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Abstract. For reductive symmetric spaces G/H of split rank one we identify
a class of minimal parabolic subgroups for which certain cuspidal integrals of
Harish-Chandra–Schwartz functions are absolutely convergent. Using these

integrals we introduce a notion of cusp forms and investigate its relation with
representations of the discrete series for G/H.
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Introduction

In this article we aim to develop a notion of cusp forms for reductive symmetric
spaces. More precisely, we generalize Harish-Chandra’s notion of cusp forms for
reductive Lie groups to a notion for reductive symmetric spaces of split rank one.
Furthermore, we investigate the relation of this notion with representations of the
discrete series for the spaces considered.

Let G be a real reductive Lie group of the Harish-Chandra class and let C (G)
be the Harish-Chandra space of L2-Schwartz functions on G. In [HC75] Harish-
Chandra proved that for every parabolic subgroup P = MPAPNP of G, every
φ ∈ C (G) and every g ∈ G of the integral

(I.1)

∫
NP

φ(gn) dn
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is absolutely convergent. In analogy with the theory of automorphic forms, he
then defined a cusp form on G to be a function φ ∈ C (G) such that the integral
(I.1) vanishes for every proper parabolic subgroup P of G and every g ∈ G. Let
Ccusp(G) be the space of cusp forms and let Cds(G) be the closed span of theK-finite
matrix coefficients of the representations from the discrete series. Harish-Chandra
established the fundamental result that

(I.2) Ccusp(G) = Cds(G).

See [HC66], [HC70, Thm. 10] and [HC75, Sects. 18 & 27]; see also [Var77, Thm.
16.4.17].

For the more general class of real reductive symmetric spaces G/H, the main
problem one encounters when trying to define cusp forms, is convergence of the
integrals involved. The naive idea would be to use the class of σ-parabolic sub-
groups, as they appear in the general Plancherel theorem as obtained by P. Delorme
[Del98] and, independently, H. Schlichtkrull and the first named author, [vdBS97c],
[vdBS05]. This approach fails, however, for two reasons: first, the integrals need
not always converge (see [AFJS12, Lemma 4.1]) and second, the notion differs from
Harish-Chandra’s for the group.

Around 2000, M. Flensted-Jensen proposed a notion of cusp forms for symmetric
spaces that does generalize Harish-Chandra’s notion. This notion makes use of
minimal parabolic subgroups for the groupG, which are in a certain position relative
to the Lie algebra h ofH; in a sense they are as far away from σ-parabolic subgroups
as possible; in the present paper such minimal parabolic subgroups are called h-
extreme; see Definition 1.1.

In [AFJS12] the new notion was tested for real hyperbolic spaces. In that setting
the space Ccusp(G/H) of cusp forms in the Schwartz space C (G/H) is contained in
the discrete part Cds(G/H), but in contrast with the case of the group, the inclusion
may be proper. The aim of this paper is to understand such and other properties
of cusp forms in the more general context of reductive symmetric spaces of split
rank one.

Our approach to the convergence problem is indirect, and heavily based on the
available tools from the harmonic analysis leading to the Plancherel formula. In an
earlier paper, [vdBK14], we prepared for the present one by developing (without
restriction on the rank) a notion of minimal Eisenstein integrals for G/H in terms of
minimal parabolics of the group G. For the case of the group viewed as a symmetric
space, Harish-Chandra’s (minimal) Eisenstein integrals can then be recovered by
making the special choice of h-extreme minimal parabolic subgroups.

Somewhat surprisingly, it appears that for the convergence of the cuspidal in-
tegrals another condition on the minimal parabolic subgroup involved is needed,
which we call h-compatibility; see Definition 7.13. The set Ph of such minimal
parabolic subgroups is non-empty; for the group, it actually consists of all minimal
parabolic subgroups. For the real hyperbolic spaces the class of h-extreme minimal
parabolic subgroups turns out to coincide with the class of h-compatible ones.

Let G/H be of split rank one. In Theorem 7.23 we prove that for each Q ∈Ph

and every Schwartz function φ ∈ C (G/H) the following Radon transform integral,

(I.3) RQφ(g) :=

∫
NQ/NQ∩H

φ(gn) dn (g ∈ G)
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is absolutely convergent and defines a smooth function of g ∈ G; here, NQ denotes
the nilpotent radical of Q. A function φ ∈ C (G/H) is said to be a cusp form if for
all Q ∈Ph the Radon transform RQφ is identically zero. It turns out that for this
to be valid, it is enough to require vanishing of RQφ for all h-extreme parabolic
subgroups in Ph; see Lemma 8.14. Thus, for both the case of the group and for the
real hyperbolic spaces, our notion coincides with the existing ones. Let Ccusp(G/H)
denote the space of cusp forms. Under the assumption of split rank one, we show
that

(I.4) Ccusp(G/H) ⊆ Cds(G/H);

see Theorem 8.20. Let K be a σ-stable maximal compact subgroup of G and τ a
finite dimensional unitary representation of K. In Theorem 8.24 we establish that
the space Cds(G/H : τ ) admits an L2-orthogonal decomposition

(I.5) Cds(G/H : τ ) = Ccusp(G/H : τ )⊕ Cres(G/H : τ ),

where Cres(G/H : τ ) is spanned by certain residues of Eisenstein integrals defined
in terms of h-compatible, h-extreme parabolic subgroups. Furthermore, in Theorem
8.22 we give the following remarkable criterion for the analogue of (I.2) to be valid,

(I.6) Cres(G/H)K = 0 ⇒ Ccusp(G/H) = Cds(G/H).

Finally, we establish, in Theorem 8.26, a characterisation of the subspace Cds(G/H)
of C (G/H) in terms of the behavior of the Radon transforms RQφ, for Q ∈ Ph.

We will now give a more detailed outline of the structure of our paper. In the
first part we work in the generality of an arbitrary reductive symmetric space of
the Harish-Chandra class. Let θ be the Cartan involution associated with K, and
g = k ⊕ p the associated Cartan decomposition of the Lie algebra of G. Let q be
the −1-eigenspace of the infinitesimal involution σ and let a be a maximal abelian
subspace of p such that aq := a ∩ q is maximal abelian in p ∩ q. Furthermore,
let A := exp a and Aq := exp aq. The (finite) set of minimal parabolic subgroups
Q ⊆ G containing A is denoted by P(A) and the subset of h-compatible ones
by Ph(A). After necessary preparations in Section 1, we define Radon transforms
for φ ∈ L1(G/H) as in (I.3). By a Fubini type argument combined with the
Dixmier-Malliavin theorem on smooth vectors, we show, in Proposition 2.11 that
for φ ∈ L1(G/H)∞ the integral (I.3) is absolutely convergent, and defines a smooth
function on G/NQ.

To make the connection with harmonic analysis, we define, in Section 3, a Harish-
Chandra transform HQ, which maps a function φ ∈ L1(G/H)∞ to the smooth
function on MA := ZG(a) given by

HQφ(l) = δQ(l)RQφ(l) (l ∈MA).

Here δQ is a character on MA that is chosen such that HQφ is right (MA ∩ H)-
invariant and can therefore be viewed as a smooth function on MA/(MA∩H). We
thus obtain a continuous linear map

(I.7) HQ : L1(G/H)∞ −→ C∞(MA/MA ∩H).

It is then shown, that associated with Q there exists a certain P ∈ P(A) such
that δ−1

P HQϕ vanishes at infinity on MA/(MA∩H) for all φ ∈ L1(G/H)∞. It is a
consequence of this result that RQ vanishes on L1(G/H)∩L2

ds(G/H); see Theorem
3.6.
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The next goal is to find a condition on the minimal parabolic subgroup Q to
ensure that (I.7) extends continuously from L1(G/H)∞ to the larger space C (G/H).

Our strategy is to first prove, in Section 4, that every Schwartz function can be
dominated by a non-negative K-fixed function from C (G/H); see Proposition 4.2.
Based on this, we show that for the convergence of the integral (I.3) for φ ∈ C (G/H)
it suffices to prove that the restriction of HQ to C∞

c (G/H)K extends continuously
to C (G/H)K ; see Proposition 4.6.

In Section 5 we use the Eisenstein integrals associated with Q ∈ P(A) and
a finite dimensional representation τ of K, introduced in [vdBK14], to define a
Fourier transform FQ,τ . For a compactly supported smooth τ -spherical function
φ ∈ C∞

c (G/H : τ ), the Fourier transform FQ,τφ is a meromorphic function of a
spectral parameter λ ∈ a∗qC

.
In Section 6 we introduce a τ -spherical version of the transform (I.7),

HQ,τ : C∞
c (G/H : τ )→ C∞(Aq)⊗AM,2(τ ).

Here, AM,2(τ ) is a certain finite dimensional Hilbert space, which appears in the
description of the most continuous part of the Plancherel formula for G/H, as a
parameter space for the Eisenstein integrals involved. The transform HQ,τ applied
to a compactly supported smooth τ -spherical function φ ∈ C∞

c (G/H : τ ) gives
a function whose Euclidean Fourier-Laplace transform coincides with FQ,τφ; see
Proposition 6.4. At the end of the section, we discuss the relation of the Harish-
Chandra transform with invariant differential operators on G/H.

Section 7 is devoted to the extension of the Harish-Chandra transform to the
Schwartz space. First, for a function φ ∈ C (G/H : τ ), the transform HQ,τφ can
be expressed as a Euclidean inverse Fourier transform of FQ,τφ which involves a
contour integral over a translate of ia∗q in the spectral parameter space a∗qC

; see
Lemma 7.1. The idea is then to shift the contour integral towards the tempered
part of the Plancherel spectrum, corresponding to ia∗q, and to analyze the appearing
residues.

At this point we restrict to spaces G/H with dimAq = 1, in order to be able
to handle the appearing residues. The shift then results in the sum of a so-called
tempered term and a so-called residual term, which essentially is a sum of residues of
the Fourier transform FQ,τφ. By its close relation with the most continuous part of
the Plancherel formula, the tempered term can be shown to extend continuously to
the Schwartz space. On the other hand, for τ the trivial representation, the residual
term can be shown to come from testing with matrix coefficients of the discrete
series, which arise from residues of the Eisenstein integral for Q. It is for drawing
this conclusion that the condition of h-compatibility on Q is needed. Accordingly,
for such a Q, the transform HQ,1 extends continuously to all of C (G/H)K . As
we indicated above this implies that RQ extends continuously to C (G/H); see
Theorem 7.23. In turn, this implies that the general τ -spherical Harish-Chandra
transform extends to C (G/H : τ ), so that the associated τ -spherical residual term
must be tempered.

In Section 8, §8.1 and §8.2, we apply a spectral analysis involving invariant
differential operators, to show that the τ -spherical residual term consists of matrix
coefficients of discrete series representations. In the final subsection of the paper,
§8.3, we define the notion of cusp form as discussed above, and obtain the mentioned
results (I.4), (I.5) and (I.6), as well as the mentioned characterization of Cds(G/H)
in terms of Radon transforms.
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Whenever possible, we develop the theory without restriction on the split rank
of G/H. In fact, only in the subsections 7.2, 7.4, 7.5, 8.2 and 8.3 do we require that
dimAq = 1. This restriction will always be mentioned explicitly.

In Remarks 7.24, 8.15, 8.16, 8.21, 8.23 and 8.25 we compare our results with
the results of [AFJS12]. Finally, our results are consistent with the convergence
of a certain integral transform appearing in the proof of the Whittaker Plancherel
formula given in [Wal92], but suggest that the image space does not consist of
Schwartz functions. This is confirmed by an explicit calculation for SL(2,R); see
Example 7.4 and Remark 7.5.

1. Notation and preliminaries

Throughout the paper, G will be a reductive Lie group of the Harish-Chandra
class, σ an involution of G and H an open subgroup of the fixed point subgroup
for σ. We assume that H is essentially connected as defined in [vdB86, p. 24]. The
involution of the Lie algebra g of G obtained by deriving σ is denoted by the same
symbol. Accordingly, we write g = h ⊕ q for the decomposition of g into the +1-
and −1-eigenspaces for σ. Thus, h is the Lie algebra of H. Here and in the rest of
the paper, we adopt the convention to denote Lie groups by Roman capitals, and
their Lie algebras by the corresponding Fraktur lower cases.

Given a subgroup S of G we agree to write

HS := S ∩H.

We fix a Cartan involution θ that commutes with σ and write g = k ⊕ p for the
corresponding decomposition of g into the +1- and −1-eigenspaces for θ. Let K be
the fixed point subgroup of θ. Then K is a σ-stable maximal compact subgroup
with Lie algebra k. In addition, we fix a maximal abelian subspace aq of p ∩ q and
a maximal abelian subspace a of p containing aq. Then a is σ-stable and

a = aq ⊕ ah,

where ah = a ∩ h. This decomposition allows us to identify a∗q and a∗h with the

subspaces (a/h)∗ and (a/q)∗ of a∗, respectively.
Let A be the connected Lie group with Lie algebra a. We define M to be the

centralizer of A in K and write L for the group MA. The set of minimal parabolic
subgroups containing A is denoted by P(A).

In general, if Q is a parabolic subgroup, then its nilpotent radical will be denoted
by NQ. Furthermore, we agree to write Q̄ = θQ and N̄Q = θNQ. Note that if
Q ∈ P(A), then L is a Levi subgroup of Q and Q = MANQ is the Langlands
decomposition of Q.

The root system of a in g is denoted by Σ = Σ(g, a). For Q ∈ P(A) we put

Σ(Q) := {α ∈ Σ : gα ⊆ nQ}.
Let Zg(aq) denote the centralizer of aq in g. We define the elements ρQ and ρQ,h of
a∗ by

(1.1) ρQ( · ) =
1

2
tr (ad( · )|nQ

) and ρQ,h( · ) =
1

2
tr (ad( · )|nQ∩Zg(aq)).

Let mα = dim gα, for α ∈ Σ. Then it follows that

ρQ =
1

2

∑
α∈Σ(Q)

mα α, and ρQ,h =
1

2

∑
α∈Σ(Q)∩a∗

h

mα α.
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For an involution τ of g that stabilizes a we write

Σ(Q, τ ) := Σ(Q) ∩ τΣ(Q).

If Q ∈ P(A) then Σ(Q) ∩ a∗h ⊆ Σ(Q, σ) and Σ(Q) ∩ a∗q ⊆ Σ(Q, σθ). Furthermore,

Σ(Q) = Σ(Q, σθ) 	 Σ(Q, σ)

see [vdBK14, Lemma 2.1]. The following definition is consistent with [vdBK14,
Def. 1.1].

Definition 1.1. Let Q ∈ P(A).

(a) The parabolic subgroup Q is said to be q-extreme if Σ(Q, σ) = Σ(Q) ∩ a∗h.

(b) The group Q is said to be h-extreme if Σ(Q, σθ) = Σ(Q) ∩ a∗q.

We define the partial ordering 
 on P(A) by

Q 
 P ⇐⇒ Σ(Q, σθ) ⊆ Σ(P, σθ) and Σ(P, σ) ⊆ Σ(Q, σ).

The condition Q 
 P guarantees in particular that H ∩NP ⊆ H ∩NQ. The latter
implies that we have a natural surjective H-map H/(H ∩NP )→ H/(H ∩NQ).

Lemma 1.2. Let Q ∈ P(A). Then we have the following equivalences:

(a) Q is q-extreme ⇐⇒ Q is 
-maximal;
(b) Q is h-extreme ⇐⇒ Q is 
-minimal.

Proof. In both (a) and (b) the implications from left to right are obvious from
the definitions. The converse implications follow from [vdBK14, Lemma 2.6] and
[BvdB14, Lemma 2.6]. �

We denote by Pσ(Aq) the set of minimal θσ-stable parabolic subgroups contain-
ing Aq. If P0 ∈ Pσ(Aq), then A ⊆ P0 and we write

Σ(P0) := {α ∈ Σ : gα ⊆ nP0
} and Σ(P0, aq) := {α|aq

: α ∈ Σ(P0)}.
Then P0 �→ Σ(P0, aq) is a bijection from Pσ(Aq) onto the collection of positive
systems for the root system Σ(g, aq) of aq in g.

From [vdBK14, Lemma 1.2] we recall that a parabolic subgroup P ∈ P(A)
is q-extreme if and only if it is contained in a parabolic subgroup P0 ∈ Pσ(Aq).
Furthermore, in that case we must have

Σ(P0) = Σ(P, σθ),

showing that P0 is uniquely determined. In accordance with this observation, we
agree to write

Pσ(A) = {P ∈P(A) : P is q-extreme }.
We note that the assignment P �→ P0 mentioned above defines a surjective map

(1.2) Pσ(A) � Pσ(Aq).

For a given P0 ∈ Pσ(Aq), the fiber of P0 for the map (1.2) consists of the parabolic
subgroups P ∈ Pσ(A) with Σ(P ) = Σ(P0) ∪ (Σ(P ) ∩ a∗h). It is readily seen that

the map P �→ Σ(P ) ∩ a∗h defines a bijection from this fiber onto the set of positive
systems for the root system Σ ∩ a∗h.

Remark 1.3. If α ∈ Σ∩a∗h, then the associated root space gα is contained in h; see

[vdBK14, Lemma 4.1]. Hence, if P ∈ Pσ(A) and P0 the unique group in Pσ(Aq)
containing P, then NPH = NP0

H and PH = P0H. In particular, it follows that
PH is an open subset of G.
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For Q ∈ P(A) we define

(1.3) Pσ(A,Q) := {P ∈ Pσ(A) : P � Q}.

It follows from Lemma 1.2(a) that this set is non-empty. The following lemma will
be used frequently.

Lemma 1.4. Let Q ∈ P(A) and P0 ∈ Pσ(Aq). Then the following assertions are
equivalent.

(a) There exists a P ∈ Pσ(A) such that Q 
 P ⊆ P0.
(b) Σ(Q, σθ) ⊆ Σ(P0).

If (b) is valid, then the group P in (a) is uniquely determined.

Proof. First assume (a). Let P0 be the unique parabolic subgroup from Pσ(Aq)
containing P. Then Σ(Q, σθ) ⊆ Σ(P, σθ) ⊆ Σ(P0). Hence, (b).

Now, assume (b). By the discussion above there exists a unique q-extreme P
with P ⊆ P0 and Σ(P ) ∩ a∗h = Σ(Q) ∩ a∗h. For this P, we have Σ(Q, σθ) ⊆ Σ(P0) =

Σ(P, σθ). Furthermore, Σ(P, σ) = Σ(P )∩a∗h = Σ(Q)∩a∗h ⊆ Σ(Q, σ). Hence, Q 
 P

and we infer that (a) is valid. �

We fix an Ad(G)-invariant symmetric bilinear form

(1.4) B : g× g→ R

such that B is θ- and σ-invariant, B agrees with the Killing form on [g, g] and
−B( · , θ · ) is positive definite on g.

Haar measures on compact Lie groups and invariant measures on compact ho-
mogeneous spaces will be normalized such that they are probability measures. If
N is a simply connected nilpotent Lie subgroup of G with Lie algebra n, then we
will normalize the Haar measure on N such that its pull-back under the exponen-
tial map coincides with the Lebesgue measure on n normalized according to the
restriction of the inner product −B( · , θ( · )).

2. Radon transforms

2.1. Decompositions of nilpotent groups. Let P ∈ P(A). For a given element
X ∈ aq we define the Lie subalgebra

nP,X :=
⊕

α∈Σ(P )
α(X)>0

gα

and denote by NP,X the associated connected Lie subgroup of G. The following
lemma is proved in [BvdB14, Prop. 2.16].

Lemma 2.1. There exists X ∈ aq such that

(2.1)

{
α(X) �= 0 if α ∈ Σ \ a∗h,
α(X) > 0 if α ∈ Σ(P, σθ).

For any such X, the multiplication map

NP,X ×HNP
→ NP (n, nH) �→ nnH

is a diffeomorphism.
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The groups NP and HNP
are both unimodular. Hence, there exists an NP -

invariant measure on NP /HNP
. We normalize the measure on NP /HNP

such that
for every ψ ∈ Cc(NP ),∫

NP

ψ(n) dn =

∫
NP /HNP

∫
HNP

ψ(xn) dn dx.

Lemma 2.1 has the following corollary.

Corollary 2.2. Let X ∈ aq be as in Lemma 2.1. Let φ ∈ L1(NP /HNP
). Then∫

NP /HNP

φ(x) dx =

∫
NP,X

φ(n
)
dn.

Lemma 2.3. Let P,Q ∈P(A) and assume that X ∈ aq satisfies the conditions of
Lemma 2.1. If Q 
 P, then both NP ∩ N̄Q and NQ,X are contained in NP,X and
the multiplication map

(NP ∩ N̄Q)×NQ,X → NP,X

is a diffeomorphism.

Proof. Since Σ(P, σ) ⊆ Σ(Q, σ), it follows that Σ(P ) ∩ Σ(Q̄) ⊆ Σ(P, σθ) and we
infer that the first inclusion follows.

Let α ∈ Σ(Q) be such that α(X) > 0. Assume −α ∈ Σ(P ). Then −α is negative
on X hence cannot belong to Σ(P, σθ) and must belong to Σ(P, σ). The latter set
is contained in Σ(Q, σ) hence in Σ(Q), contradiction. We conclude that α ∈ Σ(P ).
This establishes the second inclusion.

From the two established inclusions it follows that NP ∩ N̄Q = NP,X ∩ N̄Q, and
NQ,X = NP,X ∩NQ and we see that the above map is a diffeomorphism indeed. �

Corollary 2.4. Let P,Q ∈ P(A) satisfy Q 
 P and assume that ϕ ∈ C(G/H) is
integrable over NP /HNP

. Then for almost all n ∈ NP ∩ N̄Q the function Ln−1ϕ is
integrable over NQ/HNQ

and∫
NP /HNP

ϕ(x) dx =

∫
NP∩N̄Q

∫
NQ/HNQ

ϕ(ny) dn dy

with absolutely convergent outer integral.

Proof. Let X ∈ aq be as in Lemma 2.1. Then the result follows from Corollary 2.2
and Lemma 2.3 combined with Fubini’s theorem, in view of the normalization of
measures on the nilpotent groups involved; see the end of Section 1. �

2.2. Invariance of integrals. As in the previous section, we assume that Q ∈
P(A). Recall that L = MA. We define the character δQ on L by

(2.2) δQ(l) =

∣∣∣∣∣ detAd(l)
∣∣
nQ

detAd(l)
∣∣
nQ∩Zg(aq)

∣∣∣∣∣
1
2

(l ∈ L).

Since M is compact, it follows from (1.1) that

(2.3) δQ(ma) = aρQ−ρQ,h (m ∈M,a ∈ A).
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Lemma 2.5. Let φ be a measurable function on G/H such that∫
NQ/HNQ

|φ(n)| dn <∞.

Then for every l ∈ HL the function n �→ φ(ln) is absolutely integrable on NQ/HNQ

and

δQ(l)

∫
NQ/HNQ

φ(ln) dn =

∫
NQ/HNQ

φ(n) dn.

Proof. Assume that X ∈ aq satisfies (2.1) and let l ∈ HL. By applying Lemma 2.1,
performing a substitution of variables and applying the same lemma once more, we
obtain the following identities of absolutely convergent integrals∫

NQ/HNQ

φ(ln) dn =

∫
NQ,X

φ(ln′) dn′

=

∫
NQ,X

φ(ln′l−1) dn′ = D(l)−1

∫
NQ,X

φ(n′) dn′

= D(l)−1

∫
NQ/HNQ

φ(n) dn,

where D(l) =
∣∣∣detAd(l)

∣∣
nQ,X

∣∣∣ .
Thus, it suffices to show that D(l) equals δQ(l) as defined in (2.2). Since HL =

(M ∩ H)(A ∩ H) and M is compact, we see that D = δQ = 1 on M ∩ H and it
suffices to prove the identity for l = a ∈ A ∩ H. Equivalently, in view of (2.3), it
suffices to prove the identity of Lemma 2.6 below. �

Lemma 2.6. Let X ∈ aq be as in (2.1). Then

(2.4) (ρQ − ρQ,h)
∣∣
ah

=
∑

α∈Σ(Q)
α(X)>0

mαα
∣∣
ah
.

Proof. We write Σ(Q,X) for the set of roots α ∈ Σ(Q) with α(X) > 0. For the
purpose of the proof, it will be convenient to use the notation

S(Φ) :=
∑
α∈A

mαα
∣∣
ah
,

for Φ ⊆ Σ. The expression on the left-hand side of (2.4) equals 1
2 S(Σ(Q)\a∗h),

whereas the expression on the right-hand side equals S(Σ(Q,X)). We observe
that Σ(Q) is the disjoint union of the sets Σ(Q, σ) and Σ(Q, σθ). Furthermore,
S(Σ(Q, σθ)) = 0. Hence,

(ρQ − ρQ,h)
∣∣
ah

=
1

2
S(Σ(Q, σ) \ a∗h).

Next, we observe that Σ(Q, σ)\a∗h is the disjoint union of Σ(Q,X) ∩ Σ(Q, σ) and

σ(Σ(Q,X) ∩ Σ(Q, σ)) so that

1

2
S(Σ(Q, σ) \ a∗h) = S(Σ(Q, σ) ∩ Σ(Q,X)).

Finally, using that Σ(Q,X) ⊇ Σ(Q, σθ) we find

S(Σ(Q, σ) ∩ Σ(Q,X)) = S(Σ(Q, σ) ∩ Σ(Q,X)) + S(Σ(Q, σθ))

= S(Σ(Q,X))

and the lemma follows. �
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2.3. Convergence of integrals. As before, we assume that Q ∈ P(A). If P ∈
P(A) is a q-extreme parabolic subgroup, then PH is an open subset of G; see
Remark 1.3. Its natural image in G/H will be denoted by P ·H.

