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Abstract

This article will be devoted to generalisations of Fermat’s equation xn + yn = zn. Very
soon after the Wiles and Taylor proof of Fermat’s Last Theorem, it was wondered what would
happen if the exponents in the three term equation would be chosen differently. Or if coefficients
other than 1 would be chosen. We discuss the reduction of the resolution of such equations to
the determination of rational points on finite sets of algebraic curves (over Q if possible) and
explain the full resolution of the particular equation with exponents 2, 3, 5.

1 Introduction

Let A,B,C ∈ Z be non-zero and p, q, r ∈ Z≥2. Consider the diophantine equation

Axp +Byq = Czr, gcd(x, y, z) = 1

in the unknown integers x, y, z. The gcd-condition is really there to avoid trivialities. For example,
from a+ b = c it would follow, after multiplication by a21b14c6, that

(a11b7c3)2 + (a7b5c2)3 = (a3b2c)7

thus providing us with infinitely many trivial solutions of x2 + y3 = z7. There are three cases to be
distinguished.

1. The hyperbolic case
1

p
+

1

q
+

1

r
< 1.

In this case the number of solutions is at most finite, as shown in [DG, Theorem 2].

2. The euclidean case
1

p
+

1

q
+

1

r
= 1.

A simple calculation shows that the set {p, q, r} equals one of {3, 3, 3}, {2, 4, 4}, {2, 3, 6}. In
this case the solution of the equation comes down to the determination of rational points on
twists of genus 1 curves over Q with j = 0, 1728.
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3. The spherical case
1

p
+

1

q
+

1

r
> 1.

A simple calculation shows that the set {p, q, r} equals one of the following: {2, 2, k} with
k ≥ 2 or {2, 3,m} with m = 3, 4, 5. In this case there are either no solution or infinitely many.
In the latter case the solutions are given by a finite set of polynomial parametrisations of the
equation, see [Beu]

A special case of interest is when A = B = C = 1. In many such cases the solution set has been
found. Below we list the exponent triples (p, q, r) of solved equations together with the non-trivial
solutions (xyz 6= 0). We exclude the generic solution 1k + 23 = 32 from our listing. If no solution
are mentioned it is proven that no other solutions exist. The notation {p, q, r} implies that all
permutations of the ordered triple (p, q, r) are taken into account. This is important in the case of
two even exponents.
We start with the hyperbolic cases. The first case {n, n, n} with n > 3 is of course Wiles’s proof of
Fermat’s Last Theorem. As is well-known this proof is based on the proof of the Shimura-Taniyama-
Weil conjecture for stable elliptic curves. Later Breuil, Conrad, Diamond and Taylor proved the
full conjecture for any elliptic curve in [BCDT]. In the following list the cases with variable n are
all solved using Wiles’s modular form approach, with possibly a few exceptions which are resolved
using Chabauty’s method. The isolated cases in this table are mostly solved using a Chabauty
approach.

{n, n, n} and n ≥ 4. Wiles and Taylor [W],[TW] (formerly Fermat’s Last Theorem).

{n, n, 2} Darmon and Merel [DM] (for n prime ≥ 7), and Poonen for n = 5, 6, 9.

{n, n, 3} Darmon and Merel [DM] (for n prime ≥ 7), Lucas (19th century) for n = 4 and
Poonen for n = 5.

{3, 3, n} Kraus [Kr1] (for 17 ≤ n ≤ 10000) and Bruin [Br2,3] for n = 4, 5. Later, 17 ≤ n ≤ 109

in Chen,Siksek [ChS] and n = 7, 11, 13 by Dahmen [Da1].

(2, n, 4) Application of [BS], includes (4, n, 4) by Darmon [D].

(2, 4, n) Ellenberg [El] (for prime n ≥ 211) and Ghioca for n = 7 (email, see[PSS]).

(2n, 2n, 5) Bennett [Ben] (for n ≥ 7 and n = 2) Bruin [Br3] for n = 3 and n = 5 follows from
Fermat’s last theorem.

(2, 2n, 3) Chen [Ch1] (for n prime and 7 < n < 1000 and n 6= 31) The case n = 31 and
n ≡ −1(mod 6) is dealt with in Dahmen, see [Da2].

(2, 2n, 5) Chen [Ch2] (for n > 17 prime and n ≡ 1(mod 4))

{2, 4, 6} Bruin [Br1].

{2, 4, 5} 25 + 72 = 34, 35 + 114 = 1222, Bruin [Br2].

