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INTRODUCTION

Let G/H be a semisimple symmetric space, where G is a connected
semisimple real Lie group with an involution o, and H is an open subgroup
of the fix point group G°. Assume that G has finite center; then it is known
that G has a o-stable maximal compact subgroup K.

In harmonic analysis on the symmetric space G/H an important role
is played by the K-finite functions f on G/H which are annihilated by a
cofinite ideal of the algebra D(G/H) of invariant differential operators on
G/H. The asymptotic behaviour of such functions is examined in [B87].
Using methods originally developed in [HC60] and [CM82] for the special
case where H is compact, a converging series expansion of f at infinity is
obtained. In fact, these expansions are obtained more generally for func-
tions on G that are allowed to be H-finite on the right.

Let f be as above, but considered as a right H-invariant function on
G. Then f can be written as an infinite sum of functions on G which
are K-finite also on the right. Explicitly f = Y scxn %, where f(z) =
dimé [, f(zk~1)xs(k) dk is right K-finite of type §, xs being the character
of 6. )

As a function which is K-finite on both sides, each f° has a converg-
ing series expansion at infinity, according to the above mentioned results
of [HC60] and [CM82]. The purpose of the present note is to relate the
coefficients in the expansion of f to the coefficients in the expansions of fe.

As an application of the relation between the coefficients, we prove the
following result: the function f is bounded on G/H if and only if each
of the functions f? is bounded on G. This result was obtained earlier by
different methods in [FOS88], where it was used to prove (cf. Corollary
4 below): if f generates (on the left) a unitarizable (g, K')-submodule of
C>™(G/H), then f is bounded.

It is our pleasure to thank William Barker and the Organizing Committee for hosting
the conference.
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1. CONVERGING EXPANSIONS OF
K x H-FINITE, Z(g)-FINITE FUNCTIONS

Let g = ¥+ p be a o-stable Cartan decomposition of the Lie algebra g
of G, and let g = h+ q be the decomposition in eigenspaces of 0. Choose a
o-stable maximal abelian subspace a of p, and decompose it as the direct
sumof ay =aNhand g, =ang.

Let ¥ C a* be the restricted root system, £t a set of positive roots,
A a set of simple roots, and at the corresponding open chamber in a.
We assume that a and £¥ are chosen to be g-maximal and g-compatible,
respectively (cf. [S84, p. 118-119]), and denote by ¥, and A, the sets of
non-zero restrictions to a, of the elements in ¥ and A, respectively. Let
aj;' be the corresponding open chamber in a4. It follows, in particular, that
when P is the minimal parabolic subgroup of G associated with X%, then
the product PH is an open subset of G.

Let Z(g) be the center of tlie universal enveloping algebra U(g) of the
complexification g., and let f € C*(G) be a function which is K x H-finite
(that is, K-finite from the left and H-finite from the right) and Z(g)-finite
(for example, f could be as in the introduction). Recall from [B87, Thm.
2.5] that there exists a finite set S of complex linear forms v on a,, a
finite set of M of complex polynomials p on a4, and, for each v and p, a
holomorphic function F,, on D% (where D C C is the unit disk) such

that
flay= > F p(a(a))p(loga)a”

vESpEM

for all a € A} = expa}. Here & is the map from A} to (0, 1)2¢ given by
a(a) = (a=*)aca,, where a=* = e~o(loga),

Expanding each F), , in its power series at 0 we obtain an expansion of
f with polynomial coefficients:

f(a) = Z P,(f,loga)a”,

veS-NA,

where P,(f) € Span M for each

veS—NA;={s- Z nea|s € S,ney=0,1,2...}.

a€A,

For each ¢ > 0, the sum converges absolutely and uniformly on the set
{a € Ay | a(loga) > ¢,Ya € A,;}. Each polynomial P,(f) is uniquely
determined by f and v. For convenience we put P,(f) = 0 for v ¢ S—NA,.