Lemma 2.7. Let P ∈ Pσ(A,Q). Then the G-invariant measure on G/H and the
L-invariant measure on L/HL can be normalized so that for every φ ∈ L1(G/H),

(2.5)

∫
P ·H

φ(x) dx =

∫
NP∩N̄Q

∫
L/HL

δQ(l)

δP (l)

∫
NQ/HNQ

φ(nln) dn dl dn

with absolutely convergent integrals.

Note that by Lemma 2.5 the function

L � l �→ δQ(l)

∫
NQ/HNQ

φ(ln) dn

is right HL-invariant if the integral is absolutely convergent for every l ∈ L. Since δP
is a right HL-invariant function as well, the right-hand side of (2.5) is well-defined.

Proof of Lemma 2.7. It suffices to prove the lemma for non-negative integrable
functions only. Let φ ∈ L1(G/H) be non-negative. Since P ·H is an open subset
of G/H, the integral over P ·H is absolutely convergent. The repeated integral on
the right-hand side of (2.5) is well-defined (although possibly infinitely large). To
prove the lemma, we start by rewriting the right-hand side and then show that it
equals the left-hand side.

Note that L/HL is diffeomorphic to M/HM × Aq and the L-invariant measure
on L/HL equals the product of the M -invariant measure on M/HM and the Haar
measure on Aq. Furthermore, from (2.3) we infer that

δQ(ma)

δP (ma)
= aρQ−ρP (m ∈M,a ∈ Aq).

Hence ∫
NP∩N̄Q

∫
L/HL

δQ(l)

δP (l)

∫
NQ/HNQ

φ(nln) dn dl dn

=

∫
NP∩N̄Q

∫
M

∫
Aq

aρQ−ρP

∫
NQ/HNQ

φ(nman) dn da dmdn.(2.6)

Here we have used that HM is compact and has volume equal to 1 by our chosen
normalization of the Haar measure.

Let P0 be the unique minimal σθ-stable parabolic subgroup such that P ⊆ P0.
Then the set of roots of a in nP0

is given by Σ(P0) = Σ(P ) \ a∗h and

P0 = Z(aq)NP0
.

It follows that ρP − ρP0
vanishes on aq.

Let X ∈ aq be such that α(X) > 0 for every α ∈ Σ(P0). Then X satisfies (2.1)
and it is readily seen that NQ,X = NQ ∩ NP0

. By Corollary 2.2 the integral over
NQ/HNQ

can be replaced by an integral over NQ ∩ NP0
. Therefore, (2.6) can be

rewritten as

(2.7)

∫
N̄Q∩NP

∫
M

∫
Aq

aρQ−ρP0

∫
NQ∩NP0

φ(nman) dn da dmdn.
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Note that (N̄Q ∩NP ) = (N̄Q ∩NP0
). The multiplication map

(N̄Q ∩NP0
)× (NQ ∩NP0

)→ NP0

is a diffeomorphism with Jacobian equal to 1. We now change the order of integra-
tion in (2.7) and subsequently apply the change of variables n �→ (ma)n(ma)−1 to
the integral over N̄Q∩NP0

. This change of variables has Jacobian equal to aρP0
−ρQ

by the lemma below. Finally, we rewrite the double integral over N̄Q ∩ NP0
and

NQ ∩NP0
as an integral over NP0

. We thus infer that the integral in (2.7) equals

(2.8)

∫
M

∫
Aq

∫
NP0

φ(man) dn da dm.

Note that MP0
∩K ∩H centralizes Aq and normalizes NP0

. Moreover,

| detAd(m)
∣∣
nP0

| = 1

for all m ∈MP0
∩K∩H. Since the volume of MP0

∩K∩H equals 1 (by our chosen
normalization of Haar measure), it follows that the integral (2.8) equals∫

M

∫
MP0

∩K∩H

∫
Aq

∫
NP0

φ(mm′an) dn da dm′ dm.

It follows from [vdBK14, Lemma 4.3] that M(MP0
∩ H) = MP0

. Therefore the
integrals over M and MP0

∩K ∩H can be replaced by one integral over MP0
∩K.

To conclude the proof, we note that∫
MP0

∩K

∫
Aq

∫
NP0

φ(mm′an) dn da dm = c

∫
P0·H

φ(x) dx

for some constant c > 0 by [Óla87, Thm. 1.2], and observe that P0 ·H = P ·H; see
Remark 1.3. �

Lemma 2.8. Let P0 ∈Pσ(Aq) satisfy Σ(Q, σθ) ⊆ Σ(P0). Then

(2.9)
∣∣∣detAd(ma)

∣∣
n̄Q∩nP0

∣∣∣ = aρP0
−ρQ , (m ∈M,a ∈ Aq).

Proof. Given a subset Φ ⊆ Σ we agree to write

T (Φ) =
∑
α∈Φ

mαα
∣∣
aq
.

Then, the expression on the left-hand side of (2.9) equals

aT (θΣ(Q)∩Σ(P0)).

Since Σ(Q) is the disjoint union of Σ(Q, σ) and Σ(Q, σθ), whereas the latter set
is contained in Σ(P0), it follows that the expression on the left-hand side of (2.9)
equals

(2.10) aT (θΣ(Q,σ)∩Σ(P0)).

On the other hand, the expression on the right-hand side of (2.9) equals

a
1
2 [T (Σ(P0))−T (Σ(Q)]
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Now T (Σ(Q, σ)) = 0 and since Σ(Q) is the disjoint union of Σ(Q, σ) and Σ(Q, σθ),
whereas the latter set is contained in Σ(P0), it follows that

T (Σ(P0))− T (Σ(Q)) = T (Σ(P0) \ Σ(Q, σθ))

= T (Σ(P0) ∩ Σ(Q, σ)) + T (Σ(P0) ∩ θΣ(Q, σ))

= T (θσΣ(P0) ∩ σΣ(Q, σ)) + T (Σ(P0) ∩ θΣ(Q, σ))

= 2T (Σ(P0) ∩ θΣ(Q, σ)).

Combining these we find that the expression on the right-hand side of (2.9) equals
(2.10) as well. �

Lemma 2.9. Let P ∈ Pσ(A,Q). There exists a constant c > 0 such that for every
φ ∈ L1(G/H), ∫

K

∫
L/HL

δQ(l)

δP (l)

∫
NQ/HNQ

|φ(kln)| dn dl dk ≤ c‖φ‖L1 .

Proof. Applying Lemma 2.7 to left K-translates of φ we find

‖φ‖L1 =

∫
K

∫
G/H

|φ(k · x)| dx dk ≥
∫
K

∫
P ·H

|φ(k · x)| dx dk

=

∫
K

∫
N̄Q∩NP

∫
L/HL

∫
NQ/HNQ

δQ(l)

δP (l)
| φ(knln)| dn dl dn dk.

For g ∈ G we write kQ(g), aQ(g) and nQ(g) for the elements ofK, A andNQ, respec-
tively, such that the Iwasawa decomposition of g is given by g = kQ(g)aQ(g)nQ(g).
Let C be a compact subset of θNQ ∩ NP with open interior. By a change of the
integration variables from NQ/HNQ

, L/HL and K we obtain

‖φ‖L1 ≥
∫
K

∫
C

∫
L/HL

∫
NQ/HNQ

δQ(l)

δP (l)
|φ(kkQ(n)aQ(n)nQ(n)ln)| dn dl dn dk

=

∫
C

δP (aQ(n))

δQ(aQ(n))
dn

∫
K

∫
L/HL

∫
NQ/HNQ

δQ(l)

δP (l)
|φ(kln)| dn dl dk.

Note that the first integral on the right-hand side is finite since C is compact.
Moreover, it is strictly positive since C has an open interior and the integrand is
strictly positive. This proves the lemma. �

We denote by L1
loc(G/NQ) the space of locally integrable functions on G/NQ.

Let dx be a choice of invariant measure on G/NQ. Then for each compact subset
C ⊆ G/NQ the function

νC : φ �→
∫
C

|φ(x)| dx

defines a continuous seminorm on L1
loc(G/H). The seminorms thus defined deter-

mine a Fréchet topology on L1
loc(G/H). It is readily seen that the left regular

representation of G in L1
loc(G/H) is continuous for this topology.

Corollary 2.10. Let Q ∈ P(A). Then for every φ ∈ L1(G/H) the integral

(2.11) �RQφ(g) :=

∫
NQ/HNQ

φ(gn) dn
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converges for g in a right NQ-invariant measurable subset of G whose complement
is of measure zero. The defined function �RQφ(g) is locally integrable on G/NQ.
Finally, the resulting map

�RQ : L1(G/H)→ L1
loc(G/NQ)

is continuous linear and G-equivariant.

Proof. Let φ ∈ L1(G/H). By the Iwasawa decomposition, KA is a closed subman-
ifold of G. Since the multiplication map K × L→ KA defines a fiber bundle with
fiber M, it follows from Lemma 2.9 combined with Fubini’s theorem that there
exists a subset Ω ⊆ KA, whose complement has Lebesgue measure zero, such that
the integral (2.11) converges for all x ∈ Ω. Furthermore, the resulting function
�RQφ is locally integrable on KA. By invariance of the measure on NQ/HNQ

it
follows that (2.11) converges for g ∈ ΩNQ. By the Iwasawa decomposition the
set ΩNQ has a complement of measure 0. We infer that the resulting function
�RQφ is defined almost everywhere and locally integrable on G/NQ. By applica-
tion of Fubini’s theorem, it follows from the estimate in Lemma 2.9 that the map
�RQ : L1(G/H)→ L1

loc(G/NQ) thus defined is continuous linear. ItsG-equivariance
is obvious from the definition. �

We write L1(G/H)∞ for the space of smooth vectors for the left-regular repre-
sentation L of G in L1(G/H). If φ ∈ C∞(G/H) and Luφ ∈ L1(G) for all u ∈ U(g),
then φ ∈ L1(G)∞; this follows by a straightforward application of Taylor’s theorem
with remainder term; see also [Pou72, Thm. 5.1].

Conversely, any function in L1(G/H)∞ can be represented by a smooth function
φ ∈ C∞(G). This follows from the analogous local statement in Rn by using a par-
tition of unity. We may thus identify L1(G/H)∞ with the space of φ ∈ C∞(G/H)
such that Luφ ∈ L1(G/H), for all u ∈ U(g).

Likewise, we write L1
loc(G/NQ)

∞ for the Fréchet space of smooth vectors in the
G-space L1

loc(G/NQ). By similar remarks as those made above it follows that the
inclusion map C∞(G/NQ)→ L1

loc(G/NQ) induces a topological linear isomorphism

(2.12) C∞(G/NQ)
�−→ L1

loc(G/NQ)
∞.

By equivariance, it follows from Corollary 2.10 that the map �RQ restricts to
a continuous linear map L1(G/H)∞ → L1

loc(G/NQ)
∞. The following proposition

asserts that the integral transform �RQ actually sends the smooth representatives
for functions in the first of these spaces to smooth representatives of functions in
the second.

Proposition 2.11. Let Q ∈ P(A) and φ ∈ L1(G/H)∞. Then for every g ∈ G the
integral

(2.13) RQφ(g) :=

∫
NQ/HNQ

φ(gn) dn

is absolutely convergent and the displayed integral defines a smooth function of
g ∈ G. The indicated transform defines a continuous linear G-equivariant map

RQ : L1(G/H)∞ → C∞(G/NQ).

Proof. By [DM78, Thm. 3.3] the space L1(G/H)∞ is spanned by functions of the
form φ = χ ∗ ψ with χ ∈ C∞

c (G) and ψ ∈ L1(G/H). Therefore, it suffices to prove



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

480 ERIK P. VAN DEN BAN AND JOB J. KUIT

the proposition for such functions. Let χ ∈ C∞
c (G) and ψ ∈ L1(G/H), and put

φ = χ ∗ ψ.
It follows from Corollary 2.10 that the integral for χ ∗ RQψ(g), given by

J(g) :=

∫
G

χ(gγ)

∫
NQ/HNQ

ψ(γ−1n) dn dγ

is absolutely convergent for every g ∈ G and the defined function J : G → C is
smooth. By a change of variables, followed by application of Fubini’s theorem the
integral may be rewritten as

J(g) =

∫
G

χ(γ)

∫
NQ/HNQ

ψ(γ−1gn) dn dγ

=

∫
NQ/HNQ

(χ ∗ ψ)(gn) dn

=

∫
NQ/HNQ

ϕ(gn) dn.

All assertions but the last now follow. By equivariance, it follows that the map
�RQ defined in Corollary 2.10 restricts to a continuous linear map L1(G/H)∞ →
L1
loc(G/NQ)

∞. For φ ∈ L1(G/H)∞, the function �RQ(φ) is represented by the
smooth function RQ(φ). The last assertion now follows from the fact that (2.12) is
a topological linear isomorphism. �

Definition 2.12. The Radon transform RQ is defined to be the G-equivariant
continuous linear map

RQ : L1(G/H)∞ → C∞(G/NQ)

given by (2.13).

3. Harish-Chandra transforms

We retain the assumption that Q ∈ P(A). In terms of the Radon transform RQ,
defined in the previous section, we define a new transform as follows.

Definition 3.1. The Harish-Chandra transformHQ is defined to be the continuous
linear map

L1(G/H)∞ → C∞(L/HL)

given by

HQφ(l) = δQ(l)RQφ(l) (l ∈ L).

Example 3.2 (Group case). Let �G be a reductive Lie group of the Harish-
Chandra class. Then �G is diffeomorphic to G/H, where G = �G × �G and H =
diag(�G), via the map

G/H → �G; (g1, g2) �→ g1g
−1
2 .

Under this map, the action of G on G/H corresponds to the left times right action
of �G × �G on �G. As H is the fixed-point group of the involution σ : G → G,
(�x, �y) �→ (�y, �x), the pair (G,H) is symmetric. Let g = k⊕ p be a σ-stable Cartan
decomposition of g. Then k = �k× �k and p = �p× �p, where �g = �k⊕ �p is a Cartan
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decomposition of �g. Let �a be a maximal abelian subspace of �p and let a = �a× �a.
Then

aq := a ∩ q = {(H,−H) : H ∈ �
a}

is a maximal abelian subspace of p ∩ q. Every minimal parabolic subgroup of G is
of the form �P × �Q, where �P and �Q are minimal parabolic subgroups of �G. Let
�A = exp(�a) and let A = �A× �A. Let �L = ZG(

�A) and let L = �L× �L.
Every h-extreme parabolic subgroup is of the form �P×�P , where �P is a minimal

parabolic subgroup of �G. Let �P be a minimal parabolic subgroup containing �A.
Under the identifications G/H � �G and L/HL � �L the transform H�P := H�P×�P
is given by

H�Pφ(ma) = aρ �P

∫
N�P

φ(man) dn (φ ∈ L1(�G)∞,m ∈ �M,a ∈ �A).

This shows that H�P equals the map φ �→ φ(�P ), defined by Harish-Chandra in
[HC75, p. 145].

Similarly, under the described identifications the Radon transformR�P :=R�P×�P
is given by

R�Pφ(g1, g2) =

∫
N�P

φ(g1ng
−1
2 ) dn (φ ∈ L1(�G)∞, g1, g2 ∈ G).

The function R�Pφ( · , e) is equal to φ
�P , defined by Harish-Chandra in [HC75,

p. 145].

In the remainder of this section we investigate some of the properties of the
Harish-Chandra transform. We start with a proposition.

Proposition 3.3. Let P ∈ Pσ(A,Q) and φ ∈ L1(G/H)∞. Then

(3.1) l �→ δP (l)
−1HQφ(l), L/HL → C

defines a function in L1(L/HL)
∞.

Remark 3.4. In particular, the function (3.1) vanishes at infinity by Lemma 3.5
below.

Proof. We will first prove that δ−1
P HQφ is integrable. From [DM78, Thm. 3.3]

it follows that L1(G/H)∞ is spanned by functions of the form φ = χ ∗ ψ with
χ ∈ C∞

c (G) and ψ ∈ L1(G/H). Hence, we may assume that φ is of this form. It
follows from Lemma 2.9 and Fubini’s theorem that the integral∫

L/HL

δQ(l)

δP (l)

∫
NQ/HNQ

ψ(γ−1ln) dn dl

is absolutely convergent for almost every γ ∈ G, and that the almost everywhere
defined function on G thus obtained is locally integrable. Therefore, the integral∫

G

χ(γ)

∫
L/HL

δQ(l)

δP (l)

∫
NQ/HNQ

ψ(γ−1ln) dn dl dγ

is absolutely convergent, and by Fubini’s theorem it is equal to∫
L/HL

δQ(l)

δP (l)

∫
NQ/HNQ

(χ ∗ ψ)(ln) dn dl =

∫
L/HL

HQ(φ)(l)

δP (l)
dl.

This proves the integrability of δ−1
P HQφ.
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We move on to show that δ−1
P HQφ ∈ L1(L/HL)

∞. In view of the remarks above

(2.12) it suffices to prove that u(δ−1
P HQφ) is integrable for each u ∈ U(l).

For conciseness we write h := δ−1
Q HQφ = RQ(φ)|L. Let u ∈ U(l). By the Leibniz

rule there exists an n ∈ N and uj , vj ∈ U(l) for 1 ≤ j ≤ n, such that

u
(
δ−1
P HQφ

)
= u

(δQ
δP

h
)
=

n∑
j=1

(
uj

δQ
δP

)
vj(h).

Since δQ/δP is a character on L , there exist constants cj such that uj(δQ/δP ) =
cjδQ/δP . Therefore,

u
(
δ−1
P HQφ

)
=

n∑
j=1

cj
δQ(l)

δP (l)
vj(RQϕ)(l)

=

n∑
j=1

cj
δQ(l)

δP (l)
RQ(vjφ)(l)

=

n∑
j=1

cj
1

δP (l)
HQ(vjφ)(l) (l ∈ L).

Here we note that the above interchange of vj and RQ is justified by the final asser-

tion of Proposition 2.11. By the first part of the proof, the functions δ−1
P HQ(vjφ)

are integrable on L/HL. It follows that u(δ
−1
P HQφ) is integrable as well. �

We denote by C0(L/HL) the space of continuous functions L/HL → C which
vanish at infinity. Equipped with the sup-norm, this is a Banach space.

Lemma 3.5. The space L1(L/HL)
∞ is contained in C0(L/HL), with continuous

inclusion map.

For a general symmetric space, this result is proved in [KrS12]. We only need it
in the present more restricted setting, which is essentially Euclidean.

Proof. The multiplication map induces a diffeomorphism L/HL � M/HM × Aq.
Since M/HM is compact, it readily follows that

L1(L/HL)
∞ ↪→ C(M/HM , L1(Aq)

∞),

with continuous inclusion map. By the Fourier inversion formula on Aq, combined
with application of the Riemann–Lebesgue lemma, L1(Aq)

∞ ⊆ C0(Aq) continu-
ously. Hence, C(M/HM , L1(Aq)

∞) is contained in C(M/HM , C0(Aq)), continu-
ously. Let Cb(Aq) be the Banach space of bounded continuous functions on Aq,
equipped with the sup-norm. Then C0(Aq) is a closed subspace of Cb(Aq). Like-
wise, C0(L/HL) is a closed subspace of Cb(L/HL), the Banach space of bounded
continuous functions on L/HL.

By compactness of M/HM , the diffeomorphism mentioned in the beginning of
the proof induces a continuous linear isomorphism

ψ : C(M/HM , Cb(Aq))→ Cb(L/HL).

It suffices to show that ψ maps the subspace C(M/HM , C0(Aq)) into the closed
subspace C0(L/HL) of Cb(L/HL). This can be achieved by application of a straight-
forward argument involving the compactness of M/HM . �
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We recall the definition of the continuous linear map �RQ : L1(G/H)→L1
loc(G/H)

from Corollary 2.10 and note that by Proposition 2.11 this map can be viewed as
the continuous linear extension of the restriction of the Radon transform RQ to
C∞

c (G/H).

Theorem 3.6. Let φ ∈ L1(G/H) ∩ L2
ds(G/H). Then �RQ(φ) = 0.

Proof. By equivariance and continuity of �RQ (see Corollary 2.10) it suffices to prove
this result for a K-finite function φ. Thus, we may assume that φ ∈ L1(G/H) ∩
L2
ds(g/H)ϑ, with ϑ a finite subset of K∧. It follows from the theory of the discrete

series developed in [ŌM84] and [vdBS05, Lemma 12.6 & Rem. 12.7] that the space
L2
ds(G/H)ϑ is finite dimensional and consists of smooth functions. It follows that

the center of U(g) acts finitely on φ. In view of [vdB87a, Thm. 7.3], we infer that
φ is contained in the L1-Schwartz space C 1(G/H) and therefore, so is the (g,K)-
module V generated by φ. In particular, V is contained in L1(G/H)∞ and we see
that �RQ = RQ on V.

We now observe that the assignment T : ψ �→ RQ(ψ)|A defines a linear map
V → C∞(A/(A ∩ H)); see Proposition 2.11. Since L normalizes nQ, we infer
that T factors through a map T̄ : V/nQV → C∞(A/A ∩H). It is well known that
dimV/nQV <∞; see [Wal88, Lemma 4.3.1]. From the equivariance ofRQ it follows
that T̄ is U(a)-equivariant. Hence, for ψ ∈ V, the function T (ψ) is of exponential
polynomial type on Aq � A/A ∩H. By application of Proposition 3.3 and Lemma

3.5 we infer that δ−1
P δQT (ψ) is an exponential polynomial function on Aq which

vanishes at infinity. This implies Tψ = 0, hence T (V ) = 0. It follows that the map
ψ �→ RQψ(e) is zero on the closure of V in L1(G)∞, hence on Lgφ for every g ∈ G.
We conclude that RQφ = 0. �

Remark 3.7. For Radon transforms associated with minimal σθ-stable parabolic
subgroups the analogous result for analytic vectors in L1(G/H) was obtained by a
similar a-weight analysis in [Kr09, Thm 4.1]. Let P0 ∈ Pσ(Aq) be such a parabolic
subgroup. Then there exists a parabolic subgroup P ∈ P(A) such that P ⊆ P0.
Since NP0

� NP /(NP ∩ H), the Radon transform for P0 coincides with RP , and
our result implies that the restriction to analytic vectors is unnecessary.

The results in Proposition 3.3 can be improved if only compactly supported
smooth functions on G/H are considered. We start by describing the support of
the Harish-Chandra transform of a function in terms of the latter’s support. To
prepare for this, we introduce some notation.

For each α ∈ Σ∩a∗q the root space gα is invariant under the involution σθ so that
the root space admits the decomposition gα = gα,+ ⊕ gα,− into the ±1-eigenspaces
for this involution. Accordingly, for any Q ∈ P(A) we define the set

(3.2) Σ(Q)− := {α ∈ Σ(Q, σθ) : α ∈ a∗q ⇒ gα,− �= 0}.

We define the cone

(3.3) Γ(Q) =
∑

α∈Σ(Q)−

R≥0 prq Hα.

Here Hα denotes the unique element of a for which α = B(Hα, ·); see (1.4). Fur-
thermore, prq : a→ aq denotes the B-orthogonal projection.
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Proposition 3.8. Let C ⊆ aq be compact, convex and invariant under the action
of NK∩H(aq). If φ ∈ Cc(G/H) satisfies

supp(φ) ⊆ K exp(C) ·H,

then

supp(HQφ) ⊆M exp(C + Γ(Q)) ·HL.

This proposition generalizes [AFJS12, Thm. 5.1], which deals with the special
case in which G/H is a real hyperbolic space and Q is h-extreme. See also [Kui13,
Sect. 4], where similar results are proved for σθ-stable parabolic subgroups.

Proof of Proposition 3.8. Let φ ∈ Cc(G/H). Assume that m ∈ M and a ∈ Aq are
such that HQφ(ma) �= 0. Then

maNQ ∩K exp(C)H �= ∅.

Let AQ be the map G → aq determined by g ∈ K exp
(
AQ(g)

)
(A ∩ H)NQ. Then

log(a) ∈ AQ

(
exp(C)H

)
. By [BvdB14, Thm. 10.1]

AQ

(
exp(C)H

)
=
⋃

X∈C

conv(NK∩H(aq) ·X) + Γ(Q).

Since C is convex andNK∩H(aq)-invariant, it follows that the right-hand side equals
C + Γ(Q). Therefore, log(a) ∈ C + Γ(Q). The compactness of C and the fact that
Γ(Q) is closed imply that C+Γ(Q) is closed, hence M exp(C+Γ(Q)) ·HL is closed.
The support of HQφ equals the closure of the subset of L/HL on which HQφ is
non-zero, hence

supp(HQφ) ⊆M exp(C + Γ(Q)) ·HL. �

For a compact subset U of G/H, let C∞
U (G/H) be the space of smooth functions

on G/H with support contained in U , equipped with the usual Fréchet topology.
As usual, we equip the space C∞

c (G/H) with the inductive limit topology of the
family of spaces C∞

U (G/H), where U runs over all compact subsets of G/H.

