),

‖(𝑧𝐼 − 𝐵(a))−1‖ ≤ 𝐶ℓ (2/𝛾)ℓ (1 + |𝑡 |)ℓ (1 + |a |)ℓ ( |𝑧 | + ‖𝐵(a)‖)ℓ−1.

As a ↦→ 𝐵(a) is polynomial in a, there exist constants 𝑁 ∈ N and 𝐶′ > 0 such that for
all 𝑡 ∈ R, a ∈ 𝔞∗

𝑃C
and 𝑧 ∈ 𝑥 + 𝜕𝑅(𝑡, a),

‖(𝑧𝐼 − 𝐵(a))−1‖ ≤ 𝐶′(1 + |𝑡 |)ℓ (1 + |a |)𝑁 . (15.30)

Combining the estimates (15.28), (15.29) and (15.30) we infer the existence of a
constant 𝐶 > 0 such that for all 𝑡 ∈ R and a ∈ 𝔞∗

𝑃C
(Y1) the estimate (15.26) is valid

with 𝑝 = max(ℓ, 𝑁 + 1). 2

We now decompose 𝐹 ( 𝑓 , a, 𝑎) and 𝑅( 𝑓 , a, 𝑎) into components

𝐹𝑥 ( 𝑓 , a, 𝑎) := 𝑃𝑥 (a)𝐹 ( 𝑓 , a, 𝑎), 𝑅𝑥 ( 𝑓 , a, 𝑎) = 𝑃𝑥 (a)𝑅( 𝑓 , a, 𝑎).

Then using (15.26) with 𝑡 = 0 we obtain, after decreasing Y > 0 and increasing 𝑁 and
𝑛 suitably,

‖𝐹𝑥 ( 𝑓 , a, 𝑎)‖ ≤ |(a, 𝑎) |𝑁𝑒𝑠 |Re a | | log 𝑎 |𝑎b𝑛( 𝑓 )
and

‖𝑅𝑥 ( 𝑓 , a, 𝑎)‖ ≤ |(a, 𝑎) |𝑁𝑒𝑠 |Re a | | log 𝑎 |𝑎b−𝛼𝑛( 𝑓 )
for all 𝑓 ∈ 𝐼∞

𝑃,𝜎
, a ∈ 𝔞∗

𝑃C
(Y), 𝑎 ∈ 𝐴.

We will now obtain sharper estimates for 𝐹𝑥 , for each 𝑥 ∈ 𝑋. Our main tool will be
the following identity which follows from (15.18) by application of 𝑃𝑥 (a);

𝐹𝑥 ( 𝑓 , a, 8𝑎𝑎𝑡) = 𝑒𝑡𝐵(a)𝐹𝑥 ( 𝑓 , a, 8𝑎) + 𝑒𝑡𝐵(a)
∫ 𝑡

0
𝑒−𝜏𝐵(a)𝑅𝑥 ( 𝑓 , a, 𝑎) 𝑑𝜏. (15.31)

In the course of this proof we will need to distinguish two cases, depending on which
of the following sets 𝑥 belongs to:

𝑋+ := 𝑋∩ ]b (ℎ𝛼) − 1,∞[, and 𝑋− := 𝑋 \ 𝑋+. (15.32)

There exists a constant 𝑐0 ∈ [0, 1[ such that (b (ℎ𝛼) − [𝑐0, 1[ ) ∩ 𝑋 = ∅. Furthermore,
we fix an arbitrary 𝑐 ∈ [𝑐0, 1[. Then for all 𝑥 ∈ 𝑋 the following assertion is valid:

𝑥 > b (ℎ𝛼) − 1 ⇐⇒ 𝑥 > b (ℎ𝛼) − 𝑐. (15.33)
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We put b′ := b − 𝑐𝛼; then by (15.33) we have, for 𝑥 ∈ 𝑋,

𝑥 ∈ 𝑋± ⇐⇒ ±(𝑥 − b′(ℎ𝛼)) > 0.

We fix Y2 > 0 such that

b′(ℎ𝛼) + [−Y2 |ℎ𝛼 |, Y2 |ℎ𝛼 |] ∩ 𝑋 = ∅.

In the course of this section we will always assume that 0 < Y ≤ Y2. Then for every
𝑥 ∈ 𝑋 and all a ∈ 𝔞∗

𝑃C
(Y) the real part of the spectrum spec[𝐵(a) |im (𝑃𝑥 (a))] is contained

in [ 𝑥 − Y |ℎ𝛼 |, 𝑥 + Y |ℎ𝛼 |], which is contained in the interval ]b′(ℎ𝛼),∞[ if 𝑥 ∈ 𝑋+ and
in the interval ] − ∞, b′(ℎ𝛼) [ if 𝑥 ∈ 𝑋−.

Lemma 15.19 Assume that b ∈ 𝔞∗ dominates (wha) and let 𝛼 > 0 be simple. Then
there exist Y > 0, 𝑁 > 0, 𝑠 > 0 and a continuous seminorm 𝑛 on 𝐼∞𝜎 such that for every
𝑓 ∈ 𝐼∞𝜎 , a ∈ 𝔞∗

𝑃C
(Y), 8𝑎 ∈ 8𝐴Φ, and 𝑡 ≥ 0 the following estimates are valid.

(a) If 𝑥 ∈ 𝑋−, then

‖
∫ 𝑡

0
𝑒(𝑡−𝜏)𝐵(a)𝑅𝑥 ( 𝑓 , a, 8𝑎𝑎𝜏) 𝑑𝜏 ‖ ≤ |(a, 8𝑎𝑎𝑡) |𝑁 (8𝑎𝑎𝑡)b

′
𝑒𝑠 |Re a | | log(

8𝑎𝑎𝑡 ) |𝑛( 𝑓 ).

(b) If 𝑥 ∈ 𝑋+, then

‖
∫ ∞

𝑡

𝑒(𝑡−𝜏)𝐵(a)𝑅𝑥 ( 𝑓 , a, 8𝑎𝑎𝜏) 𝑑𝜏 ‖ ≤ |(a, 8𝑎𝑎𝑡) |𝑁 (8𝑎𝑎𝑡)b
′
𝑒𝑠 |Re a | | log(

8𝑎𝑎𝑡 ) |𝑛( 𝑓 ),

with absolutely converging integral.

Proof. After decreasing Y > 0 and increasing 𝑠, 𝑁 and 𝑛 if necessary, we obtain, for
all 𝑓 ∈ 𝐼∞

𝑃,𝜎
, a ∈ 𝔞∗

𝑃C
(Y) 8𝑎 ∈ 8𝐴Φ and 𝑡, 𝜏 ∈ R,

‖𝑒(𝑡−𝜏)𝐵(a)𝑅𝑥 ( 𝑓 , a, 8𝑎𝑎𝜏)‖ ≤ 𝐶𝑁 (a, 8𝑎) 𝐷𝑁 (a, 𝑡, 𝜏) 𝑛( 𝑓 ), (15.34)

where
𝐶𝑁 (a, 8𝑎) = | (a, 8𝑎) |𝑁 (8𝑎)b𝑒𝑠 |Re a | | log 8𝑎 |

and

𝐷𝑁 (a, 𝑡, 𝜏) = | (𝑡, 𝜏) |𝑁𝑒(𝑡−𝜏)𝑥𝑒(𝑠+1) |Re a | |ℎ𝛼 | |𝜏 | (𝑎𝜏)b−𝛼

= | (𝑡, 𝜏) |𝑁𝑒𝑡𝑥𝑒(𝑠+1) |Re a | |ℎ𝛼 | |𝜏 |𝑒 [−𝑥+b ′(ℎ𝛼)]𝜏𝑒(𝑐−1)𝜏 .

Here we have used the notation | (𝑡, 𝜏) |𝑁 = (1 + |𝜏 |)𝑁 (1 + |𝑡 |)𝑁 for 𝜏, 𝑡 ∈ R.
In order to prove (a), assume that 𝑥 < b′(ℎ𝛼). Then we may fix Y𝑠 > 0 so that

Y𝑠 (𝑠 + 1) |ℎ𝛼 | − 𝑥 + b′(ℎ𝛼) > 0.
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By decreasing Y further if necessary, we may asssume that 0 < Y ≤ Y𝑠 . Then for 𝑡 ≥ 0
and a ∈ 𝔞∗

C
(Y) we have that the function

𝜏 ↦→ 𝑒𝑡𝑥𝑒(𝑠+1) |Re a | |ℎ𝛼 | |𝜏 |𝑒 [−𝑥+b
′(ℎ𝛼)]𝜏

is increasing on [0, 𝑡], hence dominated by its value at 𝑡, so that∫ 𝑡

0
𝐷𝑁 (a, 𝜏, 𝑡)𝑑𝜏 ≤ 𝑒 [(𝑠+1) |Re a | |ℎ𝛼 |+b

′(ℎ𝛼)]𝑡
∫ 𝑡

0
(1 + |(𝑡, 𝜏) |)𝑁𝑒(𝑐−1)𝜏 𝑑𝜏

≤ 𝐶′𝑒(𝑠+1) |Re a | | log 𝑎𝑡 | (𝑎𝑡)b
′ (1 + | log 𝑎𝑡 |)𝑁 ,

where
𝐶′ =

∫ ∞

0
(1 + 𝜏)𝑁𝑒(𝑐−1)𝜏 𝑑𝜏. (15.35)

We observe that (8𝑎)b = (8𝑎)b ′ . Accordingly, it now follows that

𝐶𝑁 (a, 8𝑎)
∫ 𝑡

0
𝐷𝑁 (a, 𝜏, 𝑡)𝑑𝜏 ≤ 𝐶′| (a, 8𝑎𝑎𝑡) |2𝑁𝑒2(𝑠+1) |Re a | | log(

8𝑎𝑎𝑡 ) | (8𝑎𝑎𝑡)b
′
.