{2, 3, 9} 132 + 73 = 29, Bruin [Br4]

{2, 3, 8} 18 + 23 = 32, 438 + 962223 = 300429072, 338 + 15490342 = 156133, Bruin [Br1, Br2].
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{2, 3, 7} 17 + 23 = 32, 27 + 173 = 712, 177 + 762713 = 210639282, 92623 + 153122832 = 1137,
Poonen, Schaefer, Stoll [PSS].

After the first appearance of these notes there has been considerable further progress, both in Wiles’s
modular method and the applications to diophantine equations. We like to refer to the papers on
arxiv.org of Nuno Freitas and co-authors for these developments. A very nice introduction to
Wiles’s modular method is given in lecture notes by S.Siksek, [S].
Presumably the solutions listed above are the only solutions in the hyperbolic case. Note that in
all cases one of the exponents equals 2. This led Tijdeman and Zagier (in 1994) to the following
conjecture.

Conjecture 1.1 The diophantine equation

xp + yq = zr

in x, y, z ∈ Z with gcd(x, y, z) = 1, xyz 6= 0 and p, q, r ∈ Z≥3 has no solution.

Nowadays this conjecture is also known as Beal’s conjecture or the Fermat-Catalan conjecture.
In the euclidean case it is well-known that the only non-trivial solutions arise from the equality
16 + 23 = 22, as the elliptic curves x3 + y3 = 1, y2 = x4 + 1, y2 = x3 ± 1 contain only finitely many
obvious rational points.
In the spherical cases the solution set is infinite. In the case {2, 2, k} this is an exercise in number
theory. The case {2, 3, 3} was solved by Mordell, {2, 3, 4} by Zagier and {2, 3, 5} by J.Edwards
[Ed] in 2004. The families of solutions are listed in Appendix A (please read the explanation in
the beginning of Appendix A). In [Co, Chapter 14] we find a very extensive treatment of spherical
and euclidean cases. The explanation of the solution of the case {2, 3, 5} is the topic of the present
notes starting from Section 7.

2 A sample solution

To illustrate the phenomena we encounter when solving the generalized Fermat equation, we give a
partial solution of x2 + y8 = z3. This equation lends itself very well to a stepwise descent method.
First we solve x2 + u2 = z3. By factorisation on both sides over Z[i] we quickly see that x + iu
should be the cube of a gaussian integer, (a+ bi)3. By comparison of real and imaginary parts we
get x = a3 − 3ab2, u = b(3a2 − b2). Note that a, b should be relatively prime in order to ensure
gcd(x, u, z) = 1.
Next we partly solve x2 + v4 = z3. This can be done by requiring that u, as found in the previous
equation should be a square, e.g. v2 = b(3a2 − b2). The two factors on the right should be
squares up to some factors ±1,±3, since their product is a square and a, b are relatively prime.
We should explore all possibilities, but in this partial solution we only continue with the possibility
b = −v21 , 3a2 − b2 = −v22 . The latter equation can be rewritten as 3a2 = b2 − v22 . The right
hand side factors as (b − v2)(b + v2) and hence each factor is a square up to a finite number of
factors. Here several possibilities present themselves again and we choose one, namely b − v2 =
−6a21, b + v2 = −2a22 (and of course a = 2a1a2). Summation of the two equalities and use of
b = −v21 gives us v21 − a22 = 3a21. Now the left hand side factors and we choose the possibility
v1− a2 = 6t2, v1 + a2 = 2s2 (and of course a1 = 2st). Solving for v1 and a2 gives v1 = s2 + 3t2 and
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a2 = s2 − 3t2. Hence a = 4st(s2 − 3t2) and b = −(s2 + 3t2)2. Further straightforward computation
gives us

v = (s2 + 3t2)(s4 − 18s2t2 + 9t4)

x = 4st(s2 − 3t2)(3s4 + 2s2t2 + 3t4)(s4 + 6s2t2 + 81t4)

z = (s4 − 2s2t2 + 9t4)(s4 + 30s2t2 + 9t4)

As might be clear now, this gives us an infinite set of integer solutions to the equation x2 +v4 = z3.
Had we followed all possibilities we would have found more parametrised solutions to recover the
full solution set in integers. For a full list see Appendix A, or Henri Cohen’s recent book [Co,
Chapter 14.4], where one finds a complete derivation of the above type.
Finally we consider x2 + y8 = z3. Continuing with our choices we must solve

y2 = (s2 + 3t2)(s4 − 18s2t2 + 9t4).

