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CUSP FORMS FOR REDUCTIVE SYMMETRIC SPACES
OF SPLIT RANK ONE

ERIK P. VAN DEN BAN AND JOB J. KUIT

ABSTRACT. For reductive symmetric spaces G/H of split rank one we identify
a class of minimal parabolic subgroups for which certain cuspidal integrals of
Harish-Chandra—Schwartz functions are absolutely convergent. Using these
integrals we introduce a notion of cusp forms and investigate its relation with
representations of the discrete series for G/H.
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INTRODUCTION

In this article we aim to develop a notion of cusp forms for reductive symmetric
spaces. More precisely, we generalize Harish-Chandra’s notion of cusp forms for
reductive Lie groups to a notion for reductive symmetric spaces of split rank one.
Furthermore, we investigate the relation of this notion with representations of the
discrete series for the spaces considered.

Let G be a real reductive Lie group of the Harish-Chandra class and let €(G)
be the Harish-Chandra space of L2-Schwartz functions on G. In [HC75] Harish-
Chandra proved that for every parabolic subgroup P = MpApNp of G, every
¢ € €(G) and every g € G of the integral

(L.1) d(gn) dn
Np
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is absolutely convergent. In analogy with the theory of automorphic forms, he
then defined a cusp form on G to be a function ¢ € €(G) such that the integral
(LI) vanishes for every proper parabolic subgroup P of G and every g € G. Let
Geusp(G) be the space of cusp forms and let €y4s(G) be the closed span of the K-finite
matrix coefficients of the representations from the discrete series. Harish-Chandra
established the fundamental result that

(I.2) Geusp(G) = Gus(G).

See [HC66], [HC70, Thm. 10] and [HCT75, Sects. 18 & 27]; see also [Var77, Thm.
16.4.17].

For the more general class of real reductive symmetric spaces G/H, the main
problem one encounters when trying to define cusp forms, is convergence of the
integrals involved. The naive idea would be to use the class of o-parabolic sub-
groups, as they appear in the general Plancherel theorem as obtained by P. Delorme
[Del98] and, independently, H. Schlichtkrull and the first named author, [vdBS97c],
[vdBS05]. This approach fails, however, for two reasons: first, the integrals need
not always converge (see [AFJS12, Lemma 4.1]) and second, the notion differs from
Harish-Chandra’s for the group.

Around 2000, M. Flensted-Jensen proposed a notion of cusp forms for symmetric
spaces that does generalize Harish-Chandra’s notion. This notion makes use of
minimal parabolic subgroups for the group GG, which are in a certain position relative
to the Lie algebra b of H; in a sense they are as far away from o-parabolic subgroups
as possible; in the present paper such minimal parabolic subgroups are called b-
extreme; see Definition [[.1l

In [AFJS12] the new notion was tested for real hyperbolic spaces. In that setting
the space Geusp(G/H) of cusp forms in the Schwartz space ¢ (G/H) is contained in
the discrete part €as(G/H), but in contrast with the case of the group, the inclusion
may be proper. The aim of this paper is to understand such and other properties
of cusp forms in the more general context of reductive symmetric spaces of split
rank one.

Our approach to the convergence problem is indirect, and heavily based on the
available tools from the harmonic analysis leading to the Plancherel formula. In an
earlier paper, [vdBK14], we prepared for the present one by developing (without
restriction on the rank) a notion of minimal Eisenstein integrals for G/H in terms of
minimal parabolics of the group G. For the case of the group viewed as a symmetric
space, Harish-Chandra’s (minimal) Eisenstein integrals can then be recovered by
making the special choice of h-extreme minimal parabolic subgroups.

Somewhat surprisingly, it appears that for the convergence of the cuspidal in-
tegrals another condition on the minimal parabolic subgroup involved is needed,
which we call h-compatibility; see Definition The set &, of such minimal
parabolic subgroups is non-empty; for the group, it actually consists of all minimal
parabolic subgroups. For the real hyperbolic spaces the class of h-extreme minimal
parabolic subgroups turns out to coincide with the class of h-compatible ones.

Let G/H be of split rank one. In Theorem we prove that for each Q) € &
and every Schwartz function ¢ € €(G/H) the following Radon transform integral,

(13) Rod(g) = / b(gn)dn (g€ G)

NQ/NQQH
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is absolutely convergent and defines a smooth function of g € G; here, Ng denotes
the nilpotent radical of Q. A function ¢ € €(G/H) is said to be a cusp form if for
all € & the Radon transform R¢¢ is identically zero. It turns out that for this
to be valid, it is enough to require vanishing of Rg¢ for all h-extreme parabolic
subgroups in Py; see Lemma 814l Thus, for both the case of the group and for the
real hyperbolic spaces, our notion coincides with the existing ones. Let Geusp(G/H)
denote the space of cusp forms. Under the assumption of split rank one, we show
that

(I.4) Ceusp(G/H) C 6u4s(G/H);

see Theorem [R20l Let K be a o-stable maximal compact subgroup of G and 7 a
finite dimensional unitary representation of K. In Theorem B.24] we establish that
the space 64s(G/H : 7) admits an L?-orthogonal decomposition

(I.5) Cas(G/H : T) = Ceusp(G/H : T) & 61es(G/H : T),

where €,.s(G/H : T) is spanned by certain residues of Eisenstein integrals defined
in terms of h-compatible, h-extreme parabolic subgroups. Furthermore, in Theorem
B22we give the following remarkable criterion for the analogue of ([2) to be valid,

(1.6) Gres(G/H)E =0 = Crusp(G/H) = Cas(G/H).

Finally, we establish, in Theorem[R:26] a characterisation of the subspace 64s(G/H)
of ¢(G/H) in terms of the behavior of the Radon transforms Rq¢, for Q € Z.

We will now give a more detailed outline of the structure of our paper. In the
first part we work in the generality of an arbitrary reductive symmetric space of
the Harish-Chandra class. Let € be the Cartan involution associated with K, and
g = £ ® p the associated Cartan decomposition of the Lie algebra of G. Let ¢ be
the —1-eigenspace of the infinitesimal involution ¢ and let a be a maximal abelian
subspace of p such that ag := a N g is maximal abelian in p N q. Furthermore,
let A :=expa and Ay := expag. The (finite) set of minimal parabolic subgroups
@ C G containing A is denoted by Z(A) and the subset of h-compatible ones
by &y (A). After necessary preparations in Section 1, we define Radon transforms
for ¢ € L'(G/H) as in ([3). By a Fubini type argument combined with the
Dixmier-Malliavin theorem on smooth vectors, we show, in Proposition 2.I1] that
for ¢ € L'(G/H) the integral ([3) is absolutely convergent, and defines a smooth
function on G/Ng.

To make the connection with harmonic analysis, we define, in Section[3] a Harish-
Chandra transform Hg, which maps a function ¢ € L'(G/H)> to the smooth
function on M A := Zg(a) given by

Hoo(l) =do(DRqo(l) (I € MA).

Here éq is a character on M A that is chosen such that Hq¢ is right (M AN H)-
invariant and can therefore be viewed as a smooth function on MA/(MANH). We
thus obtain a continuous linear map

(L.7) Hg : LY(G/H)>® — C*(MA/MANH).
It is then shown, that associated with @ there exists a certain P € 4?(A) such
that 05'Hoe vanishes at infinity on MA/(MANH) for all ¢ € LY(G/H)>®. Tt is a

consequence of this result that R¢ vanishes on L'(G/H)N L3 (G/H); see Theorem
5.0l
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The next goal is to find a condition on the minimal parabolic subgroup @ to
ensure that ([7) extends continuously from L' (G/H)> to the larger space € (G/H).

Our strategy is to first prove, in Section [ that every Schwartz function can be
dominated by a non-negative K-fixed function from € (G/H); see Proposition
Based on this, we show that for the convergence of the integral (L3) for ¢ € € (G/H)
it suffices to prove that the restriction of Hq to C°(G/H)¥ extends continuously
to € (G/H)¥; see Proposition

In Section [l we use the Eisenstein integrals associated with @ € Z?(A) and
a finite dimensional representation 7 of K, introduced in [vdBK14], to define a
Fourier transform §g .. For a compactly supported smooth 7-spherical function
¢ € C(G/H : 1), the Fourier transform F¢ -¢ is a meromorphic function of a
spectral parameter A € a..

In Section [ we introduce a 7-spherical version of the transform (),

Mo, CF(G/H : 1) = C™(Aq) @ @ a(T).

Here, 9/12(7) is a certain finite dimensional Hilbert space, which appears in the
description of the most continuous part of the Plancherel formula for G/H, as a
parameter space for the Eisenstein integrals involved. The transform Hq , applied
to a compactly supported smooth 7-spherical function ¢ € C°(G/H : T) gives
a function whose Euclidean Fourier-Laplace transform coincides with §q.-¢; see
Proposition At the end of the section, we discuss the relation of the Harish-
Chandra transform with invariant differential operators on G/H.

Section [ is devoted to the extension of the Harish-Chandra transform to the
Schwartz space. First, for a function ¢ € €(G/H : 7), the transform Hq ¢ can
be expressed as a Euclidean inverse Fourier transform of §g r¢ which involves a
contour integral over a translate of iaj in the spectral parameter space ag.; see
Lemma [T Il The idea is then to shift the contour integral towards the tempered
part of the Plancherel spectrum, corresponding to iag, and to analyze the appearing
residues.

At this point we restrict to spaces G/H with dim A; = 1, in order to be able
to handle the appearing residues. The shift then results in the sum of a so-called
tempered term and a so-called residual term, which essentially is a sum of residues of
the Fourier transform §¢ ,¢. By its close relation with the most continuous part of
the Plancherel formula, the tempered term can be shown to extend continuously to
the Schwartz space. On the other hand, for 7 the trivial representation, the residual
term can be shown to come from testing with matrix coefficients of the discrete
series, which arise from residues of the Eisenstein integral for Q. It is for drawing
this conclusion that the condition of h-compatibility on @ is needed. Accordingly,
for such a @, the transform Hg 1 extends continuously to all of ¢ (G/H)X. As
we indicated above this implies that R extends continuously to €(G/H); see
Theorem [(223l In turn, this implies that the general 7-spherical Harish-Chandra
transform extends to €(G/H : ), so that the associated T-spherical residual term
must be tempered.

In Section B §811 and §8.2] we apply a spectral analysis involving invariant
differential operators, to show that the 7-spherical residual term consists of matrix
coefficients of discrete series representations. In the final subsection of the paper,
4§83l we define the notion of cusp form as discussed above, and obtain the mentioned
results (L4), (L3) and (L6), as well as the mentioned characterization of €as(G/H)
in terms of Radon transforms.
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Whenever possible, we develop the theory without restriction on the split rank
of G/H. In fact, only in the subsections [(2] [74] [T5] and do we require that
dim A4 = 1. This restriction will always be mentioned explicitly.

In Remarks [7.24], R15], BI6, RB21] R23 and we compare our results with
the results of [AFJS12]. Finally, our results are consistent with the convergence
of a certain integral transform appearing in the proof of the Whittaker Plancherel
formula given in [Wal92], but suggest that the image space does not consist of
Schwartz functions. This is confirmed by an explicit calculation for SL(2,R); see
Example [7.4] and Remark

1. NOTATION AND PRELIMINARIES

Throughout the paper, G will be a reductive Lie group of the Harish-Chandra
class, o an involution of G and H an open subgroup of the fixed point subgroup
for 0. We assume that H is essentially connected as defined in [vdB86l p. 24]. The
involution of the Lie algebra g of G obtained by deriving o is denoted by the same
symbol. Accordingly, we write g = h @ q for the decomposition of g into the +1-
and —1-eigenspaces for . Thus, § is the Lie algebra of H. Here and in the rest of
the paper, we adopt the convention to denote Lie groups by Roman capitals, and
their Lie algebras by the corresponding Fraktur lower cases.

Given a subgroup S of G we agree to write

Hg:=S5NH.

We fix a Cartan involution 6 that commutes with ¢ and write g = € @ p for the
corresponding decomposition of g into the +1- and —1-eigenspaces for 6. Let K be
the fixed point subgroup of §. Then K is a o-stable maximal compact subgroup
with Lie algebra £. In addition, we fix a maximal abelian subspace aq of p N q and
a maximal abelian subspace a of p containing a,. Then a is o-stable and

a=aq D ay,
where ay = a N h. This decomposition allows us to identify ay and ag with the
subspaces (a/h)* and (a/q)* of a*, respectively.

Let A be the connected Lie group with Lie algebra a. We define M to be the
centralizer of A in K and write L for the group M A. The set of minimal parabolic
subgroups containing A is denoted by 2(A).

In general, if () is a parabolic subgroup, then its nilpotent radical will be denoted
by Ng. Furthermore, we agree to write Q = 6Q and Ng = ONg. Note that if
Q € Z(A), then L is a Levi subgroup of @ and @ = M AN is the Langlands
decomposition of Q.

The root system of a in g is denoted by ¥ = X(g,a). For Q € &(A) we put

2(Q)={aeX:go Cng}.
Let Zg(aq) denote the centralizer of aq in g. We define the elements pg and pg  of
a* by

(1) pel)=5r(ad()hg)  and pgu() = 58 (ad(Vhngnz, o)

Let my = dim g, for a € 3. Then it follows that

1 1
PQ =3 E mq o, and pgp= 3 E My Q.
a€X(Q) aeX(Q)Nag

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



472 ERIK P. VAN DEN BAN AND JOB J. KUIT

For an involution 7 of g that stabilizes a we write
5(Q,7) = %(Q) NTX(Q).
If Q@ € #(A) then 3(Q) N ap C ¥(Q,0) and ¥(Q) Na; C X(Q, 00). Furthermore,

%(Q) = 5(Q,00) UX(Q, 0)
see [vdBK14l Lemma 2.1]. The following definition is consistent with [vdBK14]
Def. 1.1].

Definition 1.1. Let Q € #(A).
(a) The parabolic subgroup @ is said to be g-extreme if ¥(Q, o) = %(Q) N ag.
(b) The group @ is said to be h-extreme if ¥(Q,00) = X(Q) N aj.
We define the partial ordering < on ?(A) by
Q=P = X(Q,00) CX(P,od) and X(P,0) C %(Q,0).

The condition () < P guarantees in particular that H N Np C H N Ng. The latter
implies that we have a natural surjective H-map H/(H N Np) — H/(H N Ng).

Lemma 1.2. Let Q € Z(A). Then we have the following equivalences:
(a) Q is g-extreme <= Q@ is <-mazximal;
(b) Q is h-extreme <— Q is <-minimal.
Proof. In both (a) and (b) the implications from left to right are obvious from

the definitions. The converse implications follow from [vdBK14l Lemma 2.6] and
[BvdB14, Lemma 2.6]. O

We denote by &,(A4) the set of minimal fo-stable parabolic subgroups contain-
ing A,. If Py € Z,(Ay), then A C Py and we write
q q
Y(P) :={a€X:gy Cup} and X(Fy,aq) = {alq, : a € X(Fy)}.

Then Py — X(Po,aq) is a bijection from Z2,(Aq) onto the collection of positive
systems for the root system (g, aq) of a4 in g.

From [vdBK14, Lemma 1.2] we recall that a parabolic subgroup P € Z(A)
is g-extreme if and only if it is contained in a parabolic subgroup Py € #,(Aq).
Furthermore, in that case we must have

Y(Py) = X(P,00),
showing that P, is uniquely determined. In accordance with this observation, we
agree to write

Py(A)={P e P(A): Pis g-extreme }.

We note that the assignment P — P, mentioned above defines a surjective map
(1.2) Py(A) > P,(Aq).
For a given Py € #,(Ay), the fiber of Py for the map (L2)) consists of the parabolic
subgroups P € Z,(A) with X(P) = %(Fy) U (X(P) N ap). It is readily seen that
the map P — X(P)N ay defines a bijection from this fiber onto the set of positive
systems for the root system > N ap-

Remark 1.3. If a € YNag, then the associated root space g, is contained in h; see
[vdBK14, Lemma 4.1]. Hence, if P € &,(A) and Py the unique group in Z,(4,)
containing P, then NpH = Np H and PH = PyH. In particular, it follows that
PH is an open subset of G.
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For Q € #(A) we define
(1.3) Po(A,Q) = (P € P,(A): Pr Q).

It follows from Lemma[[2[a) that this set is non-empty. The following lemma will
be used frequently.

Lemma 1.4. Let Q € Z(A) and Py € P,(Aq). Then the following assertions are
equivalent.

(a) There exists a P € P5(A) such that Q < P C P.

(b) (Q.00) C ().
If (b) is valid, then the group P in (a) is uniquely determined.

Proof. First assume (a). Let Py be the unique parabolic subgroup from Z,(A,)
containing P. Then X(Q, 00) C X(P,06) C X(F,). Hence, (b).

Now, assume (b). By the discussion above there exists a unique g-extreme P
with P C Py and ¥(P) Nay = X(Q) Nag. For this P, we have 3(Q, 0f) C X(F) =
(P, o). Furthermore, ¥(P,0) = %(P)Nay = X(Q) Nay € ¥(Q, 0). Hence, Q < P
and we infer that (a) is valid. O

We fix an Ad(G)-invariant symmetric bilinear form
(1.4) B:gxg—R

such that B is - and o-invariant, B agrees with the Killing form on [g,g] and
—B(-,0-) is positive definite on g.

Haar measures on compact Lie groups and invariant measures on compact ho-
mogeneous spaces will be normalized such that they are probability measures. If
N is a simply connected nilpotent Lie subgroup of G with Lie algebra n, then we
will normalize the Haar measure on N such that its pull-back under the exponen-
tial map coincides with the Lebesgue measure on n normalized according to the
restriction of the inner product —B(-,60(-)).

2. RADON TRANSFORMS

2.1. Decompositions of nilpotent groups. Let P € #(A). For a given element
X € aq we define the Lie subalgebra

npx = @ Yo

aex(P)
a(X)>0

and denote by Np x the associated connected Lie subgroup of G. The following
lemma is proved in [BvdB14, Prop. 2.16].

Lemma 2.1. There erists X € aq such that

oX)#0  if aeB\q,
(2.1) {a(X) >0 if a€X(P, ?79)-

For any such X, the multiplication map
Npx x Hy, — Np (nyng) — nng

is a diffeomorphism.
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The groups Np and Hpy, are both unimodular. Hence, there exists an Np-
invariant measure on Np/Hy,. We normalize the measure on Np/Hp, such that
for every ¢ € C.(Np),

Y(n)dn = / Y(xn)dndx.
Np Np/Hnp J Hnp

Lemma [21] has the following corollary.
Corollary 2.2. Let X € aq be as in Lemma 21l Let ¢ € L*(Np/Hn,). Then

/NP/HN o(x)dx = /NP,X ¢(n) dn.

Lemma 2.3. Let P,Q € #(A) and assume that X € aq satisfies the conditions of
Lemma 211 If Q < P, then both Np N Ng and Ng x are contained in Npx and
the multiplication map

(NPONQ) x Ng x — Np x

s a diffeomorphism.

Proof. Since L(P,0) C %(Q,0), it follows that X(P) N X(Q) C X(P,00) and we
infer that the first inclusion follows.

Let « € 3(Q) be such that a(X) > 0. Assume —a € X(P). Then —a is negative
on X hence cannot belong to X(P, 06) and must belong to (P, o). The latter set
is contained in (@, o) hence in ¥(Q), contradiction. We conclude that o € X(P).
This establishes the second inclusion.

From the two established inclusions it follows that Np N Ng = Np x N Ng, and
Ng.x = Np,x N Ng and we see that the above map is a diffeomorphism indeed. O

Corollary 2.4. Let P,Q € P(A) satisfy Q@ < P and assume that ¢ € C(G/H) is
integrable over Np/Hy,. Then for almost all n € Np N Ng the function L,-1¢p is
integrable over Ng/Hn, and

[ ewde= [ [ ) andy
NP/HNP NPQNQ NQ/HNQ

with absolutely convergent outer integral.

Proof. Let X € aq be as in Lemma 2Tl Then the result follows from Corollary
and Lemma [2.3] combined with Fubini’s theorem, in view of the normalization of
measures on the nilpotent groups involved; see the end of Section [l ([l

2.2. Invariance of integrals. As in the previous section, we assume that Q €
P (A). Recall that L = M A. We define the character dg on L by

1
2

22) O M ien)

2.2 do(l) = lel).
det Ad(D)]_ o

Since M is compact, it follows from (L)) that

(2.3) dg(ma) = aP@=rab (me M,acA).
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Lemma 2.5. Let ¢ be a measurable function on G/H such that

/ l6(n)| dn < .
Nq/Hng

Then for every | € Hy, the function n — ¢(In) is absolutely integrable on Nq/Hy,,

and
do(l In)dn = dn.

