he Advanced Theory of teton University Press,

r theorem for reductive

Howe conjecture, Ann.

iriant pour les groupes

III. The Maass-Selberg (6), 117-201, reprinted

eproduced in Collected

n semisimple real Lie

Math. 47 (1989), 1–36.
iant trace formula are

s **96** (1980), Princeton

factors, Math. Ann.

ductive p-Adic Group

d case, Trans. Amer.

, Astérisque 171–172

Toronto, Ontario,

ASYMPTOTIC EXPANSIONS ON SYMMETRIC SPACES

ERIK VAN DEN BAN and HENRIK SCHLICHTKRULL

University of Utrecht and Royal Veterinary and Agricultural University, Denmark

Introduction

Let G/H be a semisimple symmetric space, where G is a connected semisimple real Lie group with an involution σ , and H is an open subgroup of the fix point group G^{σ} . Assume that G has finite center; then it is known that G has a σ -stable maximal compact subgroup K.

In harmonic analysis on the symmetric space G/H an important role is played by the K-finite functions f on G/H which are annihilated by a cofinite ideal of the algebra D(G/H) of invariant differential operators on G/H. The asymptotic behaviour of such functions is examined in [B87]. Using methods originally developed in [HC60] and [CM82] for the special case where H is compact, a converging series expansion of f at infinity is obtained. In fact, these expansions are obtained more generally for functions on G that are allowed to be H-finite on the right.

Let f be as above, but considered as a right H-invariant function on G. Then f can be written as an infinite sum of functions on G which are K-finite also on the right. Explicitly $f = \sum_{\delta \in K^{\wedge}} f^{\delta}$, where $f^{\delta}(x) = \dim \delta \int_{K} f(xk^{-1})\chi_{\delta}(k) dk$ is right K-finite of type δ , χ_{δ} being the character of δ .

As a function which is K-finite on both sides, each f^{δ} has a converging series expansion at infinity, according to the above mentioned results of [HC60] and [CM82]. The purpose of the present note is to relate the coefficients in the expansion of f to the coefficients in the expansions of f^{δ} .

As an application of the relation between the coefficients, we prove the following result: the function f is bounded on G/H if and only if each of the functions f^{δ} is bounded on G. This result was obtained earlier by different methods in [FOS88], where it was used to prove (cf. Corollary 4 below): if f generates (on the left) a unitarizable (\mathfrak{g}, K) -submodule of $C^{\infty}(G/H)$, then f is bounded.

It is our pleasure to thank William Barker and the Organizing Committee for hosting the conference.

1. Converging expansions of $K \times H$ -finite, $\mathcal{Z}(\mathfrak{g})$ -finite functions

Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be a σ -stable Cartan decomposition of the Lie algebra \mathfrak{g} of G, and let $\mathfrak{g}=\mathfrak{h}+\mathfrak{q}$ be the decomposition in eigenspaces of σ . Choose a σ -stable maximal abelian subspace \mathfrak{a} of \mathfrak{p} , and decompose it as the direct sum of $\mathfrak{a}_h=\mathfrak{a}\cap\mathfrak{h}$ and $\mathfrak{a}_q=\mathfrak{a}\cap\mathfrak{q}$.

Let $\Sigma \subset \mathfrak{a}^*$ be the restricted root system, Σ^+ a set of positive roots, Δ a set of simple roots, and \mathfrak{a}^+ the corresponding open chamber in \mathfrak{a} . We assume that \mathfrak{a} and Σ^+ are chosen to be \mathfrak{q} -maximal and \mathfrak{q} -compatible, respectively (cf. [S84, p. 118-119]), and denote by Σ_q and Δ_q the sets of non-zero restrictions to \mathfrak{a}_q of the elements in Σ and Δ , respectively. Let \mathfrak{a}_q^+ be the corresponding open chamber in \mathfrak{a}_q . It follows, in particular, that when P is the minimal parabolic subgroup of G associated with Σ^+ , then the product PH is an open subset of G.