After division by t6 and putting ξ = s/t, η = y/t3 we get

η2 = (ξ2 + 3)(ξ4 − 18ξ2 + 9),

i.e. we must determine the rational points on a genus two curve. To solve the equation completely
we must determine the rational points on several genus two curves, namely those arising from the
different parametrising solutions above. To cut things short now, we can easily calculate that

z3

y8
=

(ξ4 − 2ξ2 + 9)3(ξ4 + 30ξ2 + 9)3

η8
.

Thus, any point z3/y8 coming from a solution of x2 + y8 = z3 is the image of a rational point (ξ, η)
on our genus two curve under the map just given. This map is an example of a Galois cover map.
Had we followed all possibilities of the above argument, we would have obtained a number of
covering maps from a genus 2 curve to P1 which would have covered the full set of values z3/y8

corresponding to all solutions of x2 + y8 = z3 in co-prime integers x, y, z.
In this example the curves arose naturally as a result of a descent procedure. In many cases, like
x3 + y5 = z7, this descent is not so obvious any more and we have to start by constructing covers
of P1 by curves which have a suitable ramification behaviour.

3 Galois covers of P1

In all approaches to the solution of the (generalised) Fermat equations one uses Galois covers in
one form or another.
First we recall a few facts from the theory of algebraic curves and their function fields. For a more
complete introduction we recommend Chapter II of Silverman’s book [Sil]. Let K be a field of
characteristic zero and X a complete, smooth and geometrically irreducible curve X defined over
K. In the function field K(X) we consider a non-constant element which we denote by φ. Note
that K(X) is now a finite extension of the field K(φ). The degree of this extension is also called
the degree of the map φ. Let P ∈ X(K) (by X(L) we denote the L-rational points of X, where
L is a field extension of K). Assuming for the moment φ(P ) 6= ∞ we call the vanishing order of
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φ−φ(P ) at P the ramification index of φ at P . Notation: eP . In case φ(P ) =∞ we take for eP the
vanishing order of 1/φ at P . If eP > 1 we call P a ramification point of φ. The image φ(P ) under
φ of a ramification point P is called branch point. The set of branch points is called the branch set
or branch locus. We now recall the Riemann-Hurwitz formula

Theorem 3.1 With the notation above let N be the degree of the map φ and g(X) the geometric
genus of X. Then,

2g(X)− 2 = −2N +
∑

P∈X(K)

(eP − 1).

As we have eP = 1 for all points of X except finitely many, the sum on the right is in fact a finite
sum.
We call the map given by φ a geometric Galois cover if the extension K(X)/K(φ) is a Galois
extension of fields. The Galois group G is a subgroup of the automorphism group (over K) of X
and is called the covering group. Note that the extension K(X)/K(φ) need not be Galois. If it
is we call the cover simply a Galois cover. For a geometric Galois cover the ramification indices
of all points above a given branch point are the same. In particular we shall be interested in
geometric Galois covers whose branch locus is 0, 1,∞. These are examples of so-called Belyi maps.
An immediate consequence of the Riemann-Hurwitz theorem is the following.

Corollary 3.2 . Let X → P1 be a geometric Galois cover whose branch locus is contained in the
set {0, 1,∞}. Suppose that above these points the ramification indices are p, q, r. Suppose the degree
of the cover is N . Then

2g(X)− 2 = N

(
1− 1

p
− 1

q
− 1

r

)
.

In particular we see that if 1/p+ 1/q + 1/r > 1, then g(X) = 0 and when 1/p+ 1/q + 1/r < 1 we
have g(X) ≥ 2.
Here we list a series of geometric Galois covers that will occur in the sequel. We start with X = P1.
The finite subgroups of AutQ(P1) have been classified by Felix Klein. Up to conjugation they are
given by

1. The cyclic group of order N

2. The dihedral group of order 2N

3. The tetrahedral group of order 12

4. The octahedral group of order 24

5. The icosahedral group of order 60

When we consider P1 as a sphere, each of these examples corresponds to a finite rotation group of
the sphere. Here we describe them in some more detail, where z denotes a standard coordinate on
P1. We cannot go into all the fascinating details of the Klein groups. For an extensive discussion
we recommend Chapter I of Klein’s original book [Kl].
Cyclic group. This group is generated by z 7→ ζNz where ζN is a primitive N -th root of unity.
The corresponding cover is given by z 7→ zN .
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Dihedral group. This is generated by the cyclic group given above and z 7→ 1/z. The cover is
given by

z 7→ 1

2

(
zN +

1

zN

)
.