Proposition 3.9. Let P ∈ Pσ(A,Q). Then δ−1
P HQ is a continuous linear map

C∞
c (G/H)→ L1(L/HL)

∞.

Proof. Let φ ∈ C∞
c (G/H) and let u ∈ U(g). Let cj and vj be as in the proof for

Proposition 3.3. Then

u

(
HQφ

δP

)
=

n∑
j=1

cj
HQ(vjφ)

δP
.

Let U be a compact subset of G/H such that suppφ ⊆ U and let ϑ ∈ C∞
c (G/H)

be non-negative and equal to 1 on an open neighborhood of U . Then

(3.4)

∣∣∣∣u(HQφ

δP

)∣∣∣∣ ≤ ( n∑
j=1

|cj | sup |vjφ|
)HQϑ

δP
.

It follows from Proposition 3.3 that δ−1
P HQϑ ∈ L1(L/HL)

∞. From (3.4) we now

conclude that δ−1
P HQ is a continuous linear map C∞

c (G/H)→ L1(L/HL)
∞. �
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We write Γ(Q)◦ for the dual cone of Γ(Q), i.e.,

Γ(Q)◦ = {λ ∈ a
∗
q : λ ≥ 0 on Γ(Q)}.

Furthermore, we define

(3.5) ΩQ :=
⋃

P∈Pσ(A,Q)

−(ρP − ρP,h)− Γ(Q)◦ + ia∗q.

Corollary 3.10. Let λ ∈ ΩQ and let the character χλ : L→ R>0 be given by

χλ(ma) = aλ (m ∈M,a ∈ A).

Then χλHQφ ∈ L1(L/HL)
∞ for every φ ∈ C∞

c (G/H). Moreover, the map

C∞
c (G/H)→ L1(L/HL)

∞; φ �→ χλHQφ

is continuous.

Proof. For every u ∈ U(l) the function u(χλδP ) is bounded on Γ(Q). The result
now follows by application of the Leibniz rule and Propositions 3.8 and 3.9. �

4. Harish-Chandra–Schwartz functions

4.1. Definitions. In this subsection we recall some basic facts on the Harish-
Chandra space of Lp-Schwartz functions on G/H from [vdB92, Sect. 17], and give
a characterization that will be useful in the next subsection.

Let τ : G/H → [0,∞[ and Θ : G/H → ]0, 1] be defined by

τ (kaH) = ‖ log a‖, Θ(g ·H) =
√
Ξ(gσ(g)−1).

Here Ξ is Harish-Chandra’s bi-K-invariant elementary spherical function φ0 on G;
see, e.g., [Var77, p. 329]. Let V be a complete locally convex Hausdorff space and
let N (V ) denote the set of continuous seminorms on V . Let 1 ≤ p <∞. A smooth
function φ : G/H → V is said to be Lp-Schwartz if all seminorms

μu,N,η(φ) := sup Θ− 2
p (1 + τ )Nη(uφ)

(
u ∈ U(g), N ∈ N, η ∈ N (V )

)
are finite. The space of such functions is denoted by C p(G/H, V ). Equipped
with the topology induced by the mentioned seminorms, C p(G/H, V ) is a complete
locally convex space. Furthermore, it is Fréchet if V is Fréchet.

Let v be a σ and θ-stable central subalgebra of g such that G = ◦G × exp(v),
where ◦G = K exp

(
p ∩ [g, g]). Define the functions Φ1,Φ2 : G→ [1,∞[ by

Φ1 := 1 + | log ◦Θ| = 1− log ◦Θ,

Φ2

(
g exp(vh + vq)

)
:=
√
1 + ‖vq‖2 (g ∈ ◦G, vh ∈ v ∩ h, vq ∈ v ∩ q).

By [vdB92, Lemma 17.10] there exists a positive constant C such that

C−1(1 + τ ) ≤ Φ1 +Φ2 ≤ C(1 + τ ).

Moreover, Φ1 and Φ2 are real analytic and for every u ∈ U(g) there exists a constant
c > 0 such that

(4.1) |uΦj | ≤ cΦj (j = 1, 2).

The following result is now straightforward.
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Lemma 4.1. Let φ : G/H → V be smooth. Then φ ∈ C p(G/H, V ) if and only if
all seminorms

νu,N,η(φ) := sup e
2
pΦ1(Φ1 +Φ2)

Nη(uφ)
(
u ∈ U(g), N ∈ N, η ∈ N (V )

)
are finite.

We write C p(G/H) for C p(G/H,C) and νu,N for νu,N,|·|. For convenience, we
suppress the superscript p if p = 2.

4.2. Domination by K-fixed Schwartz functions. We start this subsection
with an important result which further on will be applied to reduce the convergence
of certain integrals to the case of K-finite functions.

Proposition 4.2. There exists a map C p(G/H) → C p(G/H)K ; φ �→ φ̂ with the
following properties.

(a) |φ| ≤ φ̂ for all φ ∈ C p(G/H).
(b) Let ν be a continuous seminorm on C p(G/H). Then there exist constants

k ∈ N and C > 0 such that for all φ ∈ C p(G/H),

(4.2) ν(φ̂) ≤ C ν0,k(φ).

We first prove two lemmas.
Let L (R2) be the space of locally integrable functions R2 → C which are con-

stant on R2 \ [2,∞[ 2.

Lemma 4.3. Let χ ∈ C∞
c (R2) satisfy supp(χ) ⊆ ]− 1, 1[ 2. For every N ∈ N there

exists a constant cN > 0 such that for all S ∈ L (R2),

sup
(x,y)∈[1,∞[ 2

e
2
px(x+ y)N

∣∣∣(χ ∗ S)(x, y)∣∣∣ ≤ cN sup
(x,y)∈[1,∞[ 2

e
2
px(x+ y)N |S(x, y)|.

Proof. Let c =
∫
R2 |χ(ξ)| dξ. Then

|χ ∗ S(x, y)| ≤ c sup
(x,y)+ ]−1,1 [2

|S|,

hence

sup
(x,y)∈[1,∞[ 2

∣∣∣e 2
px(x+ y)N

(
χ ∗ S

)
(x, y)

∣∣∣
≤ c sup

(x,y)∈[1,∞[ 2

(
e

2
px(x+ y)N sup

(x,y)+ ]−1,1 [ 2
|S|
)

≤ c sup
(u,v)∈ ] 0,∞ [ 2

(
e

2
p (u+1)(u+ v + 2)N |S(u, v)|

)
.

Since S is constant on ] 0,∞ [ 2\[2,∞ [ 2, the supremum over ] 0,∞ [ 2 can be replaced
by a supremum over [1,∞ [ 2. Using that

u+ v + 2

u+ v
≤ 2

(
(u, v) ∈ [1,∞ [ 2

)
,

we find

sup
(x,y)∈[1,∞ [ 2

∣∣∣e 2
px(x+y)N

(
χ∗S

)
(x, y)

∣∣∣ ≤ c e
2
p 2N sup

(x,y)∈[1,∞,[ 2

(
e

2
px(x+y)N |S(x, y)|

)
.

This establishes the estimate. �
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For φ ∈ C p(G/H), let Sφ : R2 → R be the function which for (x, y) in the set
[i, i+ 1[×[j, j + 1[ with i, j ∈ Z is given by

Sφ(x, y) = sup
Φ−1

1 ([i,∞ [ )∩Φ−1
2 ([j,∞ [ )

|φ|.

Note that Φ−1
j ([1,∞ [ ) = Φ−1

j (R), so that Sφ ∈ L (R2). For χ ∈ C∞
c (R2) we define

the smooth function

(4.3) φ̂χ : G/H → C, x �→
(
χ ∗ Sφ

)(
Φ1(x),Φ2(x)

)
.

Since Φ1 and Φ2 are left K-invariant, so is the function (4.3).

Lemma 4.4. Let χ ∈ C∞
c (R2) have support contained in ]− 1, 1 [ 2.

(a) If φ ∈ C p(G/H), then φ̂χ ∈ C p(G/H)K .
(b) Let u ∈ U(g) be of order n. Then for every N ∈ N there exists a constant

cu,N > 0 such that

(4.4) νu,N (φ̂χ) ≤ cu,N ν0,N+n(φ) (φ ∈ C p(G/H)).

Proof. Since the function (4.3) is smooth and left K-invariant, it suffices to prove
(b). Let u ∈ U(g) and let n be the order of u. Then by repeated application of the
Leibniz and the chain rule it follows that there exists a finite set F ⊆ U(g) and for
every multi-index μ in two variables, with |μ| ≤ n, a polynomial expression Pμ in
(vΦj : v ∈ F, j = 1, 2), of total degree at most n, such that

uφ̂χ =
∑
|μ|≤n

Pμ · φ̂∂μχ (φ ∈ C p(G/H)).

In view of (4.1) this leads to the existence of a constant C > 0 such that

|uφ̂χ| ≤ C (Φ1 +Φ2)
n
∑
|μ|≤n

|φ̂∂μχ|.

Therefore,

νu,N (φ̂χ) ≤ C
∑
|μ|≤n

ν0,N+n(φ̂∂μχ).

Thus, in order to prove the lemma, it suffices to prove that for every N ∈ N and
χ ∈ C∞

c (R2) the estimate (4.4) holds for u = 1.
Let N ∈ N. Then

ν0,N (φ̂χ) = sup
G/H

e
2
pΦ1(Φ1 +Φ2)

N
∣∣(χ ∗ Sφ

)
◦ (Φ1 × Φ2)

∣∣
= sup

(x,y)∈[1,∞ [ 2
e

2
px(x+ y)N

∣∣χ ∗ Sφ(x, y)
∣∣.

By Lemma 4.3 we now infer the existence of a constant cN > 0 such that

(4.5) ν0,N (φ̂χ) ≤ cN sup
(x,y)∈[1,∞ [ 2

e
2
px(x+ y)N |Sφ(x, y)|.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

488 ERIK P. VAN DEN BAN AND JOB J. KUIT

Let (x, y) ∈ [1,∞ [ 2. There exist unique i, j ∈ Z≥0 such that i ≤ x < i + 1 and
j ≤ y < j + 1. Then

e
2
px(x+ y)N |Sφ(x, y)| = e

2
px(x+ y)N

(
sup

Φ−1
1 ([i,∞ [ )∩Φ−1

2 ([j,∞ [ )

|φ|
)

≤ sup
Φ−1

1 ([i,∞ [ )∩Φ−1
2 ([j,∞ [ )

e
2
p (Φ1+1)(Φ1 +Φ2 + 2)N |φ|

≤ sup e
2
p (Φ1+1)(Φ1 +Φ2 + 2)N |φ|

≤ sup e
2
p (Φ1+1)2N (Φ1 +Φ2)

N |φ| = 2Ne
2
p ν0,N (φ).

Combining this estimate with (4.5) we obtain the estimate of (b) with u = 1. �

Proof of Proposition 4.2. Let χ ∈ C∞
c

(
] 0, 1 [ 2

)
be a non-negative function such

that
∫
R
χ(x) dx = 1. If φ ∈ C p(G/H), then φ̂χ ∈ C∞(G/H)K . Moreover, since Sφ

is decreasing in both variables, it follows from the condition on suppχ that

φ̂ =
(
χ ∗ Sφ

)
◦ (Φ1 × Φ1) ≥ Sφ ◦ (Φ1 × Φ1) ≥ |φ|.

This establishes (a).
In order to complete the proof, it suffices to prove (b) for ν = νu,N , with u ∈ U(g)

of order at most n and for N ∈ N. Let k = N + n. Then the estimate (4.2) follows
by application of Lemma 4.4. �

For the application of Proposition 4.2 we will need the following useful lemma.

Lemma 4.5. Let ψ ∈ C (G/H)K be non-negative. Then there exists a monotoni-
cally increasing sequence (ψj)j∈N in C∞

c (G/H)K such that ψj → ψ in C (G/H)K ,
for j →∞.

Proof. For r > 0 we define B(r) := {x ∈ G/H : τ (x) ≤ r}. By [vdB87b, Lemma
2.2] and its proof, there exists a sequence of functions gj ∈ C∞

c (G/H) such that
the following conditions are fulfilled:

(1) 0 ≤ gj ≤ gj+1 ≤ 1, for j ≥ 0;
(2) gj = 1 on B(j) and supp gj ⊆ B(j + 1), for j ≥ 0;
(3) for every u ∈ U(g) there exists Cu > 0 such that supG/H |Lugj | ≤ Cu for

all j ≥ 1.

By using the argument of [Var77, Thm. 2, p. 343] one now readily checks that the
sequence ψj = gjψ satisfies our requirements. �

Proposition 4.2 now leads to the following results concerning the Radon and
Harish-Chandra transforms.

Proposition 4.6. Assume that the restriction of HQ to C∞
c (G/H)K extends to a

continuous linear map C (G/H)K → C(L/HL). Then RQ extends to a continuous
linear map

RQ : C (G/H)→ C∞(G/NQ)

and for every φ ∈ C (G/H),

(4.6) RQφ(g) =

∫
NQ/HNQ

φ(gn) dn (g ∈ G)
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with absolutely convergent integrals. Furthermore, the restriction of HQ to C∞
c (G/H)

extends to a continuous linear map

HQ : C (G/H)→ C∞(L/HL)

and for every φ ∈ C (G/H),

(4.7) HQφ(l) = δQ(l)

∫
NQ/HNQ

φ(ln) dn (l ∈ L)

with absolutely convergent integrals.

Proof. Since

RQφ(kan) = δQ(a)
−1HQφ(a)

(
φ ∈ C∞

c (G/H)K , k ∈ K, a ∈ A, n ∈ NQ

)
,

it follows from the assumption in the proposition that the restriction of RQ to
C∞

c (G/H)K extends to a continuous linear map C (G/H)K → C(G/NQ)
K .

Let ψ ∈ C (G/H)K be non-negative. We claim that RQψ is given by (4.6). To
see this, let (ψj)j∈N be a monotonically increasing sequence as in Lemma 4.5. Then
for every g ∈ G, we have

RQψ(g) = lim
j→∞

RQψj(g) = lim
j→∞

∫
NQ/HNQ

ψj(gn) dn.

Since the sequence ψj is monotonically increasing, the monotone convergence the-
orem implies that (4.6) holds and that the integral is absolutely convergent, for
every g ∈ G.

By Proposition 4.2 every element of C (G/H) can be dominated by an element
of C (G/H)K . Hence, for every φ ∈ C (G/H) and g ∈ G the integral in (4.6) is
absolutely convergent. For φ ∈ C (G/H) we now define RQφ and HQφ by (4.6) and
(4.7), respectively. To finish the proof of the proposition, it suffices to show that
RQφ is smooth and that the map RQ : C (G/H)→ C∞(G/NQ) is continuous.

By assumption, there exists a continuous seminorm ν on C (G/H) such that for
all ψ ∈ C (G/H)K ,

sup
G
|RQ(ψ)| ≤ ν(ψ).

Let φ �→ φ̂ be a map C (G/H)→ C (G/H)K as in Proposition 4.2, with p = 2. Let
C > 0 and n ∈ N be associated with ν as in the mentioned proposition. Then it
follows that for all φ ∈ C (G/H),

|RQ(φ)| ≤ RQ(|φ|) ≤ RQ(φ̂) ≤ ν(φ̂) ≤ Cν0,n(φ).

We thus see that RQ defines a continuous linear map

RQ : C (G/H)→ C(G/NQ).

Since this map intertwines the left G-actions, whereas the left regular representation
of G in C (G/H) is smooth, it follows that RQ maps continuously into the space
of smooth vectors of C(G/NQ), which equals C∞(G/NQ) as a topological linear
space. �
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5. Fourier transforms

5.1. Densities and a Fubini theorem. In this section we introduce some no-
tation related to densities on homogeneous spaces. Further details can be found
in [vdBK14, App. A]. For our purposes it is more convenient to consider right-
quotients S/T of Lie groups instead of left-quotients T\S, which we used in the
aforementioned article.

If V is a real finite dimensional vector space, then we write DV for the space
of complex-valued densities on V , i.e., the 1-dimensional complex vector space of
functions ω : ∧top(V )→ C transforming according to the rule

ω(tυ) = |t|ω(υ) (t ∈ R, υ ∈ ∧topV ).

For a Lie group S and a closed subgroup T , let ΔS/T : T → R+ be the positive
character given by

ΔS/T (t) = | detAdS(t)s/t|−1 (t ∈ T ),

where AdS(t)s/t ∈ GL(s/t) denotes the map induced by the adjoint map AdG(t) ∈
GL(s). We denote by C(S : T : ΔS/T ) the space of continuous functions f : S → C

transforming according to the rule

f(st) = ΔS/T (t)
−1f(s) (s ∈ S, t ∈ T ).

We denote by M (G : L : ξ) the space of measurable functions f : G → C trans-
forming according to the same rule.

Given f ∈ C(S : T : ΔS/T ) and ω ∈ Ds/t, we denote by fω the continuous density
on S/T determined by

fω(s) = f(s) dls(e)
−1∗ω (s ∈ S).

We fix non-zero elements ωS/U ∈ Ds/u, ωT/U ∈ Dt/u and ωS/T ∈ Ds/t such that

ωT/U ⊗ ωS/T = ωS/U

with respect to the identification determined by the short exact sequence

0→ t/u→ s/u→ s/t→ 0.

See equation (A.10) and the subsequent text in [vdBK14, App. A]. We then have
the following Fubini theorem [vdBK14, Thm. A.8].

Theorem 5.1. Let φ ∈ M (S : U : ΔS/U) and let φωS/U
be the associated measurable

density on S/U . Then the following assertions (a) and (b) are equivalent.

(a) The density φωS/U
is absolutely integrable.

(b) There exists a right T -invariant subset Z of measure zero in S such that
(1) for every x ∈ S \Z , the integral

Ix(φ) =

∫
T/U[t]

ΔS/T (t)φ(xt) dlt([e])
−1∗ωT/U ,

is absolutely convergent;
(2) the function I(φ) : x �→ Ix(φ) belongs to M (S : T : ΔS/T );
(3) the associated density I(φ)ωS/T

is absolutely integrable.

Furthermore, if any of the conditions (a) or (b) are fulfilled, then∫
S/U

φωS/U
=

∫
S/T

I(φ)ωS/T
.
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5.2. Eisenstein integrals. We start by recalling notation, definitions and results
from [vdBK14].

Let (τ, Vτ ) be a finite dimensional representation ofK.We write C∞(G/H : τ ) for
the space of smooth Vτ -valued functions φ on G/H that satisfy the transformation
property

φ(kx) = τ (k)φ(x) (k ∈ K,x ∈ G/H).

We further write C∞
c (G/H : τ ) and C (G/H : τ ) for the subspaces of C∞(G/H : τ )

consisting of compactly supported functions and L2-Schwartz functions, respec-
tively.

Let W (aq) be the Weyl group of the root system of aq in g. Then

W (aq) = NK(aq)/ZK(aq).

LetWK∩H(aq) be the subgroup ofW (aq) consisting of elements that can be realized
in NK∩H(aq). We choose a set W of representatives for W (aq)/WK∩H(aq) in
NK(aq) ∩ NK(ah) such that e ∈ W . This is possible because of the following
lemma.

Lemma 5.2. NK(aq) =
(
NK(aq) ∩NK(ah)

)
ZK(aq).

This result can be found in [Ros79, p. 165]. For the reader’s convenience we give
the concise proof.

Proof. It is clear that
(
NK(aq) ∩ NK(ah)

)
ZK(aq) ⊆ NK(aq). To prove the other

inclusion, assume that k ∈ NK(aq). Then Ad(k−1)ah is a maximal abelian subspace
of Zg(aq)∩p. Each such maximal abelian subspace is conjugate to ah by an element
from ZG(aq)∩K, i.e., there exists a k′ ∈ ZK(aq) such that Ad(k′)Ad(k−1)ah = ah.
Note that k′k−1 ∈ NK(aq) ∩NK(ah). Hence,

k = (kk′−1)k′ ∈
(
NK(aq) ∩NK(ah)

)
ZK(aq). �

We define

M0 := ZK(aq) exp
(
p ∩ [Zg(aq), Zg(aq)]

)
.

If P0 ∈ P(Aq), then M0A is a Levi subgroup of P0. We write m0n for the direct
sum of the non-compact ideals of m0. The associated connected subgroup of M0 is
denoted by M0n.

We denote by τM the restriction of τ to M. Since M is a subgroup of M0 ∩K,
it normalizes M0n ∩K, so that (Vτ )

M0n∩K is an M -invariant subspace of Vτ . The
restriction of τM to this subspace is denoted by τ0M . We define

AM,2(τ ) :=
⊕
v∈W

C∞(M/M ∩ vHv−1 : τ0M ).

Each component in the sum is finite dimensional and thus a Hilbert space equipped
with the restriction of the inner product of L2(M/∩ vHv−1, Vτ ); the direct sum is
equipped with the direct sum Hilbert structure, and thus becomes a finite dimen-
sional Hilbert space.

If ψ ∈ AM,2(τ ), we accordingly write ψv for the component of ψ in the space
C∞(M/M ∩ vHv−1 : τ0M ).

Let Q ∈ P(A). For v ∈ W we define the parabolic subgroup Qv ∈ P(A) by

(5.1) Qv := v−1Qv.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

492 ERIK P. VAN DEN BAN AND JOB J. KUIT

For each v ∈ W we choose a positive density

ωH/HQv ∈ Dh/hQv

as follows. Fix positive densities ωG/H ∈ Dg/h and ωG/HL
∈ Dg/hL

. Furthermore,
let ωv ∈ DnQv∩h be the positive density that corresponds to the Haar measure on
NQv ∩ H, which was chosen to be the push-forward of the Lebesgue measure on
nQv ∩ h along the exponential map (see text below Lemma 2.1). Then we choose
ωH/HQv to be the unique density such that

(5.2) ωG/H ⊗ ωH/HQv ⊗ ωv = ωG/HL
.

The inner product B|aq
on aq induces a linear isomorphism B : aq → a∗q. If

Q ∈ P(A), we define the cone Γ(Q) ⊆ aq as in (3.3). Then B(Γ(Q)) equals the
cone spanned by the elements α+σθα, with α ∈ Σ(Q)−; see (3.2). Let ΩQ ⊆ aq be

defined as in (3.5) and let Ω̂Q denote its hull in aqC with respect to the functions
Re 〈 · , α〉 with α ∈ Σ(aq) ∩B(Γ(Q)), i.e.,

Ω̂Q := {λ ∈ a∗qC
: Re 〈λ, α〉 ≤ sup Re 〈ΩQ, α〉 ∀α ∈ Σ(aq) ∩B(Γ(Q))}.

Since 〈α, λ〉 ≤ 0 for all α ∈ Σ(aq) ∩ B(Γ(Q)) and λ ∈ −Γ(Q)◦, it follows that we
can describe the given hull by means of inequalities as follows:

Ω̂Q = {λ ∈ a
∗
qC

: Re 〈λ, α〉 ≤ max
P∈Pσ(A,Q)

〈−ρP , α〉 ∀α ∈ Σ(aq) ∩B(Γ(Q))}.

We define the following closed subsets of aqC,

(5.3) ΥQ =
⋂

v∈W

vΩv−1Qv, Υ̂Q =
⋂
v∈W

vΩ̂v−1Qv.

Given v ∈ W we will use the notation
vH := vHv−1 and vHQ := vH ∩Q.

Furthermore, we define the density vωv on vh/vhQ by

vω := Ad(v−1)∗ωH/HQv .

Given ψv ∈ C∞(M/vH ∩M : τ0M ) and λ ∈ ΥQ we define the function ψv,Q,λ : G→
Vτ by
(5.4)

ψv,Q,λ(kman) = aλ−ρQ−ρQ,h τ (k)ψv(m) (k ∈ K,m ∈M,a ∈ A, n ∈ NQ).

Then for every x ∈ G the function

y �→ ψv,Q,λ(xy) dly(e)
−1∗ (vω)

defines a Vτ -valued density on vH/vHQ, which is integrable by [vdBK14, Prop. 8.2].
We define

EvHv−1(Q : ψv : λ) : G→ Vτ

for x ∈ G by

EvHv−1(Q : ψv : λ)(x) =

∫
vH/vHQ

ψv,Q,λ(xy) dly(e)
−1∗(vω)

=

∫
H/HQv

ψv,Q,λ(xvhv
−1) dlh(e)

−1∗ωH/HQv .

For ψ ∈ AM,2 and λ ∈ ΥQ we define the Eisenstein integral

(5.5) E(Q : ψ : λ) = Eτ (Q : ψ : λ) : G→ Vτ
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by

E(Q : ψ : λ)(x) =
∑
v∈W

EvHv−1(Q : prvψ : λ)(xv−1) (x ∈ G).