Let $\mathcal{Z}(\mathfrak{g})$ be the center of the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ of the complexification \mathfrak{g}_c , and let $f \in C^{\infty}(G)$ be a function which is $K \times H$ -finite (that is, K-finite from the left and H-finite from the right) and $\mathcal{Z}(\mathfrak{g})$ -finite (for example, f could be as in the introduction). Recall from [B87, Thm. 2.5] that there exists a finite set S of complex linear forms ν on \mathfrak{a}_q , a finite set of M of complex polynomials p on \mathfrak{a}_q , and, for each ν and p, a holomorphic function $F_{\nu,p}$ on D^{Δ_q} (where $D \subset \mathbb{C}$ is the unit disk) such that

$$f(a) = \sum_{\nu \in S, p \in M} F_{\nu, p}(\bar{\alpha}(a)) p(\log a) a^{\nu}$$

for all $a \in A_q^+ = \exp \mathfrak{a}_q^+$. Here $\bar{\alpha}$ is the map from A_q^+ to $(0,1)^{\Delta_q}$ given by $\bar{\alpha}(a) = (a^{-\alpha})_{\alpha \in \Delta_q}$, where $a^{-\alpha} = e^{-\alpha(\log a)}$.

Expanding each $F_{\nu,p}$ in its power series at 0 we obtain an expansion of f with polynomial coefficients:

$$f(a) = \sum_{\nu \in S - \mathbb{N}\Delta_q} P_{\nu}(f, \log a) a^{\nu},$$

where $P_{\nu}(f) \in \operatorname{Span} M$ for each

$$\nu \in S - \mathbb{N}\Delta_q = \{s - \sum_{\alpha \in \Delta_q} n_\alpha \alpha \mid s \in S, n_\alpha = 0, 1, 2 \dots \}.$$

For each $\epsilon > 0$, the sum converges absolutely and uniformly on the set $\{a \in A_q \mid \alpha(\log a) > \epsilon, \forall \alpha \in \Delta_q\}$. Each polynomial $P_{\nu}(f)$ is uniquely determined by f and ν . For convenience we put $P_{\nu}(f) = 0$ for $\nu \notin S - \mathbb{N}\Delta_q$.

In the special case where σ is the Cartan involution, so that H=K and $\mathfrak{a}_q=\mathfrak{a}$, the above expansion on A^+ of a $K\times K$ -finite $\mathcal{Z}(\mathfrak{g})$ -finite function is the same as that given in [HC60] and [CM82].

the and case

for of we generate The

whe

F: K-ty

tran K-ty Then Le $\cap_{\tau \in \mathcal{I}}$

Here

seen finite (g, t)

Lem

defir

Proo

It is

the Lie algebra \mathfrak{g} ces of σ . Choose a se it as the direct

of positive roots, en chamber in \mathfrak{a} . and \mathfrak{q} -compatible, and Δ_q the sets of respectively. Let in particular, that and \mathfrak{p} -then

gebra $\mathcal{U}(\mathfrak{g})$ of the ich is $K \times H$ -finite t) and $\mathcal{Z}(\mathfrak{g})$ -finite from [B87, Thm. forms ν on \mathfrak{a}_q , a reach ν and p, a e unit disk) such

 $(0,1)^{\Delta_q}$ given by

an expansion of

 $2\ldots$ }.

ormly on the set $V_{\nu}(f)$ is uniquely for $\nu \notin S - \mathbb{N}\Delta_q$. that H = K and g)-finite function

Returning to the general case where H is noncompact, we write, as in the introduction, $f = \sum_{\delta \in K^{\wedge}} f^{\delta}$. Since the functions f^{δ} are $K \times K$ -finite and $\mathcal{Z}(\mathfrak{g})$ -finite, they admit converging expansions (according to the special case just mentioned)

$$f^{\delta}(a) = \sum_{\xi} P_{\xi}(f^{\delta}, \log a) a^{\xi}$$

for $a \in A^+$ with polynomials $P_{\xi}(f^{\delta})$ on $\mathfrak{a}, \xi \in \mathfrak{a}_c^*$. Let T denote the set of weights μ of \mathfrak{a}_h occurring in the finite dimensional representation of H generated by $R_h f, h \in H$.

Theorem 1. Let $\nu \in (\mathfrak{a}_q)_c^*$. Then

$$P_{\nu}(f) = \sum_{\delta \in K^{\wedge}} \sum_{\xi} P_{\xi}(f^{\delta})|_{\mathfrak{a}_{q}},$$

where the inner sum extends over the finite set of $\xi \in \mathfrak{a}_c^*$ such that $\xi|_{\mathfrak{a}_q} = \nu$ and $\xi|_{\mathfrak{a}_h} \in T$. The degrees of the polynomials $P_{\xi}(f^{\delta})$ in the sum are bounded by a constant independent of δ and ν , and the sum over δ converges locally uniformly on \mathfrak{a}_q .

The proof of the theorem will be given at the end of Section 3.