Tetrahedral group. Let ω be a primitive cube root of unity. Consider the subgroup Γ3 of SL(2,C)
generated by

1√
−3

(
1 2ωj

ω−j −1

)
(j = 0, 1, 2) and

(
ω 0
0 ω−1

)
.

Then the tetrahedral group is the subgroup of PSL(2,C) given by Γ3/ ± 1. The covering map is
given by

z 7→
(

4(z3 − 1)

z4 + 8z

)3

.

F.Klein’s (semi)-invariants of Γ3 are

f = −4y(x3 − y3)

H = −x4 − 8xy3

t = −x6 + 20x3y3 + 8y6

with fundamental relation t2 +H3 = f3.
Octahedral group. Consider the group Γ4 generated by(

ζ8 0
0 ζ−18

)
,

(
0 1
−1 0

)
,

1√
2

(
ζ8 −ζ−18

ζ8 ζ−18

)
.

Then the octahedral group is the subgroup of PSL(2,C) given by Γ4/± 1. The cover is given by

z 7→ (z8 + 14z4 + 1)3

108(z(z4 − 1))4
.

F.Klein’s (semi)-invariants are

f = 36xy(x4 − y4)

H = −36(x8 + y8 + 14x4y4)

t = 216(x12 + y12 − 33(x4y8 + x8y4))

with fundamental relation t2 +H3 = −3f4.
Icosahedral group. Consider the group Γ5 generated by

−Id,

(
ζ5 0
0 ζ−15

)
,

1√
5

(
ζ5 − ζ45 −ζ25 + ζ35
−ζ25 + ζ35 −ζ5 + ζ45

)
.

Then the icosahedral group is the subgroup of PSL(2,C) given by Γ5/± 1. The cover is given by

z 7→ (−z20 + 228z15 − 494z10 − 228z5 − 1)3

1728z5(z10 + 11z5 − 1)5
.

F.Klein’s (semi)-invariants are
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f = 123xy(x10 + 11x5y5 − y10)

H = 124(−x20 − y20 + 228(x15y5 − x5y15)− 494x10y10)

t = 126(x30 + y30 + 522(x25y5 − x5y25)− 10005(x20y10 + x10y20))

with the fundamental relation t2 +H3 = f5.
In the last three examples the forms f,H, t have the additional property that

H =
1

k2(k − 1)2

∣∣∣∣ fxx fxy
fxy fyy

∣∣∣∣ , t =
1

2k(k − 2)

∣∣∣∣ fx fy
Hx Hy

∣∣∣∣ ,
where k is the degree of f . These relations will become important later on. Furthermore in all
three examples the branch locus is given by the points 0, 1,∞ ∈ P1. The ramification indices above
these points are 3, r, 2 where r = 3, 4 or 5 depending on the group Γr.
Now we turn to the case when the genus of X is at least 2 and list a number of examples.

1. X : xn + yn = zn and covering map (x : y : z) 7→ (x/z)n. This map has degree n2 and the
group is given by all elements (x : y : z) 7→ (ζx : ζ ′y : z) where ζ, ζ ′ are n-th roots of unity.
The branch locus is given by 0, 1,∞ with ramification indices n, n, n.

2. Let p and q be integers ≥ 3 and let X be given by the projective equations

p−1∑
i=0

ζikp x
q
i = 0 (k = 1, 2, . . . , p− 2).

Consider the covering map

(x0 : x1 : . . . : xp−1) 7→
(
∑p−1
i=0 x

q
i )
p∏p−1

i=0 x
q
i

.

This has Galois group of order pqp−1 generated by multiplication of the coordinates xi by a
q-th root of unity and the cyclic permutation of the coordinates (x0 : x1 : . . . : xp−1) 7→ (x1 :
x2 : . . . : xp−1 : x0). Notice also that for points on X we have the relation

(

p−1∑
i=0

xqi )
p + (

p−1∑
i=0

ζ−ip xqi )
p = (

p−1∏
i=0

xi)
q.

The map has branch locus 0, 1,∞ and ramification indices p, p, q.

3. Let n ≥ 2 and let X be the complete modular curve X(n). We consider the natural map
X(n) → X(1) = P1 using the J-function on X(n). More explicitly, consider the modular J-
function on the complex upper half plane H. This map gives us the quotient map J : H → C
with respect to the group PSL(2,Z). It ramifies above the points J = 0, 1 with ramification
indices 3 and 2 respectively. Let

Γ(n) = {M ∈ SL(2,Z) | M ≡ Id (mod n)}.