Proof. Assume that X € aq satisfies (ZI) and let [ € Hy. By applying Lemma 2]
performing a substitution of variables and applying the same lemma once more, we
obtain the following identities of absolutely convergent integrals

/ ¢(ln)dn = / ¢(In') dn’
NQ/HNQ Nqg,x

/ ¢(ln’l—1)dn’:D(1)—1/ p(n') dn’
Ng,x Ng.x

- ooyt o dlmyn

where D(I) = ‘det Ad),, X‘ .

Thus, it suffices to show that D(I) equals dg(l) as defined in [2.2)). Since Hy =
(MNH)(ANH) and M is compact, we see that D = g = 1 on M N H and it
suffices to prove the identity for I = a € AN H. Equivalently, in view of ([23]), it
suffices to prove the identity of Lemma below. ]

Lemma 2.6. Let X € aq be as in (ZI). Then

(2.4) (0@ = rao)l,, = D maal, .

a€X(Q)
a(X)>0

Proof. We write 3(Q, X) for the set of roots a € ¥(Q) with «(X) > 0. For the
purpose of the proof, it will be convenient to use the notation

S(®) = Z maa’ub,

acA

for ® C X. The expression on the left-hand side of ([Z4) equals %S(Z(Q)\a;),
whereas the expression on the right-hand side equals S(X(Q, X)). We observe
that X(Q) is the disjoint union of the sets X(Q,0) and X(Q, c6). Furthermore,
S(X(Q,00)) = 0. Hence,

(b — pan)ly, = 5 S(Q0)\ a3).

Next, we observe that ¥(Q,0)\ay is the disjoint union of ¥(Q, X) N ¥(Q, o) and
a(X(Q, X)NX(Q,0)) so that

5 5(2(Q.0)\ 65) = S(2(@.0) 1 5(Q, X).

Finally, using that X(Q, X) 2 X(Q, 06) we find
S(EQ,0)NE(Q, X)) = S(E(Q,0)NE(Q, X))+ S(X(Q,00))
= S(E(Q X))

and the lemma follows. O
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2.3. Convergence of integrals. As before, we assume that Q € Z(A). If P €
P(A) is a g-extreme parabolic subgroup, then PH is an open subset of G; see
Remark [[3 Tts natural image in G/H will be denoted by P - H.

Lemma 2.7. Let P € Z,(A,Q). Then the G-invariant measure on G/H and the
L-invariant measure on L/H|, can be normalized so that for every ¢ € LY(G/H),

0
. dr = nin) dndl dn
(2 5) P-H (b(x) ! /]VPQNQ /L/HL /JVVQ/HNQ ¢(n n) " "

o)
ép(l)
with absolutely convergent integrals.

Note that by Lemma the function

L3>~ 5Q(l)/ o(In) dn
No/Hny,
is right Hp-invariant if the integral is absolutely convergent for every [ € L. Since dp
is a right Hp-invariant function as well, the right-hand side of ([21]) is well-defined.

Proof of Lemma 27 It suffices to prove the lemma for non-negative integrable
functions only. Let ¢ € L'(G/H) be non-negative. Since P - H is an open subset
of G/H, the integral over P - H is absolutely convergent. The repeated integral on
the right-hand side of ([Z3)) is well-defined (although possibly infinitely large). To
prove the lemma, we start by rewriting the right-hand side and then show that it
equals the left-hand side.

Note that L/Hyp, is diffeomorphic to M/Hys x Aq and the L-invariant measure
on L/Hy, equals the product of the M-invariant measure on M/Hj; and the Haar
measure on Aq. Furthermore, from (23] we infer that

do(ma)

<L =qfe PP M Aq).
5p(ma) a (me M,ac Ay)

Hence

/ / %) / p(nln) dn dl dn
NPQNQ L/HL 5P(l) NQ/HNQ

(2.6) z/ // a”prP/ ¢(mman) dn da dm dm.
NpmNQ M Aq NQ/HNQ

Here we have used that Hj; is compact and has volume equal to 1 by our chosen
normalization of the Haar measure.

Let Py be the unique minimal gf-stable parabolic subgroup such that P C F.
Then the set of roots of a in np, is given by X(Fp) = X(P) \ a and

PQ = Z(Clq)NPD.

It follows that pp — pp, vanishes on ag.

Let X € a4 be such that a(X) > 0 for every a € £(Fy). Then X satisfies [2.1))
and it is readily seen that Ng x = Ng N Np,. By Corollary the integral over
Ng/Hn,, can be replaced by an integral over Ng N Np,. Therefore, (28] can be
rewritten as

(2.7) / // apQ*pPO/ ¢(mman) dn da dm dm.
NoNNp JM J A, Nq@NNp,
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Note that (Ng N Np) = (Ng N Np,). The multiplication map
(NQ N NPO) X (NQ ﬂNPO) — Np,

is a diffeomorphism with Jacobian equal to 1. We now change the order of integra-
tion in (Z7) and subsequently apply the change of variables n — (ma)n(ma)~* to
the integral over ]\7@ N Np,. This change of variables has Jacobian equal to a”?o =<
by the lemma below. Finally, we rewrite the double integral over Ng N Np, and
Ng N Np, as an integral over Np,. We thus infer that the integral in ([2.7) equals

(2.8) / / ¢(man) dn da dm.
MJAg INp
Note that Mp, N K N H centralizes A, and normalizes Np,. Moreover,
| det Ad(m)|nP0| =1

for all m € Mp,NK NH. Since the volume of Mp, N K NH equals 1 (by our chosen
normalization of Haar measure), it follows that the integral (Z8) equals

/ / / é(mm’an) dn da dm' dm.
M IMp,nknH J Ay JNp,

It follows from [vdBK14, Lemma 4.3] that M(Mp, N H) = Mp,. Therefore the
integrals over M and Mp, N K N H can be replaced by one integral over Mp, N K.
To conclude the proof, we note that

/ / ¢(mm'an) dn da dm = c/ ¢(z) dx
MpynK JAq J Np, Po-H

for some constant ¢ > 0 by Thm. 1.2], and observe that Py - H = P - H; see
Remark [[3 O

Lemma 2.8. Let Py € P,(A,) satisfy 3(Q,00) C Z(FPy). Then

(2.9) ‘det Ad(ma)]

= aqPPoPQ, (me M,aec Ay).

ﬁQﬂl‘lpo
Proof. Given a subset ® C 3 we agree to write
T(®) =) maa’aq.
acd
Then, the expression on the left-hand side of ([2.9]) equals
JTES(@NE(Py)).
Since (@) is the disjoint union of 3(Q, o) and £(Q,00), whereas the latter set

is contained in X(P), it follows that the expression on the left-hand side of (Z.9)
equals

(2.10) aT(0=(Q.0)NE(Fo))

On the other hand, the expression on the right-hand side of (Z9]) equals

QA [T(EP) -T((Q)]
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Now T'(X(Q,0)) = 0 and since X(Q) is the disjoint union of 3(Q, o) and £(Q, 00),
whereas the latter set is contained in X(Fp), it follows that
T(5(R)) -T(E(Q) = T(E(R)\%(Q,00))
= TE(P) NE(Q,0)) + T(%(FR) NO%(Q,0))
= T(0cX(Po) NoX(Q,0)) +T(X(Py) NIX(Q,0))
2T(S(Py) N 05(Q, ).
Combining these we find that the expression on the right-hand side of (Z9) equals

2I0) as well. 0

Lemma 2.9. Let P € P,(A,Q). There exists a constant ¢ > 0 such that for every
¢ € L'(G/H),

/ / %) / \b(kln)| dndldk < c||é| 1.
w Jrym, OP() Jng/mn,
Proof. Applying Lemma 2.7 to left K-translates of ¢ we find

[llr = // (k- |d$d/€>// (k- x)|dx dk
P-H
//JVQﬂNp L/HL [VQ/HNQ

For g € G we write kg (9), ag(g) and ng(g) for the elements of K, A and N, respec-
tively, such that the Iwasawa decomposition of g is given by g = kg (g9)ag(9)ng(g).
Let C be a compact subset of 6Ng N Np with open interior. By a change of the
integration variables from Nq/Hy,,, L/ H; and K we obtain

ol > / L/ - /N s \¢<ka< 7)aq(Mng(m)in)| dn di dr dk

Or(ag(m)) d— / / / QW 4 i) | dn di k.
¢ 0glag(m L/HL INg/Hyg 5Pl

Note that the first integral on the right-hand side is finite since C' is compact.
Moreover, it is strictly positive since C' has an open interior and the integrand is
strictly positive. This proves the lemma. (I

(kmln)| dn dl dm dk.

We denote by L (G/Ng) the space of locally integrable functions on G/Ng.
Let dz be a choice of invariant measure on G/Ng. Then for each compact subset
C C G/Ng the function

vei o | lola)] da
c
defines a continuous seminorm on L (G/H). The seminorms thus defined deter-

mine a Fréchet topology on Li (G/H). It is readily seen that the left regular
representation of G in L{ (G/H) is continuous for this topology.

Corollary 2.10. Let Q € P(A). Then for every ¢ € L*(G/H) the integral

(2.11) "Rad(g) = /N o olomydn
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converges for g in a right Ng-invariant measurable subset of G whose complement
is of measure zero. The defined function ‘Rq¢(g) is locally integrable on G/Ng.
Finally, the resulting map

\RQ : Ll(G/H) - Llloc(G/NQ)
is continuous linear and G-equivariant.

Proof. Let ¢ € L'(G/H). By the Iwasawa decomposition, K A is a closed subman-
ifold of G. Since the multiplication map K x L — K A defines a fiber bundle with
fiber M, it follows from Lemma combined with Fubini’s theorem that there
exists a subset 2 C K A, whose complement has Lebesgue measure zero, such that
the integral (ZI1) converges for all x € Q. Furthermore, the resulting function
‘Rq¢ is locally integrable on KA. By invariance of the measure on Ng/Hpy, it
follows that ([ZII) converges for g € QNg. By the Iwasawa decomposition the
set 0Ng has a complement of measure 0. We infer that the resulting function
‘Rq¢ is defined almost everywhere and locally integrable on G/Ng. By applica-
tion of Fubini’s theorem, it follows from the estimate in Lemma that the map
‘R : LY(G/H) — L .(G/Ng) thus defined is continuous linear. Its G-equivariance

loc
is obvious from the definition. O

We write L' (G/H)> for the space of smooth vectors for the left-regular repre-
sentation L of G in L*(G/H). If ¢ € C*°(G/H) and L,¢ € L*(G) for all u € U(g),
then ¢ € L'(G)°°; this follows by a straightforward application of Taylor’s theorem
with remainder term; see also [Pou72, Thm. 5.1].

Conversely, any function in L!(G/H)® can be represented by a smooth function
¢ € C*(Q). This follows from the analogous local statement in R™ by using a par-
tition of unity. We may thus identify L'(G/H)> with the space of ¢ € C>°(G/H)
such that L,¢ € L'(G/H), for all u € U(g).

Likewise, we write L (G/Ng)> for the Fréchet space of smooth vectors in the

G-space L] (G/Ng). By similar remarks as those made above it follows that the
inclusion map C*(G/Ng) — Li,.(G/Ng) induces a topological linear isomorphism
(2.12) C%(G/Ng) —+ Lioe(G/Ng)™.

By equivariance, it follows from Corollary that the map ‘R¢ restricts to
a continuous linear map L*(G/H)>* — Li (G/Nq)>. The following proposition
asserts that the integral transform ‘R actually sends the smooth representatives
for functions in the first of these spaces to smooth representatives of functions in

the second.

Proposition 2.11. Let Q € P(A) and ¢ € L*(G/H)>. Then for every g € G the
integral

(2.13) Rodlg) = /N o dlgn)dn

is absolutely convergent and the displayed integral defines a smooth function of
g € G. The indicated transform defines a continuous linear G-equivariant map

Rq : LY(G/H)™ — C*®(G/Ng).

Proof. By [DMT78, Thm. 3.3] the space L'(G/H)> is spanned by functions of the
form ¢ = x * ¢ with x € C°(G) and ¢ € L'(G/H). Therefore, it suffices to prove
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the proposition for such functions. Let x € C°(G) and v € L'(G/H), and put
¢ =Xx*.
It follows from Corollary that the integral for x * Ro(g), given by

J(g) = /G (o) /N VO s

is absolutely convergent for every g € GG and the defined function J : G — C is
smooth. By a change of variables, followed by application of Fubini’s theorem the
integral may be rewritten as

Jg) = /G ) /N Sy, V)
- / (x % ) (gn) dn
Nq/Hng

= / ¢(gn) dn.
Nq/Hng

All assertions but the last now follow. By equivariance, it follows that the map
‘R¢ defined in Corollary 210 restricts to a continuous linear map L'(G/H)>® —
LL (G/Ng)>®. For ¢ € L'(G/H)>, the function ‘Rg(¢) is represented by the
smooth function Rg(¢). The last assertion now follows from the fact that (ZI2) is
a topological linear isomorphism. ([l

Definition 2.12. The Radon transform R is defined to be the G-equivariant
continuous linear map

Rg: LY(G/H)™ — C=(G/Ng)
given by (ZI3).

3. HARISH-CHANDRA TRANSFORMS

We retain the assumption that @ € Z(A). In terms of the Radon transform R,
defined in the previous section, we define a new transform as follows.

Definition 3.1. The Harish-Chandra transform # is defined to be the continuous
linear map

LYG/H)® — C>(L/Hy)
given by
Hoo(l) = dg()Ree(l) (L€ L).
Example 3.2 (Group case). Let ‘G be a reductive Lie group of the Harish-
Chandra class. Then ‘G is diffeomorphic to G/H, where G = ‘G x ‘G and H =
diag(‘G), via the map
G/H —='G;  (91,92) = q195 -

Under this map, the action of G on G/H corresponds to the left times right action
of '\G x ‘G on ‘G. As H is the fixed-point group of the involution ¢ : G — G,
(‘z,‘y) — (‘y,‘z), the pair (G, H) is symmetric. Let g = €& p be a o-stable Cartan
decomposition of g. Then £ ="' x ‘t and p = ‘p x ‘p, where ‘g =t ®‘p is a Cartan
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decomposition of ‘g. Let ‘a be a maximal abelian subspace of ‘p and let a = ‘a x ‘a.
Then

ag:=anq={(H,—H): H€'a}
is a maximal abelian subspace of p N . Every minimal parabolic subgroup of G is
of the form ‘P x ‘Q, where ‘P and ‘@) are minimal parabolic subgroups of ‘G. Let
‘A =exp(‘a) and let A ="Ax‘A. Let ‘L = Z(*A) and let L ='L x ‘L.

Every h-extreme parabolic subgroup is of the form ‘P x" P, where ‘P is a minimal
parabolic subgroup of ‘G. Let ‘P be a minimal parabolic subgroup containing ‘A.
Under the identifications G/H ~ ‘G and L/Hj, ~ ‘L the transform H\p := Hpxp
is given by

Hpp(ma) = a”? (man)dn (¢ € L*(\G)*®°,m € ‘M, a € ‘A).
Np

This shows that H.p equals the map ¢ — ¢(F), defined by Harish-Chandra in
[HCTE, p. 145].

Similarly, under the described identifications the Radon transform R.p:=R\pxp
is given by

Ripd(g1,92) = / ¢(gingy )dn (¢ € L'(G)*, 01,92 € G).
Nop
The function R.pg(-,e) is equal to ¢ P, defined by Harish-Chandra in [HCT5,
p. 145].

In the remainder of this section we investigate some of the properties of the
Harish-Chandra transform. We start with a proposition.

Proposition 3.3. Let P € 2,(A,Q) and ¢ € L'(G/H)*>. Then
(3.1) I 0p() " Hoo(l),  L/Hp —C
defines a function in L'*(L/Hp)>.

Remark 3.4. In particular, the function (B]) vanishes at infinity by Lemma [3.5]
below.

Proof. We will first prove that 6,'Hg¢ is integrable. From [DMT78, Thm. 3.3
it follows that L'(G/H)> is spanned by functions of the form ¢ = x * 1 with
X € C=°(G) and ¢ € L'(G/H). Hence, we may assume that ¢ is of this form. It
follows from Lemma [Z.9] and Fubini’s theorem that the integral

5Q(l) -1
— In)dndl
/L/HL 5P(l) /IVQ/HNQ %[J(’Y n) n

is absolutely convergent for almost every v € G, and that the almost everywhere
defined function on G thus obtained is locally integrable. Therefore, the integral

(1) -1

is absolutely convergent, and by Fubini’s theorem it is equal to

dq (1) e VI drdl — Ha(e)(1)
/L/HL 5p(l) /NQ/HNQ(X ) (In) dndl /L/HL o

This proves the integrability of 5;1’HQ¢.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



482 ERIK P. VAN DEN BAN AND JOB J. KUIT

We move on to show that 65" Hg¢ € L*(L/Hy)*®. In view of the remarks above
(I2) it suffices to prove that u(dp'Hge) is integrable for each u € U(I).

For conciseness we write h := 6{217{Q¢ =Rgo(¢)|L. Let u € U(I). By the Leibniz
rule there exists an n € N and u;,v; € U(l) for 1 < j < n, such that

(571 100) = u(220) = 3" (152)u, 0.

Since dg/dp is a character on L , there exist constants ¢; such that u;(dg/dp) =
¢;0q/0p. Therefore,

“<6§1HQ¢> = ; ¢ gig; v;(Roe)(l)

o~ o)
= ;CJ%RQ(UJQS)(Z)

- 1
= Logphetdl) (b

Here we note that the above interchange of v; and R is justified by the final asser-
tion of Proposition .11l By the first part of the proof, the functions 5;1HQ(UJ¢)
are integrable on L/H7,. It follows that u(6p'H¢) is integrable as well. O

We denote by Co(L/Hp) the space of continuous functions L/Hj — C which
vanish at infinity. Equipped with the sup-norm, this is a Banach space.

Lemma 3.5. The space L'(L/HL)™ is contained in Co(L/Hy), with continuous
inclusion map.

For a general symmetric space, this result is proved in [KrS12]. We only need it
in the present more restricted setting, which is essentially Euclidean.

Proof. The multiplication map induces a diffeomorphism L/Hj;, ~ M/Hy x Aq.
Since M/H); is compact, it readily follows that

LY(L/H)™ < C(M/Hyr, L' (Ag)%),

with continuous inclusion map. By the Fourier inversion formula on A4, combined
with application of the Riemann-Lebesgue lemma, L'(A44)>* C Cy(A4) continu-
ously. Hence, C(M/Hp, L*(Aq)™) is contained in C(M/Hp, Co(Aq)), continu-
ously. Let Cy(Aq) be the Banach space of bounded continuous functions on Aq,
equipped with the sup-norm. Then Cy(A4) is a closed subspace of Cy(A4). Like-
wise, Co(L/Hp) is a closed subspace of Cy(L/HL), the Banach space of bounded
continuous functions on L/H,.

By compactness of M/Hjy, the diffeomorphism mentioned in the beginning of
the proof induces a continuous linear isomorphism

Y : C(M/Hn, Cy(Aq)) = Co(L/HpL).

It suffices to show that 1) maps the subspace C(M/Hy;,Co(Aq)) into the closed
subspace Co(L/Hp) of Cy(L/HL). This can be achieved by application of a straight-
forward argument involving the compactness of M/Hy. ([l
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We recall the definition of the continuous linear map ‘R : L'(G/H)—L}, (G/H)
from Corollary .10l and note that by Proposition 2.11] this map can be viewed as
the continuous linear extension of the restriction of the Radon transform Rq to

C>*(G/H).
Theorem 3.6. Let ¢ € L'(G/H) N L3 (G/H). Then ‘Rg(¢) = 0.

Proof. By equivariance and continuity of ‘R (see Corollary 210 it suffices to prove
this result for a K-finite function ¢. Thus, we may assume that ¢ € L'(G/H) N
L2.(g/H)yg, with ¥ a finite subset of K”. It follows from the theory of the discrete
series developed in [OMS84] and [vdBS05, Lemma 12.6 & Rem. 12.7] that the space
L%.(G/H)y is finite dimensional and consists of smooth functions. It follows that
the center of U(g) acts finitely on ¢. In view of [vdB87al, Thm. 7.3], we infer that
¢ is contained in the L!-Schwartz space €*(G/H) and therefore, so is the (g, K)-
module V generated by ¢. In particular, V is contained in L!'(G/H)> and we see
that \RQ =TRgon V.