2. Asymptotic expansions of K-finite $\mathcal{Z}(\mathfrak{g})$ -finite functions of at most exponential growth

Fix an ideal $I \subset \mathcal{Z}(\mathfrak{g})$ of finite codimension and a finite set $\mathcal{T} \subset K^{\wedge}$ of K-types, and put

$$E(I,\mathcal{T}) = \{ f \in C^{\infty}(G;\mathcal{T}) \mid L_u f = 0, \forall u \in I \}.$$

Here $C^{\infty}(G; \mathcal{T})$ denotes the space of continuous functions on G whose left translates by elements of K span a finite dimensional space in which only K-types from T occur, and L denotes the left regular representation of G. Then G and \mathfrak{g} act on $E(I, \mathcal{T})$ via the right regular representation R.

Let $J \subset \mathcal{U}(\mathfrak{g})$ be the left ideal generated by I and by the subspace $\bigcap_{\tau \in \mathcal{T}} \ker \tau$ in $\mathcal{U}(\mathfrak{k})$, and consider the $\mathcal{U}(\mathfrak{g})$ -module $\mathcal{U}(\mathfrak{g})/J$. It is easily seen that every element in this module is \mathfrak{k} -finite, and since it is clearly finitely generated it follows from [W88, 3.4.7] that this is an admissible $(\mathfrak{g}, \mathfrak{k})$ -module.

Lemma 1. The pairing

$$\mathcal{U}(\mathfrak{g})/J \times E(I,\mathcal{T}) \to \mathbb{C}$$

defined by $(u, f) \to L_u f(e)$, is g-equivariant and nondegenerate in f. Proof. The pairing is equivariant:

$$L_{Xu}f(e) = L_X(L_uf)(e) = -R_X(L_uf)(e) = -L_u(R_Xf)(e).$$

It is nondegenerate in f because f is real analytic (cf. [HC60, p. 66]). \square

Corollary 1. The space of right K-finite functions in E(I,T) is an admissible, finitely generated (\mathfrak{g},K) -module for the right action of \mathfrak{g} and K.

Proof. It follows from Lemma 1 that the g-module $E(I,\mathcal{T})$ embeds into the linear dual of $\mathcal{U}(\mathfrak{g})/J$. Hence the K-finite functions embed into the \mathfrak{k} -finite dual of $\mathcal{U}(\mathfrak{g})/J$. Now apply [W88, 4.3.2]. (That all K-types occur in $E(I,\mathcal{T})$ with finite multiplicity could also be seen from [HC60, p. 65, Cor. 2]). \square

For each $r \in \mathbb{R}$ we denote $C_r(G)$ the Banach space of continuous functions on G of at most exponential growth rate r, cf. [BS87, p. 113]. Then G acts continuously on $C_r(G)$ from both sides.

Fix r and let $\mathcal{E} = E(I,T) \cap C_r(G)$ be equipped with the norm inherited from $C_r(G)$. With π equal to the right action R of G on \mathcal{E} we then obtain an admissible Banach representation (π,\mathcal{E}) of G. Let \mathcal{E}^{∞} denote the space of C^{∞} -vectors of this representation, i.e., the space of functions $f \in E(I,T)$ for which $R_u f \in C_r(G)$ for all $u \in \mathcal{U}(\mathfrak{g})$, equipped with the natural Fréchet topology. Moreover, let $(\mathcal{E}^{\infty})'_K$ be the space of K-finite vectors in the topological linear dual $(\mathcal{E}^{\infty})'$ of \mathcal{E}^{∞} ; by [W88, 4.3.3] it can be identified with the space V^{\sim} of K-finite vectors in the linear dual of the (\mathfrak{g}, K) -module V underlying \mathcal{E} .

Lemma 2. Let $f \in \mathcal{E}^{\infty}$. There exist $v \in \mathcal{E}^{\infty}$ and $\sigma \in (\mathcal{E}^{\infty})'_{K}$ such that, for all $x \in G$,

$$f(x) = \sigma(\pi(x)v).$$

Proof. Let v=f and let σ be the restriction to \mathcal{E}^{∞} of evaluation at the identity. Then $\sigma \in (\mathcal{E}^{\infty})'$. Moreover, it follows from Lemma 1 that there is a surjection of the finite dimensional space $\mathcal{U}(\mathfrak{k})/\mathcal{U}(\mathfrak{k})\cap J$ onto $\mathcal{U}(\mathfrak{k})\sigma$. Hence σ is K-finite (and the K-types occurring in the span of the K-translates of σ are contragredient to those in \mathcal{T}). \square