In the special case where o is the Cartan involution, so that H = K and
a, = a, the above expansion on A* of a K x K-finite Z(g)-finite function
is the same as that given in [HC60] and [CM82].
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Returning to the general case where H is noncompact, we write, as in
the introduction, f = Y ;cxa f%. Since the functions f° are K x K-finite
and Z(g)-finite, they admit converging expansions (according to the special
case just mentioned)

fi(a) = E Pg(fﬁ, log a)a®
13

for a € A* with polynomials P;(f°) on a, ¢ € a*. Let T denote the set
of weights p of ap occurring in the finite dimensional representation of H
generated by Rpf,h € H.

Theorem 1. Let v € (a,);. Then
P(f) = Z ZPE(fﬁ)laq,
SeKN ¢

where the inner sum extends over the finite set of £ € a} such that {|,, = v
and &lo, € T. The degrees of the polynomials P¢(f°®) in the sum are
bounded by a constant independent of § and v, and the sum over § con-
verges locally uniformly on a,.

The proof of the theorem will be given at the end of Section 3.

2. ASYMPTOTIC EXPANSIONS OF K-FINITE Z(g)-FINITE
FUNCTIONS OF AT MOST EXPONENTIAL GROWTH

Fix an ideal I C Z(g) of finite codimension and a finite set 7 C K* of

K-types, and put
E(I,T)={f€C®(G;T) | Luf =0,Yu € I}.

Here C*°(G;T) denotes the space of continuous functions on G whose left
translates by elements of K span a finite dimensional space in which only
K-types from 7 occur, and L denotes the left regular representation of G.
Then G and g act on E(I,T) via the right regular representation R.

Let J C U(g) be the left ideal generated by I and by the subspace
Nre7 ker7 in U(E), and consider the U(g)-module U(g)/J. It is easily
seen that every element in this module is ¢-finite, and since it is clearly

finitely generated it follows from [W88, 3.4.7] that this is an admissible
(g, €)-module.

Lemma 1. The pairing
U(g)/J x E(I,T) - C,
defined by (u, f) — Ly f(e), is g-equivariant and nondegenerate in f.
Proof. The pairing is equivariant:
Lxuf(e) = Lx(Luf)(e) = —Rx(Luf)(e) = ~Lu(Rx f)(e).
It is nondegenerate in f because f is real analytic (cf. [HC60, p. 66]). O
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Corollary 1. The space of right K-finite functions in E(I,T) is an ad-
missible, finitely generated (g, K)-module for the right action of g and K.

Proof. Tt follows from Lemma 1 that the g-module E(I,7) embeds into
the linear dual of #(g)/J. Hence the K-finite functions embed into the
t-finite dual of U(g)/J. Now apply [W88, 4.3.2]. (That all K-types occur
in E(I,T) with finite multiplicity could also be seen from [HC60, p. 65,
Cor. 2]). O

For each r € R we denote C,(G) the Banach space of continuous func-
tions on G of at most exponential growth rate r, cf. [BS87, p. 113]. Then
G acts continuously on C,(G) from both sides.

Fix r and let £ = E(I,7)NC,(G) be equipped with the norm inherited
from C,(G). With 7 equal to the right action R of G on & we then obtain
an admissible Banach representation (7,&) of G. Let £%° denote the space
of C*-vectors of this representation, i.e., the space of functions f € E(I,7)
for which R, f € C(G) for all u € U(g), equipped with the natural Fréchet
topology. Moreover, let (£%)% be the space of K-finite vectors in the
topological linear dual (£°) of £%°; by [W88, 4.3.3] it can be identified
with the space V™~ of K-finite vectors in the linear dual of the (g, K')-module
V underlying €.

Lemma 2. Let f € £%°. There exist v € £° and o € (E*°)k such that,
for all z € G,
f(z) = o(m(2)v).