We now observe that the assignment T' : ¢ — Rg(¢)|a defines a linear map
V — C*(A/(AN H)); see Proposition 2IIl Since L normalizes ng, we infer
that T factors through a map T : V/ngV — C*(A/AN H). It is well known that
dim V/ngV < oo; see [Wal88, Lemma 4.3.1]. From the equivariance of R it follows
that T is U(a)-equivariant. Hence, for ¢ € V, the function T'(¢/) is of exponential
polynomial type on Ay ~ A/AN H. By application of Proposition and Lemma
we infer that 5;16QT(1/)) is an exponential polynomial function on A, which
vanishes at infinity. This implies 7% = 0, hence T'(V) = 0. It follows that the map
¥ — Rot(e) is zero on the closure of V in L'(G)*, hence on Ly¢ for every g € G.
We conclude that Rg¢ = 0. |

Remark 3.7. For Radon transforms associated with minimal of-stable parabolic
subgroups the analogous result for analytic vectors in L'(G/H) was obtained by a
similar a-weight analysis in [Kr09, Thm 4.1]. Let Py € &#,(A4) be such a parabolic
subgroup. Then there exists a parabolic subgroup P € Z(A) such that P C P.
Since Np, ~ Np/(Np N H), the Radon transform for Py coincides with Rp, and
our result implies that the restriction to analytic vectors is unnecessary.

The results in Proposition can be improved if only compactly supported
smooth functions on G/H are considered. We start by describing the support of
the Harish-Chandra transform of a function in terms of the latter’s support. To
prepare for this, we introduce some notation.

For each a € X Nag the root space g, is invariant under the involution o6 so that
the root space admits the decomposition go = ga,+ @ ga,— into the +1-eigenspaces
for this involution. Accordingly, for any @ € Z?(A) we define the set

(3.2) Q). ={aeX(Q,00):ac a’; = go,— # 0}
We define the cone
(3.3) Q)= Z R>o pry Ha.

aeX(Q) -

Here H, denotes the unique element of a for which a« = B(H,,-); see (IL4)). Fur-
thermore, pry : a = aq denotes the B-orthogonal projection.
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Proposition 3.8. Let C C aq be compact, conver and invariant under the action
of Nknm(aq). If ¢ € C.(G/H) satisfies

supp(¢) C K exp(C) - H,

then
supp(Hod) € M exp(C +T(Q)) - Hy.

This proposition generalizes [AFJS12] Thm. 5.1], which deals with the special
case in which G/H is a real hyperbolic space and @ is h-extreme. See also [Kuil3l
Sect. 4], where similar results are proved for o6-stable parabolic subgroups.

Proof of Proposition B8. Let ¢ € C.(G/H). Assume that m € M and a € A, are
such that Ho¢(ma) # 0. Then

maNg N K exp(C)H # (.

Let g be the map G — aq determined by g € K exp (¢(g))(AN H)Ng. Then
log(a) € A (exp(C)H). By [BvdB14, Thm. 10.1]

g (exp(C)H) = U conv(Nrnmr(aq) - X) +T(Q).
XeC

Since C'is convex and Ngnp(aq)-invariant, it follows that the right-hand side equals
C +T'(Q). Therefore, log(a) € C' +T'(Q). The compactness of C' and the fact that
I'(Q) is closed imply that C'+TI'(Q) is closed, hence M exp(C+TI'(Q))- Hy, is closed.
The support of Hg¢ equals the closure of the subset of L/Hj, on which Hg¢ is
non-zero, hence

supp(Hqo) € M exp(C +T'(Q)) - Hr. O

For a compact subset U of G/H, let Cg°(G/H) be the space of smooth functions
on G/H with support contained in U, equipped with the usual Fréchet topology.
As usual, we equip the space C2°(G/H) with the inductive limit topology of the
family of spaces C;°(G/H), where U runs over all compact subsets of G/H.

Proposition 3.9. Let P € 2,(A,Q). Then 51;17{@ is a continuous linear map
C&(G/H) — LY(L/Hr)>

Proof. Let ¢ € C°(G/H) and let u € U(g). Let ¢; and v; be as in the proof for
Proposition 3.3l Then

n

(HQ¢> Z JHQ ;¢

Let U be a compact subset of G/H such that supp¢ C U and let ¥ € CX(G/H)
be non-negative and equal to 1 on an open neighborhood of U. Then

(3.4) (%) < (Z eyl sup o) 2’

It follows from Proposition (3.3 that 65" Hod € L' (L/HL)*®. From (B4) we now
conclude that 65 Hg is a continuous linear map C°(G/H) — LY(L/Hp)>. O
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We write I'(Q)° for the dual cone of I'(Q), i.e.,
Q) ={A€ag: A>00nT(Q)}.
Furthermore, we define
(3.5) Qo= |J —(pr—pry) —T(Q)° +ia;.
Pe2,(A,Q)
Corollary 3.10. Let X € Qg and let the character x» : L — Rq be given by
xa(ma) = a* (m e M,a € A).
Then x Hoo € LY (L/HL)™ for every ¢ € C°(G/H). Moreover, the map
CX(G/H) = LYL/HL)®; ¢ xaHoo
18 CONtINUOUS.

Proof. For every u € U(l) the function u(xadp) is bounded on I'(Q)). The result
now follows by application of the Leibniz rule and Propositions [3.8] and |

4. HARISH-CHANDRA—SCHWARTZ FUNCTIONS

4.1. Definitions. In this subsection we recall some basic facts on the Harish-
Chandra space of LP-Schwartz functions on G/H from [vdB92, Sect. 17], and give
a characterization that will be useful in the next subsection.

Let 7: G/H — [0,00] and © : G/H — 10, 1] be defined by

T(kaH) = |[logal,  O(g-H) = /Z(go(9)~1).

Here = is Harish-Chandra’s bi- K-invariant elementary spherical function ¢g on G;
see, e.g., [Var?d, p. 329]. Let V be a complete locally convex Hausdorff space and
let N (V) denote the set of continuous seminorms on V. Let 1 < p < co. A smooth
function ¢ : G/H — V is said to be LP-Schwartz if all seminorms

P, N, (@) == sup @_%(1 +7)Vn(uep) (ueU(g), NeN,neN(V))

are finite. The space of such functions is denoted by ¢?(G/H,V). Equipped
with the topology induced by the mentioned seminorms, €?(G/H,V) is a complete
locally convex space. Furthermore, it is Fréchet if V' is Fréchet.

Let v be a o and f#-stable central subalgebra of g such that G = °G X exp(v),
where °G = K exp (p N [g, g]). Define the functions ®1,®, : G — [1,00[ by

(I>1 :1+|10g o@|:1—10g 0(97

Dy (g exp(vy +vq)) =1/ 1 + [|vqll? (9 €°G,uy €vNbh,vg €0NQ).

By [vdB92, Lemma 17.10] there exists a positive constant C' such that
CH1+7) <P+ Py <C(1+7).

Moreover, ®; and P, are real analytic and for every u € U(g) there exists a constant
¢ > 0 such that

(4.1) udj| <,  (j=1,2).

The following result is now straightforward.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



486 ERIK P. VAN DEN BAN AND JOB J. KUIT

Lemma 4.1. Let ¢ : G/H — V be smooth. Then ¢ € €P(G/H,V) if and only if
all seminorms

Vu N (0) == sup €321 (D) + D)Vp(ug)  (ueU(g), N € N,pe N(V))
are finite.

We write ¢7(G/H) for ¢7(G/H,C) and v, n for v, .. For convenience, we
suppress the superscript p if p = 2.

4.2. Domination by K-fixed Schwartz functions. We start this subsection
with an important result which further on will be applied to reduce the convergence
of certain integrals to the case of K-finite functions.

Proposition 4.2. There exists a map €P(G/H) — €P(G/H)X; ¢ — ¢ with the
following properties.
(a) || <& forall g € €P(G/H).

(b) Let v be a continuous seminorm on €P(G/H). Then there exist constants
k € N and C > 0 such that for all ¢ € €°(G/H),

-~

(42) V((b) S CVO,;C((]S).

We first prove two lemmas.
Let .Z(R?) be the space of locally integrable functions R? — C which are con-
stant on R? \ [2, co[ 2.

Lemma 4.3. Let x € C°(R?) satisfy supp(x) C | —1,1[2. For every N € N there
exists a constant cy > 0 such that for all S € £ (R?),

swp b (z+)Y|(xx S)@y)| <en s et (aty)NIS(y)l
(z.)€lL00[2 CREE
Proof. Let ¢ = [po [x(€)| d€. Then

Ix*S(z,y)|<c  sup  |S],
(x7y)+]71»1 [2

hence

sup [e?" (@ + )" (x  8) (2,)|

(z,y)€ll,00[2

<c¢ sup (e%z(:ﬁ—i—y)N sup |S|)
(zy)€[l,00[? (zy)+]1-1,11?

<c  sup (e%(“+1)(u+v—|—2)N\S(u,v)|).
(u,v)€]0,00[2

Since S is constant on ] 0, 0o [?\[2, 00 [ 2, the supremum over ] 0, oo [ % can be replaced
by a supremum over [1, 00 [2. Using that

u+v+2 9
— <2 ,v) € (1, ,
2oy (o) elol?)

we find

sup [eb @y (xx8) (mp)| < etV swp (b (ary)NIS(my)).
(z,y)€[1,00[2 (w,y)€[1,00,[2

This establishes the estimate. O
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For ¢ € 6P(G/H), let Sy : R* — R be the function which for (z,y) in the set
[i,i+1[ x[j,7 + 1[ with 4,/ € Z is given by

Sg(z,y) = sup |p].
@7 ([i,00 NP (5,00 [)

Note that @;1([1, oo[) = @gl(R), so that S, € Z(R?). For y € C2°(R?) we define
the smooth function

(4.3) by G/H = C, s (x*8)(®1(x), ®a(2)).
Since ®; and P, are left K-invariant, so is the function ([€3)).

Lemma 4.4. Let x € C°(R?) have support contained in | —1,1[2.

(a) If ¢ € €P(G/H), then ¢, € €P(G/H)K.
(b) Let u € U(g) be of order n. Then for every N € N there exists a constant
cu,N > 0 such that

(4.4) Vun(By) < cunvonin(®) (¢ € CP(G/H)).

Proof. Since the function ([@3]) is smooth and left K-invariant, it suffices to prove
(b). Let u € U(g) and let n be the order of w. Then by repeated application of the
Leibniz and the chain rule it follows that there exists a finite set F' C U(g) and for
every multi-index p in two variables, with || < n, a polynomial expression P, in
(v®; :v € F,j=1,2), of total degree at most n, such that

u(gx = Z PM'(E@“X ((bE %p(G/H))

|u|<n

In view of ([@I]) this leads to the existence of a constant C' > 0 such that

gy < C(R1+P2)" Y |donyl.

|ul<n

Therefore,

Vu,N(ng) <C Z VO,N+n($8“x)-

[u|<n

Thus, in order to prove the lemma, it suffices to prove that for every N € N and
X € C2°(R?) the estimate ([@4) holds for u = 1.
Let N € N. Then

o~

2
vo.n(fy) = sup er®H (@1 + Bo)V | (x  Fp) o (21 x Bo)]
G/H
21‘
= sup  er"(x+y)N|xxSs(x,y)|
(z,y)€[l,00[2
By Lemma 3] we now infer the existence of a constant ¢y > 0 such that

(4.5) von(dy) <en  sup er®(z+y)V[S(x,y)l.
(z,y)€[1,00 2
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Let (z,y) € [1,00[2. There exist unique i,j € Z>q such that i < x < i+ 1 and
j<y<j+1. Then

2,4 2,
e (0 + )V |So(x.p)] = 3@+ )" ( sup 91)
@7 ([4,00 [)NP5 " ([f,00 [)
< sup e (@) + @y +2)V|g|

®1 " (li,00 N2, (o0 [)
<sup er (@) + @y +2)Vg)
< sup 7 PN () 4 &)V |g| = 2Ver vy (9).
Combining this estimate with (£H) we obtain the estimate of (b) withu=1. O

Proof of Proposition L2 Let x € C°(]0,1[?) be a non-negative function such
that [, x(z)de =1.If ¢ € €P(G/H), then (;ASX € C*>(G/H)X. Moreover, since S,
is decreasing in both variables, it follows from the condition on supp x that

¢ = (x % Sp) 0 (@1 x ®1) > S0 (1 x B1) > |4).

This establishes (a).

In order to complete the proof, it suffices to prove (b) for v = v, n, with u € U(g)
of order at most n and for N € N. Let k = N + n. Then the estimate (£2) follows
by application of Lemma [£.4] |

For the application of Proposition we will need the following useful lemma.

Lemma 4.5. Let ¢ € €(G/H)X be non-negative. Then there exists a monotoni-
cally increasing sequence () jen in C°(G/H)X such that 1; — ¢ in €(G/H)X,
for j — oo.

Proof. For r > 0 we define B(r) := {z € G/H : 7(z) < r}. By Lemma
2.2] and its proof, there exists a sequence of functions g; € C°(G/H) such that
the following conditions are fulfilled:

(1) 0<g; <gj41 <1, forj>0;

(2) g; =1 on B(j) and supp g; € B(j + 1), for j > 0;

(3) for every u € U(g) there exists C,, > 0 such that supg,p [Lug;| < C, for

all j > 1.
By using the argument of [Var77, Thm. 2, p. 343] one now readily checks that the
sequence 1); = g;% satisfies our requirements. ([l

Proposition now leads to the following results concerning the Radon and
Harish-Chandra transforms.

Proposition 4.6. Assume that the restriction of Hg to C°(G/H)X extends to a
continuous linear map ¢ (G/H)X — C(L/HL). Then Rq extends to a continuous
linear map

RQ : %(G/H) — COO(G/NQ)
and for every ¢ € €(G/H),

(4.6) Rodlg) = /N el (g <)
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with absolutely convergent integrals. Furthermore, the restriction of He to C°(G/H)
extends to a continuous linear map

Ho:¢(G/H) — C*(L/Hy)
and for every ¢ € €(G/H),

(@.7) Hod(l) = so(l) / o(n)dn (L)

No/Hng
with absolutely convergent integrals.
Proof. Since
Roo(kan) = dg(a) "Hoo(a) (¢ € CZ(G/H) ke K,ae A;n e Ng),

it follows from the assumption in the proposition that the restriction of Rg to
C>(G/H)¥ extends to a continuous linear map ¢ (G/H)X — C(G/Ng)¥.

Let ¢ € €(G/H)X be non-negative. We claim that Rg is given by (8. To
see this, let (¢;) jen be a monotonically increasing sequence as in Lemma5l Then
for every g € G, we have

Rqo¥(g) = lim Roy;(g) = lim ¥;(gn) dn.
j—o0 j—00 NQ/HNQ

Since the sequence 1); is monotonically increasing, the monotone convergence the-
orem implies that (£0) holds and that the integral is absolutely convergent, for
every g € G.

By Proposition every element of €(G/H) can be dominated by an element
of €(G/H)X. Hence, for every ¢ € €(G/H) and g € G the integral in (@8] is
absolutely convergent. For ¢ € € (G/H) we now define Rg¢ and Hg¢ by ([@6) and
(&), respectively. To finish the proof of the proposition, it suffices to show that
Ro¢ is smooth and that the map R : €(G/H) — C*>°(G/Ng) is continuous.

By assumption, there exists a continuous seminorm v on ¢ (G/H) such that for
ally € €(G/H)E,

sup R (¥)] < ().
Let ¢ — ¢ be a map ¢(G/H) — ¢(G/H)¥ as in Proposition 2] with p = 2. Let

C > 0 and n € N be associated with v as in the mentioned proposition. Then it
follows that for all ¢ € €(G/H),

Ro(9)] < Ro(|6]) < Rq(9) < v(9) < Crou(9).
We thus see that R defines a continuous linear map
Rq:¢(G/H) = C(G/Ng).

Since this map intertwines the left G-actions, whereas the left regular representation
of G in ¢(G/H) is smooth, it follows that Ro maps continuously into the space
of smooth vectors of C(G/Ng), which equals C*(G/Ng) as a topological linear
space. O
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5. FOURIER TRANSFORMS

5.1. Densities and a Fubini theorem. In this section we introduce some no-
tation related to densities on homogeneous spaces. Further details can be found
in [vdBK14, App. A]. For our purposes it is more convenient to consider right-
quotients S/T of Lie groups instead of left-quotients T\\S, which we used in the
aforementioned article.

If V is a real finite dimensional vector space, then we write 2y for the space
of complex-valued densities on V, i.e., the 1-dimensional complex vector space of
functions w : A'P(V) — C transforming according to the rule

w(tv) = [tw(v) (t € R,v € A*PV).

For a Lie group S and a closed subgroup 7', let Ag,, : T'— Ry be the positive

character given by
Agr(t) = |det Adg(t)s,| " (t€T),

where Adgs(t)s/¢ € GL(s/t) denotes the map induced by the adjoint map Adg(t) €
GL(s). We denote by C(S : T : Ag,r) the space of continuous functions f : S — C
transforming according to the rule

f(st) = Ag,r(t) 71 f(5) (seS,tel).

We denote by #Z(G : L : &) the space of measurable functions f : G — C trans-
forming according to the same rule.

Given f € C(S: T : Ag/r) and w € Z, ¢, we denote by f, the continuous density
on S/T determined by

fuls) = f()di(e)w (s € 5).
We fix non-zero elements ws,y € Zs/u, wr/v € Yy and ws,r € Zg /¢ such that
Wruv @ Wsyr = Wsyu
with respect to the identification determined by the short exact sequence
0—>t/u—s/u—s/t—0.

See equation (A.10) and the subsequent text in [vdBKI14l App. A]. We then have
the following Fubini theorem [vdBK14l Thm. A.8].

Theorem 5.1. Let¢p € A4 (S : U : Ag,y) and let Puws,u be the associated measurable
density on S/U. Then the following assertions (a) and (b) are equivalent.

(a) The density b, is absolutely integrable.
(b) There exists a right T-invariant subset % of measure zero in S such that
(1) for every x € S\ Z, the integral

L(¢) = / Agyr(t) dlat) diy(fe]) w0,
T/US[t]

is absolutely convergent;
(2) the function I(¢) : x +— I(p) belongs to A (S :T : Ng,r);
(3) the associated density I(§)ws,, is absolutely integrable.

Furthermore, if any of the conditions (a) or (b) are fulfilled, then

wsu T I(@)ws,r-
/S/U¢ / /S/T (6)ue,
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5.2. Eisenstein integrals. We start by recalling notation, definitions and results
from [vdBK14].

Let (7, V) be a finite dimensional representation of K. We write C*°(G/H : 1) for
the space of smooth V,-valued functions ¢ on G/H that satisfy the transformation
property

o(kx) = 7(k)o(x) (ke K,z € G/H).
We further write C$°(G/H: ) and € (G/H : 7) for the subspaces of C*°(G/H: 1)
consisting of compactly supported functions and L2-Schwartz functions, respec-
tively.

Let W(aq) be the Weyl group of the root system of aq in g. Then

W(aq) = Nk (aq)/ZK(aq)-

Let Wknw(aq) be the subgroup of W (ag) consisting of elements that can be realized
in Nxnm(ag). We choose a set # of representatives for W(aq)/Wknmu(aq) in
Ni(ag) N Nk (ay) such that e € #. This is possible because of the following
lemma.

Lemma 5.2. Ng(aq) = (Nk(aq) N Ng(ay)) Zx(aq).

This result can be found in [Ros79l p. 165]. For the reader’s convenience we give
the concise proof.

Proof. 1t is clear that (N (aq) N Nk (ap))Zk(aq) € Nk (aq). To prove the other
inclusion, assume that k € Nk (aq). Then Ad(k™')ay is a maximal abelian subspace
of Zy(aq)Np. Each such maximal abelian subspace is conjugate to ay by an element
from Zg(aq) N K, i.e., there exists a k' € Zk (aq) such that Ad(k')Ad(k™")ay = ag.
Note that £'k~! € Nk (aq) N Nk (ap). Hence,

k= (kk' ")k € (Nk(aq) N N (ap)) Zx (agq). O

We define
My := Zk(aq) exp (P N[Zg(aq), Zg(aq)D-

If Py € P(Ay), then MyA is a Levi subgroup of Py. We write my,, for the direct
sum of the non-compact ideals of my. The associated connected subgroup of M is
denoted by My,.

We denote by 7); the restriction of 7 to M. Since M is a subgroup of My N K,
it normalizes My, N K, so that (V,)Mon"K ig an M-invariant subspace of V,. The
restriction of 7js to this subspace is denoted by 73;. We define

o) = C(M/MvHU ).
veEW

Each component in the sum is finite dimensional and thus a Hilbert space equipped
with the restriction of the inner product of L?(M/NvHv~!, V;); the direct sum is
equipped with the direct sum Hilbert structure, and thus becomes a finite dimen-
sional Hilbert space.

If ¢ € o 2(T), we accordingly write 9, for the component of ¢ in the space
C®(M/M NvHv=t: 7).