Conversely, it follows from [W83, Lemma 5.1] that, for every admissible, finitely generated Banach representation (π, \mathcal{H}) and every $\sigma \in (\mathcal{H}^{\infty})'_{K}$, there exists r, I, and T such that (1) the generalized matrix coefficient $\sigma(\pi(x)v)$ belongs to \mathcal{E}^{∞} for all $v \in \mathcal{H}^{\infty}$, and (2) the map taking $v \in \mathcal{H}^{\infty}$ to $\sigma(\pi(\cdot)v) \in \mathcal{E}^{\infty}$ is continuous.

The following theorem is now a direct consequence of [W88, Thm. 4.4.3, cf. also BS87] for the case of K-fixed functions. (Wallach only states the theorem for Hilbert representations, but it holds as well for Banach representations, cf. [W83, Thm. 5.8]).

Theorem 2 (Wallach). Fix r, I, and T as above. Then there exists a finite set $E^{\circ} \subset \mathfrak{a}_{c}^{*}$ with the following properties. For every $f \in \mathcal{E}^{\infty}$ and every $\xi \in E^{\circ} - \mathbb{N}\Delta$ there exists a polynomial $p_{\xi}(f)$ on a such that

$$f(\exp tH) \underset{t\to\infty}{\sim} \sum_{\xi} p_{\xi}(f, tH) e^{t\xi(H)},$$

for N (

is co of d RenHar that subs sem a sii orde gene (H the 1 Remf in desc [BS8 betw Thec here.

space [BS8] we of $\mathbf{Cor}(p_{\xi}(f))$

7.1.2

L

as t asym

More (for t

in E(I,T) is an adtaction of $\mathfrak g$ and K.

E(I,T) embeds into ions embed into the at all K-types occur from [HC60, p. 65,

of continuous func-BS87, p. 113]. Then

th the norm inherited on \mathcal{E} we then obtain \mathcal{E}^{∞} denote the space unctions $f \in E(I, \mathcal{T})$ in the natural Fréchet finite vectors in the it can be identified of the (\mathfrak{g}, K) -module

 $\in (\mathcal{E}^{\infty})_{K}'$ such that,

of evaluation at the emma 1 that there is J onto $\mathcal{U}(\mathfrak{k})\sigma$. Hence f the K-translates of

for every admissible, every $\sigma \in (\mathcal{H}^{\infty})'_{K}$, ed matrix coefficient map taking $v \in \mathcal{H}^{\infty}$

of [W88, Thm. 4.4.3, llach only states the ell for Banach repre-

Then there exists a revery $f \in \mathcal{E}^{\infty}$ and a such that

for every $H \in \mathfrak{a}^+$. Here the asymptotic relation $\underset{t \to \infty}{\sim}$ means that, for all $N \in \mathbb{R}$, there exist positive numbers C and ϵ such that

$$|f(\exp tH) - \sum_{\operatorname{Re} \xi > 0} p_{\xi}(f, tH) e^{t\xi(H)}| \leq C e^{(N-\epsilon)t} \text{ for all } t \geq 0,$$

and that this inequality is locally uniform in $H \in \mathfrak{a}^+$.

Moreover, there exists $d \in \mathbb{N}$ such that, for each ξ , the map $f \to p_{\xi}(f)$ is continuous and linear from \mathcal{E}^{∞} to the space P_d of all polynomials on a of degree $\leq d$.

Remark 1. Let $j(V^{\sim})$ be the Jacquet module (cf. [W88, 4.1.5]) of the Harish-Chandra module $V^{\sim} = (\mathcal{E}^{\infty})'_K$. It follows from [W88, Lemma 4.1.4] that $j(V^{\sim})$ is generated as a $\mathcal{U}(\mathfrak{g})$ -module by a finite dimensional a-stable subspace, say of dimension d_0 . Since the adjoint action of a on $\mathcal{U}(\mathfrak{g})$ is semisimple, it then follows that the representation of \mathfrak{a}_c in $j(V^{\sim})$ admits a simultaneous Jordan decomposition whose nilpotent part has nilpotent order at most d_0 . This implies that, for each $k \in \mathbb{N}$ and $\xi \in \mathfrak{a}_c^*$, the generalized weight space $(V^{\sim}/\mathfrak{n}^k V^{\sim})_{\xi}$ for the weight ξ is annihilated by $(H - \xi(H))^{d_0}$ for all $H \in \mathfrak{a}$. For the constant d in the final statement of the theorem one may take d_0 .