In view of (15.34) we finally obtain the desired estimate of (a), with 𝑠, 𝑁 and 𝑛 chosen
large enough.
We now turn to (b), and assume 𝑥 > b′(ℎ𝛼). Then there exists Y′𝑠 > 0 such that

Y′𝑠 (𝑠 + 1) |ℎ𝛼 | − 𝑥 + b′(ℎ𝛼) < 0.

Decreasing Y further if necessary, we may assume that 0 < Y < Y′𝑠 . Then for 𝑡 ≥ 0 and
a ∈ 𝔞∗

C
(Y) the function

𝜏 ↦→ 𝑒𝑡𝑥𝑒(𝑠+1) |Re a | |ℎ𝛼 | |𝜏 |𝑒 [−𝑥+b
′(ℎ𝛼)]𝜏

is decreasing on [𝑡,∞) hence dominated by its value at 𝑡, so that∫ ∞

𝑡

𝐷𝑁 (a, 𝜏, 𝑡)𝑑𝜏 ≤ 𝑒 [(𝑠+1) |Re a | |ℎ𝛼 |+b
′(ℎ𝛼)]𝑡

∫ ∞

𝑡

(1 + |(𝑡, 𝜏) |)𝑁𝑒(𝑐−1)𝜏 𝑑𝜏

≤ 𝐶′(1 + | log 𝑎𝑡 |)𝑁𝑒(𝑠+1) |Re a | | log 𝑎𝑡 | (𝑎𝑡)b
′
,

with 𝐶′ given by (15.35). As in the first part of the proof, we now infer that

𝐶𝑁 (a, 8𝑎)
∫ ∞

𝑡

𝐷𝑁 (a, 𝜏, 𝑡)𝑑𝜏 ≤ 𝐶′| (a, 8𝑎𝑎𝑡) |2𝑁𝑒2(𝑠+1) |Re a | | log(
8𝑎𝑎𝑡 ) | (8𝑎𝑎𝑡)b

′
.

Using (15.34) and further enlarging 𝑠, 𝑁 and 𝑛 if necessary, we obtain the desired
estimate of (b). 2
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Proposition 15.20 Let the Whittaker family (wha) be dominated by b ∈ 𝔞∗. Assume
that b � −𝜌. Let 𝑥 ∈ 𝑋.

(a) If 𝑥 ≤ b (ℎ𝛼) − 1, then 𝐹𝑥 is dominated by b′ = b − 𝑐𝛼 for all 𝑐 ∈ [0, 1).

(b) If 𝑥 > b (ℎ𝛼) −1 ≥ −𝜌(ℎ𝛼), then 𝐹𝑥 is dominated by b′ = b−𝑐𝛼 for all 𝑐 ∈ [0, 1).

(c) If 𝑥 > b (ℎ𝛼) − 1 and b (ℎ𝛼) − 1 < −𝜌(ℎ𝛼), then 𝐹𝑥 is dominated by 𝑖𝛼 (b).

Before we continue with the proof of Proposition 15.20, we will first argue that
the proposition is sufficient for the proof of the improvement step asserted in Lemma
15.9. We first observe that 𝐹 is dominated by a functional \ ∈ 𝔞∗ if and only if every
component 𝐹𝑥 , for 𝑥 ∈ 𝑋 is dominated by \, where the obvious extension of the notion
of domination is assumed.

Proof of Lemma 15.9. We begin by observing that the hypothesis on b in Lemma 15.9
(a) guarantees that b′ � −𝜌. In (b) of the lemma, 𝑖𝛼 (b) � −𝜌 by virtue of Lemma 15.8.
Thus it is sufficient to establish the asserted dominations.
To establish Lemma 15.9 (a), assume that b (ℎ𝛼) − 1 ≥ −𝜌(ℎ𝛼). Let 𝑥 ∈ 𝑋 and

assume that 𝑥 > b (ℎ𝛼) − 1. Then by (b) of the above proposition, it follows 𝐹𝑥 is
dominated by b′ := b − 𝑐𝛼 for each 𝑐 ∈ [0, 1). By (a) of the above proposition, the
same is true for all remaining 𝑥 ∈ 𝑋 . This establishes Lemma 15.9 (a).
To prove (b) of Lemma 15.9, assume that b (ℎ𝛼) − 1 < −𝜌(ℎ𝛼). Since b (ℎ𝛼) ≥

−𝜌(ℎ𝛼), it follows that 𝑖𝛼 (b) = b − 𝑑𝛼 for a unique 𝑑 ∈ [0, 1).
If 𝑥 ∈ 𝑋 satisfies 𝑥 ≤ b (ℎ𝛼) − 1, then according to (a) of the above proposition, 𝐹𝑥

is dominated by b′ = b − 𝑑𝛼 = 𝑖𝛼 (b).
On the other hand, if 𝑥 > b (ℎ𝛼)−1, then it follows from (c) of the above proposition

that 𝐹𝑥 is dominated by 𝑖𝛼 (b).
We conclude that every 𝐹𝑥 is dominated by 𝑖𝛼 (b), hence so is 𝐹. This establishes

Lemma 15.9 (b). 2

Proof of Proposition 15.20. Before we proceed with the proof, we note that in
the cases (a) and (b) it suffices to show that 𝐹𝑥 is dominated by b′ = b − 𝑐𝛼 for all
𝑐 ∈ [𝑐0, 1[. Indeed assume this to be the case and let 𝑐′ ∈ [0, 𝑐0] and put b′′ = b − 𝑐𝛼 .
Then b′′ ≤ b′ on 8𝔞Φ + R+ℎ𝛼 whereas b′′ ≤ b on 8𝔞Φ + R−ℎ𝛼 . It therefore follows from
the domination of 𝐹𝑥 by both b and b′ that 𝐹𝑥 is dominated by b′′.
For the actual proof, let 𝑥 ∈ 𝑋. To establish (a) assume 𝑥 ≤ b (ℎ𝛼) − 1. Let

𝑐 ∈ [𝑐0, 1[. Then obviously 𝑥 < b′(ℎ𝛼), where b′ = b − 𝑐𝛼.We now have an estimate
of the type of Lemma 15.19 (a). On the other hand, we also have the identity (15.31).
From the domination assumption on 𝐹 and the estimate of Lemma 15.19 (a) it follows
that there exists Y > 0 such that for 𝑁, 𝑠 and the continuous seminorm 𝑛 all chosen
large enough, we have, for all 𝑓 ∈ 𝐼∞

𝑃,𝜎
, a ∈ 𝔞∗

𝑃C
(Y), 8𝑎 ∈ 8𝐴Φ, and 𝑡 ≥ 0,

𝑒𝑡𝐵(a)𝐹𝑥 ( 𝑓 , a, 8𝑎) ≤ (1 + |𝑡 |)𝑁𝑒𝑡 (𝑥+|Re a |) | (a, 8𝑎) |𝑁𝑎𝑠 |Re a | | log 8𝑎 | (8𝑎)b𝑛( 𝑓 ).

117



Using that (1 + |𝑡 |)𝑁 = (1 + | log 𝑎𝑡 |)𝑁 ≤ (1 + | log 𝑎 |)𝑁 , that (8𝑎)b = (8𝑎)b ′, and that

𝑒𝑡 (𝑥+|Re a |) ≤ 𝑒𝑡b
′(ℎ𝛼)𝑒𝑡 |Re a | |ℎ𝛼 | = 𝑒 |Re a | | log 𝑎𝑡 | (𝑎𝑡)b

′

we obtain the estimate

𝑒𝑡𝐵(a)𝐹𝑥 ( 𝑓 , a, 8𝑎) ≤ |(a, 𝑎) |2𝑁𝑎 (𝑠+1) |Re a | | log 𝑎 |𝑎b ′𝑛( 𝑓 ),

where 𝑎 = 8𝑎𝑎𝑡 , 𝑡 ≥ 0. Combining this with the identity (15.31) and Lemma 15.19
(a) we see that we may enlarge 𝑁, 𝑠 and the continuous seminorm 𝑛 such that for all
𝑓 ∈ 𝐼∞

𝑃,𝜎
, a ∈ 𝔞∗

𝑃C
(Y) all 8𝑎 ∈ 8𝐴Φ and all 𝑡 ≥ 0 we have the estimate

𝐹𝑥 ( 𝑓 , a, 8𝑎𝑎𝑡) ≤ |(a, 𝑎) |𝑁𝑒𝑠 |Re a | | log 𝑎 |𝑎b ′𝑛( 𝑓 ). (15.36)

After decreasing Y, and increasing 𝑠, 𝑁, 𝑛, the same estimate becomes valid for all
𝑓 ∈ 𝐼∞