Then Γ(n) is a normal subgroup of SL(2,Z) and the quotient ofH by Γ(n) is denoted by Y (n).
Since Γ(n) contains no elliptic element, the cover H → Y (n) is unramified. Furthermore J
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factors over Y (n) to a finite map J : Y (n) → C. If we now complete the curves by adding
the cusps to Y (n) and ∞ to C, we get J : X(n)→ P1 where X(n) is the completion of Y (n).
This map ramifies of order n above ∞. So the ramification indices above 0, 1,∞ are 3, 2, n.
The covering group is PSL(2,Z/nZ). When n = 3, 4, 5 we recover the tetrahedral, octahedral
and icosahedral covering again.

4. Let n be odd, X = X(2n) and consider the natural map to X(2) = P1. This has ramification
indices n, n, n above 0, 1,∞ and no others. The covering group is PSL(2,Z/nZ).

5. Let n be odd and let X be the completed modular curve corresponding to the modular group
Γ(n) ∩ Γ0(2). Then the natural map X → X0(2) = P1 is a geometric Galois cover ramified
above 0, 1,∞ with ramification indices n, n, 2. The covering group is again PSL(2,Z/nZ)

6. Similarly, when n is not divisible by 3 we consider the modular group Γ(n)∩Γ0(3) and take for
X the associated complete modular curve. Then X → X0(3) gives us a geometric Galois cover
ramified above 0, 1,∞ with ramification indices n, n, 3. The covering group is PSL(2,Z/nZ).

4 Lifting points

Let φ : X → P1 be a geometric Galois cover defined over a number field K and whose degree is N .
For any point a ∈ P1(K) the points in the inverse image φ−1(a) generate a finite Galois extension
L of K of degree at most N . In the following we explicitly determine the set of primes of K that
ramify in L.
Let π be any finite prime of K. We extend it to a valuation of K. We represent points of P1(K) as
points in K ∪∞. We define the π-adic intersection number on P1 by

Iπ(a, b) =

 ordπ(a− b) if ordπ(a), ordπ(b) ≥ 0
ordπ(1/a− 1/b) if ordπ(1/a), ordπ(1/b) ≥ 0

0 otherwise

We say that a and b meet π-adically if Iπ(a, b) > 0. The following theorem is a weakened version
of a theorem proved in [Bec].

Theorem 4.1 (S.Beckmann) Let φ : X → P1 be a Galois cover defined over a number field K
and with covering group G. Let a1, . . . , ar ∈ K ∪∞ be the set of branch points. There is finite set
of primes, which we denote by Sbad, with the following properties. For any point q ∈ K not equal
to any ai we have

1. the finite primes of K that ramify in K(φ−1(q)) are contained in the set S = Sbad∪Sq, where
Sq is the set of primes π at which q meets a branch point ai π-adically.

2. if π 6∈ Sbad and q meets the branchpoint ai π-adically, then π ramifies of order e where e is
the denominator of Iπ(q, ai)/ei and where ei is the ramification index above ai.

In [Bec] we find a stronger statement which explicitly gives us Sbad. If the group G is simple or if
the covering is given by a good model, then Sbad is the union of the primes dividing the order of G
and the primes π for which at least two distinct branch points meet π-adically.
We are now able to give a proof of the following result.
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Theorem 4.2 Let φ : X → P1 be a geometric Galois cover which ramifies of order p, q, r above the
points 0, 1,∞ respectively, and which has no further ramification. Suppose that the cover is defined
over the number field K. Then there exists a finite extension L of K such that φ−1(Aap/Ccr) ⊂
X(L) for every triple (a, b, c) that satisfies

Aap +Bbq = Ccr, gcd(a, b, c) = 1.

Here X(L) denotes the set of L-rational points on X.