Let Q € #(A). For v € # we define the parabolic subgroup Q¥ € Z(A) by

(5.1) Q' :=v 'Qu.
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For each v € # we choose a positive density

WH/HQU € @b/va
as follows. Fix positive densities wg,n € Y/ and we/u, € Pysy, - Furthermore,
let wy, € Zng,unp be the positive density that corresponds to the Haar measure on
Ng» N H, which was chosen to be the push-forward of the Lebesgue measure on
ngv» N h along the exponential map (see text below Lemma 2.1). Then we choose
Wh/Hge tO be the unique density such that
(5.2) Wen @ Wiy, ® Wy = Wayn,, -

The inner product Blq, on aq induces a linear isomorphism B : aq — ag. If
Q € Z(A), we define the cone I'(Q) C a4 as in B3). Then B(I'(Q)) equals the
cone spanned by the elements o+ oo, with o € X(Q)_; see (B2). Let Qg C aq be

defined as in (33 and let ﬁQ denote its hull in aqe with respect to the functions
Re (-, a) with a € E(aq) N B(I'(Q)), i.e.,
QQ = {A € ay.:Re (A a) <sup Re(Qq,a) Ya € X(aq) N B(I'(Q))}-

Since (a,A) < 0 for all a € ¥(aq) N B(I'(Q)) and X € —I'(Q)°, it follows that we
can describe the given hull by means of inequalities as follows:

Qo={real . :Re(\a) < PEgI%E%(};’Q)<—pp,a> Va € B(aq) N BT(Q))}.

We define the following closed subsets of aqc,

(5.3) TQ = m ’UQv—le7 TQ = m ’Uﬁv—le.
vEW veEW

Given v € # we will use the notation
YH :=vHv ! and "Ho :="HNQ.
Furthermore, we define the density “w, on “h/"hg by
Yw = Ad(v™" ) 'whymg. -

Given ¢, € C*®(M/*HNM : 79;) and A € T we define the function ¥, g » : G —
V., by
(5.4)
Vo.ga(kman) = a* PP 1(k)h, (m) (ke K,me M,a € Ane Ng).
Then for every x € G the function
y = Youl(ay) diy(e)™ ("w)
defines a V,-valued density on “H/"H¢, which is integrable by Prop. 8.2].
We define
Eypo-1(Q: 0y : A): G =V,
for x € G by

Eust s (Q : 0 s N)(a) = / oo (@) diy(e) (")

vH/*Hg
= / wv,Q,A(xvh'U_l) dlh(e)_l*wH/HQv .
H/Hgv

For ¢ € @2 and A € T we define the Eisenstein integral
(5.5) EQ:v: N=E.(Q:¢v:N): G-V,
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by
E@Q:¢:N(z) = Z Eypo1(Q :pryy: \)(zv™t) (x € G).
vEW
It is readily verified that this function belongs to C*°(G/H : 7). We note that the
map E(Q : % : -) extends to a meromorphic C*°(G//H : 7)-valued function on ag.

and is holomorphic on an open neighborhood of ’/I\“Q; see [vdBK14l Cor. 8.5].
Let Q1,Q2 € P(A). Then there exists a unique meromorphic End(/2(7))-
valued function C(Q2 : @1 : -) on aj. such that

(5.6) EQ2:¢: ) =E(Q1:C(Q1:Q2: )¢ :A)
for generic A € a;; see [vdBK14} Cor. 8.14].

In order to describe the relation of these Eisenstein integrals with those defined
in terms of a parabolic subgroup from the set &, (A,) (see the text preceding (L2)),
we need to introduce a bit more notation.

Let My denote the collection of (equivalence classes of) finite dimensional irre-

ducible unitary representations of My. For & € My and v € # we define the finite
dimensional Hilbert space

V(g v) = %MOQUHU?I
The formal direct sum of these gives a finite dimensional Hilbert space
=P v
vEW

We define C'(K : £ : 7) to be the space of functions f : K — % ® V, transforming
according to the rule:

f(mkok) = (&(m) @ 7(k)~") f (ko), (k. ko € K,m € My).
Let V(&) denote the conjugate space of V(&) and consider the natural map
(5.7) T r, OK:£:7)RV(E) = dara(r),
which forv e # and T = f®n e C(K : £ : 1) ® V() is given by
(vr),(m) = (f(e), E(m)nu)e

Then the sum of the maps T — (dim §)5wT over all £ € M\o gives a surjective
isometry

(5.8) P CE:¢:n)aV(E) = dua(r);

¢eM,

(m € Mo)

see [vdBS97b, Lemma 3]. Note that only finitely many terms in the direct sum are
non-zero.

Now let Q€ #(A) and R€ Z,(A,). Then we define the C-functions Cgj(s: )
for s € W{(aq) as in [vdBK14, Thm. 8.13]. These are End(# 2(7))-valued mero-
morphic functions on aj., with meromorphic inverses. Moreover, by uniqueness of
asymptotics, they are uniquely determined by the requirement that
(5.9)

E@Q:¢: A)(av) ~ Z a** P [Crig(s: AYlu(e), (a— oo in Af(R))

seEW (aq)

for all ¢ € @r2(7), v € # and generic A € iag.
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For Py € Z,(A,) and ¢ € o/ 2(7) we denote by E(Fy : ¢ : A) the Eisenstein
integral as defined in [vdBS97bl Sect. 2]. Then A+ E(Py : ¢ : A) is a meromorphic
function on aj. with values in C*°(G/H : 7). Given R € #,(Aq) the C-functions

CR|PO(3 . )\) € End(dM’Q(T)),

for s € W(aq) are defined as in [vdBS97h, Eqn. (46)]. These are meromorphic
functions with values in End (e 2(7)) and with meromorphic inverses. Moreover,
they are uniquely determined by the asymptotic behavior of the Eisenstein integral
E(Py:v: A), described by (59) with everywhere @ replaced by Py.

Lemma 5.3. Let Py € #,(Aq) and assume that P € P(A) is q-extreme, and
satisfies P C Fy. Then for generic A € ag.,

(5.10) E(Py:¢:AN)=E(P:¢:A).
Furthermore, for all R € &,(Aq), s € W(aq) and generic X € a;.,
(511) OR‘pO(S : )\) = OR‘p(S : )\)

Proof. The first assertion is made in [vdBK14l Cor. 8.6]. The second assertion
follows by uniqueness of asymptotics. O

For ¢ € /r2(7) we define the normalized Eisenstein integral E°(Py : ¢ : )
as in [vdBS97b| Sect. 5,6]. It is a meromorphic C*°(H/H : 7)-valued function of
A € ag.. Furthermore, for any R € &,(Ay) we have

(5.12) E(R:9:A) = E°(Py: Cpp(l: Ay A);
see Eqn. (58)].

Lemma 5.4. Let Q € Z(A) and Py € P5(Aq). Then

(5.13) E(Q:¢: ) =E°(Py: Cpq(l: N: A)
for all ¢ € @ 2(7) and generic X € ag..

Proof. Let P € #,(A) be such that Py O P. Then it follows from (5.0) and (G.10)
that

EQ:¢v:N)=EP:C(P:Q:\NY:\)=EPFPy:C(P:Q:\):\).
Using (5.12) with R = Py, we infer that
(5.14) EQ:v¢:)\)=E(P: Crypy (L A)C(P:Q : N)p: A).
By application of (5.I1]) and Cor. 8.14 (a)] with R = Py, we find that
Cpyp(1: AC(P:Q:A) = Cpp(1: N)C(P:Q:A)
(5.15) — Cpo(l:N).
Substituting the latter expression in (G.14]), we obtain (L.I3)). O

Our next goal is to describe the C-function in (EI3) in terms of a standard
intertwining operator in case () and P, are suitably related. For this, we need to
introduce additional notation.

Let £ € My. We define C*°(K : &) to be the space of functions f : K — 4
transforming according to the rule

(5.16) f(mk) :==&(m) f(k) (ke K,me MyNnK).
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Furthermore, we put {5y = £|a and define C*° (K : €yr) to be the space of functions
[+ K — J% transforming according to the same rule (516 but for £ € K and
m € M. Since M C My, we have a natural inclusion map

i C(K 2 €) = C(K : &n).
Following [vdBK14, Sect. 4], we denote by

p?  C(K : &) = C(K - €)
the transpose of this map for the natural sesquilinear pairings coming from the
L%-inner product on L*(K, #,dk).

If Py € #,(Aq), and A € aj, we denote the realization of the normalized induced

representation IndIGJ0 (E®A®1]) of G in C*(K : &) according to the compact picture
by 7p,¢,x. Given a second parabolic subgroup P; € &;(A,) we denote by

APy : Py &:0): C®(K : &) - C(K : &)

the (meromorphic continuation of) the standard intertwining operator which inter-
twines the representations Indgj (E®A®1), for j = 0,1, respectively.

Likewise, if Q € H(A),§ € ]/\4\0 and u € af, we denote the realization of the
normalized induced representation Indg Epm@u®l) of Gin C®(K : ) according

to the compact picture by mg ¢, -
Given @1, Q2 € Z(A) we denote by

A(Qr: Q2 :&pr 2 p) : OF(K = 6y) = CF(K = &),
the (meromorphic continuation of) the standard intertwining operator which inter-
twines the representations
Indg (§p @ p@ 1),
for j = 2,1, respectively.

The two types of parabolically induced representations are related by the maps
i# and p? defined above. Let P € Z(A) be a g-extreme parabolic subgroup,
and let Py be the unique parabolic subgroup in &2;(A,) containing P. Then i
intertwines mp, ¢ x with mpe,, x—pp, and p¥ intertwines mpe,; rypp, With 7p, ¢ 2,

for every A € aj.. We refer to [vdBK14, Sect. 4] for further details.
We denote by

(5.17) Iy r(ay)

the set of polynomial functions ag. — C that can be expressed as non-zero products
of affine functions of the form A — (A, a) — ¢, where o € ¥\ ay and c € R.
Finally, we arrive at the mentioned description of the C-function in (5.I3).

Proposition 5.5. Let Q € P(A), let P € P;(A,Q) (see (L3]), and let Py be
the unique minimal o0-stable parabolic subgroup containing P. Then the following
assertions are valid.

(a) If ¢ € My and T € C®(K : £:7)®@ V() then, for generic X € aj,

(518) CPO\Q(l : )\)¢T = ’l/)[p# 0 A(oP:Q:6n:—A+pp,y) 0 i#QIT
(b) The function Cp (1 : ) is holomorphic on the set

(5.19) {Neaj. :Re(=A+pg, ) > 0 for all a € B(Fy) NE(Q)}.
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(c) Let B C ay be open and bounded. There exists a p € Ils r(ay) such that
A= p(N)Cp (L A)
is holomorphic and of polynomial growth on B + iag.

Proof. We first turn to (a). From (I35 we recall that

(5.20) Cryjo(1:A) =Chyp,(L: A) C(P:Q: ).

Let £ and 1) be as in assertion (a). Then it follows from [vdBK14l, Prop. 8.7] that
(5.21) C(P:Q: Nyr = s

with

(5.22) SN =[p* o A(Q: P&y i =X+ ppy) toi® @ IIT.
On the other hand, by [vdBS97D, Prop. 3.1],

(5.23) Cpyipy (1 N¥s(n) = Vs (n),s

with

(5.24) S'N)=[A(Py: Py:£:=N)®@I|S(N).

From (520), (52I) and (523]) we obtain that

(5.25) Chyjo(1: Nbr = si(n);

we will prove (a) by determining S’(}).
It follows from [vdBKI4l Lemma 8.10], that the following diagram commutes,
for generic A € ag,,

CK &) TR (K )
o ] 1o#
C(K :¢€) Ao Zog=y C(K :¢).
Taking the commutativity of this diagram into account, we infer by combining
(522) and (5:24)) that

(5.26) S"(\) = [p*o A(GP:P:épr:—Appy)A(Q: P:épr:—Appy) Loi® @ INT.
Since P = @, we have X(cP)NX(P) = X(P,0) C X(Q) N X(P). By application of
[KS80, Cor. 7.7] we find that
A(GP:P: &y —=A+pgyp)

(5.27) =A(0P:Q: & —A+ppy) o A(Q:P: Enr i — A+ pQ.p)-
The identity in (5I8]) now follows from (5.25), (5:26) and (5.27). Thus, (a) holds.

We turn to (b) and (c¢). Let £ € My and let End(C(K : &y)) denote the
space of bounded linear endomorphisms of the Banach space C(K : £y). Then as
a End(C(K : &pr))-valued function, the standard intertwiner A(oP: Q : &nr ¢ p)
depends holomorphically on p € af satisfying
(5.28) Re (i, a) > 0, (€ Z(eP)NX(Q)).

Indeed, this is a straightforward consequence of the convergence of the integral
defining the intertwining operator, asserted in [KS80, Thm. 4.2].

Since ¥(Fy) = X(P) \ af, we have X(Fp) N X(Q) € ¥(oP) N E(Q). Thus, if
A € ag. belongs to the set (5.I9), then u = —A + ppy satisfies (5.28)). We infer that
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A(0P :Q:&p: —A+ ppy) is a holomorphic End(C(K : €yr))-valued function of A
in the set (E19). In view of (BI8]) we now infer (b).

Finally, we turn to (c). Let & € My and let 22(T)e denote the image of
C(K : £7) ® V(€) under the map (5.8). We may select a finite set of K-types
9 C K such that C(K : € : 7) C C(K : €)g ® Vy. In view of [vdBSI2, Thm. 1.5]
there exists a polynomial function g¢ : ai — C which is a product of linear factors
of the form p — (1, a) — ¢, with a € £(6P) N £(Q) and ¢ € R such that

(5.29) p= (AP Q : &n = p)le(itnn)s
is holomorphic and polynomially bounded on the set —B + pg  + ta*. It follows

that the function of A € a. arising from (5.29) by the substitution u = —A + pg p
is holomorphic and polynomially bounded on B + iaj. Define

Pe(A) :=ge(=A + pQ.p)-
Then pe € Iy r(a}) because L(cP)NE(Q) C ¥\ ap, and in view of (B.I8) it follows
that
A pE()‘)CPolQ(l : A):Q{M,Q(T)é
is holomorphic and polynomially bounded on B + iag. The result now follows by
finiteness of the sum (B.8]). O

5.3. The 7-spherical Fourier transform. Let @ € Z?(A) and let (7,V;) be a
finite dimensional unitary representation of K. For ¢ € C°(G/H : 7), we define the
7-spherical Fourier transform §¢ ;¢ to be the meromorphic function ag. — 2 2(T)
determined by

GordN). 0= [ (0la), B@: v+ ~R)@)r do
G/H
for ¢ € @/ 2(7) and generic \ € ag..

Proposition 5.6. Let ¢ € C°(G/H : 7). Then §q,-¢ is holomorphic on an open
neighborhood of —Yq; see (B.3).

Proof. This follows directly from [vdBK14] Cor. 8.5]. |

Before proceeding we will first discuss how this Fourier transform is related to the
T-spherical Fourier transform Fp ¢ defined in [vdBS97b, Eqn. (59)], for P, hence
P,, a minimal of-stable parabolic subgroup from P5(Aq). The last mentioned
transform is defined to be the meromorphic function aj. — @y 2(7) given by

FroO . 0) = [ (1@), BBy b5 - R)@) do
G/H
for ¢ € o/ 2(7) and generic A € aj..
Proposition 5.7. Let Py € Z;(Aq) and ¢ € C°(G/H : 7). Then

3. 0(N) = Cpy o1 : =A)* Fr,¢(N).
for generic A € ag..
Proof. The identity follows directly from Lemma (.41 |

Given R > 0 we write Bgr for the open ball in a; with center 0 and radius R.
Furthermore, we define

CYX(G/H :7):={p e C*(G/H :7): supp¢ C Kexp(Bg) - H}.
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Proposition 5.8. Let B C ag be open and bounded. There exists a p € szR(a;)
such that A — p(=A\)E(Q : ¥ : —\) is holomorphic on B + iay for every ¢ €
I 2(T). Moreover, if ¢ € C°(G/H,T), then

A= p(N)Q. o)

is holomorphic on B + iag.
Let R > 0. There exist a constant Cr > 0 and for every N € N a continuous
seminorm vy on C¥(G/H : T) such that

(5.30) Ip(N)T.r oA < (L+ A~V erIRAly (¢)
for every ¢ € CF(G/H : 7) and all X € B + iaj.

Proof. We fix a g-extreme parabolic subgroup P € &?(A) such that P > Q. Let P,
be the unique subgroup in #,(A,) such that Py 2 P. By [vdBS99, Prop. 3.1] there
exists a p1 € szR(a;) such that

A= pl(—)\)Eo(po TP —)\)

is holomorphic on B + ia; for every ¢ € @/ 2(7). This implies that p1Fp ¢ is
holomorphic on B + iaj for every ¢ € C°(G/H : 7). Furthermore, by [vdBS99,
Lemma 4.4] there exist a constant Cr > 0 and for every N € N a continuous
seminorm vy on CF(G/H : 7) such that

1N F, oM < (14 AN eIy (9)

for every ¢ € CF(G/H : 7) and all A € B + iag.
Choose ps € llgr(ay) as in Proposition B.5(b,c) and put p = p1p2. Then the
result follows in view of Proposition B.7] by combining the above assertions with

those of Proposition [B3(b,c). O

6. THE 7-SPHERICAL HARISH-CHANDRA TRANSFORM

6.1. Definition and relation with the spherical Fourier transform. We as-
sume that @ € #(A) and that (7, V) is a finite dimensional unitary representation
of K. Recall the definition of the character dg on L by ([22)); see also (23]). The
following definition makes use of the notation (&.1).

Definition 6.1. For a function ¢ € C°(G/H : 7) we define its T-spherical Harish-
Chandra transform Mg ¢ to be the function Ay — @/ 2(7) given by

(6.1) (Ha.-6(a)) (m) = 3g(a) / é(mavn) dn
v Ngv/Hyg
forve#,me M and a € A,.

It is easily seen that Hq,, defines a continuous linear map C*°(G/H : 7) —
C>(Aq) ® “ar2(7). The T-spherical Harish-Chandra transform Hq , is related to
the Harish-Chandra transform introduced in Definition Namely, the following
result is valid.

Lemma 6.2. Let ¢ € C°(G/H : 7). Then for a € Aq and ) € @y 2(T),

(6.2) (Hord(a).v) = > Har ((6(-), 7w )hu(e)), ) (v av).

veEW
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Proof. Let ¢ € CX(G/H : 1), ¢ € ah2(7) and a € Ay. Recall that "H denotes
vHv™! for v € #. Then

oo =Y [

vem M/

= Z /M/(vaH) dq(a) /NQv/HN | (p(mavn), by (m)) _

vEW

= *1av mov tavn v
D Ry | o, ) o (m).

((Har6(a)), (m), vu(m))

T

veEW

We now use that 7 is unitary and that the measure on M/(M N"H) is normalized,
and thus we conclude that the last expression is equal to

S dge (v aw) /N e {60 ) ™ ()

veEW

Finally, the claim follows from the definition of the Harish-Chandra transform (Def-

inition 212]). O

Corollary 6.3.
(a) Let P € Z,(A,Q). Then the spherical Harish-Chandra transform Hg  is
a continuous linear map C°(G/H : 7) — L*(Aq,0p" da) @ s o(T).
(b) Let ¢ € CX(G/H : 1) be supported in KexpC - H, with C C aq compact,
convex and invariant under the action of Nxnp(aq). Then

(6.3) supp Ho .- () C | exp(C +vI(Q"))
vEW

Proof. Tt follows from Proposition B8 that d 5 (Hgv ®I) defines a continuous linear
map C>°(G/H : 1) — L*(L/Hy, : Ta). Since L/Hy, ~ M/M N H x Ay), it follows
that restriction to A, defines a continuous linear map L'(L/Hy, : Tpr) = Aq @ V.
In view of Lemma assertion (a) of the corollary now follows.

For (b), assume that ¢ € C°(G/H : 7) has a support as stated. Then by
Proposition 3.8 the support of (Hg» ® I)(¢)]a, is contained in exp(C +T'(Q")). In
view of the Nx g (aq)-invariance of C, the inclusion (€3]) now follows by application
of Lemma O

It follows from this corollary that for ¢ € C°(G/H: 7) the Euclidean Fourier
transform

Fa,(Hq o) (A / Hord(a)

is well-defined for A in the subset —T¢ C ag., with absolutely convergent integral,
and defines a holomorphic @/ 2(7)-valued function on the interior of this set.

Proposition 6.4. Let ¢ € C°(G/H : T). Then for A € =Yg,

Foro(\) = Fa, (Ha.r0)(N).

Before turning to the proof of this result, we first prove a lemma.
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Lemma 6.5. Let w € Dy, Letp € C(G : Hg : Ag,n,,) and assume that the
associated density V., € Yg/m, 1s integrable. Then

/ Yy = / / / a*P2q)(kan) dn da dk
G/Hg K JAqJNq/Hng

up to a positive constant which only depends on the normalization of the measures
and the densities.

Proof. In this proof we will need to introduce several densities. For each quotient
S/T of a Lie group S by a closed subgroup T' that appears below, we choose a
positive density ws,+ € Z;,¢. We leave it to the reader to check that these densities
may be normalized in such a manner that the stated equalities are valid.