𝑃,𝜎
, a ∈ 𝔞∗

𝑃C
(Y), 8𝑎 ∈ 8𝐴Φ and 𝑡 ≤ 0, provided b′ is replaced by b. Since b′ ≤ b

on 8𝔞Φ + (−∞, 0]ℎ𝛼, we see that the estimate (15.36) is in fact valid for all 𝑡 ∈ R. It
follows that b′ dominates 𝐹𝑥 . This establishes (a).
We turn to (b) and (c) and assume that 𝑥 > b (ℎ𝛼) − 1. Fix 𝑐 ∈ [𝑐0, 1[. Then by

(15.33) we have 𝑥 > b′(ℎ𝛼), where b′ = b − 𝑐𝛼. From Lemma 15.19 (b) with 𝑡 = 0 we
now obtain that the integral

𝐼𝑥 ( 𝑓 , a, 8𝑎) :=
∫ ∞

0
𝑒−𝜏𝐵(a)𝑅𝑥 ( 𝑓 , a, 8𝑎𝑎𝜏) 𝑑𝜏

converges for a ∈ 𝔞∗
𝑃C
(Y) and satisfies the estimate

‖𝐼𝑥 ( 𝑓 , a, 8𝑎)‖ ≤ |(a, 8𝑎) |𝑁𝑒𝑠 |Re a | | log 8𝑎 | (8𝑎)b ′𝑛( 𝑓 ), (15.37)

provided that Y > 0 is taken sufficiently small, and 𝑠, 𝑁, 𝑛 suffiently large. Put

𝐹∞
𝑥 ( 𝑓 , a, 8𝑎) := 𝐹𝑥 ( 𝑓 , a, 8𝑎) + 𝐼𝑥 ( 𝑓 , a, 8𝑎). (15.38)

From (15.18) we see that

𝐹𝑥 ( 𝑓 , a, 8𝑎𝑎𝑡) = 𝑒𝑡𝐵(a)𝐹∞
𝑥 ( 𝑓 , a, 8𝑎) + 𝑅∞

𝑥 ( 𝑓 , a, 8𝑎𝑎𝑡), (15.39)

where the last term is given by the convergent integral

𝑅∞
𝑥 ( 𝑓 , a, 8𝑎𝑎𝑡) = −

∫ ∞

𝑡

𝑒(𝑡−𝜏)𝐵(a)𝑅𝑥 ( 𝑓 , a, 8𝑎𝑎𝜏) 𝑑𝜏. (15.40)

From Lemma 15.19 (b) it follows that Y > 0 can be decreased, and 𝑠, 𝑁 and 𝑛 increased
such that

‖𝑅∞
𝑥 ( 𝑓 , a, 8𝑎𝑎𝑡)‖ ≤ |(a, 8𝑎𝑎𝑡) |𝑁 (8𝑎𝑎𝑡)b

′
𝑒𝑠 |Re a | | log(

8𝑎𝑎𝑡 ) |𝑛( 𝑓 ), (15.41)
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for all 𝑓 ∈ 𝐼∞
𝑃,𝜎
, a ∈ 𝔞∗

𝑃C
(Y), 8𝑎 ∈ 8𝐴Φ and 𝑡 ≥ 0.

From the domination assumption on 𝐹 we obtain the estimate (15.37) for 𝐹𝑥 ( 𝑓 , a, 8𝑎)
in place of 𝐼𝑥 ( 𝑓 , a, 8𝑎), provided we shrink Y and enlarge 𝑁, 𝑠, 𝑛 if necessary. Here we
need that (8𝑎)b = (8𝑎)b ′ for 8𝑎 ∈ 8𝐴Φ. This observation leads to the estimate

‖𝐹∞
𝑥 ( 𝑓 , a, 8𝑎)‖ ≤ |(a, 8𝑎) |𝑁𝑎𝑠 |Re a | | log 8𝑎 | (8𝑎)b ′𝑛( 𝑓 ),

for all 𝑓 ∈ 𝐼∞
𝑃,𝜎
, a ∈ 𝔞∗

𝑃C
(Y), and 8𝑎 ∈ 8𝐴Φ. Combining this estimate with (15.26) we

see that we may increase 𝑁, 𝑛 further to arrange that

‖𝑒𝑡𝐵(a)𝐹∞
𝑥 ( 𝑓 , a, 8𝑎)‖ ≤ |(a, 8𝑎) |𝑁 (8𝑎)b𝑒𝑠 |Re a | | log 8𝑎 |𝑒𝑥𝑡+|Re a | | log 𝑎𝑡 |𝑛( 𝑓 ) (15.42)

for all 𝑓 ∈ 𝐼∞
𝑃,𝜎
, a ∈ 𝔞∗

𝑃C
(Y), 8𝑎 ∈ 8𝐴Φ, and 𝑡 ≥ 0.

Wewill first consider the case that 𝐹∞
𝑥 = 0. Then it follows from (15.39) and (15.41)

that
‖𝐹𝑥 ( 𝑓 , a, 8𝑎𝑎𝑡)‖ ≤ |(a, 8𝑎𝑎𝑡) |𝑁 (8𝑎𝑎𝑡)b

′
𝑒𝑠 |Re a | | log

8𝑎𝑎𝑡 ) | 𝑛( 𝑓 ).
for 𝑓 ∈ 𝐼∞

𝑃,𝜎
, a ∈ 𝔞∗

𝑃C
(Y), 8𝑎 ∈ 8𝐴Φ, 𝑡 ≥ 0. Here we used that b′ = b on 8𝔞Φ. In view of

the assumed domination of (wha) by b, we have the similar estimate for 𝑡 ≤ 0, with b
in place of b′. Since b′ ≥ b on 8𝔞Φ + 𝔞−

Φ
, it follows that 𝐹𝑥 is dominated by b′. In case

(b) we still have that b′ � −𝜌. If the hypothesis of (c) is fulfilled this need not be the
case. However, we may chose 𝑐 ∈ [𝑐0, 1[ such that b′ ≤ 𝑖𝛼 (b) ≤ b on 8𝐴Φ𝐴+Φ and by
an argument similar to the previous argument, if follows that 𝐹𝑥 is dominated by 𝑖𝛼 (b).
This establishes both (b) and (c) under the assumption 𝐹∞

𝑥 = 0.
To finish the proof, we assume that 𝐹∞

𝑥 ≠ 0. Then it follows from the proposition
below that 𝑥 ≤ −𝜌(ℎ𝛼) so that: b (ℎ𝛼) − 1 < 𝑥 ≤ −𝜌(ℎ𝛼). In particular, we are in (a
subcase of) case (c). From (15.33) it follows that

b′(ℎ𝛼) < 𝑥 ≤ −𝜌(ℎ𝛼) = 𝑖𝛼 (b) (ℎ𝛼).

It now follows from (15.39), (15.41) and (15.42) that, for a suitably enlarged seminorm
𝑛,

‖𝐹𝑥 ( 𝑓 , a, 8𝑎𝑎𝑡)‖ ≤ |(a, 8𝑎𝑎𝑡) |𝑁 (8𝑎𝑎𝑡)𝑖𝛼 (b)𝑒𝑠 |Re a | | log
8𝑎𝑎𝑡 ) |

for 𝑓 ∈ 𝐼∞
𝑃,𝜎
, a ∈ 𝔞∗

𝑃C
(Y), 8𝑎 ∈ 8𝐴Φ, 𝑡 ≥ 0. Here we used that 𝑖𝛼 (b) = b on 8𝔞Φ. In view

of the assumed domination of (wha) by b, we have the similar estimate for 𝑡 ≤ 0, with
b in place of 𝑖𝛼 (b). Since 𝑖𝛼 (b) ≥ b on 8𝔞Φ + 𝔞−

Φ
, it follows that 𝐹𝑥 is dominated by

𝑖𝛼 (b). This completes the proof of Proposition 15.20. 2

Proposition 15.21 Let b ∈ 𝔞∗ satisfy b � −𝜌 and dominate the Whittaker family
(wha). If 𝑥 ∈ 𝑋 is such that 𝑥 > max(b (ℎ𝛼) − 1,−𝜌(ℎ𝛼)), then, for Y > 0 sufficiently
small,

𝐹∞
𝑥 ( 𝑓 , a, 𝑎) = 0

for all 𝑓 ∈ 𝐼∞
𝑃,𝜎

, a ∈ 𝔞∗
𝑃C
(Y), and 𝑎 ∈ 𝐴.
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To prove the proposition, we need some preparation.

Lemma 15.22 For every left 𝐾-finite 𝑓 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎) and every a ∈ 𝔞∗
𝑃C
(𝑃, 0)

there exist constants 𝑚,𝐶 > 0 such that

|wha ( 𝑓 ) (𝑎) | ≤ 𝐶 (1 + | log ∗𝑎 |)𝑚𝑎Re a−𝜌 . (15.43)

Proof. By 𝐾-finiteness, there exists a unitary representation (𝜏,𝑉𝜏) of 𝐾 , a function
𝑔 ∈ 𝐶∞(𝜏𝑃 : 𝐾/𝐾𝑃 : 𝜎) and a linear functional ` ∈ 𝑉∗

𝜏 such that 𝑓 = (𝐼 ⊗ `) ◦ 𝑔.
Define the function wha (𝑔) : 𝐺 → 𝑉𝜏 by

wha (𝑥) = 〈𝑔 , 𝜋�̄�,𝜎,ā (𝑥) 𝑗ā〉.