Proof. If necessary we replace K by a finite extension so that φ becomes a Galois cover. Consider
the field M generated over K by the coordinates of the points in φ−1(Aap/Ccr). We now apply
Beckmann’s Theorem. We let SABC be the set of primes dividing ABC. Let π be a prime of K not
dividing abc and not in Sbad ∪SABC . Then the point Aap/Ccr doesn’t reduce to 0, 1 or ∞ modulo
π. To see that it does not reduce to 1 notice that Aap

Ccr − 1 = −Bb
q

Ccr where b, c, B,C are π-adic units.
Hence π is unramified in M/K. Suppose now that π 6∈ Sbad ∪ SABC and π divides a. Then the
intersection number Iπ(Aap/Ccr, 0) is a positive multiple of p. This is a consequence of the fact
that gcd(a, b, c) = 1. Since the cover ramifies of order p above zero, part 2 of Beckmann’s theorem
implies that π has ramification order 1, i.e. no ramification. Similarly, if π divides b or c and is
not in Sbad ∪ SABC , then π is unramified in M/K. So we find that the coordinates of a point in
φ−1(Aap/Ccr) are in a number field of degree at most N , the degree of the cover, and a fixed set of
ramified primes. There are only finitely many such fields and for L we can take their compositum.

qed

We can now prove Theorem 2 in [DG].

Theorem 4.3 (Darmon-Granville) Suppose 1/p+1/q+1/r < 1 and A,B,C ∈ Z with ABC 6= 0.
Then the number of solutions to

Axp +Byq = Czr, gcd(x, y, z) = 1

is finite.

Proof. We begin by the construction of a curve X and a Galois cover X → P1 of Belyi-type, i.e
it ramifies only above the points 0, 1,∞ with ramification orders p, q, r respectively. This can be
done for example by the construction in Proposition 4.4. It is well-known that Belyi-maps can be
defined over Q.
By the Riemann-Hurwitz theorem we know that 1/p + 1/q + 1/r < 1 implies g(X) ≥ 2. Beck-
mann’s theorem implies that there is a number field L such that for any solution (a, b, c) we have
φ−1(Aap/Ccr) ⊂ X(L). By Faltings’ theorem (formerly Mordell’s conjecture) we know that X(L)
is finite. Hence our equation has finitely many solutions.

qed
In the proof of the Darmon-Granville theorem the existence of a suitable cover is usually accounted
for by application of the Riemann existence theorem. However, the Riemann covering data to
apply the existence theorem are usually not provided. With the following proposition we remedy
this small gap.

Proposition 4.4 Let p, q, r be three integers ≥ 2 and such that 1/p + 1/q + 1/r < 1. Then there
exists an algebraic curve X and a Galois cover X → P1 which ramifies of order p, q, r above the
points 0, 1,∞ respectively.
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Proof We first construct a so-called triangle group in the Poincaré disc D given by {z ∈ C| |z| < 1}.
We start with a hyperbolic triangle with angles π/p, π/q, π/r. Denote the hyperbolic reflection in
the side opposite to the angle π/p by sp. Similarly we define sq, sr. Notice that (spsq)

r = (spsr)
q =

(sqsr)
p = id. Let ∆ be the group of isometries of D consisting of even-length words in sp, sq, sr.

Then ∆ is a group of fractional linear transformations of D which we call the (p, q, r)-triangle group.
This triangle group acts discretely on D, the quotient D/∆ is P1 and the quotient map D → P1

ramifies of order p, q, r above three points which we can choose to be 0, 1,∞.
To prove our Proposition it suffices to construct a normal subgroup H of ∆, of finite index, whose
non-trivial elements act fixpoint-free on D. In that case the quotient map D → D/∆ factors as
D → D/H → D/∆, where D → D/H is unramified. Moreover, D/H → D/∆ is a finite map with
the required ramification properties. Hence X = D/H.
Up to conjugation the triangle group is uniquely determined. Consider now the matrices

A =

(
0 ζ−12p ζ

−1
2q

−ζ2pζ2q ζ2r + ζ−12r

)
B =

(
0 −ζ−12p

ζ2p ζ2p + ζ−12p

)
in SL(2,C). Here ζn = exp(2πi/n). Notice that A, considered as element in PSL(2,C) has precise
order r, B has order p and AB−1 has order q. The entries of the elements of the group generated by
A,B are all contained in the ring of integers R = Z[ζ2p, ζ2q, ζ2r]. Furthermore, the elliptic elements
in ∆ are all conjugate to one of A,B,AB−1 or one of their powers. Choose a prime ideal π in R
which does not contain any of the numbers ζk2n − 1, (k = 1, . . . , n − 1) for n = p, q, r. Then the
subgroup H defined by

H = {g ∈ ∆ | g ≡ Id mod π}
is a normal subgroup of finite index in ∆ without elliptic elements. This is an example of the group
we were looking for.

qed

5 Galois cocycles

Let K be a number field and L a finite Galois extension. Let G be a finite group with a Gal(L/K)
Galois action Gal(L/K) → Aut(G). A 1-cocycle is a map ξ : Gal(L/K) → G, mapping σ 7→ ξσ,
such that

ξστ = ξσσ(ξτ )

for all σ, τ ∈ Gal(L/K). Two cocycles ξ, ζ are called cohomologous if there exists h ∈ G such that

ζσ = h−1ξσσ(h).