By Theorem [B.11

(6.4) t@%m—éﬁ(wﬂm>wm,

where

(6.5) @wo:/ $(99) Aoy (q) dig([e]) " waymy -
Q/Hq

Since the canonical map ¢ : K/M — G/Q is a K-equivariant diffeomorphism we
may rewrite the integral on the right-hand side of (6.4 as an integral over K/M of
the pull-back density

C*(QHIgW)dl (leh)~ WG/Q) = I () dly(e) ™" "Wk /M-

Now k — Ij,(¢) is right M-invariant, and k — dlg(e)”*wg ps defines a left K-
equivariant density on K /M. Hence,

(6.6) mzﬂmww

G/Q

Next, we fix k € K. Applying Theorem [5.1] to the integral for Iy (), given by (6.5)
with g = k, we infer that

(6.7) “W:/MN V050 A s0) dly (€)W iy g
LiVQ
where
Jy(l;;‘/)AG/Q) = /H NoJH Y(kyz) AG/Q(W)AQ/HLNQ( z)dly([e D wHLNQ/HQ
LiNQ Q
(6.8) = /H . U(kyz) Moo (yz) diu([e]) ™ Wi, wg g -

In the latter equality we have used that Ay, o = 1. Indeed, by nilpotency of Ng
it is evident that AQ/HLNQ|NQ = 1. On the other hand, AQ/HLNQ|HL =Ap g, =1
by unimodularity of L and Hy,.

To complete the proof we will rewrite both integrals (6.7)) and (6.8]), respectively.
Starting with the first, we note that the map

n:Aq X M/Hy — Q/HLNg; (a,m)— amHNg
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is a Aq x M-equivariant diffeomorphism. Hence, n* (y — dly([e])*l*wQ/LHNQ) is a
left Ay x M-invariant density. Accordingly, the integral (6.7)) may be rewritten as

/ / Jam (G Ag ) dadim
M/H]u Aq

// Ima (0 Ag)q) da dm.
MJA,

19:NQ/HNQ—>HLNQ/HQ; nHNQHnHQ

I ()

(6.9)

Likewise, the map

is a left Ng-equivariant diffeomorphism. Therefore, 9* (z dlz([e])*l*wHLNQ/HQ)
is an Ng-invariant density on Ng/Hn,. Accordingly, we find that (6.8) may be
rewritten as

(6.10) Ty (150 Agyo) = /N e Uk Do ym
Q Ng

Combining (68), ([€9) and (GI0), we obtain that

/ Q/sz/ / / / Agyq(man) y(kman) dn da dm dk
G/Hg KJM JA, NQ/HNQ
= / / / a**24(kan) dn da dk. O
K JAq JNq/Hng

Proof of Proposition [6.4l For each v € # let wy/n,, € Doy, be as in (B.2). Let
¢ € CX(G/H :7) and ¢ € )y 2(7). Then for A € =T,

(B -6\, ) = /G (O P@ v N do

= Z/G ), Bt (Q = by : =N)(zv™Y)), da

veW

=;ﬂ /G y ( /H o (0 g ) () wH/HQU>dzw<e>*- wera.

Here v, o _x is defined as in (5.4). We now apply Theorem [5.1]to the term for v in
order to rewrite the repeated integral as a single integral over G/Hg» and obtain

Foro.) =Y [ Yo 300 D () g
veW /HQ“
By Lemma this expression is equal to
Z / / / a2rav (qb(k;cm),wU)Qﬁ;(kam}A»T dn da dk.
veEW Nov/HNgo

By 7-sphericality and unitarity of 7 it follows that each integrand is independent of
k. Furthermore, by our chosen normalization of Haar measure, dk(K) = 1 so that
the integral over K can be removed. By substituting a” := v~'av for a and using
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the right ANg-equivariance of 9, , _x, we thus find

<SQ,T¢()\)7¢>=Z/A /N o a®(p(a"n), 7(v) ", o _5(a))- dndadk

veEW

veEW

- Z /Aq /NQv/HNQv a=reTren (g(a’n), 7(v) " Yu(e))r dn dadk

- /A Y Hoo ((6(-), ()" 1(e)r) (a®) da.

veEW
Using Lemma we finally obtain

(3o 6\, ) = / 0~ Ho - (6)(a) , ¥) da.

Aq

Since 1 was arbitrary, the result follows. O

6.2. Invariant differential operators. In this section we assume that Fp is a
parabolic subgroup from Z,(A,) and write Py = MyAgNy for its Langlands de-
composition; then Ay C A and aq = ap Nq. Furthermore, My/MyNH = M/MNH
as homogeneous spaces for M; see [vdBK14, Lemma 4.3]. Accordingly,

(6.11) g=np® ([+h);

where [ = m @ a is the Lie algebra of L = MA. Let D(G/H) be the algebra of
invariant differential operators on G/H. Then the right-regular representation of G
on C*°(G) induces an isomorphism

(6.12) r:U()"/(U(e)" nU(g)h) — D(G/H);
see [vdB92 Sect. 2] for details. Let
7o : U(mo) ™0 /(U (mg) M0 N U (mg)has,) — D(Mo/Mo N H)

be the analogous isomorphism onto the algebra of left My-invariant differential op-
erators on Mo/My N H. Let D(A,) denote the algebra of bi-invariant differential
operators on A,. Then the right regular representation induces an algebra iso-
morphism U(aq) = S(aq) ~ D(A,). We define the canonical algebra embedding
p:D(G/H) — D(My/My N H) @ D(Aq) as in [vdB92 Sect. 2]. It is independent
of the choice of parabolic subgroup Py. We will give a suitable description of p in
terms of Py, which is somewhat different from the one in [vdB92].

To prepare for this, let mg, be the ideal of my generated by mg N a and let
My, be the corresponding analytic subgroup of My. Then My = M My, and My,
acts trivially on My/My N H; see [vdBK14, Lemma 4.3]. Therefore, the inclusion
M — M,y induces a natural isomorphism

(6.13) D(My/Mo N H) ~ D(M/M N H),
via which we shall identify their elements. As before, the right regular repre-
sentation induces an isomorphism U(m)"™ /U(m)Hv N U(m)bhyr ~ D(M/M N H).
Furthermore, since mg,, C b, the inclusion m — mg induces an isomorphism

U (m)f2r /U (m) 2 0 U (m)hag = U (mg) %0 /(U (mg) 4% N U (mo)ha,)
which is compatible with ry and the identification ([613]). Accordingly, we may view
1 as an algebra embedding

1 D(G/H) — D(M/M N H) ® D(Ay).
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Remark 6.6. In the formulation of the following result, we will write e**%o for the
continuous linear endomorphism of C°((M/M N H) x A,) given by multiplication
with the similarly denoted function e**#o : (m,a) + a*P%o.

Lemma 6.7. Let D € D(G/H) and let Dy € D(M/MNH)®D(Aq) be the element
determined by u(D) = e PPo o DyoelPo; see Remark 66l Let u € U(g)® be a
representative of D and let ug € U(m)7™ @ D(A) be a representative of Do. Then

(a) u—wup € np,U(g) @ U(g)h.

(b) Furthermore, if Q € P (A) satisfies £(Q,c0) C X(Py), then

u—1ug € (np, Nng)U(g) + U(g)h.

Proof. We start with (a). Note that U(m)» C U(mg)#™0 + U(mg)hay,. Thus, if
vp is a representative for Dy in U(mg)#™0 @ D(A,), then ug —vg € U(g)h and it
suffices to prove the assertion (a) with vy in place of ug. The resulting assertion
immediately follows from the definition of p in [vdB92l Sect. 2].

We turn to (b). In view of (6I11) and the PBW theorem, it suffices to show that
the image uq of u —ug in np,U(np,) @ U(L)/U()h in fact belongs to the subspace
(np, Nng)U(np,) @U()/U(Nhr. The element w; is invariant under ad(ay), as both
u and ug are. Since ay centralizes [, we have

uy € [np,U(np,)|* @ U(D/U(ObL.
By the PBW theorem we have the following direct sum decomposition into ad(ay)-
invariant subspaces:
nPoU(nPo) = (nPo n nQ)U(nPO) D (nPo n ﬁQ)U(nPO N ﬁQ)'
The ay-weights of the second s_ummand are all of the form = a; + st ay, with
k> 1 and a; € X(Pp) N¥(Q). The latter set is contained in ¥(Q, o), because
¥(Q,00) C X(Py). Let X € a™(Q). Then it follows that the roots of 3(Q, o) are
positive on the element ¥ = X + (X)) of ay. Hence p(Y") > 0; in particular u # 0.
We thus see that
(e, U(np, )" = [(np, Nng)U(np,)]™ -

The result follows. U
Remark 6.8. In view of the PBW theorem, the map g is entirely determined
either by the description in (a), or by the description in (b). For h-extreme Q

the proof of (b) is basically a reformulation of the argument given in the proof of
[AFJST2l Lemma 2.4].

Let w € # (see the definition preceding Lemma [5.2]). Then Ad(w) preserves m

and aq. The action of Ad(w) on m and a4 induces an isomorphism of algebras
Ad(w) : D(M/Hpr) @ D(Aq) = D(M/wHpyw™ ') @ D(Ay).
Accordingly, we define the algebra embedding
i : D(G/H) = D(M/wHpyw™) @ D(A,)
by
ty = Ad(w) o p.
Let (7,V;) be a finite dimensional unitary representation of K. For each w €

W the natural action of D(M/wHyw™t) on C*°(M/wHpyw™t : 79;) induces an
algebra homomorphism

ro s D(M/wHyw™") = End (C%(M/wHyw™ = 73p))
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In the following we will view End(@/2(7)) @ D(A,) as the algebra of invariant
differential operators with coefficients in End(/)s2(7)), which naturally acts on
C™>(Aq) ® Hr2(7). Accordingly, we define the algebra homomorphism

(6.14) p(- o 7) : D(G/H) — End(Ar2(1)) @ D(Aq)
by

(WD 7)) =[(re @) opuy(D)Wy, (¥ € C®(Aq) ® Hpso(7),w € W)
for D e D(G/H).
Proposition 6.9. Let Q € #(A). If D e D(G/H) and ¢ € CX(G/H : 7), then
(6.15) Ho,r(¢) = (D : 7)Hq ¢

Proof. Letv € #.Fix Py € Z;(Aq) such that 3(Q, 06) C X(F). In view of Lemma
[L4] there exists a unique P € &,(A) such that Q@ < P C Py. Then X(Q",06) C
Y(PY,00) =%(P}). Let D € D(G/H) and let u and ug be associated with D as in
Lemma 6.7, but with Py, Q" in place of Py, Q. Then

u—ug € (npy Nngv)U(g) +Ul(g)h
and
M(D) = d;l oDo odv7

where Dy = R, and d,(a) = a”flpPO, for a € Aq; see Remark [6.61

Let X € aq be such that a(X) > 0 for every a € X(Fg). Then X satisfies (2.1]) for
the pair (P”, Q). By Lemma[2.3 we infer that Ngv x = Ngv N Np» = Ngv N Npy.
By Definition and Corollary it now follows that

(HQ,T¢(‘1))U(m) =afem P /N . o(mavn) dn
QvNNpp

forallp € C*(G/H : 7), m € M and a € Aq. In the integral on the right-hand side,
the function ¢ should be viewed as a function in C°°(G) ® V; of compact support
modulo H, i.e., with support in G that has compact image in G/H. Accordingly,
we define

To(m,a) := aPR P / ¢(mavn) dn ((m,a) € M x Ay),
NQuﬁNpg

for any such function ¢. Note that T'p € C°(M x A,) ® V;. It is readily verified
that

T(RZ¢)(m’ a) =0
for p € C°(G/H : 7) and Z € (npy Nngv)U(g) + U(g)h. Therefore,
(6.16) (Hq.-Do(a)), (m) = T(Ry,9)(m, a).

For any function ¢ € C*°(G : 7) of compact support modulo H we have

T(p)(m,a) = a2~ P / d(manv) dn

NQﬂNpo

— gPe—PQ.y ’ det Ad(a)\annPO ’_1 /N . o(nmav) dn
Q Po
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for (m,a) € M x A,. Since

_ —1 —1 1
aPR =P ’ det Ad(a)\annPO | = ’ det Ad(a)\annpO | : | det Ad(a)|nQﬁ9nPo ’ ’

= | det Ad(a)]ngrng, |‘% | det Ad(a)lgngrnp, !_%

= a‘*ppo7
we infer, writing d(a) = a??o, that
To(m,a) = d(a)_l/ d(nvv~ mav) dn.
NQﬂNpO
Now let ¢ € C2°(G/H), so that T¢ € C°(M/vHpv ™t x Ag) @ V;. Then

T(Ruyd)(m,a) = [d™" o Raa(yu, o d)(T9)(m, a)
= [d" o Ad(v)(Ry,) o d)(T¢)(m, a)
= Ad(v)[d, " o Ry 0 dy](T9)(m, a)
= 1o (D)(T'¢)(ma).
In view of ([G.IG), we finally conclude that

(Ha.ré(a)), (m) = p1o(D)(T)(ma)
= ([(rv ® I) o o (D)) (Hp,r$) (@) ) (m)
= (D7) (He ~¢)(a)lo(m). O

7. EXTENSION TO THE SCHWARTZ SPACE

Throughout this section, we assume that @ € Z?(A) and that Py is a minimal
of-stable parabolic subgroup that contains A and satisfies 2(Q, 060) C X(Fy); see
Lemma [L4]

We define

a;F(Po) :={Aea;:(\a)>0 VaeX(R)}
and
Af(P) ={a€Ag:a® >1 Vae X(Py)}.

7.1. Tempered term of the 7-spherical Harish-Chandra transform. Let
(7, V;) be a finite dimensional unitary representation of K as before. It is convenient
to denote by E(Q : -) the meromorphic map a}. — Hom (2, C(G/H : 7))
given by
EQ:MNYv=E(Q:v:\) ()\Ga:‘chEﬂM)g(T)).

By Proposition 58] the singular locus of E(Q : —-) equals the union of a locally
finite collection Hyp(@Q,7) of hyperplanes of the form {\ € ag. : (A, a) = ¢} with
o€ Z\a; and ¢ € R. Each such hyperplane H can be written as H := p+aZ, where
p € ag is real, and where at denotes the complexification of the real hyperplane

at C ag. We note that Hg := H Nag equals p + at and that H may be viewed as
the complexification of Hg. Moreover, we agree to write

Hpr(QvT) = {H]R: H e Hyp(QvT)}'
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We note that for u € ajt(P) \ UHypgr(Q,7) the function E(Q : —-) is regular
on p + iag. Furthermore, if ¢ € C2°(G/H : 7) then from the Paley-Wiener type
estimate (.30) in Proposition 5.8 we infer that

A= Foro(N) at

is integrable on u + iay for every a € Ay. In view of the estimates in the same
proposition, it follows by application of Cauchy’s integral formula that the map

a3t (Po) \ | JHype(Q.7) 5 p— Sa.rp(N)a* dx
;Hria;

is locally constant. Therefore, it is constant on each connected component of
azt(Po) \ UHypg(Q, 7). Here dX denotes the choice of (real) measure on u + iaj
obtained by transferring (27)~ 4™ times the Lebesgue measure on ag under the
map A — p 4 A,

Since F(Q : — ) is holomorphic on an open neighborhood of the closed convex
set =Yg (see (B3)), it follows that there exists a connected component C; of

a:*(PO) \ UHypg(Q, 7) such that
Ci 2 a;"(Po) N (=Tq).
Lemma 7.1. Let p € Cy. Then
(r.) Hor@)@) = [ Fosoa'dh  (aeAy)
u+ia§
Proof. As the expression on the right-hand side of the equation is independent of
p € C1, we may assume that p € =Y. Then in view of Proposition [6.4]

/ Soro(N)atd\ = / Fa,(Ho,r(0)(n+ Nara* d\ = Hg - (a),
ptiag ta}

where the latter equality is valid by application of the Fourier inversion formula. [

We intend to analyze Hg -(¢) by applying a contour shift to the integral on the
right-hand side of (7)) with p tending to zero in a suitable way. This will result
in residual terms. In the o-split rank one case, these are point residues, which will
be analyzed in the next section. For general o-split rank, one may hope to analyze
them by using a multi-dimensional residue calculus in the spirit of [vdBS00].

Clearly, there exists a unique connected component Cy of a;*(Pp) \ UHypg(Q, 7)

with 0 € Cy. For ¢ € C>°(G/H : 1) we define Zg ;¢ : Aq — “r2(7) by
To.-pla) = lim Fo-o(Nard\  (a € Ay).
€ evtial

Here v is any choice of element of a;*(Fy); the definition is independent of this
choice and

(7.2) Zo.oa) = [  Sse(at
u zajl

for p € Cy. The function Zg ;¢ : Aq = s 2(7) will be called the tempered term
of the Harish-Chandra transform.
We define

(7.3) Cromp (4q)

temp
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to be the space of smooth functions on A, which are tempered as distributions on
Aq, viewed as a Euclidean space, i.e., belong to the dual of the Euclidean Schwartz
space . (Aq). We equip the space (Z3) with the coarsest locally convex topology
such that the inclusion maps into C*°(A4,) and #’(A4) are both continuous. Here
C*>(Aq) and 7 (Aq) are equipped with the usual Fréchet topologies and .7 (Ay) is
equipped with the strong dual topology.

Proposition 7.2. If ¢ € CX(G/H : 7), then I ¢ € Oy, (Aq) @ Far2(7). The
map CX(G/H : 1) = Cosi (Aq) ® @ o(T) thus obtained has a unique extension

temp
to a continuous linear map

Ig.:C(G/H:1)— Cf:mp(Aq) ® g 2(T).

Proof. Let B C aj be a bounded neighborhood of 0. Let p € Iz r(aj) be as in
Proposition[5.3] (¢). Then p(— ) belongs to Ilx g(ay), hence admits a decomposition
as a product of a polynomial from HE,R(a;) which vanishes nowhere on iay and a
polynomial p, € Il g(a3) which is homogeneous. Then A — py(—A)Cpg(1: A) is
holomorphic on an open neighborhood of iaj in aj..

According to [vdBS97c, Lemma 6.2] the Fourier transform Fp extends to a
continuous linear map from ¢ (G/H : 7) to 7 (iay) ® (7). Hence, in view of
Proposition (7] also the map ¢ — ppFg,-¢ extends to a continuous linear map
C(G/H :7) — S (iay) @ Hr2(7) and for all ¢ € €(G/H : 7) we have

8 Bl = N Crug(l: -N Fr(@)(N) (A eia).
We now see that, for ¢ € €(G/H : 1),

(7.5) Kg-¢(a) := / pr(NTo-p(N)ar d) (a € Ay)

iay
defines an element of .7 (Aq) ® /s 2(7) and the map
Kor:€C(G/H : 1) = S (Aq) ® ra(T)

thus obtained is continuous linear.
Let v € a5t (Pp). It follows from [H6r03, Thm. 3.1.15] that the limit

I
(7.6) v(f) = lew iax Ph(A + ev) "

exists for every f € ./ (ia;), and that accordingly v defines a distribution on ag.
This distribution is homogeneous, hence tempered; see [H6r03, Thm. 7.1.18]. Put
u = .7-:4;11). Then u is a tempered distribution on A,, hence the convolution

operator f — ux f defines a continuous linear map .#'(4,) — Cf5,,(44). Thus, to

finish the proof, it suffices to prove the claim that for every ¢ € C*(G/H : ),
(7.7) Lo ¢ =uxKqrd.

We set ® := p,Fqg,-¢ and note that Ko ¢ = }:4;1<I>. Therefore,

ux Ko ¢ = (.7;"4:11)) * ]i:lfI) = ]-1'4:1 (Pv).
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Let ¢ € C2°(iay). Then

(NN
/m pr(A+ev) X

:Eﬁl(/ia; %w—/w (/0 atfb(wrtu)dt)]%cu)

= lelig ( . sQn—(ﬁ(/\ + 61/ d)\ / / ph )\ n El/) d\dt |.

The function

Pu(¢) = lim

el0

(te) > WP\ + tv)y ()
iaz D /\—l—ey)

is continuous on [0, 1]x ]0, 1]. Moreover7 since f :t+— 0:®(- +tv)(-) is a contin-
uous function [0, 1] — C2°(iay), it follows that in the Banach space C([0, 1]),

F( ) =o(f(-)  (e10)
We thus see that F' extends continuously to [0,1] x [0, 1]. This in turn implies that

€

lim [ F(t,€)dt =0,
el0

hence

Bo(w) =lim [ So.r6(A+ @)p(N) ax
ia;
Now let x € C°(Ayq). Then

(s Kaurd)(00) = Do(A > / v(a)a* da)

_hm/ / o0\ + ev)x(a)a’ da dX

el0

= lim ( Fo. 6\ + ev)ar e d/\) ~“x(a) da.
Aq iag

el0

If € is sufficiently small, then

Ig¢(a) = FQr (A + GV)GAJFEV dA

(see ([T2)), hence
(u*xKqr0)(x) = hm/ ZgP(a)a”x(a)da = / Zg.-9(a)x(a) da.