Then clearly, wha ( 𝑓 ) = ` ◦wha (𝑔).We now note that there exists a 𝜓 ∈ A2,𝑃 such that
wha (𝑔) = Wh(𝑃, 𝜓, a). From Lemma 9.13 it follows that there exist 𝑚,𝐶′ > 0 such
that

‖wha (𝑔) (𝑎)‖ ≤ 𝐶′(1 + | log ∗𝑎 |)𝑚𝑎Re a−𝜌 .
This implies (15.43). 2

Corollary 15.23 For every left 𝐾-finite 𝑓 ∈ 𝐶∞(𝐾/𝐾𝑃 : 𝜎) and every a ∈ 𝔞∗
𝑃C
(𝑃, 0)

there exist constants 𝑚,𝐶 > 0 such that

‖𝐹 ( 𝑓 , a, 𝑎)‖ ≤ 𝐶 (1 + | log 𝑎 |)𝑚𝑎Re a−𝜌 . (15.44)

Proof. The 𝑗-th component of 𝐹 is given by 𝐹𝑗 ( 𝑓 , a, 𝑎) = wha (𝜋�̄�,𝜎,−a (𝑢 𝑗 ) 𝑓 ), with
𝑢 𝑗 ∈ 𝑈 (𝔤). The function 𝜋�̄�,𝜎,−a (𝑢 𝑗 ) 𝑓 is 𝐾-finite in 𝐶∞(𝐾/𝐾𝑃, 𝜎), hence 𝐹𝑗 satisfies
an estimate of the form (15.44). The proof is completed by the observation that
| log ∗𝑎 | ≤ | log 𝑎 |, for all 𝑎 ∈ 𝐴, by orthogonality of the sum 𝔞 = ∗𝔞Φ + 𝔞Φ. 2

Proof of Proposition 15.21. Put Ω := 𝔞∗
𝑃C
(𝑃, 0). From (15.39) it follows that

𝑒𝑡𝐵(a)𝐹∞
𝑥 ( 𝑓 , a, 8𝑎) = 𝐹𝑥 ( 𝑓 , a, 8𝑎𝑎𝑡) − 𝑅∞

𝑥 ( 𝑓 , a, 8𝑎𝑎𝑡)

We first assume that 𝑓 ∈ 𝐼∞
𝑃,𝜎
is 𝐾-finite. Let Y′ < Y. Then for a ∈ 𝔞∗

𝑃C
(Y′) ∩ Ω and

8𝑎 ∈ 8𝐴Φ it follows from Corollary 15.23 that there exist constants 𝑚 > 0 and 𝐶 > 0
such that for all 𝑡 ≥ 0,

‖𝐹𝑥 ( 𝑓 , a8𝑎𝑎𝑡)‖ ≤ 𝐶 (1 + |𝑡 |)𝑚𝑒𝑡 (Y′ |ℎ𝛼 |−𝜌(ℎ𝛼)) . (15.45)

From (15.40) and Lemma 15.19 (b) it follows, possible after adapting 𝑚 and 𝐶, that
also

‖𝑅∞
𝑥 ( 𝑓 , a, 8𝑎𝑎𝑡)‖ ≤ 𝐶 (1 + |𝑡 |)𝑚𝑒𝑡 (Y′ |ℎ𝛼 |+b ′(ℎ𝛼))), (15.46)

again for 𝑡 ≥ 0. From the hypothesis on 𝑥 combined with (15.33) we see that there exists
𝛿 > 0 such that 𝑥 − 𝛿 > max(−𝜌(ℎ𝛼), b′(ℎ𝛼)). Keeping this in mind when combining
the estimates (15.45) and (15.46) we obtain

‖𝑒𝑡𝐵(a)𝐹∞
𝑥 ( 𝑓 , a, 8𝑎)‖ ≤ 2𝐶 (1 + |𝑡 |)𝑚𝑒𝑡 (Y′ |ℎ𝛼 |+𝑥−𝛿) (15.47)
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as 𝑡 ≥ 0. On the other hand, the expression inside the norm on the left-hand side is
exponential polynomial in 𝑡 with exponents whose real part is at least 𝑥 − Y′|ℎ𝛼 |. For
Y′ > 0 sufficiently small we have 𝑥 − Y′|ℎ𝛼 | > Y′|ℎ𝛼 | + 𝑥 − 𝛿 so that by uniqueness of
asymptotics for 𝑡 → ∞ we find that

𝑒𝑡𝐵(a)𝐹∞
𝑥 ( 𝑓 , a, 8𝑎) = 0

provided a ∈ 𝔞∗
𝑃C
(Y′)∩Ω. Since the expression on the left is holomorphic in a ∈ 𝔞∗

𝑃C
(Y),

it follows by analytic continuation that the assertion of the lemma holds for 𝐾-finite 𝑓 .
For every a ∈ 𝔞∗

𝑃C
(Y) and 8𝑎 ∈ 8𝐴Φ it follows from the definitions given that

𝑓 ↦→ 𝐹∞
𝑥 ( 𝑓 , a, 8𝑎) is a linear map𝐶∞(𝐾/𝐾𝑃 : 𝜎) → Cℓ . This linear map is continuous

in view of (15.38) and the estimates (15.36) and (15.37) . As it vanishes on the dense
subspace of 𝐾-finite functions, it follows that the given map is zero on the entire space
𝐶∞(𝐾/𝐾𝑃 : 𝜎). This finishes the proof. 2

16 Uniform temperedness of the Whittaker integral
Let 𝑃 be a standard parabolic subgroup. We recall from (9.6) and (9.7) the definition
of the spaceA2(𝜏𝑃 : 𝑀𝑃/𝑀𝑃 ∩ 𝑁0 : 𝜒𝑃). For 𝜓 in this space and for a ∈ 𝔞∗

𝑃C
(𝑃, 0) the

Whittaker integralWh(𝑃, 𝜓, a), defined by (9.12), is a function in 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒).

Proposition 16.1 Let𝜓 be as above. Then a ↦→Wh(𝑃, 𝜓, a) extends to a holomorphic
function 𝔞∗

𝑃C
→ 𝐶∞(𝜏 : 𝐺/𝑁0 : 𝜒).

Proof. As in the proof of Corollary 9.11 it suffices to prove this for 𝜓 = 𝜓 𝑓 ⊗b with
𝑓 ∈ 𝐶∞(𝜏 : 𝐾/𝐾𝑃 : 𝜎) and b ∈ Wh𝜒𝑃 (𝐻∞

𝜎 ). In that case the result follows from
Corollary 9.10 combined with Theorem 14.4. 2

Theorem 16.2 (uniformly tempered estimate) Let 𝑃 be a standard parabolic sub-
group. Then there exists an Y > 0, and for each 𝑢 ∈ 𝑈 (𝔤) constants 𝑠 > 0 and𝐶, 𝑁 > 0
such that

‖𝐿𝑢 [Wh(𝑃, 𝜓, a)] (𝑥)‖ ≤ 𝐶‖𝜓‖(1 + |a |)𝑁 (1 + |𝐻 (𝑥) |)𝑁𝑒−𝜌𝐻 (𝑥)+𝑠 |Re a |,

for all a ∈ 𝔞∗
𝑃C
(Y), all 𝑥 ∈ 𝐺 and all 𝜓 ∈ A2(𝜏𝑃 : 𝑀𝑃/𝑀𝑃 ∩ 𝑁0 : 𝜒𝑃).

Proof. We first assume that 𝐺 = ◦𝐺. By finite dimensionality of A2,𝑃, it suffices to
prove the result for a fixed 𝜓 of unit length. By linearity of the Whittaker integral in 𝜓,
and using the decomposition (9.8) and the isomorphism (9.11) we may as well assume
in addition that 𝜓 = 𝜓 𝑓 ⊗b , with b ∈ Wh𝜒𝑃 (𝐻∞

𝜎 ) and

𝑓 ∈ 𝐶∞(𝜏 : 𝐾/𝐾𝑃 : 𝜒𝑃) ⊂ 𝑉𝜏 ⊗ 𝐼∞𝑃,𝜎 .
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By analytic continuation we then have that

Wh(𝑃, 𝜓, a) (𝑥) = 〈 𝑓 , 𝜋�̄�,𝜎,ā (𝑥) 𝑗 (�̄�, 𝜎, ā, b̄)〉

for all a ∈ 𝔞∗
𝑃C
and 𝑥 ∈ 𝐺. In view of Remark 15.3 the map wha : 𝐶∞(𝐾/𝐾𝑃 : 𝜎) →

𝐶∞(𝐺/𝑁0 : 𝜒) defined by

wha (8 𝑓 ) (𝑥) = 〈8 𝑓 , 𝜋�̄�,𝜎,ā (𝑥) 𝑗 (�̄�, ā, b̄)〉

defines a holomorphic family of Whittaker functions of moderate growth. By Cor.
15.6, there exists an Y > 0, and for each 𝑢 ∈ 𝑈 (𝔤) constants 𝑁, 𝑠 > 0 and a continuous
seminorm 8𝑛 on 𝐶∞(𝐾/𝐾𝑃 : 𝜎) such that

|𝐿𝑢 [wha (8 𝑓 )] (𝑥) | ≤ (1 + |a |)𝑁 (1 + |𝐻 (𝑥) |)𝑁𝑒𝑠 |Re a | |𝐻 (𝑥) |𝑒−𝜌𝐻 (𝑥) 8𝑛(8 𝑓 )

for all 8 𝑓 ∈ 𝐼∞
𝑃,𝜎
, 𝑥 ∈ 𝐺 and a ∈ 𝔞∗

𝑃C
(Y). Applying this with 8 𝑓 = (Z ⊗ 𝐼) 𝑓 for Z ∈ 𝑉∗

𝜏

we find

|Z ◦ 𝐿𝑢 [Wh(𝑃, 𝜓, a)] (𝑥) | ≤ (1 + |a |)𝑁 (1 + |𝐻 (𝑥) |)𝑁𝑒𝑠 |Re a | |𝐻 (𝑥) |𝑒−𝜌𝐻 (𝑥) 8𝑛((𝐼 ⊗ Z) 𝑓 ).