Proof. Let v = f and let o be the restriction to £ of evaluation at the
identity. Then o € (£*°)'. Moreover, it follows from Lemma 1 that there is
a surjection of the finite dimensional space ¥/ (¥) /U (¥)NJ onto U (¥)o. Hence
o is K-finite (and the K-types occurring in the span of the K-translates of
o are contragredient to those in 7). O

Conversely, it follows from [W83, Lemma 5.1] that, for every admissible,
finitely generated Banach representation (w,H) and every o € (H*)k,
there exists r, I, and 7 such that (1) the generalized matrix coefficient
o(m(z)v) belongs to £ for all v € H*, and (2) the map taking v € H™
to o(w(-)v) € £ is continuous.

The following theorem is now a direct consequence of [W88, Thm. 4.4.3,
cf. also BS87] for the case of K-fixed functions. (Wallach only states the
theorem for Hilbert representations, but it holds as well for Banach repre-
sentations, cf. [W83, Thm. 5.8]).

Theorem 2 (Wallach). Fix r, I, and T as above. Then there exists a
finite set E° C af with the following properties. For every f € £ and
every £ € E° — NA there exists a polynomial p¢(f) on a such that

flexptH) ~ 3 pe(f,tH)eH ™),
;
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for every H € at. Here the asymptotic relatlon ~ means that, for all
N € R, there exist positive numbers C and ¢ such tbat

|f(exptH) — Z pe(f,tH)e )| < CeWN =9 for all t > 0,
Reé20
and that this inequality is locally uniform in H € at.
Moreover, there exists d € N such that, for each &, the map f — p¢(f)
is continuous and linear from £ to the space P; of all polynomials on a
of degree < d.

Remark 1. Let j(V~) be the Jacquet module (cf. [W88, 4.1.5]) of the
Harish-Chandra module V~ = (£°)%. It follows from [W88, Lemma 4.1.4]
that j(V"~) is generated as a U(g)-module by a finite dimensional a-stable
subspace, say of dimension dy. Since the adjoint action of a on U(g) is
semisimple, it then follows that the representation of a, in j(V"~) admits
a simultaneous Jordan decomposition whose nilpotent part has nilpotent
order at most dy. This implies that, for each ¥ € N and & € af, the
generalized weight space (V~/n¥V~), for the weight ¢ is annihilated by
(H — €(H))% for all H € a. For the constant d in the final statement of
the theorem one may take dj.

Remark 2. The theorem stated here deals with the asymptotic behavior of
f in the direction of the open chamber At. In fact a more general result,

describing also the asymptotics ‘along the walls,’ is contained in [W88]. In
[BS89] we study these expansions (for the K —ﬁxed case) and prove a relation
between coefficients in the expansions along the walls and coefficients p¢ in
Theorem 2 (cf. [BS89, Thm. 3.1]). However, these results are not needed
here.

Let S be Wallach’s space of rapidly decreasing functions on G (cf. [W88,
7.1.2]; § = Np>0CP(G), where C?(G) is Harish-Chandra’s LP-Schwartz
space), and let S’ be the dual space. Fix a Haar measure dz on G. Following
[BS87, part II] (to obtain congruence with [BS87), replace f(z) by f(z~1)),
we obtain:

Corollary 2. For every f € £ and £ € E° —NA there exists a polynomial
pe(f) on a with coefficients in S’ such that

f(exp(tH)z) ~ pr(f, tH)(x)etE(H)
13

ast — 400, for every H € at. Here the relation ~ means that the following
asymptotic relation holds for all $ € S (in the sense described in Thm. 2):

/G f(exp(tH)z)¢(z)dz o Epf(f’ tH)(¢)etf(H)‘
13

Moreover, for each €, the map f — pe(f) is continuous and G-equivariant
(for the right actions) from € to P; ® S'.
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3. APPLICATION TO K x H-FINITE, Z(g)-FINITE FUNCTIONS
Here is the relation between the expansions in the previous two sections:

Theorem 3. Let f € E(I,T) and assume that f is right H-finite. Then
there exists r € R such that f € C(G), and hence Corollary 2 applies to f.
The restrictions to the open set PH of the distribution coefficients of p¢(f)
are, via the Haar measure dz, given by real analytic functions, and hence
they can be evaluated at the identity. They satisfy the following relation
with the polynomials P, of Section 1: for all v € (a,);

P(f) =Y _pe(fr0)lay
3

where the sum extends over the finite set of £ € a} such that |, = v and
€lay, €T

Proof. For the existence of r, see Remark 14.5 in [BS87]. In the special case
where 7 consists only of the trivial K-type (so that f is left K-invariant),
the theorem can be derived from [BS87, Sections 14-16] as follows.* That
pe(f) is real analytic on PH is stated in Corollary 16.2. For the r-spherical
function F associated to f (cf. [BS87, p. 148]) it follows from (14.8), (16.4)
and (16.9) that p¢(F,e)|q, can be obtained from P, (F'), where v = £|q,, by
projecting it onto the generalized weight space in E; of ap-weight g = €], -
Hence the summation over all ¢ such that £|o, = v and &la, € T yields
> ¢ pe(F,€)la, = Py(F), from which the stated result for f follows. The
only difficulty in extending this proof to the general 7 is contained in the
following lemma, which generalizes [BS87, Lemma 15.1]. O

Define a; € At for t € (0,1)? by (a;)™* = to for « € A. Thent — 0 is
equivalent to a(loga;) — +oo for all a € A.

Lemma 3. There exist an open neighborhood Qg of (e,0) in G x R® and
real analytic maps h,a,k : Qo — H, A, K, respectively, such that:

(i) For all (g,t) € Qo, with t € (0,1),
ga: = h(g,t)a(g,t)a:k(g,t).
(ii) If (3,0) € Qo and ¢ = man € P, then (g9z,0) € Qo, h(gz,0) =
h(g,0), a(gz,0) = a(g,0)a, and k(gz,0) = k(g,0)m.
(iii) Fort € R® near 0 we have h(e,t) = a(e,t) = k(e,t) =e.

Proof. The existence of h and a is given in [BS87, Lemma 15.1]. To prove
the existence of k we need the following lemma. Let P = M AN be the
minimal parabolic opposite to P.

*Notice that in [BS87] the sides from which K and H act are reversed.
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Lemma 4. There exist an open neighborhood Uy of (e,0) in G x R® and
unique real analytic maps z1,k; : Uy — NA, K, respectively, such that

ga; = z1(g,t)ark1(g,1t)

for (g,t) € U; with t € (0,1)2. Moreover, z)(e,t) = ki(e,t) = e, and if
z = man € P then z,(gz,0) = z1(g,0)e and k1(gz,0) = k1(g,0)m.

Proof. The uniqueness is clear from the uniqueness in the Iwasawa decom-
position. By the NAM N decomposition it suffices to prove the existence
of such maps on a neighbourhood of (e,0) in N x R®. Now use [BS87,
Lemma 8.6] and its proof. O

Proof of Lemma 3. Let §q, h, and a be as in [BS87, Lemma 15.1]. Then,
for (z,t) an element of (VA x (0,1)2) N Qo, we have