Aq

This establishes the claim (IZZI) O

Remark 7.3. Assume that the Eisenstein integral E(Q : —-) = E.(Q : —-)
is holomorphic on ]0,1] - £ for an element £ € Cy. Then the chambers Cy and
C, are equal, and it follows that Hg ¢ = Zg .¢. In view of Proposition [T2]
the spherical Harish-Chandra transform #Hq r extends to a continuous linear map
C(G/H : 1) = Cosp(Aq) @ Par (7).

Now assume that the above condition of holomorphy is fulfilled for (7, V) equal
to the trivial representation (1,C) of K. Then ¢(G/H : 7) = ¢ (G/H)¥ and
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ro(T) = C” and it follows by application of Lemma that the restriction of
He to C2°(G/H)X extends to a continuous linear map ¢ (G/H)X — C>(L/Hp)™.
By application of Proposition it now follows that H¢ extends to a continuous
linear map € (G/H) — C°°(L/H) and is given by absolutely convergent integrals.
Moreover, the image of Hg consists of tempered functions.

Finally, assume that ¥_(Q) = (. Then YT¢ = age. This implies that §q,-¢ is
holomorphic on aj. for every ¢ € C2°(G/H : 7). Now a stronger statement can be
obtained than in the more general setting above. The polynomial p in the proof for
Proposition can be taken equal to the constant function 1. The distribution u
is then equal to the Dirac measure at the origin of zaj and as a consequence, Zg,
is equal to Kg -. In particular, it follows that Hg 1 extends to a continuous linear
map ¢ (G/H)X — € (L/Hr)™ and is given by absolutely convergent integrals. In
view of Lemma it follows that Ho maps ¢ (G/H)X continuous linearly into
€(L/Hp)™M.

We will now apply domination to show that in this case Hqg is a continuous
linear map from ¢ (G/H) to €(L/Hp). In the above we established already that
for ¢ € €(G/H) the function Ho¢ € C°(L/Hy) is given by absolutely convergent
integrals. For the purpose of estimation, let ¢ — @ be a map as in Proposition
Let uw € U([). Then there exists a v’ € U([) such that L,0dg = dgoL, on
C>*(L/Hp). Thus, for ¢ € €(G/H) we have

(7.8) L.Hq(¢) = dgLuRq(¢) = Ho(Lu o),

by equivariance of the Radon transform. Let N € N. There exists a continuous
seminorm v on € (G/H) such that for all ¢ € €(G/H)X and | € L,

(7.9) L+ 11NN Hale) )] < v(9).
It now follows by application of Proposition that there exists a continuous
seminorm g on ¢ (G/H) such that

-~

(7.10) v(¢) < u(9) (¢ € €(G/H)).
Combining the equality (C8) with the estimates (Z.9)) and (ZI0)), we find

L+ DN LaHo (@) (D] < L+ NN Ho(|Luol)
(1 + U Ho(Luw o)
< U(Lwd) < u(Lud).

IN

This establishes the continuity.

Example 7.4 (Group case). We use the notation of Example Assume that ‘P
and ‘@ are minimal parabolic subgroups of ‘G containing ‘A. Since ¥_(*P x ‘P) =
(), the final analysis in Remark [.3] applies to Hipx1p. Let ‘€ € ‘M and define
£ € Mby ¢ :="C®"¢Y. For ‘A € ‘af weset A = (‘A,—'\) € a;.. Let (7,V7)
be a finite dimensional unitary representation of K = ‘K x ‘K. We recall from
[vdBK14l Eqn. (8.16)] that the C-function C('Q x'Q : ‘P x'Q : \) € End(e/y,2(7))
is defined by the relation

(7.11) E(CPx'Q: N =E(Qx'Q:N)C('Qx'Q:"Px'Q:\).

It follows from [vdBK14l Cor. 9.6, 9.8] that

CCQx'Q:"Px'Q: Nser, = VIACQPr&—NBI) fI®
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for € € M and f € C°(K : £ : 7). The intertwining operator A('Q : ‘P : ¢ : '\)
depends holomorphically on A = (*A, —*)) in the region

U:={Aea;: (A, a)>0 forall aeX('P)NE('Q) }.

Clearly, U is contained in ajf(\P x ‘P). It follows that the C-function in (ZII)
depends holomorphically on A € —U. From (.IT) it follows that
F P o) =CCQ x'Q:"Px'Q: =N o Fgxqro(N).

Hence, § pxq¢ is holomorphic on a;* (\P x ‘P) for every ¢ € C*(G/H : 7). It
follows from Remark [T3lthat H\px g extends to € (G/H) and is given by absolutely
convergent integrals. Moreover, H\px\g maps ¢ (G/H) to the space of smooth
tempered functions on L/Hj,.

The convergence of the integrals for H\py g also follows from combining [Wal88|
Thm. 7.2.1] and [Wal92, Lemma 15.3.2].

Remark 7.5. We should inform the reader that [Wal92, Lemma 15.3.2] has an
additional assertion that a certain transform f¥ is of Schwartz behavior. However,
the proof of this assertion is not correct. In fact, in the right-hand side of the
inequality at the top of page 377, a factor (1 + ||log(aa;)|)?¢ is missing.

From the given proof it can be concluded that the map f +— fF is given
by absolutely convergent integrals, that it is continuous from % (No\G : x) to
C*®(No N Mp\Mp : Xx|Nn,nMp), and that its image consists of tempered smooth
functions. However, the second part of Lemma 15.3.2 of [Wal92] cannot be true
in the generality stated. Indeed, combined with [Wal88, Thm. 7.2.1] the validity
of the lemma would imply that H.p,p maps €(G/H) to €(L/Hy). The latter
assertion is already incorrect for ‘G = SL(2,R). This is established in Lemma
below.

The parts of the proof of the Whittaker Plancherel formula in [Wal92] that are
affected by the mentioned error have been fixed by Wallach in [Wall7].

Lemma 7.6. Let ‘G = SL(2,R) and let ¢ € €(G/H). Assume that ¢ > 0 and

(7.12) gzﬁ(( (1) _01 )g) > 0.

Then
harglor.}f H\Px\p ¢(a/) > 0.
aeA:(\Px\P)

Proof. For t > 0 and z,y € R, we define

. et 0 (1 =z _ 1 0
“=Lo et ) T o 1) T~y 1)
To shorten notation, we write
I(t) == H‘Px‘P¢(at/27 a,t/g).

Using the identification G/H = ‘G induced by (z,y) — zy~! to view ¢ as a
function on ‘G we obtain

t
1(t) zet44¢(at/2nxﬁ;1at/2) dxdy:et/R/R(b( c (lz—xy) ;t ) dz dy.

Let 0 < e <1 and 1 > 0. We define the domain
Dy :={(z,y) eR?: —e<ef(1+ay) <e,1 <y <1+n}
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Note that (z,y) € Dy if and only if
l<y<l4+n and ——<z<
Hence, for ¢ > 0,

-1
Dy CReyi=[—e—1,~ L),

1+
We note that R, , tends to {(—1,1)} for ,n | 0 and define

Cey = {( ‘ Z ) e\G:la|<e |d <e (bo) eRem}.

Then C¢,, is compact and tends to the singleton consisting of the matrix in (ZI2]).
We may therefore take € and 7 so close to zero that the function ¢ is strictly positive
on C¢,. We thus obtain, for ¢ > —loge, that

147 e*tyefl .
I(t)Zet/ / ¢(e(1+;vy) ift>d:1:dy
1 ﬂ:*ytefl Yy e
e(l+uwv) u by et
>el  inf d)( . ) / / dx dy
(u,v)EDy v e 1 ,E—yte,l

> 2¢ log(1+n) Cipf ¢ >0. O
en

7.2. The residual term for spaces of split rank one. We retain the notation
of the previous subsection. In particular, @ € #(A) and Py € Z,(A,) is such that
¥(Q,00) C X(Fp). As mentioned in the previous subsection, the difference between
Ho.-¢ and Ig -¢ is equal to a finite sum of residual integrals. These become point
residues in case dim aq = 1. For the rest of this subsection, we make an assumption.

Assumption. G/H is of split rank one, i.e., dimag = 1.

By our assumption on the split rank, each hyperplane from the set Hyp(Q, 7) de-
fined in the beginning of Subsection [l consists of a single point in ag. Furthermore,
the union [ JHyp(Q, 7) is a discrete subset of aj, by Proposition B8l

We define

So,r = a;Jr(Po) N (UHyp(Q, 7)).
Lemma 7.7. The set Sg ; is finite.

Proof. The Eisenstein integral E(Q : —-) is holomorphic on —?Q. The latter set
contains a set of the form £ + a;*(PO) +iag, with £ € a7. Hence, Sq,- is contained
in the set a3t (Po) \ (£ + a;*t(FPy) + ia}) which is bounded. Since Sg - is discrete,

the result follows. O
For a meromorphic function f : aj. — C and a point p € ag. we define the
residue
(7.13) Bes o(A) = Reg o+ zw).
= z=

Here w is the unique vector in a;*(Py) of unit length (relative to the Killing form),
z is a variable in the complex plane, and the residue on the right-hand side of ([T.I3))
is the usual residue from complex analysis, i.e., the coefficient of 2! in the Laurent
expansion of z — ¢(u + 2w) around z = 0.
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Lemma 7.8. Let ¢ € C.(G/H : 7). Then
HoP(a) =To - P(a) + Z B_es a* Ford(N).
HESQ,~ e
Proof. By the chosen normalization of the measure dA on p + tag,
1
| ses@ma=oz [ ses@r) dn
Veria;‘I U v+iR
In view of the estimates (B30) the result now follows by a straightforward applica-
tion of the Cauchy integral formula. O

Lemma 7.9. Let ¢ € @y2(7) and p € Sq.-. Then for all ¢ € C.(G/H : 7),

(7.14) Res (T (9)(N), ) = a($, Res(Q : p:a: ) (),

where Res, (Q : 1) is the function Aq x G/H — Hom(eyg2(r), Vy) given by
Resr(Q:p:a:a)($) =~ Res (aHEQ: ¢ M) (2)).

Proof. First, assume that ® : ag. — C is a meromorphic function. Then it is readily
verified that

Resa*®(—)\) = a"Resa®®(—p — zw)
A=p z=0

= —a"Reg a”*P(—p + zw)
pe

= —da" Res a2 HP(N).
A=—p

By using conjugate linearity of the pairing C°(G/H : 7) x C*°(G/H : 7) — C in
the second factor, it now follows that the expression on the left-hand side of ([ZI4)
equals
Bes a ¢, B(Q:1:—N) = —a{o, )\Res aMPE(Q 1t \).
=u =—HK
The latter expression is equal to the right-hand side of (ZI4]). It is clear that

Res; (@ : 1) is a function in C*° (A4 x G/H) @ V; @ #/2(7)*, which is T-spherical
in the second variable. (]

The following result will be a useful tool for understanding the nature of the
residues. We will use the notation Pj(aq) for the space of polynomial functions
az. — C of degree at most d, and P4(Ag) for the space of functions Aq — C of the
form a — p(loga), with p € Py(ay).

Lemma 7.10. Let p € Sq  and @ € oy 2(7). Then the following assertions hold.
(a) Let ¢ be a holomorphic function defined on a neighborhood of p such that
the C*°(G/H : T)-valued function A\ — ¢(N)E(Q : ¢ : A) is holomorphic at
. Then for every u € S(ay),
(7.15) Dulyeyy SOVEQ: 2 N)
is a D(G/H)-finite function in C*°(G/H : T).
(b) Let ¢ be a meromorphic function in a neighborhood of p. Then
(7.16) E{es VNE@Q:v¢:A)
=p

is a D(G/H)-finite function in C*°(G/H : 7).
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Proof. Assertion (a) follows by applying the argument of the proof of [vdBS99,
Lemma 6.3].

For (b) we may fix a non-trivial polynomial function ¢ such that ¢ := ¢(\)y is
holomorphic at p and satisfies the hypothesis of (a). Then there exists u € S(aj)

such that (TI6) equals (TI3). O

Lemma 7.11. Let p € Sg» and let d > 0 be the pole order of A — E(Q : \) at
—u. Then there exists a finite dimensional subspace ¥ C C°(G/H : T), consisting
of D(G/H)-finite functions, such that

ResT(Q : /J,) S Pdfl(Aq) RV ® ,Q{M,Q(T)*.
Proof. There exists a non-zero polynomial function g on ag. of degree d such that
the C(G/H)¥ ® o/ 2(7)*-valued meromorphic function A\ — g(A\)E(Q : A) is

regular at —pu. It follows that there exists a u € S(aj) of order at most d — 1 such
that

Res-(Q:pra:z)p= Ouly__, a M rGNE(Q 4 s N (x)
for all a € Aq,x € G/H and v € #/2(7). By application of the Leibniz rule we
infer that there exist finitely many w1, ..., ux € S(ay) and p1,...,pr € Pa-1(aq),
such that

k
Res;(Q:p:a: )= ij(loga) Ou, |/\=—u g ANEQ : )N
j=1

for all a € Ay. The assertion now readily follows by application of Lemma [ZT0l O
Next, we will need the following version of Lemma [7.8

Corollary 7.12. Let ¢ € C.(G/H : 7). Then, for every ¢ € @ 2(7),
(717)  (Ho-d(a), ¥) = (Tg-d(a), ¥) + Y a*(¢, Res,(Q:p:a: -)).

neESQ, -
Proof. This follows from combining Lemma [7.8 with (Z.14]). O

7.3. hb-compatible parabolic subgroups. The residual terms in (ZI7) will turn
out to have a special relation to representations of the discrete series if we select the
parabolic subgroup @ so that its positive system X(Q) satisfies a certain geometric
restriction.

Although we will only apply the definitions and results of the present subsection
to symmetric spaces of split rank 1, everything in this subsection is in fact valid for
symmetric spaces of higher split rank as well.

Definition 7.13. A parabolic subgroup @ € Z?(A) is said to be h-compatible if
(a, pgp) >0 foral oe€X(Q);

see ([[.J)) for the definition of pg . We write & (A) for the subset of &?(A) consisting

of all such parabolic subgroups.

Lemma 7.14.

(a) If Py € P5(Ay), then there exists an h-extreme Q € Py(Aq) such that
5(Q.08) € (Py).

(b) If Q € Py(A), then $(Q,06) L poy.

(c) If P,Q € P(A) and P = Q, then P € Z,(A) = Q € Py(A).
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Proof. We start with (a). Let Py € &,(Aq). We fix X in the associated positive
chamber a’s+(P0) and select a positive system E;r for the root system X Nag. Put

Py = % Z meaQx.

+
aEZh

Then py belongs to the positive chamber for E; in ag. There exists Y € ap such
that for all o € X,

(7.18) (a, py) > 0= a(Y) > 0.

Replacing Y by a small perturbation if necessary, we may in addition assume
that ¥ belongs to the set a,® of elements Z € ay such that for all @ € X3 we have
a(Z)=0= als, =0.

We fix € > 0 sufficiently close to zero so that for all a € X,

(7.19) aY)>0=aY +eX) >0,

and so that Y 4 €X is a regular element in a. Let Q € &?(A) be the unique parabolic
subgroup such that ¥ + e¢X belongs to the positive chamber a*(Q). We claim that
QQ satisfies the requirements. To see this, we start with the observation that for
a € X\ ag we have a(Y') # 0, so that

(7.20) sign a(Y) = sign (Y + eX).
For such « it follows by application of ([Z.20) to both « and o« that
sighoa(Y + eX) =signa(Y + €X).

Thus, we see that for a € ¥\ agy we have v € 3(Q) if and only if ca € 3(Q). Thus,
2(Q) \ a3 = X(Q,0) and we infer that @ is h-extreme.
If o € 3X(Q) Nay, then

ea(X)=aY +eX) >0

and we obtain that a € ¥(F). Hence, %(Q, 00) = X(Q) Nay C X(FH).
Next, assume that o € ¥ satisfies (a, py) # 0. Then in view of (ZI8)) and (ZI19)

we have

(7.21) sign (av, pp) = signa(Y) = sign (Y + €X).

In particular, the above is valid for o € E;r. From this we see that fo =3(Q)N ap,
so that pg 5 = py.

For the proof of (a), it remains to be shown that @ is h-compatible. Let a €

Y(Q). If («, poy) # 0, then it follows from (T2I)) that («, pg.p) = («, py) > 0.
This establishes (a).

We turn to (b). Let a € 3(Q,00). Then (a, pg,y) > 0. On the other hand,
oo € ¥(Q) hence
0 < (oba, pq.n) = —{a; pa.y)
and we see that o L pg p.
Finally, assume that P,Q satisfy the hypotheses of (c) and that P € £ (A).
From P = @Q it follows that X(P) N ay = X(Q) Nay, hence ppy = pq,p- Since P is
h-compatible and since (b) holds, we see that every root « from the set

U :=%(P)U—-%(P,ob)
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satisfies (v, pg,p) > 0. We will finish the proof by showing that £(Q) C ¥. Let o €
¥(Q). Then either a € X(Q, 06) or a € 3(Q, 0). In the first case, a« € £(P,06) C 0.
Thus, assume « € 3(Q,0). If & € (P, 0), then a € ¥. Thus, it remains to consider
the case that a ¢ (P, o). Since —a € X(P, o) would imply —a € %(Q,0) C 3(Q),
contradiction, both o and —a do not belong to 3 (P, o). It follows that one of them
must belong to (P, 06), hence a € ¥. O

Example 7.15 (Group case). We use notation as in Example Every element
of Z(*A xA) is of the form P ="P x 'Q, where ‘P and ‘@ are minimal parabolic
subgroups containing ‘A. All roots are non-zero on aq, hence ppy = 0. Each of
these parabolic subgroups is therefore h-compatible.

The importance of the notion of h-compatibility comes from the following result,
which implies that if @ € 97,(A), then certain singularities of E(Q : ) are caused
by singularities of E°(P, : -); see also Lemma [5.4

Proposition 7.16. Let Py be a minimal o0-stable parabolic subgroup containing
A. Let Q € Py(A) and assume that 3(Q : of)) C X(Fy). Then Cp (1 : -) is
holomorphic on —a;* (Po) + iay.

Proof. Assume that A € —a;*(Py) +ia;. Then Re (A, o) < 0 for all @ € ¥(Pp) and
(pQ.p, ) > 0 for all @ € X(Q). Hence,

Re (=A+pgp, ) >0 forall a € X(Py)NE(Q).

The result now follows by application of Proposition B.5(b). |

We end this section with a result about % -conjugates of h-compatible parabolic
subgroups.

Lemma 7.17. If Q € Py (A), then Q¥ € Py (A) for every v € Nk (aq) N Nk (ay).
In particular, this is valid for v € W'

Proof. Since v normalizes both a and ay, it follows that
2@ Nay = v (3(Q) Nay),

hence pgvp = v~ ! pgp. The lemma now follows from the fact that v acts isomet-
rically on a*. |

7.4. Residues for the trivial K-type. In this subsection we retain the following.
Assumption. G/H is of split rank 1.

Our goal is to analyze the residues of Eisenstein integrals E(Q : ) as introduced
in Lemma [[.9] for Q € &4 (A) and for (7,V;) equal to the trivial representation
(1,C) of K. To emphasize that 7 = 1, we denote the associated Eisenstein integrals
with E1(Q : \); see also (B3).

As before, we assume that Py is a minimal of-stable parabolic subgroup con-
taining A and such that 3(Q, 06) C X(F).

If 7 is a discrete series representation for G/H, we agree to write €(G/H )
for the closed subspace of ¥ (G/H) spanned by left K-finite and right H-fixed
generalized matrix coefficients of .
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Proposition 7.18. Assume that Q € Py(A). There exist finitely many spherical
discrete series representations my, . ..,y such that for all p € Sq .1, allvp € 2 2(1)
and all a € Ag,

Resi(Q:p:a: )@)€ ¢(G/H)r,.
i=1
We will prove this proposition through a series of results. First, we need to

prepare for these. Let W (a,) be the Weyl group of the root system of a, in g. Then
W(aq) = {—1,1}, since dim(aq) = 1 by assumption. The map

(722) .Q{]\/[’Q(l) — (CW, ’(/J — (’lﬁw(e) Tw e 7/)

is a linear isomorphism via which we shall identify the indicated spaces.
Let v € @r2(1). Then from [vdBK14) Thm. 8.13] it follows that, for R €
Po(Ag), w e W, be Af(R) and generic A € a .,

Ei(Q: ¢ : N (bw) = Y @ru(sh:b)[Crig(s: Nlwe).
se{x1}

Here @ (A, -), for generic A € aj., is a certain function on Al (R) defined as in

[vdBS97al Thm. 11.1], for 7 = 1. We recall that the functions are related by the
equations

(7.23) Ppuw(N,a) = Cp-1gy 1 (W A w aw)

for generic A € aj, and all a € Al (R); see [vdBS97a, Lemma 10.3]. Tt follows from
these relations and [vdBS97al Eqn. (15)] that the function ®p ., (A, ) for generic
A € ay. has a converging series expansion of the form

(7.24) Opw(Xa) =a*""Y Trur(Na ™™ (ac AL (P)),
k>0

where o denotes the unique indivisible root in 3(R, a4). The coefficients I'g 4, 1, for
k € N, are meromorphic functions on ag., which are uniquely determined by the
following conditions (see [vdBS97al Prop. 5.2, Eqn. (19)]), taking into account that
7(LE) =0 and v = 0, because T is trivial.