It is readily verified that this function belongs to C∞(G/H : τ ). We note that the
map E(Q : ψ : · ) extends to a meromorphic C∞(G/H : τ )-valued function on a∗qC

and is holomorphic on an open neighborhood of Υ̂Q; see [vdBK14, Cor. 8.5].
Let Q1, Q2 ∈ P(A). Then there exists a unique meromorphic End(AM,2(τ ))-

valued function C(Q2 : Q1 : · ) on a∗qC
such that

(5.6) E(Q2 : ψ : λ) = E(Q1 : C(Q1 : Q2 : λ)ψ : λ)

for generic λ ∈ a∗qC
; see [vdBK14, Cor. 8.14].

In order to describe the relation of these Eisenstein integrals with those defined
in terms of a parabolic subgroup from the set Pσ(Aq) (see the text preceding (1.2)),
we need to introduce a bit more notation.

Let M̂0 denote the collection of (equivalence classes of) finite dimensional irre-

ducible unitary representations of M0. For ξ ∈ M̂0 and v ∈ W we define the finite
dimensional Hilbert space

V (ξ, v) := H M0∩vHv−1

ξ .

The formal direct sum of these gives a finite dimensional Hilbert space

V (ξ) :=
⊕
v∈W

V (ξ, v).

We define C(K : ξ : τ ) to be the space of functions f : K →Hξ ⊗ Vτ transforming
according to the rule:

f(mk0k) =
(
ξ(m)⊗ τ (k)−1

)
f(k0), (k, k0 ∈ K,m ∈M0).

Let V̄ (ξ) denote the conjugate space of V (ξ) and consider the natural map

(5.7) T �→ ψT , C(K : ξ : τ )⊗ V̄ (ξ)→ AM,2(τ ),

which for v ∈ W and T = f ⊗ η ∈ C(K : ξ : τ )⊗ V̄ (ξ) is given by(
ψT

)
v
(m) = 〈f(e), ξ(m)ηv〉ξ (m ∈M0).

Then the sum of the maps T �→ (dim ξ)
1
2ψT over all ξ ∈ M̂0 gives a surjective

isometry

(5.8)
⊕
ξ∈̂M0

C(K : ξ : τ )⊗ V̄ (ξ)
�−→ AM,2(τ );

see [vdBS97b, Lemma 3]. Note that only finitely many terms in the direct sum are
non-zero.

Now let Q∈P(A) and R∈Pσ(Aq). Then we define the C-functions CR|Q(s : · )
for s ∈ W (aq) as in [vdBK14, Thm. 8.13]. These are End(AM,2(τ ))-valued mero-
morphic functions on a∗qC

, with meromorphic inverses. Moreover, by uniqueness of
asymptotics, they are uniquely determined by the requirement that
(5.9)

E(Q : ψ : λ)(av) ∼
∑

s∈W (aq)

asλ−ρR [CR|Q(s : λ)ψ]v(e), (a→∞ in A+
q (R))

for all ψ ∈ AM,2(τ ), v ∈ W and generic λ ∈ ia∗q.
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For P0 ∈ Pσ(Aq) and ψ ∈ AM,2(τ ) we denote by E(P0 : ψ : λ) the Eisenstein
integral as defined in [vdBS97b, Sect. 2]. Then λ �→ E(P0 : ψ : λ) is a meromorphic
function on a∗qC

with values in C∞(G/H : τ ). Given R ∈ Pσ(Aq) the C-functions

CR|P0
(s : λ) ∈ End(AM,2(τ )),

for s ∈ W (aq) are defined as in [vdBS97b, Eqn. (46)]. These are meromorphic
functions with values in End(AM,2(τ )) and with meromorphic inverses. Moreover,
they are uniquely determined by the asymptotic behavior of the Eisenstein integral
E(P0 : ψ : λ), described by (5.9) with everywhere Q replaced by P0.

Lemma 5.3. Let P0 ∈ Pσ(Aq) and assume that P ∈ P(A) is q-extreme, and
satisfies P ⊆ P0. Then for generic λ ∈ a∗qC

,

(5.10) E(P0 : ψ : λ) = E(P : ψ : λ).

Furthermore, for all R ∈ Pσ(Aq), s ∈W (aq) and generic λ ∈ a∗qC
,

(5.11) CR|P0
(s : λ) = CR|P (s : λ).

Proof. The first assertion is made in [vdBK14, Cor. 8.6]. The second assertion
follows by uniqueness of asymptotics. �

For ψ ∈ AM,2(τ ) we define the normalized Eisenstein integral E◦(P̄0 : ψ : · )
as in [vdBS97b, Sect. 5,6]. It is a meromorphic C∞(H/H : τ )-valued function of
λ ∈ a∗qC

. Furthermore, for any R ∈ Pσ(Aq) we have

(5.12) E(R : ψ : λ) = E◦(P̄0 : CP̄0|R(1 : λ)ψ : λ);

see [vdBS97b, Eqn. (58)].

Lemma 5.4. Let Q ∈ P(A) and P0 ∈ Pσ(Aq). Then

(5.13) E(Q : ψ : λ) = E◦(P̄0 : CP̄0|Q(1 : λ)ψ : λ)

for all ψ ∈ AM,2(τ ) and generic λ ∈ a∗qC
.

Proof. Let P ∈ Pσ(A) be such that P0 ⊇ P. Then it follows from (5.6) and (5.10)
that

E(Q : ψ : λ) = E(P : C(P : Q : λ)ψ : λ) = E(P0 : C(P : Q : λ)ψ : λ).

Using (5.12) with R = P̄0, we infer that

(5.14) E(Q : ψ : λ) = E◦(P̄0 : CP̄0|P0
(1 : λ)C(P : Q : λ)ψ : λ).

By application of (5.11) and [vdBK14, Cor. 8.14 (a)] with R = P̄0, we find that

CP̄0|P0
(1 : λ)C(P : Q : λ) = CP̄0|P (1 : λ)C(P : Q : λ)

= CP̄0|Q(1 : λ).(5.15)

Substituting the latter expression in (5.14), we obtain (5.13). �

Our next goal is to describe the C-function in (5.13) in terms of a standard
intertwining operator in case Q and P0 are suitably related. For this, we need to
introduce additional notation.

Let ξ ∈ M̂0. We define C∞(K : ξ) to be the space of functions f : K → Hξ

transforming according to the rule

(5.16) f(mk) := ξ(m)f(k) (k ∈ K,m ∈M0 ∩K).
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Furthermore, we put ξM = ξ|M and define C∞(K : ξM ) to be the space of functions
f : K → Hξ transforming according to the same rule (5.16) but for k ∈ K and
m ∈M. Since M ⊆M0, we have a natural inclusion map

i# : C(K : ξ)→ C(K : ξM ).

Following [vdBK14, Sect. 4], we denote by

p# : C(K : ξM )→ C(K : ξ)

the transpose of this map for the natural sesquilinear pairings coming from the
L2-inner product on L2(K,Hξ, dk).

If P0 ∈ Pσ(Aq), and λ ∈ a∗qC
, we denote the realization of the normalized induced

representation IndGP0
(ξ⊗λ⊗1) of G in C∞(K : ξ) according to the compact picture

by πP0,ξ,λ. Given a second parabolic subgroup P1 ∈ Pσ(Aq) we denote by

A(P1 : P0 : ξ : λ) : C∞(K : ξ)→ C∞(K : ξ)

the (meromorphic continuation of) the standard intertwining operator which inter-

twines the representations IndGPj
(ξ ⊗ λ⊗ 1), for j = 0, 1, respectively.

Likewise, if Q ∈ P(A), ξ ∈ M̂0 and μ ∈ a∗
C
, we denote the realization of the

normalized induced representation IndGQ(ξM⊗μ⊗1) of G in C∞(K : ξM ) according
to the compact picture by πQ,ξM ,μ.

Given Q1, Q2 ∈ P(A) we denote by

A(Q1 : Q2 : ξM : μ) : C∞(K : ξM )→ C∞(K : ξM ),

the (meromorphic continuation of) the standard intertwining operator which inter-
twines the representations

IndGQj
(ξM ⊗ μ⊗ 1),

for j = 2, 1, respectively.
The two types of parabolically induced representations are related by the maps

i# and p# defined above. Let P ∈ P(A) be a q-extreme parabolic subgroup,
and let P0 be the unique parabolic subgroup in Pσ(Aq) containing P. Then i#

intertwines πP0,ξ,λ with πP,ξM ,λ−ρP,h
and p# intertwines πP,ξM ,λ+ρP,h

with πP0,ξ,λ,
for every λ ∈ a∗qC

. We refer to [vdBK14, Sect. 4] for further details.
We denote by

(5.17) ΠΣ,R(a
∗
q)

the set of polynomial functions a∗qC
→ C that can be expressed as non-zero products

of affine functions of the form λ �→ 〈λ, α〉 − c, where α ∈ Σ \ a∗h and c ∈ R.

Finally, we arrive at the mentioned description of the C-function in (5.13).

Proposition 5.5. Let Q ∈ P(A), let P ∈ Pσ(A,Q) (see (1.3)), and let P0 be
the unique minimal σθ-stable parabolic subgroup containing P. Then the following
assertions are valid.

(a) If ξ ∈ M̂0 and T ∈ C∞(K : ξ : τ )⊗ V̄ (ξ) then, for generic λ ∈ a∗qC
,

(5.18) CP̄0|Q(1 : λ)ψT = ψ[p# ◦A(σP :Q:ξM :−λ+ρP,h) ◦ i#⊗I]T .

(b) The function CP̄0|Q(1 : · ) is holomorphic on the set

(5.19)
{
λ ∈ a∗qC

: Re 〈−λ+ ρQ,h, α〉 > 0 for all α ∈ Σ(P0) ∩ Σ(Q)
}
.
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(c) Let B ⊆ a∗q be open and bounded. There exists a p ∈ ΠΣ,R(a
∗
q) such that

λ �→ p(λ)CP̄0|Q(1 : λ)

is holomorphic and of polynomial growth on B + ia∗q.

Proof. We first turn to (a). From (5.15) we recall that

(5.20) CP̄0|Q(1 : λ) = CP̄0|P0
(1 : λ)C(P : Q : λ).

Let ξ and ψ be as in assertion (a). Then it follows from [vdBK14, Prop. 8.7] that

(5.21) C(P : Q : λ)ψT = ψS(λ)

with

(5.22) S(λ) = [p# ◦A(Q : P : ξM : −λ+ ρP,h)
−1 ◦ i# ⊗ I]T.

On the other hand, by [vdBS97b, Prop. 3.1],

(5.23) CP̄0|P0
(1 : λ)ψS(λ) = ψS′(λ),

with

(5.24) S′(λ) = [A(P̄0 : P0 : ξ : −λ)⊗ I]S(λ).

From (5.20), (5.21) and (5.23) we obtain that

(5.25) CP̄0|Q(1 : λ)ψT = ψS′(λ);

we will prove (a) by determining S′(λ).
It follows from [vdBK14, Lemma 8.10], that the following diagram commutes,

for generic λ ∈ a∗qC
,

C(K : ξM )
A(σP :P :ξM :−λ+ρP,h)

−→ C(K : ξM )
p# ↓ ↓ p#

C(K : ξ)
A(P̄0:P0:ξ:−λ)−→ C(K : ξ).

Taking the commutativity of this diagram into account, we infer by combining
(5.22) and (5.24) that

(5.26) S′(λ) = [p#◦A(σP :P :ξM :−λ+ρP,h)A(Q :P :ξM :−λ+ρP,h)
−1◦ i# ⊗ I]T.

Since P � Q, we have Σ(σP ) ∩ Σ(P ) = Σ(P, σ) ⊆ Σ(Q) ∩ Σ(P ). By application of
[KS80, Cor. 7.7] we find that

A(σP : P : ξM : −λ+ ρQ,h)

= A(σP : Q : ξM : −λ+ ρP,h) ◦A(Q :P : ξM : −λ+ ρQ,h).(5.27)

The identity in (5.18) now follows from (5.25), (5.26) and (5.27). Thus, (a) holds.

We turn to (b) and (c). Let ξ ∈ M̂0 and let End(C(K : ξM )) denote the
space of bounded linear endomorphisms of the Banach space C(K : ξM ). Then as
a End(C(K : ξM ))-valued function, the standard intertwiner A(σP :Q : ξM : μ)
depends holomorphically on μ ∈ a∗

C
satisfying

(5.28) Re 〈μ, α〉 > 0,
(
α ∈ Σ(σP̄ ) ∩ Σ(Q)

)
.

Indeed, this is a straightforward consequence of the convergence of the integral
defining the intertwining operator, asserted in [KS80, Thm. 4.2].

Since Σ(P0) = Σ(P ) \ a∗h, we have Σ(P0) ∩ Σ(Q) ⊆ Σ(σP̄ ) ∩ Σ(Q). Thus, if

λ ∈ a∗qC
belongs to the set (5.19), then μ = −λ+ ρP,h satisfies (5.28). We infer that
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A(σP : Q : ξM : −λ+ ρP,h) is a holomorphic End(C(K : ξM ))-valued function of λ
in the set (5.19). In view of (5.18) we now infer (b).

Finally, we turn to (c). Let ξ ∈ M̂0 and let AM,2(τ )ξ denote the image of
C(K : ξ τ ) ⊗ V̄ (ξ) under the map (5.8). We may select a finite set of K-types

ϑ ⊆ K̂ such that C(K : ξ : τ ) ⊆ C(K : ξ)ϑ ⊗ Vτ . In view of [vdBS12, Thm. 1.5]
there exists a polynomial function qξ : a∗

C
→ C which is a product of linear factors

of the form μ �→ 〈μ , α〉 − c, with α ∈ Σ(σP̄ ) ∩ Σ(Q) and c ∈ R such that

(5.29) μ �→ qξ(μ)A(σP : Q : ξM : μ)|C(K:ξM )ϑ

is holomorphic and polynomially bounded on the set −B + ρQ,h + ia∗. It follows
that the function of λ ∈ a∗qC

arising from (5.29) by the substitution μ = −λ+ ρQ,h

is holomorphic and polynomially bounded on B + ia∗q. Define

pξ(λ) := qξ(−λ+ ρQ,h).

Then pξ ∈ ΠΣ,R(a
∗
q) because Σ(σP̄ )∩Σ(Q) ⊆ Σ\a∗h, and in view of (5.18) it follows

that
λ �→ pξ(λ)CP̄0|Q(1 : λ)AM,2(τ)ξ

is holomorphic and polynomially bounded on B + ia∗q. The result now follows by
finiteness of the sum (5.8). �
5.3. The τ -spherical Fourier transform. Let Q ∈ P(A) and let (τ, Vτ ) be a
finite dimensional unitary representation of K. For φ ∈ C∞

c (G/H : τ ), we define the
τ -spherical Fourier transform FQ,τφ to be the meromorphic function a∗qC

→ AM,2(τ )
determined by

〈FQ,τφ(λ), ψ〉 =
∫
G/H

〈φ(x) , E(Q : ψ : −λ)(x)〉τ dx

for ψ ∈ AM,2(τ ) and generic λ ∈ a∗qC
.

Proposition 5.6. Let φ ∈ C∞
c (G/H : τ ). Then FQ,τφ is holomorphic on an open

neighborhood of −Υ̂Q; see (5.3).

Proof. This follows directly from [vdBK14, Cor. 8.5]. �
Before proceeding we will first discuss how this Fourier transform is related to the

τ -spherical Fourier transform FP̄0
φ defined in [vdBS97b, Eqn. (59)], for P0, hence

P̄0, a minimal σθ-stable parabolic subgroup from Pσ(Aq). The last mentioned
transform is defined to be the meromorphic function a∗qC

→ AM,2(τ ) given by

〈FP̄0
φ(λ) , ψ〉 =

∫
G/H

〈f(x) , E◦(P̄0 : ψ : −λ̄)(x)〉τ dx

for ψ ∈ AM,2(τ ) and generic λ ∈ a∗qC
.

Proposition 5.7. Let P0 ∈ Pσ(Aq) and φ ∈ C∞
c (G/H : τ ). Then

FQ,τφ(λ) = CP̄0|Q(1 : −λ̄)∗FP̄0
φ(λ).

for generic λ ∈ a∗qC
.

Proof. The identity follows directly from Lemma 5.4. �
Given R > 0 we write BR for the open ball in aq with center 0 and radius R.

Furthermore, we define

C∞
R (G/H : τ ) := {φ ∈ C∞

c (G/H : τ ) : suppφ ⊆ K exp(BR) ·H}.
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Proposition 5.8. Let B ⊆ a∗q be open and bounded. There exists a p ∈ ΠΣ,R(a
∗
q)

such that λ �→ p(−λ)E(Q : ψ : −λ) is holomorphic on B + ia∗q for every ψ ∈
AM,2(τ ). Moreover, if φ ∈ C∞

c (G/H, τ ), then

λ �→ p(λ)FQ,τφ(λ)

is holomorphic on B + ia∗q.
Let R > 0. There exist a constant CR > 0 and for every N ∈ N a continuous

seminorm νN on C∞
R (G/H : τ ) such that

(5.30) ‖p(λ)FQ,τφ(λ)‖ ≤ (1 + ‖λ‖)−NeCR‖Reλ‖νN (φ)

for every φ ∈ C∞
R (G/H : τ ) and all λ ∈ B + ia∗q.

Proof. We fix a q-extreme parabolic subgroup P ∈ P(A) such that P � Q. Let P0

be the unique subgroup in Pσ(Aq) such that P0 ⊇ P. By [vdBS99, Prop. 3.1] there
exists a p1 ∈ ΠΣ,R(a

∗
q) such that

λ �→ p1(−λ)E◦(P̄0 : ψ : −λ)
is holomorphic on B + ia∗q for every ψ ∈ AM,2(τ ). This implies that p1FP̄0

φ is
holomorphic on B + ia∗q for every φ ∈ C∞

c (G/H : τ ). Furthermore, by [vdBS99,
Lemma 4.4] there exist a constant CR > 0 and for every N ∈ N a continuous
seminorm νN on C∞

R (G/H : τ ) such that

‖p1(λ)FP̄0,τφ(λ)‖ ≤ (1 + ‖λ‖)−NeCR‖Reλ‖νN (φ)

for every φ ∈ C∞
R (G/H : τ ) and all λ ∈ B + ia∗q.

Choose p2 ∈ ΠΣ,R(a
∗
q) as in Proposition 5.5(b,c) and put p = p1p2. Then the

result follows in view of Proposition 5.7, by combining the above assertions with
those of Proposition 5.5(b,c). �

6. The τ -spherical Harish-Chandra transform

6.1. Definition and relation with the spherical Fourier transform. We as-
sume that Q ∈P(A) and that (τ, Vτ ) is a finite dimensional unitary representation
of K. Recall the definition of the character δQ on L by (2.2); see also (2.3). The
following definition makes use of the notation (5.1).

Definition 6.1. For a function φ ∈ C∞
c (G/H : τ ) we define its τ -spherical Harish-

Chandra transform HQ,τφ to be the function Aq → AM,2(τ ) given by

(6.1)
(
HQ,τφ(a)

)
v
(m) := δQ(a)

∫
NQv/HNQv

φ(mavn) dn

for v ∈ W , m ∈M and a ∈ Aq.

It is easily seen that HQ,τ defines a continuous linear map C∞
c (G/H : τ ) →

C∞(Aq)⊗AM,2(τ ). The τ -spherical Harish-Chandra transform HQ,τ is related to
the Harish-Chandra transform introduced in Definition 2.12. Namely, the following
result is valid.

Lemma 6.2. Let φ ∈ C∞
c (G/H : τ ). Then for a ∈ Aq and ψ ∈ AM,2(τ ),

(6.2)
〈
HQ,τφ(a), ψ

〉
=
∑
v∈W

HQv

(〈
φ( · ), τ (v−1)ψv(e)

〉
τ

)
(v−1av).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CUSP FORMS FOR REDUCTIVE SYMMETRIC SPACES OF SPLIT RANK ONE 499

Proof. Let φ ∈ C∞
c (G/H : τ ), ψ ∈ AM,2(τ ) and a ∈ Aq. Recall that vH denotes

vHv−1 for v ∈ W . Then

〈HQ,τφ(a), ψ〉 =
∑
v∈W

∫
M/(M∩vH)

〈(
HQ,τφ(a)

)
v
(m), ψv(m)

〉
τ

=
∑
v∈W

∫
M/(M∩vH)

δQ(a)

∫
NQv/HNQv

〈
φ(mavn), ψv(m)

〉
τ

=
∑
v∈W

∫
M/(M∩vH)

δQv(v−1av)

∫
NQv/HNQv

〈
φ(mvv−1avn), ψv(m)

〉
τ
.

We now use that τ is unitary and that the measure on M/(M ∩ vH) is normalized,
and thus we conclude that the last expression is equal to∑

v∈W

δQv(v−1av)

∫
NQv/HNQv

〈φ(v−1avn), τ (v−1)ψv(e)〉τ .

Finally, the claim follows from the definition of the Harish-Chandra transform (Def-
inition 2.12). �

Corollary 6.3.

(a) Let P ∈ Pσ(A,Q). Then the spherical Harish-Chandra transform HQ,τ is

a continuous linear map C∞
c (G/H : τ )→ L1(Aq, δ

−1
P da)⊗AM,2(τ ).

(b) Let φ ∈ C∞
c (G/H : τ ) be supported in K expC ·H, with C ⊆ aq compact,

convex and invariant under the action of NK∩H(aq). Then

(6.3) suppHQ,τ (φ) ⊆
⋃

v∈W

exp(C + vΓ(Qv))

Proof. It follows from Proposition 3.9 that δ−1
P v (HQv⊗I) defines a continuous linear

map C∞
c (G/H : τ ) → L1(L/HL : τM ). Since L/HL � M/M ∩H × Aq), it follows

that restriction to Aq defines a continuous linear map L1(L/HL : τM )→ Aq ⊗ Vτ .
In view of Lemma 6.2 assertion (a) of the corollary now follows.

For (b), assume that φ ∈ C∞
c (G/H : τ ) has a support as stated. Then by

Proposition 3.8 the support of (HQv ⊗ I)(φ)|Aq
is contained in exp(C +Γ(Qv)). In

view of theNK∩H(aq)-invariance of C, the inclusion (6.3) now follows by application
of Lemma 6.2. �

It follows from this corollary that for φ ∈ C∞
c (G/H : τ ) the Euclidean Fourier

transform

FAq
(HQ,τφ)(λ) =

∫
Aq

HQ,τφ(a)a
−λ da,

is well-defined for λ in the subset −ΥQ ⊆ a∗qC
, with absolutely convergent integral,

and defines a holomorphic AM,2(τ )-valued function on the interior of this set.

Proposition 6.4. Let φ ∈ C∞
c (G/H : τ ). Then for λ ∈ −ΥQ,

FQ,τφ(λ) = FAq

(
HQ,τφ

)
(λ).

Before turning to the proof of this result, we first prove a lemma.
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Lemma 6.5. Let ω ∈ Dg/hQ
. Let ψ ∈ C(G : HQ : ΔG/HQ

) and assume that the
associated density ψω ∈ DG/HQ

is integrable. Then∫
G/HQ

ψω =

∫
K

∫
Aq

∫
NQ/HNQ

a2ρQψ(kan) dn da dk

up to a positive constant which only depends on the normalization of the measures
and the densities.

Proof. In this proof we will need to introduce several densities. For each quotient
S/T of a Lie group S by a closed subgroup T that appears below, we choose a
positive density ωS/T ∈ Ds/t. We leave it to the reader to check that these densities
may be normalized in such a manner that the stated equalities are valid.

By Theorem 5.1,

(6.4)

∫
G/HQ

ψω =

∫
G/Q

Ig(ψ) dlg([e])
−1∗ωG/Q,

where

(6.5) Ig(ψ) =

∫
Q/HQ

ψ(gq)ΔG/Q(q) dlq([e])
−1∗ωQ/HQ

.

Since the canonical map ζ : K/M → G/Q is a K-equivariant diffeomorphism we
may rewrite the integral on the right-hand side of (6.4) as an integral over K/M of
the pull-back density

ζ∗
(
g �→ Ig(ψ)dlg([e])

−1∗ωG/Q

)
k
= Ik(ψ) dlk(e)

−1∗ωK/M .

Now k �→ Ik(ψ) is right M -invariant, and k �→ dlk(e)
−1∗ωK/M defines a left K-

equivariant density on K/M. Hence,

(6.6)

∫
G/Q

ψω =

∫
K

Ik(ψ) dk.

Next, we fix k ∈ K. Applying Theorem 5.1 to the integral for Ik(ψ), given by (6.5)
with g = k, we infer that

(6.7) Ik(ψ) =

∫
Q/HLNQ

Jy(l
∗
kψΔG/Q) dly([e])

−1∗ωQ/HLNQ
,

where

Jy(l
∗
kψΔG/Q) =

∫
HLNQ/HQ

ψ(kyx)ΔG/Q(yx)ΔQ/HLNQ
(x) dlx([e])

−1∗ωHLNQ/HQ

=

∫
HLNQ/HQ

ψ(kyx)ΔG/Q(yx) dlx([e])
−1∗ωHLNQ/HQ

.(6.8)

In the latter equality we have used that ΔQ/HLNQ
= 1. Indeed, by nilpotency of NQ

it is evident that ΔQ/HLNQ
|NQ

= 1. On the other hand, ΔQ/HLNQ
|HL

= ΔL/HL
= 1

by unimodularity of L and HL.
To complete the proof we will rewrite both integrals (6.7) and (6.8), respectively.