Remark 2. The theorem stated here deals with the asymptotic behavior of f in the direction of the open chamber A^+ . In fact a more general result, describing also the asymptotics 'along the walls,' is contained in [W88]. In [BS89] we study these expansions (for the K-fixed case) and prove a relation between coefficients in the expansions along the walls and coefficients p_{ξ} in Theorem 2 (cf. [BS89, Thm. 3.1]). However, these results are not needed here.

Let S be Wallach's space of rapidly decreasing functions on G (cf. [W88, 7.1.2]; $S = \bigcap_{p>0} \mathcal{C}^p(G)$, where $\mathcal{C}^p(G)$ is Harish-Chandra's L^p -Schwartz space), and let S' be the dual space. Fix a Haar measure dx on G. Following [BS87, part II] (to obtain congruence with [BS87], replace f(x) by $f(x^{-1})$), we obtain:

Corollary 2. For every $f \in \mathcal{E}$ and $\xi \in E^{\circ} - \mathbb{N}\Delta$ there exists a polynomial $p_{\xi}(f)$ on \mathfrak{a} with coefficients in \mathcal{S}' such that

$$f(\exp(tH)x) \sim \sum_{\xi} p_{\xi}(f, tH)(x)e^{t\xi(H)}$$

as $t \to +\infty$, for every $H \in \mathfrak{a}^+$. Here the relation \sim means that the following asymptotic relation holds for all $\phi \in \mathcal{S}$ (in the sense described in Thm. 2):

$$\int_{G} f(\exp(tH)x)\phi(x)dx \underset{t\to\infty}{\sim} \sum_{\xi} p_{\xi}(f,tH)(\phi)e^{t\xi(H)}.$$

Moreover, for each ξ , the map $f \to p_{\xi}(f)$ is continuous and G-equivariant (for the right actions) from \mathcal{E} to $P_d \otimes \mathcal{S}'$.

3. Application to $K \times H$ -finite, $\mathcal{Z}(\mathfrak{g})$ -finite functions

Here is the relation between the expansions in the previous two sections:

Theorem 3. Let $f \in E(I,T)$ and assume that f is right H-finite. Then there exists $r \in \mathbb{R}$ such that $f \in C_r(G)$, and hence Corollary 2 applies to f. The restrictions to the open set PH of the distribution coefficients of $p_{\xi}(f)$ are, via the Haar measure dx, given by real analytic functions, and hence they can be evaluated at the identity. They satisfy the following relation with the polynomials P_{ν} of Section 1: for all $\nu \in (a_q)_c^*$

$$P_{\nu}(f) = \sum_{\xi} p_{\xi}(f, e)|_{\mathfrak{a}_q},$$

where the sum extends over the finite set of $\xi \in \mathfrak{a}_q^*$ such that $\xi|_{\mathfrak{a}_q} = \nu$ and $\xi|_{\mathfrak{a}_h} \in T$.

Proof. For the existence of r, see Remark 14.5 in [BS87]. In the special case where \mathcal{T} consists only of the trivial K-type (so that f is left K-invariant), the theorem can be derived from [BS87, Sections 14-16] as follows.* That $p_{\xi}(f)$ is real analytic on PH is stated in Corollary 16.2. For the τ -spherical function F associated to f (cf. [BS87, p. 148]) it follows from (14.8), (16.4) and (16.9) that $p_{\xi}(F,e)|_{a_q}$ can be obtained from $P_{\nu}(F)$, where $\nu=\xi|_{a_q}$, by projecting it onto the generalized weight space in E_{τ} of \mathfrak{a}_h -weight $\mu=\xi|_{a_h}$. Hence the summation over all ξ such that $\xi|_{a_q}=\nu$ and $\xi|_{a_h}\in T$ yields $\sum_{\xi}p_{\xi}(F,e)|_{a_q}=P_{\nu}(F)$, from which the stated result for f follows. The only difficulty in extending this proof to the general \mathcal{T} is contained in the following lemma, which generalizes [BS87, Lemma 15.1]. \square

Define $a_t \in A^+$ for $t \in (0,1)^{\Delta}$ by $(a_t)^{-\alpha} = t_{\alpha}$ for $\alpha \in \Delta$. Then $t \to 0$ is equivalent to $\alpha(\log a_t) \to +\infty$ for all $\alpha \in \Delta$.