Now there exists a constant 𝐶 > 0 such that |8𝑛(𝐼 ⊗ Z) 𝑓 ) | ≤ 𝐶 |Z | for all Z ∈ 𝑉∗
𝜏 . We

conclude that

‖𝐿𝑢 [Wh(𝑃, 𝜓, a)] (𝑥)‖ ≤ 𝐶 (1 + |a |)𝑁 (1 + |𝐻 (𝑥) |)𝑁𝑒𝑠 |Re a | |𝐻 (𝑥) |𝑒−𝜌𝐻 (𝑥) ,

for all 𝑥 ∈ 𝐺 and a ∈ 𝔞∗
𝑃C
(Y) as required. This finishes the proof for the case 𝐺 = ◦𝐺

In general, the group decomposes as 𝐺 = ◦𝐺 × 𝐴Δ, where 𝐴Δ = exp 𝔞Δ, with
𝔞Δ := ∩𝛼∈Δ ker𝛼 central in 𝔤. From the definitions it then readily follows that the
spaces A2,𝑃 for 𝐺 and ◦𝐺 coincide and that

Wh(𝐺, 𝑃, 𝜓, a) (𝑥𝑎Δ) = 𝑎aΔWh(◦𝐺, ◦𝐺 ∩ 𝑃, 𝜓, 8a) (𝑥),

for 𝜓 ∈ A2,𝑃, 𝑥 ∈ ◦𝐺, 𝑎Δ ∈ 𝐴Δ and a ∈ 𝔞∗
𝑃C
with 8a the restriction of a to ◦𝔤 ∩ 𝔞. All

assertions now readily generalize from ◦𝐺 to 𝐺. 2

Corollary 16.3 Let 𝑃 ∈ Pst. Then for all 𝑢 ∈ 𝑈 (𝔤) and 𝑣 ∈ 𝑆(𝔞∗
𝑃
) there exist constants

𝐶 > 0 and 𝑁 > 0 such that

‖𝐿𝑢 [Wh(𝑃, 𝜓, a; 𝑣)] (𝑥)‖ ≤ 𝐶‖𝜓‖(1 + |a |)𝑁 (1 + |𝐻 (𝑥) |)𝑁𝑒−𝜌𝐻 (𝑥)

for all 𝜓 ∈ A2,𝑃, a ∈ 𝑖𝔞∗
𝑃

and 𝑥 ∈ 𝐺.

Remark 16.4 In the displayed equation, we have used Harish-Chandra’s convention
to denote the action of a differential operator by putting it next to the variable relative to
which it is applied, separated from the variable by a semi-colon. In the present context,
if 𝑣 ∈ 𝑆(𝔞∗

𝑃
), then 𝑣 is viewed as a constant coefficient complex differential operator

on 𝔞∗
𝑃C
, and if 𝜑 : 𝔞∗

𝑃C
→ 𝑉 is a holomorphic function with values in a locally convex

space then 𝜑(a; 𝑣) stands for 𝑣𝜑 at the point a ∈ 𝔞∗
𝑃C
.

Proof. This follows from the estimates of Theorem 16.2 by using the Cauchy integral
formula in the variable a, with polydiscs of polyradius Y(dim 𝔞𝑃)−1(1 + |𝐻 (𝑥) |)−1. 2
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Wemay now define a Fourier transform F𝑃 : C(𝐺/𝑁0 : 𝜒) → 𝐶0(𝑖𝔞∗
𝑃
,A2,𝑃) by the

formula

〈F𝑃 ( 𝑓 ) (a) , 𝜓〉 = 〈 𝑓 , Wh(𝑃, 𝜓, a)〉2 :=
∫
𝐺/𝑁0

𝑓 (𝑥)Wh(𝑃, 𝜓, a) (𝑥) 𝑑 ¤𝑥,

for 𝑓 ∈ C(𝐺/𝑁0 : 𝜒), a ∈ 𝑖𝔞∗
𝑃
and 𝜓 ∈ A2,𝑃 . Indeed, let ℓ = dim 𝐴 + 1 then by

Lemma 3.3 the function 𝑥 ↦→ (1 + |𝐻 (𝑥) |)−ℓ𝑒−2𝜌𝐻 (𝑥) is absolutely integrable over
𝐺/𝑁0. By application of Theorem 16.2, we infer the existence of a constant 𝑁 > 0 and
a continuous seminorm 𝑛 on C(𝜏 : 𝐺/𝑁0 : 𝜒) such that for all 𝑓 ∈ C(𝜏 : 𝐺/𝑁0 : 𝜒) we
have

| 𝑓 (𝑥)Wh(𝑃, 𝜓, a) (𝑥) | ≤ (1 + |a |)𝑁 (1 + |𝐻 (𝑥) |)−ℓ𝑒−2𝜌𝐻 (𝑥)𝑛( 𝑓 ), (𝑥 ∈ 𝐺). (16.1)

It follows from this that the Fourier transform is defined by an absolutely converging
integral, and defines a continuous linear operator C(𝐺/𝑁0 : 𝜒) → 𝐶0(𝑖𝔞∗

𝑃
,A2,𝑃). By

application of Cor. 16.3 it follows that differentiation under the integral is allowed, and
that F𝑃 is continuous linear C(𝐺/𝑁0 : 𝜒) → 𝐶∞(𝑖𝔞∗

𝑃
,A2,𝑃).

Lemma 16.5 Let 𝑃 ∈ Pst. Then for all 𝑓 ∈ C(𝜏 : 𝐺/𝑁0 : 𝜒) and every 𝑍 ∈ ℨ we have

F𝑃 (𝑅𝑍 𝑓 ) (a) = `
𝑃
(𝑍, a)F𝑃 𝑓 (a), (a ∈ 𝑖𝔞∗𝑃).

Proof. Let 𝜓 ∈ A2,𝑃 . Since `(𝑍, · ) is polynomial with values in End(A2,𝑃) it follows
from () by analytic continuation that

𝑅𝑍Wh(𝑃, 𝜓, a) =Wh(𝑃, `
𝑃
(𝑍, a)𝜓, a)

for all a ∈ 𝔞∗
𝑃C
. Hence, by differentiation under the integral sign,

〈F𝑃 (𝑅𝑍 𝑓 ) (a) , 𝜓〉 = 〈𝐿𝑍∨ 𝑓 , Wh(𝑃, 𝜓, a)〉2
= 〈 𝑓 , 𝑅�̄�∨Wh(𝑃, 𝜓, a)〉2
= 〈 𝑓 , Wh(𝑃, `

𝑃
(�̄�∨, a)𝜓, a)〉2

= 〈F𝑃 𝑓 , `
𝑃
(�̄�∨, a)𝜓〉.

As this holds for arbitrary 𝜓 ∈ A2,𝑃 we conclude that

F𝑃 (𝑅𝑍 𝑓 ) (a) = `
𝑃
(�̄�∨, a)∗ F𝑃 𝑓 (a), (a ∈ 𝑖𝔞∗𝑃).

where the star indicates that the adjoint is taken with respect to the 𝐿2-Hilbert structure
on A2,𝑃 . By a straightforward calculation it follows that

`
𝑃
(�̄�∨, a)∗ = `

𝑃
(�̄�∨, a)∨ = `

𝑃
(𝑍,−ā) = `

𝑃
(𝑍, a)

for all a ∈ 𝑖𝔞∗
𝑃
. 2
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Let S(𝑖𝔞∗
𝑃
) denote the usual space of Schwartz functions on the real vector space

𝑖𝔞∗
𝑃
. Then the following result is valid.

Theorem 16.6 F𝑃 maps C(𝜏 :𝐺/𝑁0 : 𝜒) continuous linearly to S(𝑖𝔞∗
𝑃
) ⊗ A2,𝑃 .

The proof follows the usual strategy of applying partial integration, involving
minus the Casimir operator associated with the invariant bilinear form 𝐵, see (2.1).
The following lemma prepares for this.

Lemma 16.7 Let 𝐿 ∈ ℨ be minus the Casimir operator. Then

lim
a∈𝑖𝔞∗

𝑃
|a |→∞

(1 + |a |)−2 `
𝑃
(𝐿, a) = 𝐼

in End(A2,𝑃).