(1) Truwo(A) =1forall X e age-

(2) The function A — (Hle@/\ —la, a>) - T'r.w.k(A) is entirely holomorphic

on age.

In the proof ahead, we will need the following additional properties of the functions
® R and their expansions.

Lemma 7.19. Let § be a bounded open subset of ag. Then there exists a polynomial
function q € g r(ay) (see (BIT)), such that the following assertions are valid.
(a) For every k >0 the function qU' g w1 is holomorphic on Q2 + iay.
(b) The power series
> a(MNTraw k(N2
k>0
converges absolutely on D = {z € C : |z| < 1}, locally uniformly in
(A, 2) € (Q +iag) x D. In particular, it defines a holomorphic function
on the mentioned set.
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(c) The assignment a — g(A)Prw(A : a) defines a smooth function on Aq,
depending holomorphically on X € Q x iag.
(d) For all X € Q +ia} and a € Af(R),

qN)®rw(N a) = g\)a PR Z Trawr(Na .
£>0

Proof. In view of the relations [(23]), we may assume that w = 1. By boundedness
of Q there exists n > 1 such that (2A —la, a) # 0 for all [ > n and A € Q +iaj. In
view of conditions (1) and (2) above, we see that the polynomial

q(\) = H<2>\ —la, a)

=1
satisfies the requirements of (a).

In view of (a), it follows from the estimate for the coefficients given in [vdBS97al
Thm. 7.4, that for every compact subset U C Q +iaj there exists a constant C' > 0
and an integer x > 0 such that

lgMNTrLN < CA+E)"  (AeU).
From this, (b) follows readily. Finally, (c¢) and (d) are immediate consequences of
(a), (b) and (C24)). O

Based on the lemma, we can prove another preparatory result.

Proposition 7.20. Let p € a;*(Po). Then for every holomorphic function f :
aze — C and every ¢ € o 2(7) the function

(7.25) )\lie_s FE(Q:v:N): G/H—C

is D(G/H)-finite and contained in € (G/H)X.

Remark 7.21. Actually the result is valid for any holomorphic function f defined
on an open neighborhood of —u, but we will not need this.

Proof of Proposition [[I8. Let F be the function (C25]). It follows from Lemma
[CI0(b) that F belongs to C>°(G/H)X and is D(G/H)-finite.

We will complete the proof by showing that F' belongs to the Schwartz space.
Fix w € #, then by [vdB87al, Thm. 6.4] it suffices to establish, for any £ > 0, the
existence of a constant C' = C. > 0 such that
(7.26) |F(bw)| < ChFFTea—rr (be A;r(PO)).

Taking R = P, we obtain that, for w € #/, for b € Af (Py) and generic \ € Ages
Ei(Q: 0 N(bw) = Y g (sA: b)[Cryls : Aeule).
se{£1}

Here Cp (1 : +) is holomorphic at the element —pu € a;t(Py).

For k > 1 we define the polynomial function gz := (- + p, a)* on ag.. Let €2 be
a bounded open neighborhood of —u in aj. Then we may select an integer k1 > 0
such that the polynomial g, satisfies all properties of Lemma for R = Py and
all w € #. In addition we may fix ko > 0 such that the function

(7.27) A G, (N Cpyo(s: A)
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is holomorphic on an open neighborhood U of —p in Q + iaj for each s € {£1}.
Put ¢ = g, qx,, then it follows that g(A\)E1(Q : ¢ : A)(bw) is smooth in (A,b) €
U x A} (Py) and holomorphic in the first of these variables.

For each s € {1}, we define the disjoint decomposition

N=N(s,+) UN(s,—)
by
ke N(s,+) < (—2su—ka, a) > 0.
Accordingly, we put
®F (A =bPP 3 T, (AR
keN (s,%)
Then
DPp,w(sAb) = <I>},O,w(s)\7 b) + @5, (5A.b).

It is easily seen that N (s, +) is finite and without gaps in N. Furthermore, we may
shrink U to arrange that (2s\ — ko, a) > 0 for all s = £1, k € N(s,+) and \ € U.
In view of property (2) below (24]) this implies that the function

(b},o)w(s)\, b)
is holomorphic in A € U, for each s = +1. Furthermore, if s = —1, then (—su, a) <
0 and we see that N'(—1,4) = 0 so that in fact

@;va(—A, b) =0.
We agree to write
VEOB) = 3 E | (sh:D)Chygls : )Yl (e),
se{£1}
so that
E1(Q : ¢ : \)(bw) = (N, b) + ¥~ (\,b).

Taking into account that C' pO|Q(1 : ) is holomorphic at the point —u, it follows
from the above that W (\,b) is holomorphic at A = —p, so that

Res [[O0VFO0)] =0 (b€ AF(R)).

We infer that

(7.28) F(bw) = Res f()¥~ ().

We will now derive an estimate for f(A)g(A)¥~(A,b) by looking at the exponents

of the series expansion. If s = 1, then it follows that for k € N'(s,—) we have
(—sp—ka, ) <0+ (u, a) <O0.

Shrinking U we may arrange that for all A € U and all k € N (s, —),

(7.29) Re (sA —ka, a) < (u+ea, a).

As described in Lemma [Z.19] the series for g1 (\)®p, ,,(sA : b) is essentially a power
series in b~%, with holomorphic dependence on A. Hence, we may shrink U to
arrange that there exists a constant C' > 0 such that for A € U and b € A, with
b* > 2 we have

(7.30) lg1 (’\)‘1)1_50774; (sA,b)| < Cb—H—PRo e,
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On the other hand, if s = —1, then for all £ € N we have
(—sp—ka, a) <{(u,a)<0
and we see that by shrinking U even further if necessary, we may arrange that
(729)) is valid for the present choice of s, all k& € N and all A € U. This leads to
the estimate (Z30) for s = —1. From the estimates obtained, combined with the
holomorphy of the function ([Z27]), for s = £1, we infer that there exists a constant
(1 > 0 such that
[FN)aA) T~ (A, b)] < Crb~Protmitee)

for A € U and b® > 2. Using the integral formula for the residue in (28]) and
taking into account that g(A\)~! is bounded on a circle around —p in U, we infer

that there exists C' > 0 such that (Z20]) is valid for all b € Ay with b* > 2. Since F’
is continuous, a similar estimate holds for all b € A (Pp). O

We finally come to the proof of Proposition [[.18

Proof of Proposition [[ I8 Let 1 € Sg.1. It follows from Lemma [T.TT]that there ex-
ists an integer d > 0 and a finite dimensional subspace ¥ C C*°(G/H)¥, consisting
of D(G/H)-finite functions, such that

(7.31) Res1(Q : p)p € Py(Aq) @V

for all ¢ € @/ 2(1). On the other hand, it follows by application of Proposition
that Res;(Q : p: a : -) is a D(G/H)-finite function in ¢ (G/H)¥ for every
a € A,. Hence, (T31)) is valid with ¥ a finite dimensional subspace of ¢ (G/H)%,
consisting of D(G/H)-finite functions, which are therefore in particular Z(g)-finite.

It now follows that the (g, K)-span of ¥ in €(G/H) is a (g, K)-module of fi-
nite length in view of a well-known result of Harish-Chandra; see [Var77, p. 312,
Thm. 12] and [Wal88| p. 112, Thm. 4.2.1].) The closure of this span in L?(G/H) is
therefore a finite direct sum of irreducible subrepresentations. Since ¥ consists of
left K-invariant functions, each of these irreducible subrepresentations is spherical.
The result follows. O

Remark 7.22. The proof of Proposition [[ I8 relies heavily on the assumption that
aq is one-dimensional, which makes it possible to analyse which exponents vanish
from the expansion involved, by taking residues.

7.5. Convergence for symmetric spaces of split rank one. In this subsection
we retain the following.

Assumption. G/H is of split rank one.

Theorem 7.23. Let Q € Py(A). Then Hg has a unique extension to a continuous
linear map €(G/H) — C*(L/HL). Moreover, for every ¢ € €(G/H),
Hoo) =bo(D) [ dlmydn (e L)
NQ/HNQ

with absolutely convergent integrals. Furthermore, the Radon transform Rg has a
unique extension to a continuous linear map €(G/H) — C*(G/Ng) and for every
¢ €C(G/H),

Rodlg) = /N o dlgmdn (g €0)

with absolutely convergent integrals.
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Proof. As in (T.22)) we identify @/ 2(1) ~ C”. Let ¢y € “r2(1) be the unique
element determined by (¢g)., = 014, for w € #'.
By Lemma [6.2 we see that, for ¢ € C°(G/H)¥,

(Hgad(a), o) = Hoo(a) (a € Ay).

It follows from Proposition [[I8 that the functions Res;(Q : p : a : -)(t), for

w € Sq,r, belong to €(G/H) for every a € A,. Furthermore, by Lemma [7.11]

these functions depend polynomially on a. If we combine this with Proposition

[[2 we infer that the expression on the right-hand side of (.17 is well-defined for

¢ € €(G/H :1) =¢(G/H)X and depends linear continuously on it with values in
C™(Aq) = C=(L/H)M.

It follows that the restriction of H¢g to C°(G/H)X extends to a continuous linear
map from € (G/H)¥X to C°(L/Hy)M. The theorem now follows by application of
Proposition O

Remark 7.24. For the hyperbolic spaces SO(p,q + 1)/ SO(p, q)., this result is
due to [AFJST2].

In the following we assume more generally that (7,V;) is a finite dimensional
unitary representation of K.

Corollary 7.25. Let QQ € Py(A). Then Hq,r extends to a continuous linear map
Hq,r : €(G/H : 7) = C*(Aq) @ as,2(7).

Moreover, [6.1) and ([62) are valid for every ¢ € €(G/H : T) with the extensions
of Ho,» and Hgv to the associated Schwartz spaces; the appearing integrals are
absolutely convergent.

Proof. Since C°(G/H : 1) is dense in € (G/H : 7), this follows immediately from
combining Theorem [7.23] with Lemma [Z.17 O

By Proposition the map Zg, . extends to a continuous linear map from
€ (G/H : 1) to C™®(Ay) ® <r2(7) as well. Hence, it follows from equation (ZI7)
that for every a € Aq and ¥ € (1),

Z a'Res (Q:p:a: )
HESQ,r

is a smooth function defining a tempered distribution. In particular, writing

02 (G/H) = C®(G/H)N%"(G/H),

temp

we obtain the following.
Corollary 7.26. Let Q € Py(A) and let p € Sq . Then
Res-(Q : ) € P(Aq) ® Cianp, (G/H) @ Hom(a2(T), Vr).

temp

We now observe that Proposition [[.2, Corollary [[.25] and Corollary [.26] imply
the following result.

Corollary 7.27. Let Q € P4(A). Then equation (LIZ) holds for every ¢ €
€ (G/H : 1),y € (1), and a € A,.
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8. CUSP FORMS AND DISCRETE SERIES REPRESENTATIONS

A well-known result of Harish-Chandra asserts for the case of the group that
the closed span in the Schwartz space of the bi-K-finite matrix coefficients of the
representations from the discrete series equals the space of so-called cusp forms.
(See [HC66], [HC70, Thm. 10], [HC75] Sect. 18,27] and [Var77, Thm. 16.4.17].) In
the present section we generalize this result for the case of split rank one.

8.1. The kernel of Z .. In the present subsection we do not make any assumption
on the dimension of aq. Let (7,V;) be a finite dimensional unitary representation
of K as before.

Theorem 8.1. Let Q € Z(A) and let Py € P,(A). Then the following are equal
as subspaces of €(G/H : T),

(8.1) ker(Fp,) = ker(Zq,7).

Proof. Let ¢ € €(G/H : 7). Then the definition of K¢ ;¢ in (7.5]) is meaningful and
the equality (Z7) is valid. If Fp ¢ = 0, then it follows from (Z4) that Kq ¢ = 0,
which in turn implies that Zg ;¢ = 0. This shows that the space on the left-hand
side of (B is contained in the space on the right-hand side.

For the converse inclusion, let py, u and v be as in the proof of Proposition
Let D be the bi-invariant differential operator on A4 which satisfies

qu (D(se) = Ph,

with é. the Dirac measure at the point e on A;. Then

]:Aq (D(IQ,T¢)) = ph]:Aq (IQ,7—¢) = ph]:Aq (/CQ’.,.¢)7),

If £ € aj is a real linear functional, then by looking at real and imaginary parts, we
see that [(\, )| < [(A+ev, §)] for all A € da;, € > 0 and v € aj. This implies that

pr(N)
ph(A+ ev)

By a straightforward application of the Lebesgue dominated convergence theorem
it now follows that p,v = 1, and we infer that

D(IQ,T¢) = K:Q,‘r¢'
Now let ¢ € €(G/H : 7) and assume that Zg ;¢ = 0. Then Kg ¢ = 0 and it

follows from (TH) that [pr§g,]¢ = 0. In view of (Z4) this implies that for generic
A € iaj
a

<1 (A € ag).

Pr(N)Ch.q(1: =X Fp,(¢)(A) = 0.
Since Fp,¢ is smooth by [vdBS97bl Cor. 4, p. 573] and Cp,.o(1 : —A) is invertible
for generic A € day, by [vdBK14, Thm. 8.13], it follows that Fp ¢ = 0. O

Let @mc(G/H : 7) be the closed subspace of €(G/H : ) corresponding to the
most continuous part of the spectrum. By [vdBS97c¢, Cor. 17.2 and Prop. 17.3]
the kernel of Fp is equal to the orthocomplement (with respect to the L2-inner
product) in €(G/H : 7) of Gme(G/H : 7). Theorem [R] therefore implies that

Gme(G/H : 7) Nker(Zg.,) = {0}.

Let 6as(G/H: T) be the closed span in €(G/H: ) of the K-finite generalized
matrix coefficients of the representations from the discrete series for G/H. Then
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the space €a5(G/H : ) is contained in the orthocomplement of €,.(G/H : 7) and
therefore in the kernel of Zg , for every Q) € Z(A).

Corollary 8.2. If dim(aq) =1, then ker(Zg,.) = as(G/H : 7).

Proof. This follows from the above discussion combined with [vdBS97cl, Prop. 17.7]
O

8.2. Residues for arbitrary K-types. In this subsection we will work under the
following.

Assumption. G/H is of split rank one.

Let (7,V;) be a finite dimensional unitary representation of K and let Q €
Py(A). Let Py € P,(Aq) be such that X(Q,06) C X(Fy). We recall that the
singular set Sq ; is a finite subset of a;* (Pp); see Lemma[Z7 The first main result
of this subsection is that the residues appearing in (ZI7) are L2-perpendicular to
the part of the Schwartz space corresponding to the most continuous part of the
Plancherel formula.

Theorem 8.3. Let u € Sg .. For every ¢ € €mc(G/H : T), ¥ € 2(7) and
a€ Ay,

(8.2) (¢, Res(Q :p:a: )Yy =0.

This result will be proved through a series of partial results. Let Py be a par-
abolic subgroup as above and let Py = MyAgNy be its Langlands decomposition.
Via symmetrization of the associated quadratic form, the symmetric G-equivariant
bilinear form B of (4] gives rise to the Casimir operator € in the center of U(g).
The image Ag/g € D(G/H) of  under the map ([G.I2) will be called the Lapla-
cian of G/H. Likewise, the restriction of B to aq x a4 gives rise to the Laplacian
Ay, of Ag. The Casimir Q,of mg N ¢ is defined by applying symmetrization to the
restriction of B to mg N L.

Lemma 8.4. Let Ag/p, Aa, and Quw, be as above. Then for ¢ € €(G/H : ),

Hor(Ag/ud) = (T(Qmy) + Aa, — (ppy pry)) Ho r 0.
Proof. First, we observe that (G.I5]) is valid for Schwartz functions ¢ € ¢(G/H),
in view of Corollary and density of C°(G/H : 7) in €(G/H : 7).
Next, from [vdBS97al, Lemma 5.3] it readily follows that
/L(AG/H : T) = T(Qmo) + AAq - <pP0apP0>'
Now apply ([6.15). O
We write ]\%H for the set of & € ]\//.70 such that V(§) # 0. For £ € ]\//I\OH let

2p2(T)e be the image of C(K : € : 7) ® V(§) under the map T +— 9 defined by
(&). Then /) 2(7) decomposes into a finite direct sum of orthogonal subspaces

r5%]\/[’2(7')2 @ %M’Q(T)g.

¢eMon

The action of Nk (ag) on My by conjugation naturally induces a (left) action of
the Weyl group W(aq) = Nk(aq)/Zk(aq) on Moy. We agree to use W as an
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abbreviation for W (ag) in the rest of this subsection. Accordingly, for £ € Moy we
define

r5%]\/[’2(7')1/[/.5 = @ JZ{M’Q(T)wg.
weW

Accordingly, we obtain the orthogonal decomposition
(8.3) uQ{MVQ(T) = @ JZ%MQ(T)W{.
W-EeW\Moy

We define the normalized C-function 01%0| po(s : +), for s € W, to be the

End (& ,2(7))-valued meromorphic function on aj. given by
(8.4) Chy by (s : A) = Cpy 5, (5 : A)Cpy 5, (1 : )

for generic A € aj.; see [vdBS97h, Eqn. (55)]. Let v be the (unitary) representation
of W in L?(ia}) ® /2(7) defined as in [vdBSI7c, Eqn. (16.1)], with Py in place
of P. It is given by

() FIN) = Cp g, (7 e M) TH(sTIA)
for s € W, f € L?(ia}) ® @y2(7) and X € ia}.

Lemma 8.5. Let € € M\OH. Then the subspace
y(za*) X JZ%MQ(T)W.f - Lz(ia:) X JZ{MQ(T)
is invariant for .

Proof. First, the subspace Y(iaz) ® r,2(T) is y-invariant by the argument sug-

gested in [vdBS97bl, Rem. 16.3].
Next, let f € 7 (iagy) @ 2(T)e, where § € Moy Let s € W and let w € N (aq)
be a representative for s. Then it suffices to show that

V() fIA) € Fhra(r)se (A € iag).
In turn, for this it suffices to prove the claim that
(8.5) Chyipy (57 s Nra(7)se C ara(7)e,
for any £ € M\OH and generic \ € iag.
By (84) and [vdBS97bl Lemma 7],
C%olpo(s_l : )\) = Cp0|p0(8_1 : )\) OCPolpo(l : )\)_1
=Z(57) o Cypys1py (1 : A) o Cpypy (1: A) 7,
for generic A € agc. Here Z(s71) is given by [vdBS97bl, Eqn. (65)]

L(sr = VL) L(st.0-1)T (T eC(K:st:7)0V(s€)),

where L(w™) : C®(K : 56 : 7) — C®(K : £ : 7) and L(s&,w™t) : V(s€) — V(&)
are linear maps. Accordingly, we see that Z(s™!) maps @ 2(7)se t0 Pas2(7)e.
From [vdBS97bl Prop. 1] and the definition of the B-matrix in [vdB88| Prop. 6.1]
it follows that Cp -1/, (1: A) o Cp g, (1: A\) ™" preserves @y 2(7)se. Thus, (83)
follows. O
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By [vdBS97c, Cor. 17.4], the Fourier transform Fp, defines a topological linear
isomorphism from ,c(G/H : 7) onto [ (ia}) @ 2 (7)Y . For € € My we define
Cune(G/H : Thw.c = Fp (17 (i0") © s o(T)we] V).

Then in view of ([83)) it follows that
(8.6) CucG/H:7)= P GuelG/H:T)wee
W-E€W\Mon

with only finitely many non-zero summands.
Lemma 8.6. Let & € ]\/4\01{. If € €mc(G/H : T)w.¢, then

Ho-0 € CC(Ag) @ r2(T)w e
Proof. Let ¢ € Gme(G/H : T)w.¢. Then Fp ¢ € 7 (iay) @ Far2(T)w.e. The lemma
now follows by application of Propositions 5.5 5.7 and O

Lemma 8.7. Let £ € Myy. Then there exists a scalar ce € R such that 7(Qwm,)
acts on G 2(T)w.e by the scalar ce.

Proof. From Cor. 4.4] it follows that the restriction of £ to My N K is
irreducible. Hence, £(w,) acts by a real scalar ¢ on 4.