Lemma 3. There exist an open neighborhood Ω_0 of (e,0) in $G \times \mathbb{R}^{\Delta}$ and real analytic maps $h, a, k : \Omega_0 \to H, A, K$, respectively, such that:

(i) For all $(g,t) \in \Omega_0$, with $t \in (0,1)^{\Delta}$,

$$ga_t = h(g,t)a(g,t)a_tk(g,t).$$

- (ii) If $(g,0) \in \Omega_0$ and $x = man \in P$, then $(gx,0) \in \Omega_0$, h(gx,0) = h(g,0), a(gx,0) = a(g,0)a, and k(gx,0) = k(g,0)m.
- (iii) For $t \in \mathbb{R}^{\Delta}$ near 0 we have h(e,t) = a(e,t) = k(e,t) = e.

Proof. The existence of h and a is given in [BS87, Lemma 15.1]. To prove the existence of k we need the following lemma. Let $\bar{P} = MA\bar{N}$ be the minimal parabolic opposite to P.

Ler

 $for \\ x = \\ Pro$

posi of s

Proof for (

for s

for (

wher

 $\frac{1}{2}$

for a

for a conti

for a

and 1

^{*}Notice that in [BS87] the sides from which K and H act are reversed.

UNCTIONS

ous two sections:

H-finite. Then $y \ 2$ applies to f. fficients of $p_{\xi}(f)$ ions, and hence blowing relation

 $|at \xi|_{a_q} = \nu$ and

the special case fft K-invariant), is follows.* That if the τ -spherical om (14.8), (16.4) here $\nu = \xi|_{a_q}$, by weight $\mu = \xi|_{a_h}$. $\xi|_{a_h} \in T$ yields f follows. The contained in the \square

Then $t \to 0$ is

in $G \times \mathbb{R}^{\Delta}$ and that:

 $\Omega_0, h(gx, 0) = n.$ e(x) = e.

15.1]. To prove $= MA\bar{N}$ be the

ersed.

Lemma 4. There exist an open neighborhood U_1 of (e,0) in $G \times \mathbb{R}^{\Delta}$ and unique real analytic maps $z_1, k_1 : U_1 \to \bar{N}A, K$, respectively, such that

$$ga_t = z_1(g,t)a_tk_1(g,t)$$

for $(g,t) \in U_1$ with $t \in (0,1)^{\Delta}$. Moreover, $z_1(e,t) = k_1(e,t) = e$, and if $x = man \in P$ then $z_1(gx,0) = z_1(g,0)a$ and $k_1(gx,0) = k_1(g,0)m$.

Proof. The uniqueness is clear from the uniqueness in the Iwasawa decomposition. By the $\bar{N}AMN$ decomposition it suffices to prove the existence of such maps on a neighbourhood of (e,0) in $N \times \mathbb{R}^{\Delta}$. Now use [BS87, Lemma 8.6] and its proof. \square

Proof of Lemma 3. Let Ω_0 , h, and a be as in [BS87, Lemma 15.1]. Then, for (z,t) an element of $(\bar{N}A \times (0,1)^{\Delta}) \cap \Omega_0$, we have

$$za_t k = h(z,t)a(z,t)a_t$$

for some $k \in K$. From the uniqueness in Lemma 4 we infer that

$$z = z_1(h(z,t)a(z,t),t)$$
 and $k = k_1(h(z,t)a(z,t),t)$

for (z,t) near (e,0) in $(\bar{N}A\times(0,1)^{\Delta})\cap\Omega_0$. Hence

$$za_t = h(z,t)a(z,t)a_tk(z,t)$$

where $k(z,t) = k_1(h(z,t)a(z,t),t)^{-1}$ is defined and real analytic on a neighborhood of (e,0) in $\bar{N}A \times \mathbb{R}^{\Delta}$.

For $(g,t) \in G \times (0,1)^{\Delta}$ near (e,0), Lemma 4 gives

$$ga_t = z_1(g,t)a_tk_1(g,t)$$

= $h(z_1(g,t),t)a(z_1(g,t),t)a_tk(z_1(g,t),t)k_1(g,t),$

and Lemma 3 follows.