Starting with the first, we note that the map

η : Aq ×M/HM → Q/HLNQ; (a,m) �→ amHLNQ
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is a Aq ×M -equivariant diffeomorphism. Hence, η∗
(
y �→ dly([e])

−1∗ωQ/LHNQ

)
is a

left Aq ×M -invariant density. Accordingly, the integral (6.7) may be rewritten as

Ik(ψ) =

∫
M/HM

∫
Aq

Jam(l∗kψΔG/Q) da dm̄

=

∫
M

∫
Aq

Jma(l
∗
kψΔG/Q) da dm.(6.9)

Likewise, the map

ϑ : NQ/HNQ
→ HLNQ/HQ; nHNQ

�→ nHQ

is a left NQ-equivariant diffeomorphism. Therefore, ϑ∗(x �→ dlx([e])
−1∗ωHLNQ/HQ

)
is an NQ-invariant density on NQ/HNQ

. Accordingly, we find that (6.8) may be
rewritten as

(6.10) Jy(l
∗
kψΔG/Q) =

∫
NQ/HNQ

ψ(kyn)ΔG/Q(yn) dn.

Combining (6.6), (6.9) and (6.10), we obtain that∫
G/HQ

ψω =

∫
K

∫
M

∫
Aq

∫
NQ/HNQ

ΔG/Q(man)ψ(kman) dn da dmdk

=

∫
K

∫
Aq

∫
NQ/HNQ

a2ρQψ(kan) dn da dk. �

Proof of Proposition 6.4. For each v ∈ W let ωH/HQv ∈ Dh/hQv be as in (5.2). Let

φ ∈ C∞
c (G/H : τ ) and ψ ∈ AM,2(τ ). Then for λ ∈ −ΥQ,

〈FQ,τφ(λ), ψ〉 =
∫
G/H

〈φ(x), E(Q : ψ : −λ̄)(x)〉τ dx

=
∑
v∈W

∫
G/H

〈φ(x), EvH(Q : ψv : −λ̄)(xv−1)〉τ dx

=
∑
v∈W

∫
G/H

(∫
H/HQv

〈φ(x), ψv,Q,−λ̄(xhv
−1)〉τ dlh(e)∗−1 ωH/HQv

)
dlx(e)

∗−1 ωG/H .

Here ψv,Q,−λ̄ is defined as in (5.4). We now apply Theorem 5.1 to the term for v in
order to rewrite the repeated integral as a single integral over G/HQv and obtain

〈FQ,τφ(λ), ψ〉 =
∑
v∈W

∫
G/HQv

〈φ(y), ψv,Q,−λ(yv
−1)〉τ dly(e)∗−1 ωG/HQv .

By Lemma 6.5 this expression is equal to∑
v∈W

∫
K

∫
Aq

∫
NQv/HNQv

a2ρQv 〈φ(kan), ψv,Q,−λ(kanv
−1)〉τ dn da dk.

By τ -sphericality and unitarity of τ it follows that each integrand is independent of
k. Furthermore, by our chosen normalization of Haar measure, dk(K) = 1 so that
the integral over K can be removed. By substituting av := v−1av for a and using
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the right ANQ-equivariance of ψQ,v,−λ̄, we thus find

〈FQ,τφ(λ), ψ〉 =
∑
v∈W

∫
Aq

∫
NQv/HNQv

a2ρQ〈φ(avn), τ (v)−1ψv,Q,−λ(a)〉τ dn da dk

=
∑
v∈W

∫
Aq

∫
NQv/HNQv

a−λ+ρQ−ρQ,h〈φ(avn), τ (v)−1ψv(e)〉τ dn da dk

=

∫
Aq

a−λ
∑
v∈W

HQv

(
〈φ( · ) , τ (v)−1ψ(e)〉τ

)
(av) da.

Using Lemma 6.2 we finally obtain

〈FQ,τφ(λ), ψ〉 =
∫
Aq

a−λ〈HQ,τ (φ)(a) , ψ〉 da.

Since ψ was arbitrary, the result follows. �
6.2. Invariant differential operators. In this section we assume that P0 is a
parabolic subgroup from Pσ(Aq) and write P0 = M0A0N0 for its Langlands de-
composition; then A0 ⊆ A and aq = a0 ∩ q. Furthermore, M0/M0 ∩H = M/M ∩H
as homogeneous spaces for M ; see [vdBK14, Lemma 4.3]. Accordingly,

(6.11) g = n0 ⊕ (l+ h);

where l = m ⊕ a is the Lie algebra of L = MA. Let D(G/H) be the algebra of
invariant differential operators on G/H. Then the right-regular representation of G
on C∞(G) induces an isomorphism

(6.12) r : U(g)H/(U(g)H ∩ U(g)h)
�−→ D(G/H);

see [vdB92, Sect. 2] for details. Let

r0 : U(m0)
HM0/(U(m0)

HM0 ∩ U(m0)hM0
)

�−→ D(M0/M0 ∩H)

be the analogous isomorphism onto the algebra of left M0-invariant differential op-
erators on M0/M0 ∩ H. Let D(Aq) denote the algebra of bi-invariant differential
operators on Aq. Then the right regular representation induces an algebra iso-
morphism U(aq) = S(aq) � D(Aq). We define the canonical algebra embedding
μ : D(G/H) ↪→ D(M0/M0 ∩H) ⊗ D(Aq) as in [vdB92, Sect. 2]. It is independent
of the choice of parabolic subgroup P0. We will give a suitable description of μ in
terms of P0, which is somewhat different from the one in [vdB92].

To prepare for this, let m0n be the ideal of m0 generated by m0 ∩ a and let
M0n be the corresponding analytic subgroup of M0. Then M0 = MM0n and M0n

acts trivially on M0/M0 ∩ H; see [vdBK14, Lemma 4.3]. Therefore, the inclusion
M →M0 induces a natural isomorphism

(6.13) D(M0/M0 ∩H) � D(M/M ∩H),

via which we shall identify their elements. As before, the right regular repre-
sentation induces an isomorphism U(m)HM /U(m)HM ∩ U(m)hM � D(M/M ∩H).
Furthermore, since m0n ⊆ h, the inclusion m ↪→ m0 induces an isomorphism

U(m)HM /U(m)HM ∩ U(m)hM � U(m0)
HM0/(U(m0)

HM0 ∩ U(m0)hM0
)

which is compatible with r0 and the identification (6.13). Accordingly, we may view
μ as an algebra embedding

μ : D(G/H) ↪→ D(M/M ∩H)⊗ D(Aq).
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Remark 6.6. In the formulation of the following result, we will write e±ρP0 for the
continuous linear endomorphism of C∞((M/M ∩H)×Aq) given by multiplication
with the similarly denoted function e±ρP0 : (m, a) �→ a±ρP0 .

Lemma 6.7. Let D ∈ D(G/H) and let D0 ∈ D(M/M ∩H)⊗D(Aq) be the element
determined by μ(D) = e−ρP0 ◦D0 ◦ eρP0 ; see Remark 6.6. Let u ∈ U(g)H be a
representative of D and let u0 ∈ U(m)HM ⊗D(Aq) be a representative of D0. Then

(a) u− u0 ∈ nP0
U(g)⊕ U(g)h.

(b) Furthermore, if Q ∈ P(A) satisfies Σ(Q, σθ) ⊆ Σ(P0), then

u− u0 ∈ (nP0
∩ nQ)U(g) + U(g)h.

Proof. We start with (a). Note that U(m)HM ⊆ U(m0)
HM0 + U(m0)hM0

. Thus, if
v0 is a representative for D0 in U(m0)

HM0 ⊗ D(Aq), then u0 − v0 ∈ U(g)h and it
suffices to prove the assertion (a) with v0 in place of u0. The resulting assertion
immediately follows from the definition of μ in [vdB92, Sect. 2].

We turn to (b). In view of (6.11) and the PBW theorem, it suffices to show that
the image u1 of u− u0 in nP0

U(nP0
)⊗U(l)/U(l)hL in fact belongs to the subspace

(nP0
∩nQ)U(nP0

)⊗U(l)/U(l)hL. The element u1 is invariant under ad(ah), as both
u and u0 are. Since ah centralizes l, we have

u1 ∈ [nP0
U(nP0

)]ah ⊗ U(l)/U(l)hL.

By the PBW theorem we have the following direct sum decomposition into ad(ah)-
invariant subspaces:

nP0
U(nP0

) = (nP0
∩ nQ)U(nP0

)⊕ (nP0
∩ n̄Q)U(nP0

∩ n̄Q).

The ah-weights of the second summand are all of the form μ = α1 + · · ·+ αk, with
k ≥ 1 and αj ∈ Σ(P0) ∩ Σ(Q̄). The latter set is contained in Σ(Q̄, σ), because
Σ(Q, σθ) ⊆ Σ(P0). Let X ∈ a+(Q̄). Then it follows that the roots of Σ(Q̄, σ) are
positive on the element Y = X + σ(X) of ah. Hence μ(Y ) > 0; in particular μ �= 0.
We thus see that

[nP0
U(nP0

)]ah = [(nP0
∩ nQ)U(nP0

)]ah .

The result follows. �
Remark 6.8. In view of the PBW theorem, the map μ is entirely determined
either by the description in (a), or by the description in (b). For h-extreme Q
the proof of (b) is basically a reformulation of the argument given in the proof of
[AFJS12, Lemma 2.4].

Let w ∈ W (see the definition preceding Lemma 5.2). Then Ad(w) preserves m
and aq. The action of Ad(w) on m and aq induces an isomorphism of algebras

Ad(w) : D(M/HM )⊗ D(Aq)→ D(M/wHMw−1)⊗ D(Aq).

Accordingly, we define the algebra embedding

μw : D(G/H)→ D(M/wHMw−1)⊗ D(Aq)

by
μw := Ad(w) ◦ μ.

Let (τ, Vτ ) be a finite dimensional unitary representation of K. For each w ∈
W the natural action of D(M/wHMw−1) on C∞(M/wHMw−1 : τ0M ) induces an
algebra homomorphism

rw : D(M/wHMw−1)→ End
(
C∞(M/wHMw−1 : τ0M )

)
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In the following we will view End(AM,2(τ )) ⊗ D(Aq) as the algebra of invariant
differential operators with coefficients in End(AM,2(τ )), which naturally acts on
C∞(Aq)⊗AM,2(τ ). Accordingly, we define the algebra homomorphism

(6.14) μ( · : τ ) : D(G/H)→ End
(
AM,2(τ )

)
⊗ D(Aq)

by (
μ(D : τ )Ψ

)
w
= [(rw ⊗ I) ◦μw(D)]Ψw

(
Ψ ∈ C∞(Aq)⊗AM,2(τ ), w ∈ W

)
for D ∈ D(G/H).

Proposition 6.9. Let Q ∈ P(A). If D ∈ D(G/H) and φ ∈ C∞
c (G/H : τ ), then

(6.15) HQ,τ (φ) = μ(D : τ )HQ,τφ.

Proof. Let v ∈ W . Fix P0 ∈ Pσ(Aq) such that Σ(Q, σθ) ⊆ Σ(P0). In view of Lemma
1.4 there exists a unique P ∈ Pσ(A) such that Q 
 P ⊆ P0. Then Σ(Qv, σθ) ⊆
Σ(P v, σθ) = Σ(P v

0 ). Let D ∈ D(G/H) and let u and u0 be associated with D as in
Lemma 6.7, but with P v

0 , Q
v in place of P0, Q. Then

u− u0 ∈ (nP v
0
∩ nQv)U(g) + U(g)h

and

μ(D) = d−1
v ◦D0 ◦ dv,

where D0 = Ru0
and dv(a) = av

−1ρP0 , for a ∈ Aq; see Remark 6.6.
LetX ∈ aq be such that α(X) > 0 for every α ∈ Σ(P v

0 ). ThenX satisfies (2.1) for
the pair (P v, Qv). By Lemma 2.3 we infer that NQv ,X = NQv ∩NP v = NQv ∩NP v

0
.

By Definition 6.1 and Corollary 2.2 it now follows that(
HQ,τφ(a)

)
v
(m) = aρQ−ρQ,h

∫
NQv∩NPv

0

φ(mavn) dn

for all φ ∈ C∞
c (G/H : τ ), m ∈M and a ∈ Aq. In the integral on the right-hand side,

the function φ should be viewed as a function in C∞(G)⊗ Vτ of compact support
modulo H, i.e., with support in G that has compact image in G/H. Accordingly,
we define

Tφ(m, a) := aρQ−ρQ,h

∫
NQv∩NPv

0

φ(mavn) dn ((m, a) ∈M ×Aq),

for any such function φ. Note that Tφ ∈ C∞(M × Aq) ⊗ Vτ . It is readily verified
that

T (RZφ)(m, a) = 0

for φ ∈ C∞
c (G/H : τ ) and Z ∈ (nP v

0
∩ nQv)U(g) + U(g)h. Therefore,

(6.16)
(
HQ,τDφ(a)

)
v
(m) = T (Ru0

φ)(m, a).

For any function φ ∈ C∞(G : τ ) of compact support modulo H we have

T (φ)(m, a) = aρQ−ρQ,h

∫
NQ∩NP0

φ(manv) dn

= aρQ−ρQ,h
∣∣ detAd(a)|nQ∩nP0

∣∣−1
∫
NQ∩NP0

φ(nmav) dn
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for (m, a) ∈M ×Aq. Since

aρQ−ρQ,h
∣∣ detAd(a)|nQ∩nP0

∣∣−1
=
∣∣ detAd(a)|nQ∩nP0

∣∣− 1
2
∣∣ detAd(a)|nQ∩θnP0

∣∣ 12
=
∣∣ detAd(a)|nQ∩nP0

∣∣− 1
2
∣∣ detAd(a)|θnQ∩nP0

∣∣− 1
2

= a−ρP0 ,

we infer, writing d(a) = aρP0 , that

Tφ(m, a) = d(a)−1

∫
NQ∩NP0

φ(nvv−1mav) dn.

Now let φ ∈ C∞
c (G/H), so that Tφ ∈ C∞(M/vHMv−1 ×Aq)⊗ Vτ . Then

T (Ru0
φ)(m, a) = [d−1 ◦RAd(v)u0

◦ d](Tφ)(m, a)

= [d−1 ◦Ad(v)(Ru0
) ◦ d](Tφ)(m, a)

= Ad(v)[d−1
v ◦Ru0

◦ dv](Tφ)(m, a)

= μv(D)(Tφ)(ma).

In view of (6.16), we finally conclude that(
HQ,τφ(a)

)
v
(m) = μv(D)(Tφ)(ma)

=
(
[(rw ⊗ I) ◦μv(D)](HQ,τφ)v(a)

)
(m)

= [μ(D : τ )(HQ,τφ)(a)]v(m). �

7. Extension to the Schwartz space

Throughout this section, we assume that Q ∈ P(A) and that P0 is a minimal
σθ-stable parabolic subgroup that contains A and satisfies Σ(Q, σθ) ⊆ Σ(P0); see
Lemma 1.4.

We define

a
∗+
q (P0) := {λ ∈ a

∗
q : 〈λ, α〉 > 0 ∀α ∈ Σ(P0)}

and

A+
q (P0) = {a ∈ Aq : aα > 1 ∀α ∈ Σ(P0)}.

7.1. Tempered term of the τ -spherical Harish-Chandra transform. Let
(τ, Vτ ) be a finite dimensional unitary representation ofK as before. It is convenient
to denote by E(Q : · ) the meromorphic map a∗qC

→ Hom
(
AM,2, C

∞(G/H : τ )
)

given by

E(Q : λ)ψ = E(Q : ψ : λ)
(
λ ∈ a

∗
qC
, ψ ∈ AM,2(τ )

)
.

By Proposition 5.8, the singular locus of E(Q : − · ) equals the union of a locally
finite collection Hyp(Q, τ ) of hyperplanes of the form {λ ∈ a∗qC

: 〈λ, α〉 = c} with

α ∈ Σ\a∗h and c ∈ R. Each such hyperplane H can be written asH := μ+α⊥
C
, where

μ ∈ a∗q is real, and where α⊥
C

denotes the complexification of the real hyperplane

α⊥ ⊂ a∗q. We note that HR := H ∩ a∗q equals μ+ α⊥ and that H may be viewed as
the complexification of HR. Moreover, we agree to write

HypR(Q, τ ) := {HR : H ∈ Hyp(Q, τ )}.
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We note that for μ ∈ a∗+q (P0) \
⋃

HypR(Q, τ ) the function E(Q : − · ) is regular
on μ + ia∗q. Furthermore, if φ ∈ C∞

c (G/H : τ ) then from the Paley-Wiener type
estimate (5.30) in Proposition 5.8 we infer that

λ �→ FQ,τφ(λ) a
λ

is integrable on μ + ia∗q for every a ∈ Aq. In view of the estimates in the same
proposition, it follows by application of Cauchy’s integral formula that the map

a
∗+
q (P0) \

⋃
HypR(Q, τ ) � μ �→

∫
μ+ia∗

q

FQ,τφ(λ)a
λ dλ

is locally constant. Therefore, it is constant on each connected component of
a∗+q (P0) \

⋃
HypR(Q, τ ). Here dλ denotes the choice of (real) measure on μ + ia∗q

obtained by transferring (2π)− dim aq times the Lebesgue measure on a∗q under the
map λ �→ μ+ iλ.

Since E(Q : − · ) is holomorphic on an open neighborhood of the closed convex
set −ΥQ (see (5.3)), it follows that there exists a connected component C1 of
a∗+q (P0) \

⋃
HypR(Q, τ ) such that

C1 ⊇ a
∗+
q (P0) ∩ (−ΥQ).

Lemma 7.1. Let μ ∈ C1. Then

(7.1) HQ,τ (φ)(a) =

∫
μ+ia∗

q

FQ,τφ(λ)a
λ dλ (a ∈ Aq).

Proof. As the expression on the right-hand side of the equation is independent of
μ ∈ C1, we may assume that μ ∈ −ΥQ. Then in view of Proposition 6.4,∫

μ+ia∗
q

FQ,τφ(λ)a
λ dλ =

∫
ia∗

q

FAq
(HQ,τ (φ))(μ+ λ)aμaλ dλ = HQ,τ (a),

where the latter equality is valid by application of the Fourier inversion formula. �

We intend to analyze HQ,τ (φ) by applying a contour shift to the integral on the
right-hand side of (7.1) with μ tending to zero in a suitable way. This will result
in residual terms. In the σ-split rank one case, these are point residues, which will
be analyzed in the next section. For general σ-split rank, one may hope to analyze
them by using a multi-dimensional residue calculus in the spirit of [vdBS00].

Clearly, there exists a unique connected component C0 of a∗+q (P0)\∪HypR(Q, τ )

with 0 ∈ C0. For φ ∈ C∞
c (G/H : τ ) we define IQ,τφ : Aq → AM,2(τ ) by

IQ,τφ(a) = lim
ε↓0

∫
εν+ia∗

q

FQ,τφ(λ)a
λ dλ (a ∈ Aq).

Here ν is any choice of element of a∗+q (P0); the definition is independent of this
choice and

(7.2) IQ,τφ(a) =

∫
μ+ia∗

q

FQ,τφ(λ)a
λ dλ

for μ ∈ C0. The function IQ,τφ : Aq → AM,2(τ ) will be called the tempered term
of the Harish-Chandra transform.

We define

(7.3) C∞
temp

(
Aq

)
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to be the space of smooth functions on Aq which are tempered as distributions on
Aq, viewed as a Euclidean space, i.e., belong to the dual of the Euclidean Schwartz
space S (Aq). We equip the space (7.3) with the coarsest locally convex topology
such that the inclusion maps into C∞(Aq) and S ′(Aq) are both continuous. Here
C∞(Aq) and S (Aq) are equipped with the usual Fréchet topologies and S ′(Aq) is
equipped with the strong dual topology.

Proposition 7.2. If φ ∈ C∞
c (G/H : τ ), then IQ,τφ ∈ C∞

temp(Aq)⊗AM,2(τ ). The
map C∞

c (G/H : τ ) → C∞
temp(Aq) ⊗ AM,2(τ ) thus obtained has a unique extension

to a continuous linear map

IQ,τ : C (G/H : τ )→ C∞
temp(Aq)⊗AM,2(τ ).

Proof. Let B ⊆ a∗q be a bounded neighborhood of 0. Let p ∈ ΠΣ,R(a
∗
q) be as in

Proposition 5.5 (c). Then p(− · ) belongs to ΠΣ,R(a
∗
q), hence admits a decomposition

as a product of a polynomial from ΠΣ,R(a
∗
q) which vanishes nowhere on ia∗q and a

polynomial ph ∈ ΠΣ,R(a
∗
q) which is homogeneous. Then λ �→ ph(−λ)CP̄0|Q(1 : λ) is

holomorphic on an open neighborhood of ia∗q in a∗qC
.

According to [vdBS97c, Lemma 6.2] the Fourier transform FP̄0
extends to a

continuous linear map from C (G/H : τ ) to S (ia∗q) ⊗ AM,2(τ ). Hence, in view of
Proposition 5.7, also the map φ �→ phFQ,τφ extends to a continuous linear map
C (G/H : τ )→ S (ia∗q)⊗AM,2(τ ) and for all φ ∈ C (G/H : τ ) we have

(7.4) [phFQ,τφ](λ) = ph(λ)CP̄0:Q(1 : −λ̄)∗FP̄0
(φ)(λ) (λ ∈ ia∗q).

We now see that, for φ ∈ C (G/H : τ ),

(7.5) KQ,τφ(a) :=

∫
ia∗

q

ph(λ)FQ,τφ(λ)a
λ dλ (a ∈ Aq)

defines an element of S (Aq)⊗AM,2(τ ) and the map

KQ,τ : C (G/H : τ )→ S (Aq)⊗AM,2(τ )

thus obtained is continuous linear.
Let ν ∈ a∗+q (P0). It follows from [Hör03, Thm. 3.1.15] that the limit

(7.6) v(f) := lim
ε↓0

∫
ia∗

q

f(λ)

ph(λ+ εν)
dλ

exists for every f ∈ S (ia∗q), and that accordingly v defines a distribution on ia∗q.
This distribution is homogeneous, hence tempered; see [Hör03, Thm. 7.1.18]. Put
u := F−1

Aq
v. Then u is a tempered distribution on Aq, hence the convolution

operator f �→ u ∗ f defines a continuous linear map S (Aq)→ C∞
temp(Aq). Thus, to

finish the proof, it suffices to prove the claim that for every φ ∈ C∞
c (G/H : τ ),

(7.7) IQ,τφ = u ∗ KQ,τφ.

We set Φ := phFQ,τφ and note that KQ,τφ = F−1
Aq

Φ. Therefore,

u ∗ KQ,τφ = (F−1
Aq

v) ∗ F−1
Aq

Φ = F−1
Aq

(
Φv
)
.
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Let ψ ∈ C∞
c (ia∗q). Then

Φv(ψ) = lim
ε↓0

∫
ia∗

q

Φ(λ)ψ(λ)

ph(λ+ εν)
dλ

= lim
ε↓0

(∫
ia∗

q

Φ(λ+ εν)ψ(λ)

ph(λ+ εν)
dλ−

∫
ia∗

q

(∫ ε

0

∂tΦ(λ+ tν) dt
) ψ(λ)

ph(λ+ εν)
dλ

)

= lim
ε↓0

(∫
ia∗

q

FQ,τφ(λ+ εν)ψ(λ) dλ−
∫ ε

0

∫
ia∗

q

∂tΦ(λ+ tν)ψ(λ)

ph(λ+ εν)
dλ dt

)
.

The function

F : (t, ε) �→
∫
ia∗

q

∂tΦ(λ+ tν)ψ(λ)

ph(λ+ εν)
dλ

is continuous on [0, 1]× ]0, 1]. Moreover, since f : t �→ ∂tΦ( · + tν)ψ( · ) is a contin-
uous function [0, 1]→ C∞

c (ia∗q), it follows that in the Banach space C([0, 1]),

F ( · , ε)→ v(f( · )) (ε ↓ 0).
We thus see that F extends continuously to [0, 1]× [0, 1]. This in turn implies that

lim
ε↓0

∫ ε

0

F (t, ε) dt = 0,

hence

Φv(ψ) = lim
ε↓0

∫
ia∗

q

FQ,τφ(λ+ εν)ψ(λ) dλ.

Now let χ ∈ C∞
c (Aq). Then(

u ∗ KQ,τφ
)
(χ) = Φv

(
λ �→

∫
Aq

χ(a)aλ da
)

= lim
ε↓0

∫
ia∗

q

∫
Aq

FQ,τφ(λ+ εν)χ(a)aλ da dλ

= lim
ε↓0

∫
Aq

(∫
ia∗

q

FQ,τφ(λ+ εν)aλ+εν dλ

)
a−ενχ(a) da.

If ε is sufficiently small, then

IQ,τφ(a) =

∫
ia∗

q

FQ,τφ(λ+ εν)aλ+εν dλ

(see (7.2)), hence(
u ∗ KQ,τφ

)
(χ) = lim

ε↓0

∫
Aq

IQ,τφ(a) a
−ενχ(a) da =

∫
Aq

IQ,τφ(a)χ(a) da.