zark = h(z,t)a(z,t)a,
for some k € K. From the uniqueness in Lemma 4 we infer that
z = z1(h(z,t)a(z,t),t) and k = ky(h(z,t)a(z,1),t)
for (z,t) near (e,0) in (NA x (0,1)*) N Q. Hence
za; = h(z,t)a(z,t)ak(z,t)
where k(z,t) = k1(h(z,t)a(z,t),t) ™" is defined and real analytic on a neigh-
borhood of (e,0) in NA x R4,
For (g,t) € G x (0,1)” near (e,0), Lemma 4 gives
gar = z1(g,t)arki(g,t)
= h(zl(g; t); t)a(zl (g) t)’ t)atk(zl(g)t)a t)kl(g) t)y
and Lemma 3 follows. [
Proof of Theorem 1. From Theorem 3 we have
PR(H= Y pelfie)s,
Elnqzyyfln,. €T
for all v € (aq);, and, when applied to the case H = K,
Pe(f°) = pe(f2,e)
for all £ € a}. In particular, deg P;(f%) = degpe(f®,e) < d. From the
continuity and linearity of the map f — p¢(f) it follows that
pe(f) =D pe(F)
5
for all £. Combining these equations we get
Pf) =Y pe(fr0)log = Y pe(f' e)lag = D Pe(f")lay,
€

§,6 €6

and the theorem follows. O
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4. APPLICATION TO BOUNDEDNESS

For simplicity we consider in this section only functions on G that are
right H-fixed. Notice that in this case the set T' C (a); in Theorem 1
consists only of the element 0. In [B87, Thm. 6.4] (and in [CM82, Thm.
7.5] for the case of H = K) a criterion for f € LP(G/H) is given in
terms of the coefficients P,(f), where 1 < p < oo. The following theorem
supplements this (at p = 00), and the proof is essentially the same (it is in
fact slightly easier). It is convenient to rewrite the series expansion of f as

follows
- fla) = Z ¢y (loga)™a” (a € A;"),
v€S—-NA,,neEN?q

where ¢, n € C, and where (loga)" is defined as [[4¢a, (B(loga))™#. The
cy,n are uniquely determined by f and by the choice of basis A, defining
the open chamber A}. -

Theorem 4. Let f be a K-finite, D(G/H )-finite function on G/H. Then
the following three statements are equivalent:
(1) f is bounded on G/H.
(ii) For every choice A, of basis for X4, and for every v, the function
a — P,(loga)a” is bounded on A} .
(iii) For every choice A, of basis for £,, for every v = ZﬂeAq vgf and
n € N2 with ¢, ,, # 0, and for every 8 € Ay, we have:

Revs < 0; in fact, if ng # 0, then Revg < 0.

We can now derive the following result, which was first obtained in joint
work of Flensted-Jensen, Oshima and the second author ([FOS88, Lemma

3.2)).

Corollary 3. Let f be as above, and let f = ) scxa f8. Then f is
bounded if and only if each f° is bounded.

Proof. If f is bounded, then obviously each f° is bounded. Conversely,
assume that every f° is bounded, and fix A, and v € S —NA,.

From Theorem 4 (applied to the special case H = K) it follows that
P¢(f%,loga)a® is bounded on AY for all £ € a}. Hence it is also bounded
on A} because A} is contained in the closure of A*. In particular, this
holds with ¢ given by £|o, = v and £|q, = 0. For this £ we write

P(f’loga)= ) cb(loga)”
n€N2q

for a € Ay. If P¢(f°®) # 0, then the boundedness of P¢(f? ,loga)a” on Af
implies that, for each § € A4, we have Revg < 0. Moreover, if n € NA4¢,

cp # 0,

and he
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¢} #0,and ng # 0, then Revs < 0. However, Theorem 1 gives that
Cyn = Z Cf,,
§

and hence, if ¢, , # 0, then ¢} # 0 for some 6. Hence Revs < 0, and if
ng # 0, then Revs < 0. Now Theorem 4 can be applied once more. [

Finally, we notice the following corollary, also from [FOS88]:

Corollary 4. Let f be as above, and assume that the (g, K)-module V;
generated by f (on the left) is unitarizable. Then f is bounded.

Proof. Since projection onto the space of functions of right K-type § is
a left homomorphism, Vs is a unitarizable representation. Since f? is a
K x K-finite matrix coefficient of V}s (cf. Lemma 2), it is thus in fact
a matrix coefficient of a unitary representation, and hence it is bounded.
Now apply Corollary 3. O
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