Proof. By finite dimensionality ofA2,𝑃 it suffices to prove the identity for the restriction
of the endomorphisms to the subspace A2,𝑃,𝜎 := A𝜎 (𝜏𝑃 : 𝐾/𝐾𝑃 : 𝜒𝑃), with 𝜎 a
representation of the discrete series of 𝑀𝑃 . Let Λ𝜎 ∈ 𝔥∗C be the infinitesimal character
of 𝜎 and let 𝛿 be half of the sum of a choice of positive roots for the root system of 𝔥
in 𝔤C.
The restriction of `

𝑃
(𝐿, `) toA2,𝑃,𝜎 equals the restriction of 𝑅`

𝑃
(𝐿,`) = 𝐿`

𝑃
(𝐿,`)∨ ,

which is given by multiplication by the scalar

𝛾𝑀𝑃
(`

𝑃
(𝐿, a)∨,Λ𝜎) = 𝛾𝑀𝑃

(`
𝑃
(𝐿, a),−Λ𝜎)

= 𝛾(𝐿, a − Λ𝜎) = |a |2 + 𝐶𝜎

with 𝐶𝜎 = −𝐵∗(Λ𝜎,Λ𝜎) + 𝐵∗(𝛿, 𝛿) ∈ R, where 𝐵∗ is the dual of 𝐵. Accordingly, the
restriction of the limit equals

lim
|a |→∞

(1 + |a |)−2( |a |2 + 𝐶𝜎)𝐼 = 𝐼 .

2

Proof of Theorem 16.6. In the above we already showed that F𝑃 maps C(𝜏 : 𝐺/𝑁0 :
𝜒) continuously to 𝐶∞(𝑖𝔞∗

𝑃
) ⊗ A2,𝑃 . By Lemma 16.7 there exists a constant 𝑅 > 0

such that for all a ∈ 𝑖𝔞∗
𝑃
with |a | ≥ 𝑅 the endomorphism `

𝑃
(𝐿, a) ofA2,𝑃 is invertible,

whereas the operator norm of its inverse satisfies

‖`
𝑃
(𝐿, a)−1‖ ≤ 2(1 + |a |)−2.

We will finish the proof by showing that for every 𝑢 ∈ 𝑈 (𝔞∗
𝑃
) and all 𝑘 ∈ N there exists

a continuous seminorm n on C(𝜏 : 𝐺/𝑁0 : 𝜒) such that for all 𝑓 ∈ C(𝜏 : 𝐺/𝑁0 : 𝜒) we
have

‖F𝑃 𝑓 (a; 𝑢)‖ ≤ (1 + |a |)−𝑘n( 𝑓 ), ( |a | ≥ 𝑅).
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For this we proceed by induction on the order of 𝑢. Clearly, the result is true for 𝑢 of
order −1 since then 𝑢 = 0. Thus, assume that 𝑢 has order 𝑚 ≥ 0 and assume the result
has been established for 𝑢 of order strictly smaller than 𝑚.
It follows from (16.1) that for all 𝑓 ∈ C(𝜏 : 𝐺/𝑁0 : 𝜒) and a ∈ 𝑖𝔞∗

𝑃
we have

‖F𝑃 𝑓 (a; 𝑢)‖ ≤ (1 + |a |)𝑁n( 𝑓 ). (16.2)

Here 𝑁 ∈ N and n is a continuous seminorm on C(𝜏 : 𝐺/𝑁0 : 𝜒).
Fix ℓ ∈ 𝑁 such that 𝑁−2ℓ ≤ −𝑘. Then it follows by application of Lemma 16.5 and

the Leibniz rule that there exist a finite collection of polynomial functions 𝑞 𝑗 ∈ 𝑃(𝔞∗𝑃)
and a finite collection of elements 𝑢 𝑗 ∈ 𝑆(𝔞∗𝑃) of order strictly smaller than the order
of 𝑢 such that

`
𝑃
(𝐿, a)ℓF𝑃 𝑓 (a; 𝑢) = F𝑃 (𝐿ℓ 𝑓 ) (a; 𝑢) +

𝑟∑︁
𝑗=1
𝑞 𝑗 (a)F𝑃 𝑓 (a; 𝑢 𝑗 ),

for all 𝑓 ∈ C(𝜏 : 𝐺/𝑁0 : 𝜒) and all a ∈ 𝑖𝔞∗
𝑃
. By application of the initial estimate (16.2 )

and the inductive hypothesis there exists a continuous seminorm n′ on C(𝜏 : 𝐺/𝑁0 : 𝜒)
such that for all 𝑓 and all |a | ≥ 𝑅, we have

‖`
𝑃
(𝐿, a)ℓF𝑃 𝑓 (a; 𝑢)‖ ≤ (1 + |a |)𝑁n′( 𝑓 ).

This implies that

‖F𝑃 𝑓 (a; 𝑢)‖ ≤ ‖`
𝑃
(𝐿, a)−1‖ℓ‖`

𝑃
(𝐿, a)ℓF𝑃 𝑓 (a; 𝑢)‖

≤ 2ℓ (1 + |a |)𝑁−2ℓn′( 𝑓 )
≤ (1 + |a |)−𝑘n′(2ℓ 𝑓 ).

completing the induction. 2

17 Appendix: factorization of polynomial functions
In this section we will prove the following result, which is needed in Section 12.

Proposition 17.1 Let 𝑓 : C𝑛 → C be a polynomial function of degree 𝑑 ≥ 1 and
assume that H is a locally finite collection of affine hyperplanes in C𝑛 such that
𝑓 −1(0) ⊂ ∪H . Then 𝑓 can be expressed as a finite product 𝑓 = ℓ1 · · · ℓ𝑑 with ℓ 𝑗 : C𝑛 →
C a linear polynomial function whose zero set ℓ−1

𝑗
(0) belongs to H , for 1 ≤ 𝑗 ≤ 𝑑.

The following lemma is a first step in the proof.

Lemma 17.2 Let 𝑓 , ℓ : C𝑛 → C be non-zero polynomial functions, with deg ℓ = 1. If
𝑓 vanishes on the hyperplane ℓ−1(0) then 𝑓 /ℓ is polynomial.
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Proof. By application of a suitable affine coordinate transformation we may reduce
to the case ℓ(𝑧) = 𝑧𝑛. In view of the hypothesis, 𝑓 (𝑧′, 0) = 0 for all 𝑧′ ∈ C𝑛−1. This
implies that all partial derivatives 𝜕𝛼 𝑓 (0), with 𝛼 ∈ N𝑛 and 𝛼𝑛 = 0 are zero. Hence,

𝑓 (𝑧) =
∑︁
𝛼∈𝐹

𝑐𝛼𝑧
𝛼

with 𝐹 ⊂ N𝑛−1 × N+. The result now follows. 2

In the following we denote by O = OC𝑛 the sheaf of holomorphic functions on C𝑛.
For a point 𝑎 ∈ C𝑛 we denote by O𝑎 the stalk at 𝑎, i.e., the ring of germs at 𝑎 of locallly
defined holomorphic functions. If no confusion is possible, we will switch between
elements of O𝑎 and local representatives for them without explicitly mentioning this.

Lemma 17.3 Let 𝑓 ∈ O0 and let Ξ be a finite collection of non-zero linear functionals
b : C𝑛 → C. Suppose that 𝑓 (0) = 0 and that 𝑓 −1(0) ⊂ ∪b∈Ξ ker b (in the sense of
germs). Then there exists a functional b ∈ Ξ such that 𝑓 = 0 on ker b (in the sense of
germs).

Proof. By a suitable linear change of coordinates we may reduce to the case that 𝑓
and each b ∈ Φ does not vanish identically on the coordinate axis C𝑒𝑛. Then by the
Weierstrass preparation theorem, there exists an invertible element 𝑞 ∈ O0 such that
𝐹 = 𝑞−1 𝑓 is a Weierstrass polynomial given by

𝐹 (𝑧′, 𝑧𝑛) = 𝑧𝑁𝑛 +
∑︁
𝑘<𝑁

𝑐𝑘 (𝑧′)𝑧𝑘𝑛 , (17.1)

for 𝑧 = (𝑧′, 𝑧𝑛) ∈ C𝑛−1 × C sufficiently close to (0, 0), with 𝑐𝑘 ∈ O′
0 = O0(C𝑛−1) such

that 𝑐𝑘 (0) = 0 for 0 ≤ 𝑘 < 𝑁. Furthermore, for every b ∈ Φ there exists a linear
functional [b : C𝑛−1 → C such that ker b ⊂ C𝑛−1 × C equals the graph of [b .
Let 𝐷 ⊂ C𝑛 be a polydisk centered at 0 such that 𝑓 , 𝑞 and 𝐹 admit representatives

in O(𝐷).We decompose 𝐷 = 𝐷′×𝐷𝑛 according to the decomposition C𝑛 = C𝑛−1×C.
Then 𝑓 −1(0) ∩ 𝐷 = 𝐹−1(0) ∩ 𝐷. Let Ω be the open dense subset of C𝑛−1 consisting of
𝑧′ ∈ C𝑛−1 such that [b1 (𝑧′) ≠ [b2 (𝑧′) for all distinct b1, b2 ∈ Ξ.