This establishes the claim (7.7). �

Remark 7.3. Assume that the Eisenstein integral E(Q : − · ) = Eτ (Q : − · )
is holomorphic on ]0, 1] · ξ for an element ξ ∈ C1. Then the chambers C0 and
C1 are equal, and it follows that HQ,τφ = IQ,τφ. In view of Proposition 7.2,
the spherical Harish-Chandra transform HQ,τ extends to a continuous linear map
C (G/H : τ )→ C∞

temp(Aq)⊗AM,2(τ ).
Now assume that the above condition of holomorphy is fulfilled for (τ, Vτ ) equal

to the trivial representation (1,C) of K. Then C (G/H : τ ) = C (G/H)K and
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AM,2(τ ) = CW and it follows by application of Lemma 6.2 that the restriction of
HQ to C∞

c (G/H)K extends to a continuous linear map C (G/H)K → C∞(L/HL)
M .

By application of Proposition 4.6 it now follows that HQ extends to a continuous
linear map C (G/H)→ C∞(L/HL) and is given by absolutely convergent integrals.
Moreover, the image of HQ consists of tempered functions.

Finally, assume that Σ−(Q) = ∅. Then ΥQ = a∗qC
. This implies that FQ,τφ is

holomorphic on a∗qC
for every φ ∈ C∞

c (G/H : τ ). Now a stronger statement can be
obtained than in the more general setting above. The polynomial p in the proof for
Proposition 7.2 can be taken equal to the constant function 1. The distribution u
is then equal to the Dirac measure at the origin of ia∗q and as a consequence, IQ,τ

is equal to KQ,τ . In particular, it follows that HQ,1 extends to a continuous linear
map C (G/H)K → C (L/HL)

M and is given by absolutely convergent integrals. In
view of Lemma 6.2 it follows that HQ maps C (G/H)K continuous linearly into
C (L/HL)

M .
We will now apply domination to show that in this case HQ is a continuous

linear map from C (G/H) to C (L/HL). In the above we established already that
for φ ∈ C (G/H) the function HQφ ∈ C∞(L/HL) is given by absolutely convergent
integrals. For the purpose of estimation, let ϕ �→ ϕ̂ be a map as in Proposition
4.2. Let u ∈ U(l). Then there exists a u′ ∈ U(l) such that Lu ◦ δQ = δQ ◦Lu′ on
C∞(L/HL). Thus, for φ ∈ C (G/H) we have

(7.8) LuHQ(φ) = δQLu′RQ(φ) = HQ(Lu′φ),

by equivariance of the Radon transform. Let N ∈ N. There exists a continuous
seminorm ν on C (G/H) such that for all φ ∈ C (G/H)K and l ∈ L,

(7.9) (1 + ‖l‖)N |HQ(φ)(l)| ≤ ν(φ).

It now follows by application of Proposition 4.2 that there exists a continuous
seminorm μ on C (G/H) such that

(7.10) ν(φ̂) ≤ μ(φ) (φ ∈ C (G/H)).

Combining the equality (7.8) with the estimates (7.9) and (7.10), we find

(1 + ‖l‖)N |LuHQ(φ)(l)| ≤ (1 + ‖l‖)NHQ(|Lu′φ|)
≤ (1 + ‖l‖)NHQ(L̂u′φ)

≤ ν(L̂u′φ) ≤ μ(Lu′φ).

This establishes the continuity.

Example 7.4 (Group case). We use the notation of Example 3.2. Assume that �P
and �Q are minimal parabolic subgroups of �G containing �A. Since Σ−(

�P × �P ) =

∅, the final analysis in Remark 7.3 applies to H�P×�P . Let �ξ ∈ �M̂ and define

ξ ∈ M̂ by ξ := �ξ ⊗ �ξ∨. For �λ ∈ �a∗
C
we set λ = (�λ,−�λ) ∈ a∗qC

. Let (τ, Vτ )
be a finite dimensional unitary representation of K = �K × �K. We recall from
[vdBK14, Eqn. (8.16)] that the C-function C(�Q× �Q : �P × �Q : λ) ∈ End(AM,2(τ ))
is defined by the relation

(7.11) E(�P × �Q : λ) = E(�Q× �Q : λ) ◦C(�Q× �Q : �P × �Q : λ).

It follows from [vdBK14, Cor. 9.6, 9.8] that

C(�Q× �Q : �P × �Q : λ)ψf⊗I�ξ = ψ[A(�Q:�P :�ξ:−�λ)⊗I)f ]⊗I�ξ
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for ξ ∈ M̂ and f ∈ C∞(K : ξ : τ ). The intertwining operator A(�Q : �P : �ξ : �λ)
depends holomorphically on λ = (�λ,−�λ̄) in the region

U := {λ ∈ a
∗
qC

: 〈�λ , α〉 > 0 for all α ∈ Σ(�P ) ∩ Σ(�Q̄) }.
Clearly, U is contained in a∗+qC

(�P × �P̄ ). It follows that the C-function in (7.11)
depends holomorphically on λ ∈ −U. From (7.11) it follows that

F�P×�Q,τφ(λ) = C(�Q× �Q : �P × �Q : −λ̄)∗ ◦ F�Q×�Q,τφ(λ).

Hence, F�P×�Qφ is holomorphic on a∗+q (�P × �P̄ ) for every φ ∈ C∞
c (G/H : τ ). It

follows from Remark 7.3 thatH�P×�Q extends to C (G/H) and is given by absolutely
convergent integrals. Moreover, H�P×�Q maps C (G/H) to the space of smooth
tempered functions on L/HL.

The convergence of the integrals for H�P×�Q also follows from combining [Wal88,
Thm. 7.2.1] and [Wal92, Lemma 15.3.2].

Remark 7.5. We should inform the reader that [Wal92, Lemma 15.3.2] has an
additional assertion that a certain transform fP is of Schwartz behavior. However,
the proof of this assertion is not correct. In fact, in the right-hand side of the
inequality at the top of page 377, a factor (1 + ‖ log(aa1)‖)2d is missing.

From the given proof it can be concluded that the map f �→ fP is given
by absolutely convergent integrals, that it is continuous from C (N0\G : χ) to
C∞(N0 ∩ MP \MP : χ|N0∩MP

), and that its image consists of tempered smooth
functions. However, the second part of Lemma 15.3.2 of [Wal92] cannot be true
in the generality stated. Indeed, combined with [Wal88, Thm. 7.2.1] the validity
of the lemma would imply that H�P×�P̄ maps C (G/H) to C (L/HL). The latter
assertion is already incorrect for �G = SL(2,R). This is established in Lemma 7.6
below.

The parts of the proof of the Whittaker Plancherel formula in [Wal92] that are
affected by the mentioned error have been fixed by Wallach in [Wal17].

Lemma 7.6. Let �G = SL(2,R) and let φ ∈ C (G/H). Assume that φ ≥ 0 and

(7.12) φ

((
0 −1
1 0

)
, e

)
> 0.

Then
lim inf
a→∞

a∈A+
q (�P×�P̄ )

H�P×�P̄ φ(a) > 0.

Proof. For t > 0 and x, y ∈ R, we define

at =

(
et 0
0 e−t

)
, nx =

(
1 x
0 1

)
, ny =

(
1 0
−y 1

)
.

To shorten notation, we write

I(t) := H�P×�P̄φ
(
at/2, a−t/2

)
.

Using the identification G/H
�→ �G induced by (x, y) �→ xy−1 to view φ as a

function on �G we obtain

I(t) = et
∫
R

∫
R

φ(at/2nxn
−1
y at/2) dx dy = et

∫
R

∫
R

φ

(
et(1 + xy) x

y e−t

)
dx dy.

Let 0 < ε < 1 and η > 0. We define the domain

Dt := {(x, y) ∈ R2 : −ε < et(1 + xy) < ε, 1 < y < 1 + η}.
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Note that (x, y) ∈ Dt if and only if

1 < y < 1 + η and
−e−tε− 1

y
< x <

e−tε− 1

y
.

Hence, for t > 0,

Dt ⊆ Rε,η :=
[
− ε− 1,

ε− 1

1 + η

]
×
[
1, 1 + η

]
.

We note that Rε,η tends to {(−1, 1)} for ε, η ↓ 0 and define

Cε,η :=

{(
a b
c d

)
∈ �G : |a| ≤ ε, |d| ≤ ε, (b, c) ∈ Rε,η

}
.

Then Cε,η is compact and tends to the singleton consisting of the matrix in (7.12).
We may therefore take ε and η so close to zero that the function φ is strictly positive
on Cε,η. We thus obtain, for t > − log ε, that

I(t) ≥ et
∫ 1+η

1

∫ e−tε−1
y

−e−tε−1
y

φ

(
et(1 + xy) x

y e−t

)
dx dy

≥ et inf
(u,v)∈Dt

φ

(
et(1 + uv) u

v e−t

)∫ 1+η

1

∫ e−tε−1
y

−e−tε−1
y

dx dy

≥ 2ε log(1 + η) inf
Cε,η

φ > 0. �

7.2. The residual term for spaces of split rank one. We retain the notation
of the previous subsection. In particular, Q ∈P(A) and P0 ∈Pσ(Aq) is such that
Σ(Q, σθ) ⊆ Σ(P0). As mentioned in the previous subsection, the difference between
HQ,τφ and IQ,τφ is equal to a finite sum of residual integrals. These become point
residues in case dim aq = 1. For the rest of this subsection, we make an assumption.

Assumption. G/H is of split rank one, i.e., dim aq = 1.

By our assumption on the split rank, each hyperplane from the set Hyp(Q, τ ) de-
fined in the beginning of Subsection 7.1 consists of a single point in a∗q. Furthermore,
the union

⋃
Hyp(Q, τ ) is a discrete subset of a∗q, by Proposition 5.8.

We define
SQ,τ := a

∗+
q (P0) ∩

(⋃
Hyp(Q, τ )

)
.

Lemma 7.7. The set SQ,τ is finite.

Proof. The Eisenstein integral E(Q : − · ) is holomorphic on −Υ̂Q. The latter set
contains a set of the form ξ + a∗+q (P0) + ia∗q, with ξ ∈ a∗q. Hence, SQ,τ is contained

in the set a∗+q (P0) \ (ξ + a∗+q (P0) + ia∗q) which is bounded. Since SQ,τ is discrete,
the result follows. �

For a meromorphic function f : a∗qC
→ C and a point μ ∈ a∗qC

we define the
residue

(7.13) Res
λ=μ

ϕ(λ) := Res
z=0

ϕ(μ+ zω).

Here ω is the unique vector in a∗+q (P0) of unit length (relative to the Killing form),
z is a variable in the complex plane, and the residue on the right-hand side of (7.13)
is the usual residue from complex analysis, i.e., the coefficient of z−1 in the Laurent
expansion of z �→ ϕ(μ+ zω) around z = 0.
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Lemma 7.8. Let φ ∈ Cc(G/H : τ ). Then

HQ,τφ(a) = IQ,τφ(a) +
∑

μ∈SQ,τ

Res
λ=μ

aλ FQ,τφ(λ).

Proof. By the chosen normalization of the measure dλ on μ+ ia∗q,∫
νω+ia∗

q

FQ,τ (φ)(λ) dλ =
1

2πi

∫
ν+iR

FQ,τ (φ)(τω) dτ.

In view of the estimates (5.30) the result now follows by a straightforward applica-
tion of the Cauchy integral formula. �
Lemma 7.9. Let ψ ∈ AM,2(τ ) and μ ∈ SQ,τ . Then for all φ ∈ Cc(G/H : τ ),

(7.14) Res
λ=μ

〈aλ FQ,τ (φ)(λ) , ψ〉 = aμ〈φ , Resτ (Q : μ : a : · )(ψ)〉,

where Resτ (Q : μ) is the function Aq ×G/H → Hom(AM,2(τ ), Vτ ) given by

Resτ (Q : μ : a : x)(ψ) = − Res
λ=−μ

(
a−λ−μE(Q : ψ : λ)(x)

)
.

Proof. First, assume that Φ : a∗qC
→ C is a meromorphic function. Then it is readily

verified that

Res
λ=μ

aλΦ(−λ̄) = aμ Res
z=0

az̄ωΦ(−μ− z̄ω)

= −aμRes
z=0

a−zωΦ(−μ+ zω)

= −aμ Res
λ=−μ

a−λ−μΦ(λ).

By using conjugate linearity of the pairing C∞
c (G/H : τ )× C∞(G/H : τ ) → C in

the second factor, it now follows that the expression on the left-hand side of (7.14)
equals

Res
λ=μ

aλ 〈φ , E(Q : ψ : −λ̄)〉 = −aμ〈φ , Res
λ=−μ

a−λ−μE(Q : ψ : λ)〉.

The latter expression is equal to the right-hand side of (7.14). It is clear that
Resτ (Q : μ) is a function in C∞(Aq ×G/H)⊗ Vτ ⊗AM,2(τ )

∗, which is τ -spherical
in the second variable. �

The following result will be a useful tool for understanding the nature of the
residues. We will use the notation Pd(aq) for the space of polynomial functions
a∗qC

→ C of degree at most d, and Pd(Aq) for the space of functions Aq → C of the
form a �→ p(log a), with p ∈ Pd(aq).

Lemma 7.10. Let μ ∈ SQ,τ and ψ ∈ AM,2(τ ). Then the following assertions hold.

(a) Let φ be a holomorphic function defined on a neighborhood of μ such that
the C∞(G/H : τ )-valued function λ �→ φ(λ)E(Q : ψ : λ) is holomorphic at
μ. Then for every u ∈ S(a∗q),

(7.15) ∂u|λ=μ φ(λ)E(Q : ψ : λ)

is a D(G/H)-finite function in C∞(G/H : τ ).
(b) Let ϕ be a meromorphic function in a neighborhood of μ. Then

(7.16) Res
λ=μ

ϕ(λ)E(Q : ψ : λ)

is a D(G/H)-finite function in C∞(G/H : τ ).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CUSP FORMS FOR REDUCTIVE SYMMETRIC SPACES OF SPLIT RANK ONE 513

Proof. Assertion (a) follows by applying the argument of the proof of [vdBS99,
Lemma 6.3].

For (b) we may fix a non-trivial polynomial function q such that φ := q(λ)ϕ is
holomorphic at μ and satisfies the hypothesis of (a). Then there exists u ∈ S(a∗q)
such that (7.16) equals (7.15). �

Lemma 7.11. Let μ ∈ SQ,τ and let d ≥ 0 be the pole order of λ �→ E(Q : λ) at
−μ. Then there exists a finite dimensional subspace V ⊆ C∞(G/H : τ ), consisting
of D(G/H)-finite functions, such that

Resτ (Q : μ) ∈ Pd−1(Aq)⊗ V ⊗AM,2(τ )
∗.

Proof. There exists a non-zero polynomial function q on a∗qC
of degree d such that

the C∞(G/H)K ⊗ AM,2(τ )
∗-valued meromorphic function λ �→ q(λ)E(Q : λ) is

regular at −μ. It follows that there exists a u ∈ S(a∗q) of order at most d− 1 such
that

Resτ (Q : μ : a : x)ψ = ∂u|λ=−μ a
−λ−μq(λ)E(Q : ψ : λ)(x)

for all a ∈ Aq, x ∈ G/H and ψ ∈ AM,2(τ ). By application of the Leibniz rule we
infer that there exist finitely many u1, . . . , uk ∈ S(a∗q) and p1, . . . , pk ∈ Pd−1(aq),
such that

Resτ (Q : μ : a : · ) =
k∑

j=1

pj(log a) ∂uj

∣∣
λ=−μ

q(λ)E(Q : λ)

for all a ∈ Aq. The assertion now readily follows by application of Lemma 7.10. �

Next, we will need the following version of Lemma 7.8.

Corollary 7.12. Let φ ∈ Cc(G/H : τ ). Then, for every ψ ∈ AM,2(τ ),

(7.17) 〈HQ,τφ(a) , ψ〉 = 〈IQ,τφ(a) , ψ〉+
∑

μ∈SQ,τ

aμ〈φ , Resτ (Q : μ : a : · )ψ〉.

Proof. This follows from combining Lemma 7.8 with (7.14). �

7.3. h-compatible parabolic subgroups. The residual terms in (7.17) will turn
out to have a special relation to representations of the discrete series if we select the
parabolic subgroup Q so that its positive system Σ(Q) satisfies a certain geometric
restriction.

Although we will only apply the definitions and results of the present subsection
to symmetric spaces of split rank 1, everything in this subsection is in fact valid for
symmetric spaces of higher split rank as well.

Definition 7.13. A parabolic subgroup Q ∈P(A) is said to be h-compatible if

〈α, ρQ,h〉 ≥ 0 for all α ∈ Σ(Q);

see (1.1) for the definition of ρQ,h.Wewrite Ph(A) for the subset of P(A) consisting
of all such parabolic subgroups.

Lemma 7.14.

(a) If P0 ∈ Pσ(Aq), then there exists an h-extreme Q ∈ Ph(Aq) such that
Σ(Q, σθ) ⊆ Σ(P0).

(b) If Q ∈ Ph(A), then Σ(Q, σθ) ⊥ ρQ,h.
(c) If P,Q ∈ P(A) and P � Q, then P ∈Ph(A)⇒ Q ∈ Ph(A).
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Proof. We start with (a). Let P0 ∈ Pσ(Aq). We fix X in the associated positive
chamber a∗+q (P0) and select a positive system Σ+

h
for the root system Σ ∩ a∗h. Put

ρh :=
1

2

∑
α∈Σ+

h

mαα.

Then ρh belongs to the positive chamber for Σ+
h

in a∗h. There exists Y ∈ ah such
that for all α ∈ Σ,

(7.18) 〈α , ρh〉 > 0⇒ α(Y ) > 0.

Replacing Y by a small perturbation if necessary, we may in addition assume
that Y belongs to the set areg

h
of elements Z ∈ ah such that for all α ∈ Σ we have

α(Z) = 0⇒ α|ah
= 0.

We fix ε > 0 sufficiently close to zero so that for all α ∈ Σ,

(7.19) α(Y ) > 0⇒ α(Y + εX) > 0,

and so that Y +εX is a regular element in a. Let Q ∈ P(A) be the unique parabolic
subgroup such that Y + εX belongs to the positive chamber a+(Q). We claim that
Q satisfies the requirements. To see this, we start with the observation that for
α ∈ Σ \ a∗q we have α(Y ) �= 0, so that

(7.20) signα(Y ) = signα(Y + εX).

For such α it follows by application of (7.20) to both α and σα that

sign σα(Y + εX) = signα(Y + εX).

Thus, we see that for α ∈ Σ \ a∗q we have α ∈ Σ(Q) if and only if σα ∈ Σ(Q). Thus,
Σ(Q) \ a∗q = Σ(Q, σ) and we infer that Q is h-extreme.

If α ∈ Σ(Q) ∩ a∗q, then

εα(X) = α(Y + εX) > 0

and we obtain that α ∈ Σ(P0). Hence, Σ(Q, σθ) = Σ(Q) ∩ a∗q ⊆ Σ(P0).
Next, assume that α ∈ Σ satisfies 〈α , ρh〉 �= 0. Then in view of (7.18) and (7.19)

we have

(7.21) sign 〈α , ρh〉 = signα(Y ) = signα(Y + εX).

In particular, the above is valid for α ∈ Σ+
h
. From this we see that Σ+

h
= Σ(Q)∩a∗h,

so that ρQ,h = ρh.
For the proof of (a), it remains to be shown that Q is h-compatible. Let α ∈

Σ(Q). If 〈α , ρQh〉 �= 0, then it follows from (7.21) that 〈α , ρQ,h〉 = 〈α , ρh〉 > 0.
This establishes (a).

We turn to (b). Let α ∈ Σ(Q, σθ). Then 〈α , ρQ,h〉 ≥ 0. On the other hand,
σθα ∈ Σ(Q) hence

0 ≤ 〈σθα , ρQ,h〉 = −〈α , ρQ,h〉
and we see that α ⊥ ρQ,h.

Finally, assume that P,Q satisfy the hypotheses of (c) and that P ∈ Ph(A).
From P � Q it follows that Σ(P ) ∩ a∗h = Σ(Q) ∩ a∗h, hence ρP,h = ρQ,h. Since P is

h-compatible and since (b) holds, we see that every root α from the set

Ψ := Σ(P ) ∪ −Σ(P, σθ)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CUSP FORMS FOR REDUCTIVE SYMMETRIC SPACES OF SPLIT RANK ONE 515

satisfies 〈α , ρQ,h〉 ≥ 0. We will finish the proof by showing that Σ(Q) ⊆ Ψ. Let α ∈
Σ(Q). Then either α ∈ Σ(Q, σθ) or α ∈ Σ(Q, σ). In the first case, α ∈ Σ(P, σθ) ⊆ Ψ.
Thus, assume α ∈ Σ(Q, σ). If α ∈ Σ(P, σ), then α ∈ Ψ. Thus, it remains to consider
the case that α /∈ Σ(P, σ). Since −α ∈ Σ(P, σ) would imply −α ∈ Σ(Q, σ) ⊆ Σ(Q),
contradiction, both α and −α do not belong to Σ(P, σ). It follows that one of them
must belong to Σ(P, σθ), hence α ∈ Ψ. �

Example 7.15 (Group case). We use notation as in Example 3.2. Every element
of P(�A× �A) is of the form P = �P × �Q, where �P and �Q are minimal parabolic
subgroups containing �A. All roots are non-zero on aq, hence ρP,h = 0. Each of
these parabolic subgroups is therefore h-compatible.

The importance of the notion of h-compatibility comes from the following result,
which implies that if Q ∈Ph(A), then certain singularities of E(Q : · ) are caused
by singularities of E◦(P̄0 : · ); see also Lemma 5.4.

Proposition 7.16. Let P0 be a minimal σθ-stable parabolic subgroup containing
A. Let Q ∈ Ph(A) and assume that Σ(Q : σθ) ⊆ Σ(P0). Then CP̄0|Q(1 : · ) is

holomorphic on −a∗+q (P0) + ia∗q.

Proof. Assume that λ ∈ −a∗+q (P0) + ia∗q. Then Re 〈λ, α〉 < 0 for all α ∈ Σ(P0) and
〈ρQ,h, α〉 ≥ 0 for all α ∈ Σ(Q). Hence,

Re 〈−λ+ ρQ,h, α〉 > 0 for all α ∈ Σ(P0) ∩ Σ(Q).

The result now follows by application of Proposition 5.5(b). �

We end this section with a result about W -conjugates of h-compatible parabolic
subgroups.

Lemma 7.17. If Q ∈ Ph(A), then Qv ∈ Ph(A) for every v ∈ NK(aq) ∩NK(ah).
In particular, this is valid for v ∈ W .

Proof. Since v normalizes both a and ah, it follows that

Σ(Qv) ∩ a
∗
h = v−1 · (Σ(Q) ∩ a

∗
h),

hence ρQv,h = v−1 · ρQ,h. The lemma now follows from the fact that v acts isomet-
rically on a∗. �

7.4. Residues for the trivial K-type. In this subsection we retain the following.

Assumption. G/H is of split rank 1.

Our goal is to analyze the residues of Eisenstein integrals E(Q : λ) as introduced
in Lemma 7.9, for Q ∈ Ph(A) and for (τ, Vτ ) equal to the trivial representation
(1,C) of K. To emphasize that τ = 1, we denote the associated Eisenstein integrals
with E1(Q : λ); see also (5.5).

As before, we assume that P0 is a minimal σθ-stable parabolic subgroup con-
taining A and such that Σ(Q, σθ) ⊆ Σ(P0).

If π is a discrete series representation for G/H, we agree to write C (G/H)π
for the closed subspace of C (G/H) spanned by left K-finite and right H-fixed
generalized matrix coefficients of π.
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Proposition 7.18. Assume that Q ∈ Ph(A). There exist finitely many spherical
discrete series representations π1, . . . , πk such that for all μ ∈ SQ,1, all ψ ∈ AM,2(1)
and all a ∈ Aq,

Res1(Q : μ : a : · )(ψ) ∈
k⊕

i=1

C (G/H)πi
.

We will prove this proposition through a series of results. First, we need to
prepare for these. Let W (aq) be the Weyl group of the root system of aq in g. Then
W (aq) = {−1, 1}, since dim(aq) = 1 by assumption. The map

(7.22) AM,2(1) −→ CW , ψ �→ (ψw(e) : w ∈ W )

is a linear isomorphism via which we shall identify the indicated spaces.
Let ψ ∈ AM,2(1). Then from [vdBK14, Thm. 8.13] it follows that, for R ∈

Pσ(Aq), w ∈ W , b ∈ A+
q (R) and generic λ ∈ a∗qC

,

E1(Q : ψ : λ)(bw) =
∑

s∈{±1}
ΦR,w(sλ : b)[CR|Q(s : λ)ψ]w(e).