The set of cocycles modulo this equivalence relation is called the first Galois cohomology set of
Gal(L/K) in G. Notation H1(Gal(L/K), G).
An important use of the first cohomology is the description of twists of algebraic varieties V , when
G = Aut(V ). To fix ideas, let X be a smooth connected algebraic curve defined over K. Any curve
X ′ defined over K together with an isomorphism ψ : X → X ′, which is defined over K, is called a
twist of X. In particular, when the twist map ψ is defined over a finite galois extension L of K, we
call our twist an L-twist. Let ψ : X → X ′ be such an L-twist. Then, for any σ ∈ Gal(L/K) the
composite map ψ−1σ(ψ) is an automorphism of X defined over L. One easily checks that

σ 7→ ψ−1σ(ψ)
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is a Galois cocycle in H1(Gal(L/K),AutL(X)). Namely,

ψ−1στ(ψ) = ψ−1σ(ψ)σ(ψ−1τ(ψ)).

Two L-twists ψ1 : X → X ′ and ψ2 : X → X ′′ are called equivalent if there exist h ∈ AutL(X) and
an isomorphism g : X ′ → X ′′ defined over L such that ψ2 = g ◦ ψ1 ◦ h. Denote the set of classes of
L-twists by Twist(X,L/K). Then we have

Theorem 5.1 The map ψ 7→ (σ 7→ ψ−1σ(ψ)) gives a well-defined map from Twist(X,L/K) to
H1(Gal(L/K),AutL(X)). Moreover, this map is a bijection.

More explicitly, if we have a 1-cocycle ξ : Gal(L/K) → AutL(X), then it is possible to find an
L-twist ψ : X → X ′ such that ξσ = ψ−1σ(ψ) for all σ ∈ Gal(L/K). We now apply this to our
diophantine equation.

Theorem 5.2 Let A,B,C, p, q, r be as in the introduction. By Sol we denote the set of numbers
Aap/Ccr for all a, c belonging to triples of integers (a, b, c) that satisfy

Aap +Bbq = Ccr, gcd(a, b, c) = 1, abc 6= 0.

Let φ : X → P1 be a geometric Galois cover of Belyi-type which ramifies above 0, 1,∞ of order
p, q, r respectively. Suppose it is defined over a number field K. Then there exist finitely many
twists ψi : X → Xi, i = 1, 2, . . . , r, defined over K, such that

1. each map φ ◦ ψ−1 : Xi → P1 is defined over K.

2. Sol ⊂ ∪ri=1φ ◦ ψ
−1
i )(Xi(K)).

3. The sets φ ◦ ψ−1i (Xi(K)) intersect in a subset of 0, 1,∞.

Proof. According to Theorem 4.2 there is a finite Galois extension L such that φ−1(Sol) ⊂ X(L).
We assume that the covering group G is also defined over L. Take any point Q ∈ Sol and let
P ∈ X(L) be such that φ(P ) = Q. Since φ is a geometric Galois cover, for any σ ∈ Gal(L/K) there
exists a unique gσ ∈ G such that σ(P ) = gσ(P ). Notice that

gστ (P ) = σ(τ(P )) = σ(gτ (P )) = σ(gτ )(σ(P )) = σ(gτ )gσ(P ).

Hence gστ = σ(gτ )gσ and so we see that
σ 7→ g−1σ

is a Gal(L/K) cocycle in H1(Gal(L/K), G). Consider the twist ψ : X → X ′ that corresponds to
this cocycle. This means that g−1σ = ψ−1σ(ψ) for all σ ∈ Gal(L/K). Hence

σ(ψ(P )) = σ(ψ)(σ(P )) = ψg−1σ gσ(P ) = ψ(P ).