Proof of Theorem 1. From Theorem 3 we have

$$P_{\nu}(f) = \sum_{\xi \mid_{\mathfrak{a}_q} = \nu, \xi \mid_{\mathfrak{a}_h} \in T} p_{\xi}(f, e) \mid_{\mathfrak{a}_q}$$

for all $\nu \in (\mathfrak{a}_q)_c^*$, and, when applied to the case H = K,

$$P_{\xi}(f^{\delta}) = p_{\xi}(f^{\delta}, e)$$

for all $\xi \in \mathfrak{a}_c^*$. In particular, $\deg P_{\xi}(f^{\delta}) = \deg p_{\xi}(f^{\delta}, e) \leq d$. From the continuity and linearity of the map $f \to p_{\xi}(f)$ it follows that

$$p_{\xi}(f) = \sum_{\delta} p_{\xi}(f^{\delta})$$

for all ξ . Combining these equations we get

$$P_{\nu}(f) = \sum_{\xi} p_{\xi}(f, e)|_{a_q} = \sum_{\xi, \delta} p_{\xi}(f^{\delta}, e)|_{a_q} = \sum_{\xi, \delta} P_{\xi}(f^{\delta})|_{a_q},$$

and the theorem follows. \square

4. Application to boundedness

For simplicity we consider in this section only functions on G that are right H-fixed. Notice that in this case the set $T \subset (\mathfrak{a}_h)_c^*$ in Theorem 1 consists only of the element 0. In [B87, Thm. 6.4] (and in [CM82, Thm. 7.5] for the case of H = K) a criterion for $f \in L^p(G/H)$ is given in terms of the coefficients $P_{\nu}(f)$, where $1 \leq p < \infty$. The following theorem supplements this (at $p = \infty$), and the proof is essentially the same (it is in fact slightly easier). It is convenient to rewrite the series expansion of f as follows

$$f(a) = \sum_{\nu \in S - \mathbb{N}\Delta_q, n \in \mathbb{N}^{\Delta_q}} c_{\nu,n} (\log a)^n a^{\nu} \qquad (a \in A_q^+),$$

where $c_{\nu,n} \in \mathbb{C}$, and where $(\log a)^n$ is defined as $\prod_{\beta \in \Delta_q} (\beta(\log a))^{n_\beta}$. The $c_{\nu,n}$ are uniquely determined by f and by the choice of basis Δ_q defining the open chamber A_q^+ .

Theorem 4. Let f be a K-finite, D(G/H)-finite function on G/H. Then the following three statements are equivalent:

- (i) f is bounded on G/H.
- (ii) For every choice Δ_q of basis for Σ_q , and for every ν , the function
- $a \to P_{\nu}(\log a)a^{\nu}$ is bounded on A_q^+ . (iii) For every choice Δ_q of basis for Σ_q , for every $\nu = \sum_{\beta \in \Delta_q} \nu_{\beta} \beta$ and $n \in \mathbb{N}^{\Delta_q}$ with $c_{\nu,n} \neq 0$, and for every $\beta \in \Delta_q$, we have:

$$\operatorname{Re} \nu_{\beta} \leq 0$$
; in fact, if $n_{\beta} \neq 0$, then $\operatorname{Re} \nu_{\beta} < 0$.

We can now derive the following result, which was first obtained in joint work of Flensted-Jensen, Oshima and the second author ([FOS88, Lemma

Corollary 3. Let f be as above, and let $f = \sum_{\delta \in K^{\wedge}} f^{\delta}$. Then f is bounded if and only if each f^{δ} is bounded.

Proof. If f is bounded, then obviously each f^{δ} is bounded. Conversely, assume that every f^{δ} is bounded, and fix Δ_q and $\nu \in S - \mathbb{N}\Delta_q$.

From Theorem 4 (applied to the special case H = K) it follows that $P_{\xi}(f^{\delta}, \log a)a^{\xi}$ is bounded on A^{+} for all $\xi \in \mathfrak{a}_{c}^{*}$. Hence it is also bounded on A_q^+ because A_q^+ is contained in the closure of A^+ . In particular, this holds with ξ given by $\xi|_{a_q} = \nu$ and $\xi|_{a_h} = 0$. For this ξ we write

$$P_{\xi}(f^{\delta}, \log a) = \sum_{n \in \mathbb{N}^{\Delta_q}} c_n^{\delta} (\log a)^n$$

for $a \in A_q$. If $P_{\xi}(f^{\delta}) \neq 0$, then the boundedness of $P_{\xi}(f^{\delta}, \log a)a^{\nu}$ on A_q^+ implies that, for each $\beta \in \Delta_q$, we have $\text{Re } \nu_{\beta} \leq 0$. Moreover, if $n \in \mathbb{N}^{\Delta_q}$, $c_n^{\delta} \neq 0$

and he $n_{\beta} \neq 0$

Coroll generat

Fina

Proof. a left h $K \times K$ a matri Now ap

[B87]