Here ΦR,w(λ, · ), for generic λ ∈ a∗qC
, is a certain function on A+

q (R) defined as in
[vdBS97a, Thm. 11.1], for τ = 1. We recall that the functions are related by the
equations

(7.23) ΦR,w(λ, a) = Φw−1Rw,1(w
−1λ,w−1aw)

for generic λ ∈ a∗qC
and all a ∈ A+

q (R); see [vdBS97a, Lemma 10.3]. It follows from
these relations and [vdBS97a, Eqn. (15)] that the function ΦR,w(λ, · ) for generic
λ ∈ a∗qC

has a converging series expansion of the form

(7.24) ΦR,w(λ, a) = aλ−ρR

∑
k≥0

ΓR,w,k(λ)a
−kα (a ∈ A+

q (P̄0)),

where α denotes the unique indivisible root in Σ(R, aq). The coefficients ΓR,w,k, for
k ∈ N, are meromorphic functions on a∗qC

, which are uniquely determined by the
following conditions (see [vdBS97a, Prop. 5.2, Eqn. (19)]), taking into account that
τ (L±

α ) = 0 and γ = 0, because τ is trivial.

(1) ΓR,w,0(λ) = 1 for all λ ∈ a∗qC
.

(2) The function λ �→
(∏k

l=1〈2λ− lα , α〉
)
· ΓR,w,k(λ) is entirely holomorphic

on a∗qC
.

In the proof ahead, we will need the following additional properties of the functions
ΦR,w and their expansions.

Lemma 7.19. Let Ω be a bounded open subset of a∗q. Then there exists a polynomial
function q ∈ ΠΣ,R(a

∗
q) (see (5.17)), such that the following assertions are valid.

(a) For every k ≥ 0 the function qΓR,w,k is holomorphic on Ω+ iaq.
(b) The power series ∑

k≥0

q(λ)ΓR,w,k(λ)z
k

converges absolutely on D = {z ∈ C : |z| < 1}, locally uniformly in
(λ, z) ∈ (Ω + ia∗q) × D. In particular, it defines a holomorphic function
on the mentioned set.
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(c) The assignment a �→ q(λ)ΦR,w(λ : a) defines a smooth function on Aq,
depending holomorphically on λ ∈ Ω× ia∗q.

(d) For all λ ∈ Ω+ ia∗q and a ∈ A+
q (R),

q(λ)ΦR,w(λ, a) = q(λ)aλ−ρR

∑
k≥0

ΓR,w,k(λ)a
−kα.

Proof. In view of the relations (7.23), we may assume that w = 1. By boundedness
of Ω there exists n ≥ 1 such that 〈2λ− lα , α〉 �= 0 for all l > n and λ ∈ Ω+ ia∗q. In
view of conditions (1) and (2) above, we see that the polynomial

q(λ) =

n∏
l=1

〈2λ− lα , α〉

satisfies the requirements of (a).
In view of (a), it follows from the estimate for the coefficients given in [vdBS97a,

Thm. 7.4], that for every compact subset U ⊆ Ω+ ia∗q there exists a constant C > 0
and an integer κ > 0 such that

|q(λ)ΓR,1,k(λ)| ≤ C(1 + k)κ (λ ∈ U).

From this, (b) follows readily. Finally, (c) and (d) are immediate consequences of
(a), (b) and (7.24). �

Based on the lemma, we can prove another preparatory result.

Proposition 7.20. Let μ ∈ a∗+q (P0). Then for every holomorphic function f :
a∗qC

→ C and every ψ ∈ AM,2(τ ) the function

(7.25) Res
λ=−μ

f(λ)E1(Q : ψ : λ) : G/H → C

is D(G/H)-finite and contained in C (G/H)K .

Remark 7.21. Actually the result is valid for any holomorphic function f defined
on an open neighborhood of −μ, but we will not need this.

Proof of Proposition 7.18. Let F be the function (7.25). It follows from Lemma
7.10(b) that F belongs to C∞(G/H)K and is D(G/H)-finite.

We will complete the proof by showing that F belongs to the Schwartz space.
Fix w ∈ W , then by [vdB87a, Thm. 6.4] it suffices to establish, for any ε > 0, the
existence of a constant C = Cε > 0 such that

(7.26) |F (bw)| ≤ Cb−μ+εα−ρP̄0 (b ∈ A+
q (P̄0)).

Taking R = P̄0 we obtain that, for w ∈ W , for b ∈ A+
q (P̄0) and generic λ ∈ a∗qC

,

E1(Q : ψ : λ)(bw) =
∑

s∈{±1}
ΦP̄0,w(sλ : b)[CP̄0|Q(s : λ)ψ]w(e).

Here CP̄0|Q(1 : · ) is holomorphic at the element −μ ∈ a∗+q (P̄0).

For k ≥ 1 we define the polynomial function qk := 〈 · + μ , α〉k on a∗qC
. Let Ω be

a bounded open neighborhood of −μ in a∗q. Then we may select an integer k1 ≥ 0

such that the polynomial qk1
satisfies all properties of Lemma 7.19 for R = P̄0 and

all w ∈ W . In addition we may fix k2 ≥ 0 such that the function

(7.27) λ �→ qk2
(λ)CP̄0|Q(s : λ)
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is holomorphic on an open neighborhood U of −μ in Ω + ia∗q for each s ∈ {±1}.
Put q = qk1

qk2
, then it follows that q(λ)E1(Q : ψ : λ)(bw) is smooth in (λ, b) ∈

U ×A+
q (P̄0) and holomorphic in the first of these variables.

For each s ∈ {±1}, we define the disjoint decomposition

N = N (s,+) ∪N (s,−)
by

k ∈ N (s,+) ⇐⇒ 〈−2sμ− kα , α〉 > 0.

Accordingly, we put

Φ±
P̄0,w

(sλ, b) = b−ρP̄0

∑
k∈N (s,±)

ΓP̄0,w,k(sλ)b
sλ−kα.

Then
ΦP̄0,w(sλ, b) = Φ+

P̄0,w
(sλ, b) + Φ−

P̄0,w
(sλ, b).

It is easily seen that N (s,+) is finite and without gaps in N. Furthermore, we may
shrink U to arrange that 〈2sλ− kα , α〉 > 0 for all s = ±1, k ∈ N (s,+) and λ ∈ U.
In view of property (2) below (7.24) this implies that the function

Φ+
P̄0,w

(sλ, b)

is holomorphic in λ ∈ U, for each s = ±1. Furthermore, if s = −1, then 〈−sμ , α〉 <
0 and we see that N (−1,+) = ∅ so that in fact

Φ+
P̄0,w

(−λ, b) = 0.

We agree to write

Ψ±(λ, b)) =
∑

s∈{±1}
Φ±

P̄0,w
(sλ : b)[CP̄0|Q(s : λ)ψ]w(e),

so that
E1(Q : ψ : λ)(bw) = Ψ+(λ, b) + Ψ−(λ, b).

Taking into account that CP̄0|Q(1 : · ) is holomorphic at the point −μ, it follows

from the above that Ψ+(λ, b) is holomorphic at λ = −μ, so that

Res
λ=−μ

[f(λ)Ψ+(λ, b)] = 0 (b ∈ A+
q (P0)).

We infer that

(7.28) F (bw) = Res
λ=−μ

f(λ)Ψ−(λ, b).

We will now derive an estimate for f(λ)q(λ)Ψ−(λ, b) by looking at the exponents
of the series expansion. If s = 1, then it follows that for k ∈ N (s,−) we have

〈−sμ− kα , α〉 ≤ 0 + 〈μ , α〉 < 0.

Shrinking U we may arrange that for all λ ∈ U and all k ∈ N (s,−),
(7.29) Re 〈sλ− kα , α〉 ≤ 〈μ+ εα , α〉.
As described in Lemma 7.19, the series for q1(λ)ΦP̄0,w(sλ : b) is essentially a power

series in b−α, with holomorphic dependence on λ. Hence, we may shrink U to
arrange that there exists a constant C > 0 such that for λ ∈ U and b ∈ Aq with
bα ≥ 2 we have

(7.30) |q1(λ)Φ−
P̄0,w

(sλ, b)| ≤ Cb−μ−ρP̄0
+εα.
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On the other hand, if s = −1, then for all k ∈ N we have

〈−sμ− kα , α〉 ≤ 〈μ , α〉 < 0

and we see that by shrinking U even further if necessary, we may arrange that
(7.29) is valid for the present choice of s, all k ∈ N and all λ ∈ U. This leads to
the estimate (7.30) for s = −1. From the estimates obtained, combined with the
holomorphy of the function (7.27), for s = ±1, we infer that there exists a constant
C1 > 0 such that

|f(λ)q(λ)Ψ−(λ, b)| ≤ C1b
−ρP̄0

+(−μ+εα)

for λ ∈ U and bα ≥ 2. Using the integral formula for the residue in (7.28) and
taking into account that q(λ)−1 is bounded on a circle around −μ in U, we infer
that there exists C > 0 such that (7.26) is valid for all b ∈ Aq with bα ≥ 2. Since F
is continuous, a similar estimate holds for all b ∈ A+

q (P̄0). �

We finally come to the proof of Proposition 7.18.

Proof of Proposition 7.18. Let μ ∈ SQ,1. It follows from Lemma 7.11 that there ex-
ists an integer d ≥ 0 and a finite dimensional subspace V ⊆ C∞(G/H)K , consisting
of D(G/H)-finite functions, such that

(7.31) Res1(Q : μ)ψ ∈ Pd(Aq)⊗ V

for all ψ ∈ AM,2(1). On the other hand, it follows by application of Proposition
7.20 that Res1(Q : μ : a : · ) is a D(G/H)-finite function in C (G/H)K for every
a ∈ Aq. Hence, (7.31) is valid with V a finite dimensional subspace of C (G/H)K ,
consisting of D(G/H)-finite functions, which are therefore in particular Z(g)-finite.

It now follows that the (g,K)-span of V in C (G/H) is a (g,K)-module of fi-
nite length in view of a well-known result of Harish-Chandra; see [Var77, p. 312,
Thm. 12] and [Wal88, p. 112, Thm. 4.2.1].) The closure of this span in L2(G/H) is
therefore a finite direct sum of irreducible subrepresentations. Since V consists of
left K-invariant functions, each of these irreducible subrepresentations is spherical.
The result follows. �

Remark 7.22. The proof of Proposition 7.18 relies heavily on the assumption that
aq is one-dimensional, which makes it possible to analyse which exponents vanish
from the expansion involved, by taking residues.

7.5. Convergence for symmetric spaces of split rank one. In this subsection
we retain the following.

Assumption. G/H is of split rank one.

Theorem 7.23. Let Q ∈ Ph(A). Then HQ has a unique extension to a continuous
linear map C (G/H)→ C∞(L/HL). Moreover, for every φ ∈ C (G/H),

HQφ(l) = δQ(l)

∫
NQ/HNQ

φ(ln) dn (l ∈ L)

with absolutely convergent integrals. Furthermore, the Radon transform RQ has a
unique extension to a continuous linear map C (G/H)→ C∞(G/NQ) and for every
φ ∈ C (G/H),

RQφ(g) =

∫
NQ/HNQ

φ(gn) dn (g ∈ G),

with absolutely convergent integrals.
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Proof. As in (7.22) we identify AM,2(1) � CW . Let ψ0 ∈ AM,2(1) be the unique
element determined by (ψ0)w = δ1w for w ∈ W .

By Lemma 6.2 we see that, for φ ∈ C∞
c (G/H)K ,〈

HQ,1φ(a), ψ0

〉
= HQφ(a) (a ∈ Aq).

It follows from Proposition 7.18 that the functions Res1(Q : μ : a : · )(ψ0), for
μ ∈ SQ,τ , belong to C (G/H) for every a ∈ Aq. Furthermore, by Lemma 7.11,
these functions depend polynomially on a. If we combine this with Proposition
7.2, we infer that the expression on the right-hand side of (7.17) is well-defined for
φ ∈ C (G/H : 1) = C (G/H)K and depends linear continuously on it with values in

C∞(Aq) = C∞(L/HL)
M .

It follows that the restriction of HQ to C∞
c (G/H)K extends to a continuous linear

map from C (G/H)K to C∞(L/HL)
M . The theorem now follows by application of

Proposition 4.6. �

Remark 7.24. For the hyperbolic spaces SO(p, q + 1)e/ SO(p, q)e, this result is
due to [AFJS12].

In the following we assume more generally that (τ, Vτ ) is a finite dimensional
unitary representation of K.

Corollary 7.25. Let Q ∈ Ph(A). Then HQ,τ extends to a continuous linear map

HQ,τ : C (G/H : τ )→ C∞(Aq)⊗AM,2(τ ).

Moreover, (6.1) and (6.2) are valid for every φ ∈ C (G/H : τ ) with the extensions
of HQ,τ and HQv to the associated Schwartz spaces; the appearing integrals are
absolutely convergent.

Proof. Since C∞
c (G/H : τ ) is dense in C (G/H : τ ), this follows immediately from

combining Theorem 7.23 with Lemma 7.17. �

By Proposition 7.2 the map IQ,τ extends to a continuous linear map from
C (G/H : τ ) to C∞(Aq)⊗AM,2(τ ) as well. Hence, it follows from equation (7.17)
that for every a ∈ Aq and ψ ∈ AM,2(τ ),∑

μ∈SQ,τ

aμResτ (Q : μ : a : · )ψ

is a smooth function defining a tempered distribution. In particular, writing

C∞
temp(G/H) := C∞(G/H) ∩ C ′(G/H),

we obtain the following.

Corollary 7.26. Let Q ∈ Ph(A) and let μ ∈ SQ,τ . Then

Resτ (Q : μ) ∈ P (Aq)⊗ C∞
temp(G/H)⊗Hom(AM,2(τ ), Vτ ).

We now observe that Proposition 7.2, Corollary 7.25, and Corollary 7.26 imply
the following result.

Corollary 7.27. Let Q ∈ Ph(A). Then equation (7.17) holds for every φ ∈
C (G/H : τ ), ψ ∈ AM,2(τ ), and a ∈ Aq.
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8. Cusp forms and discrete series representations

A well-known result of Harish-Chandra asserts for the case of the group that
the closed span in the Schwartz space of the bi-K-finite matrix coefficients of the
representations from the discrete series equals the space of so-called cusp forms.
(See [HC66], [HC70, Thm. 10], [HC75, Sect. 18,27] and [Var77, Thm. 16.4.17].) In
the present section we generalize this result for the case of split rank one.

8.1. The kernel of IQ,τ . In the present subsection we do not make any assumption
on the dimension of aq. Let (τ, Vτ ) be a finite dimensional unitary representation
of K as before.

Theorem 8.1. Let Q ∈ P(A) and let P0 ∈ Pσ(A). Then the following are equal
as subspaces of C (G/H : τ ),

(8.1) ker(FP̄0
) = ker(IQ,τ ).

Proof. Let φ ∈ C (G/H : τ ). Then the definition of KQ,τφ in (7.5) is meaningful and
the equality (7.7) is valid. If FP̄0

φ = 0, then it follows from (7.4) that KQ,τφ = 0,
which in turn implies that IQ,τφ = 0. This shows that the space on the left-hand
side of (8.1) is contained in the space on the right-hand side.

For the converse inclusion, let ph, u and v be as in the proof of Proposition 7.2.
Let D be the bi-invariant differential operator on Aq which satisfies

FAq
(Dδe) = ph,

with δe the Dirac measure at the point e on Aq. Then

FAq

(
D(IQ,τφ)

)
= phFAq

(
IQ,τφ

)
= phFAq

(
KQ,τφ

)
v.

If ξ ∈ a∗q is a real linear functional, then by looking at real and imaginary parts, we
see that |〈λ , ξ〉| ≤ |〈λ+ εν , ξ〉| for all λ ∈ ia∗q, ε > 0 and ν ∈ a∗q. This implies that∣∣∣∣ ph(λ)

ph(λ+ εν)

∣∣∣∣ ≤ 1 (λ ∈ a
∗
q).

By a straightforward application of the Lebesgue dominated convergence theorem
it now follows that phv = 1, and we infer that

D(IQ,τφ) = KQ,τφ.

Now let φ ∈ C (G/H : τ ) and assume that IQ,τφ = 0. Then KQ,τφ = 0 and it
follows from (7.5) that [phFQ,τ ]φ = 0. In view of (7.4) this implies that for generic
λ ∈ ia∗q

ph(λ)CP̄0:Q(1 : −λ̄)∗ FP̄0
(φ)(λ) = 0.

Since FP̄0
φ is smooth by [vdBS97b, Cor. 4, p. 573] and CP̄0:Q(1 : −λ̄) is invertible

for generic λ ∈ ia∗q, by [vdBK14, Thm. 8.13], it follows that FP̄0
φ = 0. �

Let Cmc(G/H : τ ) be the closed subspace of C (G/H : τ ) corresponding to the
most continuous part of the spectrum. By [vdBS97c, Cor. 17.2 and Prop. 17.3]
the kernel of FP̄0

is equal to the orthocomplement (with respect to the L2-inner
product) in C (G/H : τ ) of Cmc(G/H : τ ). Theorem 8.1 therefore implies that

Cmc(G/H : τ ) ∩ ker(IQ,τ ) = {0}.
Let Cds(G/H : τ ) be the closed span in C (G/H : τ ) of the K-finite generalized

matrix coefficients of the representations from the discrete series for G/H. Then
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the space Cds(G/H : τ ) is contained in the orthocomplement of Cmc(G/H : τ ) and
therefore in the kernel of IQ,τ for every Q ∈ P(A).

Corollary 8.2. If dim(aq) = 1, then ker(IQ,τ ) = Cds(G/H : τ ).

Proof. This follows from the above discussion combined with [vdBS97c, Prop. 17.7]
�

8.2. Residues for arbitrary K-types. In this subsection we will work under the
following.

Assumption. G/H is of split rank one.

Let (τ, Vτ ) be a finite dimensional unitary representation of K and let Q ∈
Ph(A). Let P0 ∈ Pσ(Aq) be such that Σ(Q, σθ) ⊆ Σ(P0). We recall that the
singular set SQ,τ is a finite subset of a∗+q (P0); see Lemma 7.7. The first main result

of this subsection is that the residues appearing in (7.17) are L2-perpendicular to
the part of the Schwartz space corresponding to the most continuous part of the
Plancherel formula.

Theorem 8.3. Let μ ∈ SQ,τ . For every φ ∈ Cmc(G/H : τ ), ψ ∈ AM,2(τ ) and
a ∈ Aq,

(8.2) 〈φ,Resτ (Q : μ : a : · )ψ〉 = 0.

This result will be proved through a series of partial results. Let P0 be a par-
abolic subgroup as above and let P0 = M0A0N0 be its Langlands decomposition.
Via symmetrization of the associated quadratic form, the symmetric G-equivariant
bilinear form B of (1.4) gives rise to the Casimir operator Ω in the center of U(g).
The image ΔG/H ∈ D(G/H) of Ω under the map (6.12) will be called the Lapla-
cian of G/H. Likewise, the restriction of B to aq × aq gives rise to the Laplacian
ΔAq

of Aq. The Casimir Ωm0
of m0 ∩ k is defined by applying symmetrization to the

restriction of B to m0 ∩ k.

Lemma 8.4. Let ΔG/H , ΔAq
and Ωm0

be as above. Then for φ ∈ C (G/H : τ ),

HQ,τ (ΔG/Hφ) =
(
τ (Ωm0

) + ΔAq
− 〈ρP0

, ρP0
〉
)
HQ,τφ.

Proof. First, we observe that (6.15) is valid for Schwartz functions φ ∈ C (G/H),
in view of Corollary 7.25 and density of C∞

c (G/H : τ ) in C (G/H : τ ).
Next, from [vdBS97a, Lemma 5.3] it readily follows that

μ(ΔG/H : τ ) = τ (Ωm0
) + ΔAq

− 〈ρP0
, ρP0

〉.
Now apply (6.15). �

We write M̂0H for the set of ξ ∈ M̂0 such that V (ξ) �= 0. For ξ ∈ M̂0H let

AM,2(τ )ξ be the image of C(K : ξ : τ )⊗ V (ξ) under the map T �→ ψT defined by
(5.7). Then AM,2(τ ) decomposes into a finite direct sum of orthogonal subspaces

AM,2(τ ) =
⊕

ξ∈̂M0H

AM,2(τ )ξ.

The action of NK(aq) on M0 by conjugation naturally induces a (left) action of

the Weyl group W (aq) = NK(aq)/ZK(aq) on M̂0H . We agree to use W as an
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abbreviation for W (aq) in the rest of this subsection. Accordingly, for ξ ∈ M̂0H we
define

AM,2(τ )W ·ξ :=
⊕
w∈W

AM,2(τ )wξ.

Accordingly, we obtain the orthogonal decomposition

(8.3) AM,2(τ ) =
⊕

W ·ξ∈W\̂M0H

AM,2(τ )W ·ξ.

We define the normalized C-function C◦
P̄0|P̄0

(s : · ), for s ∈ W, to be the

End(AM,2(τ ))-valued meromorphic function on a∗qC
given by

(8.4) C◦
P̄0|P̄0

(s : λ) = CP̄0|P̄0
(s : λ)CP̄0|P̄0

(1 : λ)−1

for generic λ ∈ a∗qC
; see [vdBS97b, Eqn. (55)]. Let γ be the (unitary) representation

of W in L2(ia∗q) ⊗ AM,2(τ ) defined as in [vdBS97c, Eqn. (16.1)], with P̄0 in place
of P. It is given by

[γ(s)f ](λ) = C◦
P̄0|P̄0

(s−1 : λ)−1f(s−1λ)

for s ∈W , f ∈ L2(ia∗q)⊗AM,2(τ ) and λ ∈ ia∗q.

Lemma 8.5. Let ξ ∈ M̂0H . Then the subspace

S (ia∗)⊗AM,2(τ )W ·ξ ⊆ L2(ia∗q)⊗AM,2(τ )

is invariant for γ.

Proof. First, the subspace S (ia∗q) ⊗ AM,2(τ ) is γ-invariant by the argument sug-
gested in [vdBS97b, Rem. 16.3].

Next, let f ∈ S (ia∗q)⊗AM,2(τ )ξ, where ξ ∈ M̂0H . Let s ∈W and let w ∈ NK(aq)
be a representative for s. Then it suffices to show that

[γ(s)f ](λ) ∈ AM,2(τ )sξ (λ ∈ ia∗q).

In turn, for this it suffices to prove the claim that

(8.5) C◦
P̄0|P̄0

(s−1 : λ)AM,2(τ )sξ ⊆ AM,2(τ )ξ,

for any ξ ∈ M̂0H and generic λ ∈ ia∗q.
By (8.4) and [vdBS97b, Lemma 7],

C◦
P̄0|P̄0

(s−1 : λ) = CP̄0|P̄0
(s−1 : λ) ◦CP̄0|P̄0

(1 : λ)−1

= L (s−1) ◦CsP̄0s−1|P̄0
(1 : λ) ◦CP̄0|P̄0

(1 : λ)−1,

for generic λ ∈ a∗qC. Here L (s−1) is given by [vdBS97b, Eqn. (65)]

L (s−1)ψT = ψ[L(w−1)⊗L(sξ,w−1)]T

(
T ∈ C(K : sξ : τ )⊗ V̄ (sξ)

)
,

where L(w−1) : C∞(K : sξ : τ ) → C∞(K : ξ : τ ) and L(sξ, w−1) : V̄ (sξ) → V̄ (ξ)
are linear maps. Accordingly, we see that L (s−1) maps AM,2(τ )sξ to AM,2(τ )ξ.

From [vdBS97b, Prop. 1] and the definition of the B-matrix in [vdB88, Prop. 6.1]
it follows that CsP̄0s−1|P̄0

(1 : λ) ◦ CP̄0|P̄0
(1 : λ)−1 preserves AM,2(τ )sξ. Thus, (8.5)

follows. �
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By [vdBS97c, Cor. 17.4], the Fourier transform FP̄0
defines a topological linear

isomorphism from Cmc(G/H : τ ) onto [S (ia∗q)⊗AM,2(τ )]
W . For ξ ∈ M̂0H we define

Cmc(G/H : τ )W ·ξ := F−1
P̄0

(
[S (ia∗)⊗AM,2(τ )W ·ξ]

W
)
.

Then in view of (8.3) it follows that

(8.6) Cmc(G/H : τ ) =
⊕

W ·ξ∈W\̂M0H

Cmc(G/H : τ )W ·ξ

with only finitely many non-zero summands.

Lemma 8.6. Let ξ ∈ M̂0H . If φ ∈ Cmc(G/H : τ )W ·ξ, then

HQ,τφ ∈ C∞(Aq)⊗AM,2(τ )W ·ξ.

Proof. Let φ ∈ Cmc(G/H : τ )W ·ξ. Then FP̄0
φ ∈ S (ia∗q)⊗AM,2(τ )W ·ξ. The lemma

now follows by application of Propositions 5.5, 5.7, and 6.4. �

Lemma 8.7. Let ξ ∈ M̂0H . Then there exists a scalar cξ ∈ R such that τ (Ωm0
)

acts on AM,2(τ )W ·ξ by the scalar cξ.

Proof. From [vdBK14, Cor. 4.4] it follows that the restriction of ξ to M0 ∩ K is
irreducible. Hence, ξ(Ωm0

) acts by a real scalar cξ on Hξ.
Let s ∈ W. Then s has a representative w ∈ NK(aq). As Ad(w) preserves the

restriction of the bilinear form B to k ∩m0, it follows that Ad(w)Ωm0
= Ωm0

. This
implies that sξ(Ωm0

) acts by the scalar cξ on Hξ. We infer that

csξ = cξ (s ∈W ).