Let s € W. Then s has a representative w € Nk (aq). As Ad(w) preserves the
restriction of the bilinear form B to £ Nmy, it follows that Ad(w)Qu, = Qm,. This
implies that s&(Qm,) acts by the scalar c¢ on . We infer that

Cog = C¢ (s e W).
Let s€ W, f € O(K : s¢: 7) and let € V(s£). Then, with notation as in (5.7),

(T(Qmo)pan)(m) = ((L&7(Qm,)) f(m),n)
= ((s&(Qmy) ®1) f(m), m)
= Cethron(m).
The assertion now follows. O

For ¢ € Moy we define the differential operator De € D(G/H) by

Dg = H (AG’/H —Cce+ <pPo’pPo> - <M7/”'>)mu’
HESQ,+

where m,, — 1 > 0 is the degree of the C*°(G/H) ® Hom(/s2(7), V;)-valued
polynomial function a — Res, (Q : p:a: -).

Lemma 8.8. Let € € J\/J\OH. Then for every ¢ € Cmc(G/H : T)w.e,
Hor (Deo) = (( TT (Aa, = (mm) ) Haro
BESQ, -

Proof. The lemma follows directly from Lemma B4l Lemma B0l and Lemma 8711
O

Lemma 8.9. Let £ € ]\//[\QH. Then for every ¢ € €mc(G/H : T)w.c there exists a
X € Gmc(G/H : T)w.e such that

D§X = (b
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Proof. For X € ia} we define ey : Ay = C, a — a*. Moreover, for D € D(G/H) we
define u(D : 7 : X) € End(a/r2(7)) by

pD 7N = (D7) @9))(e) (¥ € Fra(r));
here p(D : 1) is the End (e 2(7))-valued differential operator on A, defined in

©.14).
Then for all D € D(G/H), ¢ € €(G/H : 7) and A € ia;, we have
Fo (DAY = (D < 72 \) Fp, (0
see Lemma 6.2]. In particular, it follows that
Fr(De)N) = T (A= (wm) " Fao().
/’LGSQ,T

Note that (A, A\) — (u, ) # 0 for X € da; and p € Sq - C a; \ {0}.
Now let ¢ € Cine(G/H : T)w.¢. Then the function f :iay — </ 2(7) defined by

=TI (0N = twm) " Faom

HESQ,r

belongs to the space (S(iaz) ® %M,Q(T)W.E)W. The assertion of the lemma now
follows with x = f;ol f. O

Proof of Theorem B3l Since €ne(G/H : T) decomposes as a finite direct sum (86]),
it suffices to prove the assertion for ¢ € €n.(G/H : T)w.c. Let ¢ be such a function
and let x be as in Lemma Then by Lemma B8]

Hord = (Meg“ (AAq - <u,u>)m“)HQ,Tx-

Since a — (x, Res;(Q : p:a: -)¥) is a polynomial function of degree m, — 1, it
follows that

(AAq - (u,u))mua”<x7 Res, (Q:p:a: - )) =0,

hence
my,
Horo= ( 11 (AAq - (/h/i)) )IQ,TX'
HESQ,r
In particular, Hq ¢ belongs to Cf,,,(Aq) ® @ 2(7). Since Zg ¢ also belongs to

this space, by Proposition [[.2], we infer that
a— Z a*Res-(Q:p:a:-), d)

HESQ,r

belongs to this space. Since the latter sum is also an exponential polynomial func-
tion with non-zero exponents on Aq, with values in @ 2(7), it must be zero and
we finally conclude ([82]). O

We now come to the second theorem of this subsection, which asserts that in fact
the residual functions from Corollary are constant as functions of the variable
from Aq. From Corollary we recall that for u € Sg -, the function Res,(Q, 1)
belongs to P(Aq) @ Cooo(G/H : 7) @ @ 2(T)*.

temp
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Theorem 8.10. Let 1 € Sg -
(a) The function Res.(Q : p) is constant with respect to the variable from Aq
and belongs to Cas(G/H : 7) @ o 2(T)*.
(b) E(Q: —") has a pole of order 1 at p as a C*°(G/H) ® Hom(e2(7), V7)-
valued meromorphic function on a;(c.
Proof. By [vdBS97c, Prop. 17.7]
C(G/H :7) = 6mc(G/H : T) ® Cas(G/H : 7)
as an orthogonal direct sum. By Corollary the finite dimensional space
¥ =span{Res (Q:p:a)p:p € Sg-r,a€ Ay, ¥ € Fpa(T)}
is contained in Cfy, (G/H : 7) C ¢'(G/H : 7). Since 64s(G/H : 7) is finite
dimensional (see [OM84] and [vdBS05, Lemma 12.6 & Rem. 12.7]), there exists for
every x € ¥ a function ¥ € 64s(G/H : 7) such that

(8.7) (9, x) = (¢,9)
for every ¢ € 64s(G/H : 7). By Theorem R3] the space €me(G/H : T) is perpen-
dicular to ¥. Hence, (87 is valid for every ¢ € €(G/H : 7), and we conclude that
x = ¥. This proves that ¥ C Gas(G/H : 7).

The space Gas(G/H : ) decomposes as a finite direct sum

6as(G/H : 1) = @%(G/H ST

where 7 runs over the representations of the discrete series and € (G/H : 7). is
spanned by left 7-spherical and right H-fixed generalized matrix coeflicients of .
Let 7 be a discrete series representation, ¢ € €(G/H : 7), and ¢ € i 2(7).
We will establish (a) by showing that (¢, Res,(Q : pt: a: -)t) is independent of
a € Ag. Since ([B3) is a finite direct sum, we may assume that 1) € @ 2(7)w.¢ for

a representation £ € Mypy.
By Corollary [[.27 and Corollary 8.2,

(8.8) (Hord(a), )= > a*(¢,Res,(Q:p:a:-)y)  (a€Ay).
HESQ,+
Since 7 is irreducible, ¢ is an eigenfunction for Ag, iy = Rq. Let ¢ be its eigenvalue.
Then by Lemma [8.4]
(T(Qmo) + AAq - <PP07 pPo> - C),HQ,T¢ =0.

Since 7(,) is symmetric, we have for x € @ 2(7),

(T(Qne )X ¥) = 06 T(Qmo )¥) = celx, V).
‘We thus see that

(AAE: +ee— <PP07 PP0> - C) <HQ,T¢7 '(/}> = 0.
The solutions to this differential equation are either polynomial functions (in case
ce—(pp,, pp,) —¢ = 0) or a sum of exponential functions (in case c¢ —(pp,, pp,) —C #
0). By comparing with (88) we see that (Hg r¢, ) cannot be purely polynomial,
hence must be a finite sum of exponentials functions. This establishes (a).
We turn to (b). We define the linear function p : az. — C by p(A) = (A + 1, w),
where w is the unique unit vector in aj(/). We note that

p(—p+2w) =2 (z € C).
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The function E(Q : —-) has a singularity at p, by definition of the set Sg -.
Reasoning by contradiction, assume that (b) is not valid. Then there exists an
element 1) € )7 2(7) and a k > 1 such that p"" 1 E(Q : ¢ : — ) is regular at p and
has a non-zero value at that point. Then with the notation of (ZI3) and Lemma
[79] it follows that

Res;(Q:p:a:xz)p = — Res aMPE(Q b \) ()
= — ljzeg a *EQ:¢: —p+ z2w)(x)
dk

= - @ AT E(Q ) —p A+ 2w)(z)
=0

k
= Zwloga ) x; ()
7=0

with uniquely determined functions x; € C*(G/H : 7). By the Leibniz rule it
follows in particular that

xk(@) = (1) w(log a)* 2" E(Q : ¢ - —p+ 2w)].=0-
Since
FHE(Q 4t —p+ 2w)]omo = [POVE(Q s 0 ey # 0

this implies that Res;(Q : u : a : x)(¢)) is not constant in a, contradicting (a).
Hence (b) is valid. O

In view of Theorem B0 we now obtain the following version of Corollary
Corollary 8.11. Let ¢ € 6€(G/H : 7). Then for all ¢ € or2(T) and a € Aq,

(8.9) (Hordla), ) = (Tord(a),¥) + D a(¢,Res(Q. p)).
HESQ,+
8.3. Cusp Forms. In this final subsection we keep working under the following.

Assumption. G/H is of split rank one.

The following definition makes use of the Radon transform introduced in Defi-
nition [2.12]

Definition 8.12. A function ¢ € ¢(G/H) is called a cusp form if Rg¢ = 0 for
every Q € Py(A). We write Gousp(G/H) for the subspace of such cusp forms in
¢ (G/H).

Lemma 8.13. %.usp(G/H) is a G-invariant closed subspace of € (G/H).

Proof. This follows immediately from Theorem [[23] and the G-equivariance of R,
for every @ € Py (A). O

Recall that a parabolic subgroup @ € £?(A) is said to be h-extreme if 3(Q, c0) =
2(Q)Nag.
Lemma 8.14. Let ¢ € €(G/H). Then the following conditions are equivalent.

(a) ¢ is a cusp form.
(b) Ro¢ =0 for every h-extreme parabolic subgroup Q € Py (A).
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Proof. Clearly, (b) follows from (a). For the converse, assume that (b) holds. Let
P € Py(A). There exists a h-extreme @ € F(A) such that P = Q; see [BvdB14]
Lemma 2.6]. By Lemma [[.14] (c) we see that Q € %, (A), so that Rg¢ = 0. Since
the integral for Rp¢(g) is absolutely convergent, for every g € G, it now follows by
application of Corollary 2.4] that

Rpole) = [ Reolgnyin =
P Q

Thus, (a) follows. O

Remark 8.15. It follows from this result that for the class of real hyperbolic spaces
SO(p,q+ 1)e/ SO(p, ¢)e our notion of cusp form coincides with the one introduced
by [AFJSI12, Eqn. (5)]. Indeed, the minimal parabolic subgroup mentioned in the
text following [AFJS12] Eqn. (5)] is h-extreme in our sense, and it turns out the
condition of h-compatibility is fulfilled. In fact, it is easy to see that for this family
of symmetric spaces the properties of h-compatibility and h-extremeness coincide.

Remark 8.16. Let 9 be a finite subset of K. For a representation of K on a vector
space V, we denote by Vy the subspace of K-finite vectors with isotypes contained
in 4.

Let C(K)y be the space of K-finite continuous functions on K, whose right
K-types belong to ¥ and let 7 denote the right regular representation of K on
V; := C(K)y. Then the canonical map

c:%(G/H)y —» € (G/H : 1)

given by

cp(z)(k) = ¢(kx) (p € €¢(G/H)y,k € K,x € G/H)
is a linear isomorphism. Let ¢ € €(G/H)y. Then it follows from (6.2) (see Corol-
lary [T220)), that Hov¢ = 0 for every v € # if and only if Hg -(s¢) = 0. Hence,
¢ € Ceusp(G/H) if and only if Hq - (c¢) = 0 for every Q € Py (A).

Example 8.17 (Group case). We use notation as in Example

Every minimal parabolic subgroup is h-compatible (see Example [[T5]); the b-
extreme parabolic subgroups are all of the form ‘P x ‘P where ‘P is a minimal
parabolic subgroup of ‘G. As explained in Example B.2] the Radon transform
R px p is identified with R:p under the identification (\G x ‘G)/diag(*G). From
Lemma B4 it now follows that ¢ € €(G/H) is a cusp form if and only if Rip¢p =
0 for every minimal parabolic subgroup ‘P of ‘G. Using the fact that ‘G acts
transitively on the set of minimal parabolic subgroups of ‘G, it is easily seen that
this in turn is equivalent to the condition that

¢(gn)dn =0
Nvp
for every ¢ € ‘G and every minimal parabolic subgroup ‘P. Thus, if ‘G is a
reductive Lie group of the Harish-Chandra class of split rank 1, then our definition
of cusp forms coincides with the definition of Harish-Chandra; see [Var77, Part 11,
Sect. 12.6, p. 222].

We now move on to investigate the relation between €,usp(G/H) and €4s(G/H).
Our main tool will be the identity [83]). The following result is a straightforward
consequence of Theorem
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Corollary 8.18. 64(G/H) N LY (G/H) C Geusp(G/H).

Lemma 8.19. Let Q € &y (A) and ¢ € €(G/H : 7). Then Hg ¢ =0 if and only
if both (a) and (b) hold:

(a) Zor0 =0,

(b) ¢ L Res,(Q, u)y for every p € S » and ¢ € @ 2(T).
In particular, if Hg ¢ =0, then ¢ € Cas(G/H : 7).

Proof. Assume Hg ¢ = 0. From (83) and Theorem [BI0 it follows for every
¥ € oy 2(T) that the function (Hg -¢(-),1) equals a sum of the tempered term
(Zo,+¢(-),v) and finitely many exponential terms with non-zero real exponents.
Since Hqg,r¢ = 0, it follows that all the mentioned terms vanish. This proves (a)
and (b) in the lemma. The converse implication follows directly from (89).
Finally, if (b) holds, then we infer from Corollary that ¢ € 6as(G/H : 7).
This concludes the proof of the lemma. O

Theorem 8.20. %.usp(G/H) C 64s(G/H).

Proof. In view of Lemma [B13] it suffices to show that every K-finite cusp form is
an element of Gu4s(G/H). Let ¥ C K be finite and let 7 and ¢ be as in Remark
Let ¢ € Geusp(G/H)y and assume that Q € Py(A). Then Hg - (s¢) = 0 by
Remark 810 and thus it follows from Lemma B9 that ¢¢ € €4s(G/H : 7). Hence,
¢E<gds(G/H)19. U

Remark 8.21. There exist symmetric spaces for which the inclusion of Theorem
is proper. Indeed, in [AFJSI2, Thm. 5.3] it has been established that the
mentioned inclusion is proper for G = SO(p,q + 1), and H = SO(p, q)e, with
1<p<qg-—-1.

Theorem 8.22. If %us(G/H)X C Cronsp(G/H), then Cas(G/H) = Cronsp(G/H).

Proof. Assume 645(G/H)X C %uusp(G/H) and let Q € P (A). Let ¥ be the
subspace of C*°(G/H)X spanned by the functions Res;(Q : u)1, for u € Sg 1 and
Y € @2(1). Then ¥ C 6as(G/H)® by Proposition [ I8 We claim that # = 0.
To see this, let x € ¥. Then by the assumption and Remark it follows that

Ho,1(x) =0.

By LemmaBT9(b) it follows that x L ¥". Hence, xy = 0 and the claim is established.
We conclude from the claim and 9) that Hg1 = Zg,1. Let ¢ € €(G/H). By

Proposition B2 there exists a ¢ € €(G/H)X such that |¢| < ¢. Now

(8.10) Mool < Haldl < Hoo.

Let 19 be the element of opr2(1) ~ C” determined by (10)w = 01, Then
HQQ?(G) = <HQ,1QA5(G),¢0>

by ([6.2)); see Corollary It follows from Proposition [[2] that (’HQ,lc/ﬁ\( ), ) =

(IQ71$( -),%0) is a tempered function on A,. In view of the estimate ([BI0) we
conclude that Ho maps the functions from € (G/H) to tempered functions on
L/Hj,. The same holds for Hgv with v € #.

Let (7, V;) be a finite dimensional representation of K. From (6.2]) and Corollary
we conclude that Hq . maps the functions from % (G/H: 7) to tempered
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2/ 2(T)-valued functions on Ag. It follows that the exponential terms in (89) are
all equal to zero. Therefore, Hg,» = Zg,» and by Corollary we have that

Cas(G/H : 7) =ker Hg r.

Since this holds for every finite dimensional representation 7 of K, we conclude
that €4s(G/H) C ker(Rg). As Q € Py(Ay) was arbitrary, we conclude that
Gas(G/H) C Geusp(G/H). The converse inclusion was established in Theorem [B201

O

Remark 8.23. At present, we know of no example of a split rank one symmetric
space where the equality € (G/H)® N Geusp(G/H) = {0} is violated. On the other
hand, €as(G/H) N Geusp(G/H)* may contain irreducible submodules that are not
spherical. An example of a symmetric pair for which this happens is provided by
G =S0(p,qg+1)e and H = SO(p, q)e, with 1 < p < g — 3; see [AFJS12, Thm. 5.3].

Let (7,V;) be a finite dimensional unitary representation of K. Then we define
Geusp(G/H : T) to be the intersection of ¢ (G/H : T) with G.usp(G/H)®V;. Further-
more, we define €es(G/H : T) to be the L*-orthocomplement of €eusp(G/H : 7)
in €4s(G/H : 7). Then by finite dimensionality of the latter space, we have the
following direct sum decomposition:

(8.11) Gas(G/H : T) = 6res(G/H : T) ® Geusp(G/H : 7).

Theorem 8.24. Let Py, (A) denote the set of h-extreme parabolic subgroups in
Py(A). Then

(a) Geusp(G/H :7)={¢ € C(G/H:7) : Ho- 9 =0(VQ € Pyy(A))};

(b) Gres(G/H : T) equals the space

span{Res (Q : )¢ : Q € Puy(A), p € So.r, ¥ € Ara(7)}.

Proof. If ¢ € Gousp(G/H : 7) and Q € Py (A), then in view of ([G1)) (see Corollary
[[.25)), it follows that Hg ¢ = 0. This establishes one inclusion. For the converse
inclusion, assume that ¢ € € (G/H : 7) belongs to the set on the right-hand side.
Let Q € Py (A). Then it follows from (G.1)) (see Corollary [.25)), that (Ro®Iv, )(¢)
vanishes on LNg. By sphericality of ¢ and G-equivariance of R it follows that
(Rg ® Iv, )(¢) = 0. By Lemma [RT4] we infer that ¢ € Geusp(G/H : 7).

We now turn to (b). Let ¢ € €4s(G/H : 7) and let Q € Ppy(A). As Iy, van-
ishes on 64s(G/H : ) by Corollary B2 it follows from Lemmal8T9 that Hg ¢ =0
if and only if ¢ is perpendicular to Res, (Q, )y for every p € Sg r and ¢ € o/ 2(7).
Therefore the space on the right-hand side of (b) equals the orthocomplement in
%as(G/H : 1) of the space on the right-hand side of (a). Now (b) follows from (a)
by the orthogonality of the direct sum (&IT). |

Remark 8.25. In [AFJS12] Thms. 5.2 & 5.3] it is shown that for the real hyper-
bolic spaces SO(p, ¢+ 1)/ SO(p, q)., the left regular representation on L3 (G/H)N
Ceusp(G/H)* is a finite direct sum of discrete series for G/H and these are explicitly
identified.

We conclude this article by giving a characterization of K-finite functions in

%ds(G/H)'

Theorem 8.26. Let ¢ be a K-finite function in €(G/H). Then the following
assertions are equivalent.
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(a) ¢ € 6as(G/H).
(b) For every Q € P4(A) and every g € G the function

(8.12) Ay 3 a— Roo(ga)

is a finite linear combination of real exponential functions.
(c) There exists an h-extreme Q € Py (A) such that for every v € # and every
k € K the function

Aq 3 a— Roep(ka)
is a finite linear combination of real exponential functions.

Proof. Let ¥ be a finite subset of K such that ¢ € €(G/H)y and let 7 and < be as
in Remark

Assume that (a) is valid and let Q € %, (A). Then Zg -(s¢) = 0 by Theorem
[RIl Therefore, only the exponential terms on the right-hand side of ([89) can be
non-zero. From the relation between H - and Hg as given in ([6.2)) (see Corollary
[[29), it follows that the function ([BI2]) is of real exponential type, i.e., a finite
linear combination of exponential functions with real exponents, if ¢ = e. For
g = k € K the assertion now follows from the K-equivariance of Rg. Let g € G
be general, then g = kagng according to the Iwasawa decomposition G = K ANg.
Furthermore,

Rqé(ga) = Rod(kaga(a™ nga)) = Roo(k(aga))
and we see that ([8I2)) is of real exponential type. Hence, (b) follows.

Clearly, (b) implies (c¢). Now assume (c) and let @ be an h-extreme parabolic
subgroup in &7, (A) with the asserted properties. It follows from (6.2)) (see Corollary
[L.25)), that for every ¢ € @/ 2(7) the function (Hg -(s¢)(-),v) is of real exponen-
tial type. From (80) we then read off that (Zg r(s¢)(-), %) is of such exponential
type as well. It now suffices to prove the claim that Zg -(s¢) is in fact equal to 0.
Indeed, from the claim it follows that ¢ € €45(G/H )y by Corollary Hence (a).

It remains to prove the above claim. We established for every ¢ € o/ 2(7)
that the function (Zg -(s¢)(-),%) is of real exponential type. Since this function
is tempered in view of Proposition [.2] it has to be constant. As this is valid for
every ¢ € 2(7), the support of Fa, (IQ,T(§¢)) is contained in the origin. Now
it follows from (Z7) that Fa, (Kq,r(s¢)) is supported in the origin as well. As the
latter is a smooth function, it must vanish identically. It then follows from (71
that also Zg ,(s¢) = 0. The validity of the claim follows. O
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