[BS87]

[BS89]

[CM82]

[FOS88]

[HC60]

[S84]

[W83]

[W88]

Universi TA UTRE E-mail: t

THE ROY EMATICS A

E-mail: r

ctions on G that are $(\mathfrak{a}_h)_c^*$ in Theorem 1 and in [CM82, Thm. $\mathcal{P}(G/H)$ is given in the following theorem on the same (it is in

ies expansion of f as

 $a \in A_q^+),$

 $\Delta_q(\beta(\log a))^{n_\beta}$. The of basis Δ_q defining

ction on G/H. Then

very ν , the function

 $\nu = \sum_{\beta \in \Delta_q} \nu_{\beta} \beta$ and we have:

g < 0.

st obtained in joint or ([FOS88, Lemma

 $\in K^{\wedge} f^{\delta}$. Then f is

unded. Conversely, $S - \mathbb{N}\Delta_{\mathfrak{g}}$.

(K) it follows that e it is also bounded In particular, this we write

 $(f^{\delta}, \log a)a^{\nu} \text{ on } A_q^+$ becover, if $n \in \mathbb{N}^{\Delta_q}$, $c_n^{\delta} \neq 0$, and $n_{\beta} \neq 0$, then Re $\nu_{\beta} < 0$. However, Theorem 1 gives that

$$c_{\nu,n} = \sum_{\delta} c_n^{\delta},$$

and hence, if $c_{\nu,n} \neq 0$, then $c_n^{\delta} \neq 0$ for some δ . Hence $\text{Re } \nu_{\beta} \leq 0$, and if $n_{\beta} \neq 0$, then $\text{Re } \nu_{\beta} < 0$. Now Theorem 4 can be applied once more. \square

Finally, we notice the following corollary, also from [FOS88]:

Corollary 4. Let f be as above, and assume that the (g, K)-module V_f generated by f (on the left) is unitarizable. Then f is bounded.

Proof. Since projection onto the space of functions of right K-type δ is a left homomorphism, $V_{f^{\delta}}$ is a unitarizable representation. Since f^{δ} is a $K \times K$ -finite matrix coefficient of $V_{f^{\delta}}$ (cf. Lemma 2), it is thus in fact a matrix coefficient of a unitary representation, and hence it is bounded. Now apply Corollary 3. \square

REFERENCES

- [B87] Ban, E.P. van den, Asymptotic behaviour of matrix coefficients related to reductive symmetric spaces, Proc. Kon. Nederl. Akad. Wet. 90 (1987), 225-249.
- [BS87] Ban, E.P. van den and H. Schlichtkrull, Asymptotic expansions and boundary values of eigenfunctions on Riemannian symmetric spaces, J. reine angew. Math. 380 (1987), 108-165.
- [BS89] _____, Local boundary data of eigenfunctions on a Riemannian symmetric space, Invent. math. 98 (1989), 639-657.
- [CM82] Casselman, W. and D. Miličić, Asymptotic behaviour of matrix coefficients of admissible representations, Duke Math. J. 49 (1982), 869-930.
- [FOS88] Flensted-Jensen, M., T. Oshima and H. Schlichtkrull, Boundedness of certain unitarizable Harish-Chandra modules, Adv. Stud. in Pure Math. 14 (1988), 651-660.
- [HC60] Harish-Chandra, Differential equations and semisimple Lie groups, Collected Papers, vol. 3, Springer-Verlag, 1983, pp. 57-120.
- [S84] Schlichtkrull, H., Hyperfunctions and harmonic analysis on symmetric spaces, Birkhäuser, 1984.
- [W83] Wallach, N., Asymptotic expansions of generalized matrix entries of representations of real reductive groups, Lecture Notes in Math. 1024 (1983), 287-369.
- [W88] _____, Real reductive groups, vol. 1, Academic Press, 1988.

University of Utrecht, Department of Mathematics, P.O.Box 80.010, 3508 TA Utrecht, the Netherlands.

E-mail: ban @ math.ruu.nl

THE ROYAL VETERINARY AND AGRICULTURAL UNIVERSITY, DEPARTMENT OF MATHEMATICS AND PHYSICS, THORVALDSENSVEJ 40, 1871 FREDERIKSBERG C, DENMARK. *E-mail*: rvamath @ vm.uni-c.dk