By continuous dependence of the roots of (17.1) on the coefficients 𝑐𝑘 (𝑧′) we may
shrink 𝐷′ sufficiently so that for all 𝑧′ ∈ 𝐷′ there exists an element 𝑧𝑛 ∈ 𝐷𝑛 such
that 𝐹 (𝑧′, 𝑧𝑛) = 0. Accordingly, we may select 𝛼′ ∈ Ω ∩ 𝐷′ and 𝛼𝑛 ∈ 𝐷𝑛 such that
𝐹 (𝛼′, 𝛼𝑛) = 0. Then 𝑓 (𝛼′, 𝛼𝑛) = 0 so there exists a b0 ∈ Ξ such that b0(𝛼′, 𝛼𝑛) = 0, or,
equivalently,

𝛼𝑛 = [b0 (𝛼′).
Since 𝛼′ ∈ Ω, there exists Y > 0 such that for 𝑧′ = 𝛼′ we have

|[b (𝑧′) − 𝛼𝑛 | > Y (∀b ∈ Ξ \ {b0}). (17.2)

By continuity there exists an open neighborhood 𝑈 of 𝛼′ in 𝐷′ ∩ Ω such that the
estimates (17.2) are still valid for all 𝑧′ ∈ 𝑈.
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By the continuity of roots mentioned above, we may shrink 𝑈 so that in addition
for every 𝑧′ ∈ 𝑈 there exists a 𝑧𝑛 ∈ 𝐷 (𝛼𝑛, Y) such that 𝑓 (𝑧′, 𝑧𝑛) = 0. The latter implies
that 𝑧𝑛 = [b (𝑧′) for a b ∈ Ξ. Now |[b (𝑧′) − 𝛼𝑛 | < Y implies that b = b0 and we see that

𝐹 (𝑧′, [b0 (𝑧′)) = 0 (17.3)

for all 𝑧′ ∈ 𝑈. By analytic continuation, (17.3) is valid for all 𝑧 ∈ 𝐷′. Therefore, 𝑓 = 0
on {𝑧 ∈ 𝐷 | 𝑧𝑛 = [b0 (𝑧′)} = ker b0. 2

Corollary 17.4 Let 𝑓 : C𝑛 → C be a polynomial function of positive degree and
assume that H is a locally finite collection of affine hyperplanes in C𝑛 such that
𝑓 −1(0) ⊂ ∪H . Then there exists a hyperplane 𝐻 ∈ H such that 𝑓 vanishes on 𝐻.

Proof. Since 𝑓 has positive degree, 𝑓 −1(0) ≠ ∅.By application of a suitable translation,
we may reduce to the case that 𝑓 (0) = 0. LetH0 be the finite collection of 𝐻 ∈ H with
𝐻 3 0. For each 𝐻 ∈ H0 we fix b𝐻 ∈ (C𝑛)∗ such that 𝐻 = ker b𝐻 . Put Ξ = {b𝐻 | 𝐻 ∈
H0}.
By application of Lemma 17.3 it follows that there exists a b0 ∈ Ξ and a polydisk

𝐷 ⊂ C𝑛 centered at 0 such that 𝑓 = 0 on ker(b0) ∩ 𝐷. By analytic continuation of
𝑓 |ker b0 this implies that 𝑓 vanishes on ker b0. 2

Proof of Proposition 17.1. In view of Corollary 17.4 and Lemma 17.2 the proof
follows by a straightforward induction on 𝑑. 2

18 Appendix: a Hartog type continuation result
In this paper we will need the following continuation result for holomorphic functions
on a domain in C𝑛 with values in a quasi-complete locally convex space.
Let Ω ⊂ C𝑛 be a connected open subset, 𝑝 : Ω → C a non-zero holomorphic

function, and 𝑋 ⊂ Ω its zero locus 𝑝−1(0). We denote by 𝑋𝑟 the set of points 𝑧 ∈ 𝑋
such that 𝑋 is a smooth complex hypersurface at 𝑧. By this we mean that there should
exist an open neighborhood 𝑈 of 𝑧 in Ω such that 𝑋 ∩𝑈 is a complex submanifold of
dimension 𝑛 − 1. The complement of 𝑋𝑟 in 𝑋 is denoted by 𝑋𝑠 . Clearly, 𝑋𝑠 is closed in
𝑋 hence in Ω. Since Ω is connected, the set 𝑋, hence also 𝑋𝑠, has empty interior.

Theorem 18.1 Let 𝑉 be a quasi-complete locally convex (Hausdorff) space. Then
every holomorphic function 𝑓 : Ω\𝑋𝑠 → 𝑉 admits a unique extension to a holomorphic
function Ω → 𝑉.

Remark 18.2 For𝑉 = C the result is well known and can be obtained as a consequence
of [8, Thm. 6.12], which asserts that the above result is valid for 𝑉 = C and with 𝑋𝑠
replaced by any analytic subset 𝑌 of Ω which is everywhere locally of codimension
at least two. That result actually extends to 𝑉-valued holomorphic functions, but we
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have not found a decent reference to the literature for this. We have therefore chosen
to present a self-contained proof of Theorem 18.1, following a strategy suggested in
Exercise 4.26 in the set of lecture notes Several Complex Variables, by Jaap Korevaar
and Jan Wiegerinck, version August 23, 2017. This turned out to be possible since
Cauchy’s integral formula is valid in the setting of 𝑉-valued holomorphic functions.

To prepare for the proof of Theorem18.1wemake the following general observation.
We assume that 𝑉 is a quasi-complete locally convex space.

Lemma 18.3 Let Ω ⊂ C𝑛 be an open subset and let 𝑌 be a closed subset of Ω which
has empty interior. Let 𝑓 : Ω \ 𝑌 → 𝑉 be holomorphic. Then the following assertions
are equivalent.

(a) 𝑓 extends to a holomorphic function Ω → 𝑉 ;

(b) for every 𝑦 ∈ 𝑌 there exists an open neighborhood 𝜔 3 𝑦 in Ω such that 𝑓 |𝜔\𝑌
has a holomorphic extension to 𝜔.

Proof. That (a) implies (b) is obvious. Assume (b). Then one may cover Ω with open
subsets 𝜔 𝑗 for 𝑗 in an index set 𝐼, such that for each 𝑗 ∈ 𝐼 the function 𝑓 |𝜔 𝑗\𝑌 has a
holomorphic extension 𝑓 𝑗 : 𝜔 𝑗 → 𝑉. Clearly, if 𝑖, 𝑗 ∈ 𝐼 and 𝜔𝑖 ∩ 𝜔 𝑗 ≠ ∅, then 𝑓𝑖 = 𝑓 𝑗
on (𝜔𝑖 ∩𝜔 𝑗 ) \𝑌 . By density this implies that 𝑓𝑖 = 𝑓 𝑗 on 𝜔𝑖 ∩𝜔 𝑗 . From this (a) readily
follows. 2

Proof of Theorem 18.1. By Lemma 18.3 applied with 𝑌 = 𝑋𝑠 it suffices to show that
for every 𝑧 ∈ 𝑋𝑠 there exists an open neighborhood 𝜔 3 𝑧 inΩ such that 𝑓 |𝜔\𝑋𝑠 extends
to a holomorphic function 𝜔 → 𝑉.

Let 𝑧0 ∈ 𝑋𝑠 . Then we may apply an affine coordinate transformation to arrange
that 𝑧0 = 0 and that locally at 0 the function 𝑝 is 𝑧𝑛-regular, see [8, p. 109]. By
the Weierstrass preparation theorem, see [8, Thm. III.2.7], locally at 0 the function 𝑝
factors as a product of holomorphic functions 𝑝0 ·𝑊, with the germ at 0 of 𝑝0 being
a unit in the ring O0 = O0(C𝑛) of germs of holomorphic functions defined locally
at 0 in C𝑛 and with 𝑊 ∈ O′

0 [𝑧𝑛] a Weierstrass polynomial of order 𝑑 over the ring
O′
0 = O0(C𝑛−1). Then for 𝐷 a sufficiently small polydisk in C𝑛 centered at 0 the germ

𝑊 has a representative which is holomorphic on 𝐷 and such that 𝐷 ∩ 𝑋 is contained in
𝑊−1(0). Note that 0 ∈ 𝐷 ∩ 𝑋.
The ring O0 is a unique factorization domain, see [8, Thm. III.3.3]. Let 𝑊 =

𝑓
𝑚1
1 · · · 𝑓 𝑚𝑟𝑟 be a decomposition into irreducibles of O0 with the 𝑓 𝑗 mutually prime.
Since 𝑊 is 𝑧𝑛-regular, each 𝑓 𝑗 is 𝑧𝑛-regular as well. By the Weierstrass preparation
theorem we may write 𝑓 𝑗 = Y 𝑗𝑊 𝑗 with Y 𝑗 a unit in O0 and𝑊 𝑗 a Weierstrass polynomial
in O′

0 [𝑧𝑛] . Then 𝑊 = Y𝑊
𝑚1
1 · · ·𝑊𝑚𝑟

𝑟 with Y = Y
𝑚1
1 · · · Y𝑚𝑟𝑟 a unit in O0. Clearly the

product𝑊𝑚1
1 · · ·𝑊𝑚𝑟

𝑟 is a Weierstrass polynomial. By the uniqueness statement of the
Weierstrass preparation theorem, it now follows that 𝑊 = 𝑊