Let s ∈W, f ∈ C(K : sξ : τ ) and let η ∈ V̄ (sξ). Then, with notation as in (5.7),(
τ (Ωm0

)ψf⊗η

)
(m) = 〈

(
1⊗ τ (Ωm0

)
)
f(m), η〉

= 〈
(
sξ(Ωm0

)⊗ 1
)
f(m), η〉

= cξψf⊗η(m).

The assertion now follows. �

For ξ ∈ M̂0H we define the differential operator Dξ ∈ D(G/H) by

Dξ :=
∏

μ∈SQ,τ

(
ΔG/H − cξ + 〈ρP0

, ρP0
〉 − 〈μ, μ〉

)mμ

,

where mμ − 1 ≥ 0 is the degree of the C∞(G/H) ⊗ Hom(AM,2(τ ), Vτ )-valued
polynomial function a �→ Resτ (Q : μ : a : · ).

Lemma 8.8. Let ξ ∈ M̂0H . Then for every φ ∈ Cmc(G/H : τ )W ·ξ,

HQ,τ

(
Dξφ) =

( ∏
μ∈SQ,τ

(
ΔAq

− 〈μ, μ〉
)mμ

)
HQ,τφ.

Proof. The lemma follows directly from Lemma 8.4, Lemma 8.6, and Lemma 8.7.
�

Lemma 8.9. Let ξ ∈ M̂0H . Then for every φ ∈ Cmc(G/H : τ )W ·ξ there exists a
χ ∈ Cmc(G/H : τ )W ·ξ such that

Dξχ = φ.
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Proof. For λ ∈ ia∗q we define eλ : Aq → C, a �→ aλ. Moreover, for D ∈ D(G/H) we
define μ(D : τ : λ) ∈ End(AM,2(τ )) by

μ(D : τ : λ)ψ :=
(
μ(D : τ )(eλ ⊗ ψ)

)
(e)

(
ψ ∈ AM,2(τ )

)
;

here μ(D : τ ) is the End(AM,2(τ ))-valued differential operator on Aq defined in
(6.14).

Then for all D ∈ D(G/H), φ ∈ C (G/H : τ ) and λ ∈ ia∗q, we have

FP̄0

(
Dφ)(λ) = μ(D : τ : λ)FP̄0

φ(λ);

see [vdBS97c, Lemma 6.2]. In particular, it follows that

FP̄0

(
Dξφ)(λ) =

∏
μ∈SQ,τ

(
〈λ, λ〉 − 〈μ, μ〉

)mμ

FP̄0
φ(λ).

Note that 〈λ, λ〉 − 〈μ, μ〉 �= 0 for λ ∈ ia∗q and μ ∈ SQ,τ ⊆ a∗q \ {0}.
Now let φ ∈ Cmc(G/H : τ )W ·ξ. Then the function f : ia∗q → AM,2(τ ) defined by

f(λ) =
∏

μ∈SQ,τ

(
〈λ, λ〉 − 〈μ, μ〉

)−mμ

FP̄0
φ(λ)

belongs to the space
(
S(ia∗q) ⊗ AM,2(τ )W ·ξ

)W
. The assertion of the lemma now

follows with χ = F−1
P̄0

f . �

Proof of Theorem 8.3. Since Cmc(G/H : τ ) decomposes as a finite direct sum (8.6),
it suffices to prove the assertion for φ ∈ Cmc(G/H : τ )W ·ξ. Let φ be such a function
and let χ be as in Lemma 8.9. Then by Lemma 8.8

HQ,τφ =
( ∏

μ∈SQ,τ

(
ΔAq

− 〈μ, μ〉
)mμ

)
HQ,τχ.

Since a �→ 〈χ , Resτ (Q : μ : a : · )ψ〉 is a polynomial function of degree mμ − 1, it
follows that (

ΔAq
− 〈μ, μ〉

)mμ

aμ〈χ , Resτ (Q : μ : a : · )ψ〉 = 0,

hence

HQ,τφ =
( ∏

μ∈SQ,τ

(
ΔAq

− 〈μ, μ〉
)mμ

)
IQ,τχ.

In particular, HQ,τφ belongs to C∞
temp(Aq)⊗AM,2(τ ). Since IQ,τφ also belongs to

this space, by Proposition 7.2, we infer that

a �→
∑

μ∈SQ,τ

aμ〈Resτ (Q : μ : a : · ) , φ〉

belongs to this space. Since the latter sum is also an exponential polynomial func-
tion with non-zero exponents on Aq, with values in AM,2(τ ), it must be zero and
we finally conclude (8.2). �

We now come to the second theorem of this subsection, which asserts that in fact
the residual functions from Corollary 7.26 are constant as functions of the variable
from Aq. From Corollary 7.26 we recall that for μ ∈ SQ,τ , the function Resτ (Q,μ)
belongs to P (Aq)⊗ C∞

temp(G/H : τ )⊗AM,2(τ )
∗.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

526 ERIK P. VAN DEN BAN AND JOB J. KUIT

Theorem 8.10. Let μ ∈ SQ,τ .

(a) The function Resτ (Q : μ) is constant with respect to the variable from Aq

and belongs to Cds(G/H : τ )⊗AM,2(τ )
∗.

(b) E(Q : − · ) has a pole of order 1 at μ as a C∞(G/H)⊗Hom(AM,2(τ ), Vτ )-
valued meromorphic function on a∗q,C.

Proof. By [vdBS97c, Prop. 17.7]

C (G/H : τ ) = Cmc(G/H : τ )⊕ Cds(G/H : τ )

as an orthogonal direct sum. By Corollary 7.26 the finite dimensional space

V = span{Resτ (Q : μ : a)ψ : μ ∈ SQ,τ , a ∈ Aq, ψ ∈ AM,2(τ )}
is contained in C∞

temp(G/H : τ ) ⊆ C ′(G/H : τ ). Since Cds(G/H : τ ) is finite

dimensional (see [ŌM84] and [vdBS05, Lemma 12.6 & Rem. 12.7]), there exists for
every χ ∈ V a function ϑ ∈ Cds(G/H : τ ) such that

(8.7) 〈φ, χ〉 = 〈φ, ϑ〉
for every φ ∈ Cds(G/H : τ ). By Theorem 8.3 the space Cmc(G/H : τ ) is perpen-
dicular to V . Hence, (8.7) is valid for every φ ∈ C (G/H : τ ), and we conclude that
χ = ϑ. This proves that V ⊆ Cds(G/H : τ ).

The space Cds(G/H : τ ) decomposes as a finite direct sum

Cds(G/H : τ ) =
⊕
π

C (G/H : τ )π,

where π runs over the representations of the discrete series and C (G/H : τ )π is
spanned by left τ -spherical and right H-fixed generalized matrix coefficients of π.

Let π be a discrete series representation, φ ∈ C (G/H : τ )π and ψ ∈ AM,2(τ ).
We will establish (a) by showing that 〈φ , Resτ (Q : μ : a : · )ψ〉 is independent of
a ∈ Aq. Since (8.3) is a finite direct sum, we may assume that ψ ∈ AM,2(τ )W ·ξ for

a representation ξ ∈ M̂0H .
By Corollary 7.27 and Corollary 8.2,

(8.8) 〈HQ,τφ(a), ψ〉 =
∑

μ∈SQ,τ

aμ〈φ , Resτ (Q : μ : a : · )ψ〉 (a ∈ Aq).

Since π is irreducible, φ is an eigenfunction for ΔG/H = RΩ. Let c be its eigenvalue.
Then by Lemma 8.4(

τ (Ωm0
) + ΔAq

− 〈ρP0
, ρP0

〉 − c
)
HQ,τφ = 0.

Since τ (Ωm0
) is symmetric, we have for χ ∈ AM,2(τ ),

〈τ (Ωm0
)χ, ψ〉 = 〈χ, τ (Ωm0

)ψ〉 = cξ〈χ, ψ〉.
We thus see that (

ΔAq
+ cξ − 〈ρP0

, ρP0
〉 − c

)
〈HQ,τφ, ψ〉 = 0.

The solutions to this differential equation are either polynomial functions (in case
cξ−〈ρP0

, ρP0
〉−c = 0) or a sum of exponential functions (in case cξ−〈ρP0

, ρP0
〉−c �=

0). By comparing with (8.8) we see that 〈HQ,τφ, ψ〉 cannot be purely polynomial,
hence must be a finite sum of exponentials functions. This establishes (a).

We turn to (b). We define the linear function p : a∗qC
→ C by p(λ) = 〈λ+ μ , ω〉,

where ω is the unique unit vector in a∗q(P0). We note that

p(−μ+ zω) = z (z ∈ C).
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The function E(Q : − · ) has a singularity at μ, by definition of the set SQ,τ .
Reasoning by contradiction, assume that (b) is not valid. Then there exists an
element ψ ∈ AM,2(τ ) and a k ≥ 1 such that pk+1E(Q : ψ : − · ) is regular at μ and
has a non-zero value at that point. Then with the notation of (7.13) and Lemma
7.9, it follows that

Resτ (Q : μ : a : x)ψ = − Res
λ=−μ

a−λ−μE(Q : ψ : λ)(x)

= −Res
z=0

a−zωE(Q : ψ : −μ+ zω)(x)

= − dk

dzk

∣∣∣∣
z=0

zk+1a−zωE(Q : ψ : −μ+ zω)(x)

=
k∑

j=0

ω(log a)jχj(x)

with uniquely determined functions χj ∈ C∞(G/H : τ ). By the Leibniz rule it
follows in particular that

χk(x) = (−1)k+1ω(log a)k[zk+1E(Q : ψ : −μ+ zω)]z=0.

Since

[zk+1E(Q : ψ : −μ+ zω)]z=0 = [p(λ)E(Q : ψ : λ]λ=−μ �= 0

this implies that Resτ (Q : μ : a : x)(ψ) is not constant in a, contradicting (a).
Hence (b) is valid. �

In view of Theorem 8.10 we now obtain the following version of Corollary 7.27.

Corollary 8.11. Let φ ∈ C (G/H : τ ). Then for all ψ ∈ AM,2(τ ) and a ∈ Aq,

(8.9) 〈HQ,τφ(a), ψ〉 = 〈IQ,τφ(a), ψ〉+
∑

μ∈SQ,τ

aμ〈φ,Resτ (Q,μ)ψ〉.

8.3. Cusp Forms. In this final subsection we keep working under the following.

Assumption. G/H is of split rank one.

The following definition makes use of the Radon transform introduced in Defi-
nition 2.12.

Definition 8.12. A function φ ∈ C (G/H) is called a cusp form if RQφ = 0 for
every Q ∈ Ph(A). We write Ccusp(G/H) for the subspace of such cusp forms in
C (G/H).

Lemma 8.13. Ccusp(G/H) is a G-invariant closed subspace of C (G/H).

Proof. This follows immediately from Theorem 7.23 and the G-equivariance of RQ,
for every Q ∈ Ph(A). �

Recall that a parabolic subgroup Q ∈ P(A) is said to be h-extreme if Σ(Q, σθ) =
Σ(Q) ∩ a∗q.

Lemma 8.14. Let φ ∈ C (G/H). Then the following conditions are equivalent.

(a) φ is a cusp form.
(b) RQφ = 0 for every h-extreme parabolic subgroup Q ∈ Ph(A).
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Proof. Clearly, (b) follows from (a). For the converse, assume that (b) holds. Let
P ∈ Ph(A). There exists a h-extreme Q ∈ P(A) such that P � Q; see [BvdB14,
Lemma 2.6]. By Lemma 7.14 (c) we see that Q ∈ Ph(A), so that RQφ = 0. Since
the integral for RPφ(g) is absolutely convergent, for every g ∈ G, it now follows by
application of Corollary 2.4 that

RPφ(g) =

∫
NP∩N̄Q

RQφ(gn)dn = 0.

Thus, (a) follows. �

Remark 8.15. It follows from this result that for the class of real hyperbolic spaces
SO(p, q + 1)e/ SO(p, q)e our notion of cusp form coincides with the one introduced
by [AFJS12, Eqn. (5)]. Indeed, the minimal parabolic subgroup mentioned in the
text following [AFJS12, Eqn. (5)] is h-extreme in our sense, and it turns out the
condition of h-compatibility is fulfilled. In fact, it is easy to see that for this family
of symmetric spaces the properties of h-compatibility and h-extremeness coincide.

Remark 8.16. Let ϑ be a finite subset of K̂. For a representation of K on a vector
space V, we denote by Vϑ the subspace of K-finite vectors with isotypes contained
in ϑ.

Let C(K)ϑ be the space of K-finite continuous functions on K, whose right
K-types belong to ϑ and let τ denote the right regular representation of K on
Vτ := C(K)ϑ. Then the canonical map

ς : C (G/H)ϑ → C (G/H : τ )

given by

ςφ(x)(k) = φ(kx)
(
φ ∈ C (G/H)ϑ, k ∈ K,x ∈ G/H

)
is a linear isomorphism. Let φ ∈ C (G/H)ϑ. Then it follows from (6.2) (see Corol-
lary 7.25), that HQvφ = 0 for every v ∈ W if and only if HQ,τ (ςφ) = 0. Hence,
φ ∈ Ccusp(G/H) if and only if HQ,τ (ςφ) = 0 for every Q ∈Ph(A).

Example 8.17 (Group case). We use notation as in Example 3.2.
Every minimal parabolic subgroup is h-compatible (see Example 7.15); the h-

extreme parabolic subgroups are all of the form �P × �P where �P is a minimal
parabolic subgroup of �G. As explained in Example 3.2, the Radon transform
R�P×�P is identified with R�P under the identification (�G × �G)/diag(�G). From
Lemma 8.14 it now follows that φ ∈ C (G/H) is a cusp form if and only if R�Pφ =
0 for every minimal parabolic subgroup �P of �G. Using the fact that �G acts
transitively on the set of minimal parabolic subgroups of �G, it is easily seen that
this in turn is equivalent to the condition that∫

N�P
φ(gn) dn = 0

for every g ∈ �G and every minimal parabolic subgroup �P . Thus, if �G is a
reductive Lie group of the Harish-Chandra class of split rank 1, then our definition
of cusp forms coincides with the definition of Harish-Chandra; see [Var77, Part II,
Sect. 12.6, p. 222].

We now move on to investigate the relation between Ccusp(G/H) and Cds(G/H).
Our main tool will be the identity (8.9). The following result is a straightforward
consequence of Theorem 3.6.
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Corollary 8.18. Cds(G/H) ∩ L1(G/H) ⊆ Ccusp(G/H).

Lemma 8.19. Let Q ∈Ph(A) and φ ∈ C (G/H : τ ). Then HQ,τφ = 0 if and only
if both (a) and (b) hold:

(a) IQ,τφ = 0,
(b) φ ⊥ Resτ (Q,μ)ψ for every μ ∈ SQ,τ and ψ ∈ AM,2(τ ).

In particular, if HQ,τφ = 0, then φ ∈ Cds(G/H : τ ).

Proof. Assume HQ,τφ = 0. From (8.9) and Theorem 8.10 it follows for every
ψ ∈ AM,2(τ ) that the function 〈HQ,τφ( · ), ψ〉 equals a sum of the tempered term
〈IQ,τφ( · ), ψ〉 and finitely many exponential terms with non-zero real exponents.
Since HQ,τφ = 0, it follows that all the mentioned terms vanish. This proves (a)
and (b) in the lemma. The converse implication follows directly from (8.9).

Finally, if (b) holds, then we infer from Corollary 8.2 that φ ∈ Cds(G/H : τ ).
This concludes the proof of the lemma. �

Theorem 8.20. Ccusp(G/H) ⊆ Cds(G/H).

Proof. In view of Lemma 8.13 it suffices to show that every K-finite cusp form is

an element of Cds(G/H). Let ϑ ⊂ K̂ be finite and let τ and ς be as in Remark
8.16. Let φ ∈ Ccusp(G/H)ϑ and assume that Q ∈ Ph(A). Then HQ,τ (ςφ) = 0 by
Remark 8.16 and thus it follows from Lemma 8.19 that ςφ ∈ Cds(G/H : τ ). Hence,
φ ∈ Cds(G/H)ϑ. �

Remark 8.21. There exist symmetric spaces for which the inclusion of Theorem
8.20 is proper. Indeed, in [AFJS12, Thm. 5.3] it has been established that the
mentioned inclusion is proper for G = SO(p, q + 1)e and H = SO(p, q)e, with
1 ≤ p < q − 1.

Theorem 8.22. If Cds(G/H)K ⊆ Ccusp(G/H), then Cds(G/H) = Ccusp(G/H).

Proof. Assume Cds(G/H)K ⊆ Ccusp(G/H) and let Q ∈ Ph(A). Let V be the
subspace of C∞(G/H)K spanned by the functions Res1(Q : μ)ψ, for μ ∈ SQ,1 and
ψ ∈ AM,2(1). Then V ⊆ Cds(G/H)K by Proposition 7.18. We claim that V = 0.
To see this, let χ ∈ V . Then by the assumption and Remark 8.16 it follows that

HQ,1(χ) = 0.

By Lemma 8.19(b) it follows that χ ⊥ V . Hence, χ = 0 and the claim is established.
We conclude from the claim and (8.9) that HQ,1 = IQ,1. Let φ ∈ C (G/H). By

Proposition 4.2 there exists a φ̂ ∈ C (G/H)K such that |φ| ≤ φ̂. Now

(8.10) |HQφ| ≤ HQ|φ| ≤ HQφ̂.

Let ψ0 be the element of AM,2(1) � CW determined by (ψ0)w = δ1,w. Then

HQφ̂(a) = 〈HQ,1φ̂(a), ψ0〉

by (6.2); see Corollary 7.25. It follows from Proposition 7.2 that 〈HQ,1φ̂( · ), ψ0〉 =
〈IQ,1φ̂( · ), ψ0〉 is a tempered function on Aq. In view of the estimate (8.10) we
conclude that HQ maps the functions from C (G/H) to tempered functions on
L/HL. The same holds for HQv with v ∈ W .

Let (τ, Vτ ) be a finite dimensional representation of K. From (6.2) and Corollary
7.25 we conclude that HQ,τ maps the functions from C (G/H : τ ) to tempered
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AM,2(τ )-valued functions on Aq. It follows that the exponential terms in (8.9) are
all equal to zero. Therefore, HQ,τ = IQ,τ and by Corollary 8.2 we have that

Cds(G/H : τ ) = kerHQ,τ .

Since this holds for every finite dimensional representation τ of K, we conclude
that Cds(G/H) ⊆ ker(RQ). As Q ∈ Ph(Aq) was arbitrary, we conclude that
Cds(G/H) ⊆ Ccusp(G/H). The converse inclusion was established in Theorem 8.20.

�

Remark 8.23. At present, we know of no example of a split rank one symmetric
space where the equality C (G/H)K ∩ Ccusp(G/H) = {0} is violated. On the other
hand, Cds(G/H) ∩ Ccusp(G/H)⊥ may contain irreducible submodules that are not
spherical. An example of a symmetric pair for which this happens is provided by
G = SO(p, q+ 1)e and H = SO(p, q)e, with 1 ≤ p < q− 3; see [AFJS12, Thm. 5.3].

Let (τ, Vτ ) be a finite dimensional unitary representation of K. Then we define
Ccusp(G/H : τ ) to be the intersection of C (G/H : τ ) with Ccusp(G/H)⊗Vτ . Further-
more, we define Cres(G/H : τ ) to be the L2-orthocomplement of Ccusp(G/H : τ )
in Cds(G/H : τ ). Then by finite dimensionality of the latter space, we have the
following direct sum decomposition:

(8.11) Cds(G/H : τ ) = Cres(G/H : τ )⊕ Ccusp(G/H : τ ).

Theorem 8.24. Let Phh(A) denote the set of h-extreme parabolic subgroups in
Ph(A). Then

(a) Ccusp(G/H : τ ) = {φ ∈ C (G/H : τ ) : HQ,τφ = 0 (∀Q ∈ Phh(A))};
(b) Cres(G/H : τ ) equals the space

span{Resτ (Q : μ)ψ : Q ∈ Phh(A), μ ∈ SQ,τ , ψ ∈ AM,2(τ )}.

Proof. If φ ∈ Ccusp(G/H : τ ) and Q ∈ Phh(A), then in view of (6.1) (see Corollary
7.25), it follows that HQ,τφ = 0. This establishes one inclusion. For the converse
inclusion, assume that φ ∈ C (G/H : τ ) belongs to the set on the right-hand side.
Let Q ∈ Phh(A). Then it follows from (6.1) (see Corollary 7.25), that (RQ⊗IVτ

)(φ)
vanishes on LNQ. By sphericality of φ and G-equivariance of RQ it follows that
(RQ ⊗ IVτ

)(φ) = 0. By Lemma 8.14 we infer that φ ∈ Ccusp(G/H : τ ).
We now turn to (b). Let φ ∈ Cds(G/H : τ ) and let Q ∈ Phh(A). As IQ,τ van-

ishes on Cds(G/H : τ ) by Corollary 8.2, it follows from Lemma 8.19 that HQ,τφ = 0
if and only if φ is perpendicular to Resτ (Q,μ)ψ for every μ ∈ SQ,τ and ψ ∈ AM,2(τ ).
Therefore the space on the right-hand side of (b) equals the orthocomplement in
Cds(G/H : τ ) of the space on the right-hand side of (a). Now (b) follows from (a)
by the orthogonality of the direct sum (8.11). �

Remark 8.25. In [AFJS12, Thms. 5.2 & 5.3] it is shown that for the real hyper-
bolic spaces SO(p, q+1)e/ SO(p, q)e, the left regular representation on L2

ds(G/H)∩
Ccusp(G/H)⊥ is a finite direct sum of discrete series for G/H and these are explicitly
identified.

We conclude this article by giving a characterization of K-finite functions in
Cds(G/H).

Theorem 8.26. Let φ be a K-finite function in C (G/H). Then the following
assertions are equivalent.
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(a) φ ∈ Cds(G/H).
(b) For every Q ∈Ph(A) and every g ∈ G the function

(8.12) Aq � a �→ RQφ(ga)

is a finite linear combination of real exponential functions.
(c) There exists an h-extreme Q ∈ Ph(A) such that for every v ∈ W and every

k ∈ K the function

Aq � a �→ RQvφ(ka)

is a finite linear combination of real exponential functions.

Proof. Let ϑ be a finite subset of K̂ such that φ ∈ C (G/H)ϑ and let τ and ς be as
in Remark 8.16.

Assume that (a) is valid and let Q ∈ Ph(A). Then IQ,τ (ςφ) = 0 by Theorem
8.1. Therefore, only the exponential terms on the right-hand side of (8.9) can be
non-zero. From the relation between HQ,τ and HQ as given in (6.2) (see Corollary
7.25), it follows that the function (8.12) is of real exponential type, i.e., a finite
linear combination of exponential functions with real exponents, if g = e. For
g = k ∈ K the assertion now follows from the K-equivariance of RQ. Let g ∈ G
be general, then g = ka0nQ according to the Iwasawa decomposition G = KANQ.
Furthermore,

RQφ(ga) = RQφ(ka0a(a
−1nQa)) = RQφ(k(a0a))

and we see that (8.12) is of real exponential type. Hence, (b) follows.
Clearly, (b) implies (c). Now assume (c) and let Q be an h-extreme parabolic

subgroup in Ph(A) with the asserted properties. It follows from (6.2) (see Corollary
7.25), that for every ψ ∈ AM,2(τ ) the function 〈HQ,τ (ςφ)( · ), ψ〉 is of real exponen-
tial type. From (8.9) we then read off that 〈IQ,τ (ςφ)( · ), ψ〉 is of such exponential
type as well. It now suffices to prove the claim that IQ,τ (ςφ) is in fact equal to 0.
Indeed, from the claim it follows that φ ∈ Cds(G/H)ϑ by Corollary 8.2. Hence (a).

It remains to prove the above claim. We established for every ψ ∈ AM,2(τ )
that the function 〈IQ,τ (ςφ)( · ), ψ〉 is of real exponential type. Since this function
is tempered in view of Proposition 7.2, it has to be constant. As this is valid for
every ψ ∈ AM,2(τ ), the support of FAq

(
IQ,τ (ςφ)

)
is contained in the origin. Now

it follows from (7.7) that FAq

(
KQ,τ (ςφ)

)
is supported in the origin as well. As the

latter is a smooth function, it must vanish identically. It then follows from (7.7)
that also IQ,τ (ςφ) = 0. The validity of the claim follows. �
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différentiables, Bull. Sci. Math. (2) 102 (1978), no. 4, 307–330. MR517765

[HC66] Harish-Chandra, Discrete series for semisimple Lie groups. II. Explicit determina-
tion of the characters, Acta Math. 116 (1966), 1–111, DOI 10.1007/BF02392813.

MR0219666
[HC70] Harish-Chandra, Harmonic analysis on semisimple Lie groups, Bull. Amer. Math. Soc.

76 (1970), 529–551, DOI 10.1090/S0002-9904-1970-12442-9. MR0257282
[HC75] Harish-Chandra, Harmonic analysis on real reductive groups. I. The theory of the

constant term, J. Functional Analysis 19 (1975), 104–204. MR0399356
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