𝑚1
1 · · ·𝑊𝑚𝑟

𝑟 . The 𝑊 𝑗 are
mutually distinct and irreducible in O0 hence in O′

0 [𝑧𝑛], see [9, Lemma II.5].
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Let 8𝑊 = 𝑊1 · · ·𝑊𝑟 ; then after sufficiently shrinking 𝐷, keeping it centered at 0, we
obtain that 8𝑊 has a holomorphic representative on 𝐷 and that 𝐷 ∩ 𝑋 equals the zero
locus of 8𝑊 in 𝐷.We agree to write 𝐷 = 𝐷′×𝐷𝑛 in accordance with the decomposition
C𝑛 = C𝑛−1 × C.
If 𝑧 ∈ 𝐷 satisfies 8𝑊 (𝑧) = 0 and 𝜕𝑛8𝑊 (𝑧) ≠ 0, then it follows by application

of the submersion theorem that 8𝑊−1(0) is a complex differentiable submanifold of
codimension 1 locally at 𝑧. This implies that 𝑧 ∉ 𝑋𝑠 . It follows that 𝑋𝑠 ∩𝐷 is contained
in the zero locus of both 8𝑊 and 𝜕𝑛8𝑊.
Let now 𝑧 ∈ 𝑋𝑠 ∩ 𝐷. Then it follows that the polynomial functions 8𝑊 (𝑧′, · ) and

𝜕𝑛𝑊 (𝑧′, · ) have 𝑧𝑛 ∈ 𝐷𝑛 as a common zero. Hence, 𝑧𝑛 is a root of higher multiplicity
of 8𝑊 (𝑧′, · ) and it follows that the discriminant Δ(𝑧′) of 8𝑊 (𝑧′, · ) is zero. Since Δ(𝑧′)
is a polynomial expression in the coefficients of 8𝑊 (𝑧′, · ), it follows that Δ ∈ O(𝐷′).
We view Δ as a polynomial function on C with coefficients in O(𝐷′) and conclude that

𝐷 ∩ 𝑋𝑠 ⊂ 𝐷 ∩ 8𝑊−1(0) ∩ Δ−1(0). (18.1)

We will now establish the claim that Δ does not vanish identically on 𝐷. Let 𝑄
be the quotient field of O′

0 := O0(C𝑛−1). Then it follows from [8, Cor. 3.2 (2)] with
𝐼 = O′

0 that 𝑊1, . . . ,𝑊𝑟 are irreducible in the polynomial ring 𝑄 [𝑧𝑛] . Furthermore,
since 𝑄 \ {0} is the set of units in 𝑄 [𝑧𝑛], no distinct 𝑊𝑖 and 𝑊 𝑗 are related by a unit
factor in𝑄 [𝑧𝑛] . Since𝑄 [𝑧𝑛] is a unique factorization domain, it follows that the factors
𝑊 𝑗 are prime. Furthermore, the elements 8𝑊 and 𝜕𝑛8𝑊 have a greatest common divisor
𝛾 ∈ 𝑄 [𝑧𝑛], which, up to a unit factor, may be written as the product of those factors𝑊 𝑗

that divide 𝜕𝑛8𝑊. By application of Leibniz’s rule for differentiation one sees that such
a factor𝑊 𝑗 must divide𝑊1 · · ·𝑊 𝑗−1 · 𝜕𝑛𝑊 𝑗 ·𝑊 𝑗+1 · · ·𝑊𝑟 , hence𝑊 𝑗 must divide 𝜕𝑛𝑊 𝑗

which is impossible since the latter has lower degree than the former. We conclude that
𝛾 is a unit hence belongs to 𝑄 \ {0}.
By the Euclidean division algorithm there exist _1, _2 ∈ 𝑄 [𝑧𝑛] such that 1 =

_1
8𝑊 + _2 𝜕𝑛8𝑊. Let 𝑎 ∈ O′

0 be a non-zero element such that
◦_ 𝑗 := 𝑎_ 𝑗 belong to

O′
0 [𝑧𝑛], for 𝑗 = 1, 2. Then

𝑎 = ◦_1
8𝑊 + ◦_2 𝜕𝑛

8𝑊. (18.2)

Shrinking the polydisk 𝐷 sufficiently we may arrange that this equation is valid for all
𝑧 ∈ 𝐷. Shrinking the polydisk𝐷′ sufficiently, wemay also arrange that for every 𝑧′ ∈ 𝐷′

the polynomial functions 8𝑊 (𝑧′, · ) and 𝜕𝑛8𝑊 (𝑧′, · ) have all their roots contained in
𝐷𝑛. Suppose now that 𝑧′ ∈ 𝐷 and Δ(𝑧′) = 0. Then the polynomial functions 8𝑊 (𝑧′, · )
and 8𝜕𝑛8𝑊 (𝑧′, · ) have a common root Z , which must be contained in 𝐷𝑛. Evaluating
(18.2) in (𝑧′, Z) we find that 𝑎(𝑧′) = 0.We infer that 𝐷′∩Δ−1(0) ⊂ 𝐷′∩Δ−1(0). Since
𝑎 is non-zero, we infer that Δ is not vanishing on all of 𝐷′; the validity of the claim
follows.
Since the germ of Δ at 0 is non-zero we may apply a linear transformation in the first

𝑛− 1 coordinates of C𝑛 to arrange that Δ = 𝛿𝑊′ in O′
0 := O0(C𝑛−1), with 𝛿 a unit in O′

0
and with𝑊′ ∈ O′′

0 [𝑧𝑛−1] a Weierstrass polynomial of degree 𝑑
′; here O′′

0 = O0(C𝑛−2).
Shrinking 𝐷′ to a polydisk centered at 0 with respect to the new coordinates, we may
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arrange to be in the situation that (18.1) is still true, and such that𝑊′ can be represented
by a holomorphic function on 𝐷′ whereas 𝛿 can be represented by a nowhere vanishing
function on 𝐷′. Accordingly, 𝐷 ∩ Δ−1(0) = 𝐷 ∩ (𝑊′)−1(0).
We fix a sufficiently small 𝑟 > 0 such that 𝜕𝐷 (0, 𝑟) ⊂ 𝐷𝑛. Furthermore, we shrink

the polydisk 𝐷′, keeping it centered at 0, such that 8𝑊 is nowhere zero on an open
neighborhood 𝐷′ × 𝐴 of 𝐷′ × 𝜕𝐷 (0, 𝑟) in 𝐷. It follows that (𝐷′ × 𝐴) ∩ 𝑋𝑠 = ∅, so that
𝑓 is well-defined and holomorphic on 𝐷′ × 𝐴.We write 𝐷′ = 𝐷′′ × 𝐷𝑛−1 according to
the decomposition C𝑛−1 = C𝑛−2 × C and fix 𝑟′ > 0 such that 𝜕𝐷 (0, 𝑟′) ⊂ 𝐷𝑛−1. Then
it follows by application of Cauchy’s integral formula to the (𝑛 − 1)-th coordinate that
for (𝑧′′, 𝑧𝑛−1, 𝑧𝑛) ∈ 𝐷′′ × 𝐷 (0, 𝑟′) × 𝐴,

𝑓 (𝑧′′, 𝑧𝑛−1, 𝑧𝑛) =
1
2𝜋𝑖

∫
𝜕𝐷 (0,𝑟 ′)

𝑓 (𝑧′′, Z𝑛−1, 𝑧𝑛)
Z𝑛−1 − 𝑧𝑛−1

𝑑Z𝑛−1. (18.3)

There exists a sufficiently small polydisk 𝐷′′
0 ⊂ 𝐷′′, centered at 0, such that𝑊′ does not

vanish on an open neighborhood 𝐷′′
0 × 𝐵 of 𝐷

′′
0 × 𝜕𝐷 (0, 𝑟′). Since𝑊′ is constant as a

function of the 𝑛-th variable, it follows that 𝑋𝑠 has empty intersection with 𝐷′′
0 ×𝐵×𝐷𝑛,

so that 𝑓 is holomorphic on the latter set as well. In particular, it follows that the
integrand of (18.3) is a holomorphic function of 𝑧𝑛 ∈ 𝐷𝑛 as long as 𝑧′′ ∈ 𝐷′′

0 and
Z𝑛−1 ∈ 𝜕𝐷 (0, 𝑟′). Applying Cauchy’s integral formula to this holomorphic function of
𝑧𝑛, we obtain

𝑓 (𝑧′′, 𝑧𝑛−1, 𝑧𝑛) =
(
1
2𝜋𝑖

)2 ∫
𝜕𝐷 (0,𝑟 ′)×𝜕𝐷 (0,𝑟)

𝑓 (𝑧′′, Z𝑛−1, Z𝑛)
(Z𝑛−1 − 𝑧𝑛−1) (Z𝑛 − 𝑧𝑛)

𝑑Z𝑛𝑑Z𝑛−1,

for 𝑧 ∈ 𝐷′′
0 × 𝐷 (0, 𝑟′) × 𝐴. On the other hand, since 𝑓 is holomorphic on 𝐷′′

0 × 𝐵 × 𝐴,
the integral on the right defines a 𝑉-valued holomorphic function 𝐹 (𝑧) of 𝑧 ∈ 8𝐷 :=
𝐷′′
0 × 𝐷 (0, 𝑟′) × 𝐷 (0, 𝑟). It follows from the last displayed equality that 𝐹 = 𝑓 on
the non-empty open subset O := 𝐷′′

0 × 𝐷 (0, 𝑟′) × (𝐴 ∩ 𝐷 (0; 𝑟)) of 8𝐷. By analytic
continuation it follows that 𝐹 = 𝑓 on the connected open set 8𝐷\𝑋𝑠 . Thus, 8𝐷 is an open
neigborhood of 𝑧0 such that 𝑓 |8𝐷\𝑋𝑠 extends to the holomorphic function 𝐹 : 8𝐷 → 𝑉.

2
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