In other words ψ(P ) is fixed under Gal(L/K) and hence ψ(P ) ∈ X ′(K). Furthermore, for any
σ ∈ Gal(L/K) we have

σ(φ ◦ ψ−1) = φ ◦ σ(ψ)−1 = φ ◦ gσ ◦ ψ−1 = φ ◦ ψ−1.
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Hence φ ◦ ψ−1 is defined over K. Since Q = φ(P ), we see that Q is contained in φ ◦ ψ−1(X ′(K)).
To every class in H1(Gal(L/K), G) we choose a twist and since H1(Gal(L/K), G) is finite, we get
a finite number of twists ψi : X → Xi with i = 1, 2, . . . , r. Part one of our Theorem follows.
To see the disjointness, suppose φ◦ψ−11 (X1(K)) and φ◦ψ−12 (X2(K)) have a point Q ∈ P1(K), Q 6=
0, 1,∞ in common. For i = 1, 2 choose a point Pi ∈ Xi(K) such that Q = φ ◦ ψ−1i (Pi). Then there
exists k ∈ G such that ψ−11 (P1) = k ◦ ψ−12 (P2). Let ξi be the cocycle to which we associated ψi.
Then application of any σ ∈ Gal(L/K) yields

ξ−11,σ ◦ ψ
−1
1 (P1) = σ(k) ◦ ξ−12,σψ

−1
2 (P2).

Replacing the right hand side,

ξ−11,σ ◦ ψ
−1
1 (P1) = σ(k) ◦ ξ−12,σ ◦ k−1ψ

−1
1 (P1).

Since ψ−1(P1) has trivial stabilizer in G we conclude that

ξ1,σ = k−1 ◦ ξ2,σ ◦ σ(k)

for all σ ∈ Gal(L/K). Hence ξ1, ξ2 are cohomologous and the twists X1, X2 are equivalent.
qed

So to solve a generalised Fermat equation in the hyperbolic case it suffices to determine the K-
rational points on a finite set of curves of genus ≥ 2. It would be nice if one could have K = Q.
In fact this is how the equations with exponent triples {2, 3, 7}, {2, 3, 8} and A = B = C = 1 were
solved in [PSS] and [B1],[B2].
In the spherical cases {p, q, r} = {2, 3, 3}, {2, 3, 4}, {2, 3, 5} we have the Klein covers of degree
12, 24, 60 respectively and X = P1. Hence the above theorem implies that the solution set of
a generalised Fermat equation in the spherical case is given by a finite (possibly empty) set of
rational functions P1 → P1 defined over Q.
In the following we shall determine these rational functions in detail for the spherical case (2, 3, 5).
We use the approach of Johnny Edwards, who found that classical invariant theory provides a
convenient language to carry out the computations.

6 Invariant theory of binary forms

Here we give a very quick introduction following Hilbert’s lectures from 1897. See [H]. In particular
our approach will be very classical. The only difference between Hilbert’s and our representation is
that we use k instead of n for the degree of the base form.

6.1 Definition and first examples

Let K be an algebraically closed field of characteristic zero. Consider a form f ∈ K[a,x] of the
shape

f(a,x) =

k∑
i=0

(
k

i

)
aix

k−i
1 xi2,

which we call the base form. We have two sets of polynomial variables, x = (x1, x2) and a =
(a0, . . . , ak). For historical reasons the number k is called the order of f . The group GL(2,K)
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acts on polynomials in x1, x2 as follows. For any g ∈ GL(2,K) we replace the column vector
x = (x1, x2)t by the components of the column vector g · x. When we replace the variables x1, x2
in a polynomial h in this way, we denote the new polynomial by h ◦ g.
Let C ∈ K[a,x]. We denote its dependence on a,x by writing it as C(f). The polynomial C(f) is
called a covariant of f if there exists an integer p ≥ 0 such that

C(f ◦ g) = det(g)pC(f) ◦ g

for all g ∈ GL(2,K). We call p the weight of the covariant. A covariant which depends only on the
aj is called an invariant. I.e I(a) ∈ K[a] is called an invariant of weight p if

I(f ◦ g) = det(g)pI(f)

for all g ∈ GL(2,C).
Since the action of g does not change degrees in the ai and xj we can restrict our attention to
covariants which are homogeneous in the aj and homogeneous in the xi. When C(f) is such a
bihomogeneous covariant, we call dega(C) the degree of C and degx(C) the order of C. Notice that
f itself is a covariant of weight 0, order k and degree 1.
Here are two of our most important examples of covariants. First there is the Hessian covariant
H(f) defined by

H(f) =
1

k2(k − 1)2

∣∣∣∣ f11 f12
f21 f22

∣∣∣∣
where fij stands for partial differentiation with respect to xi and xj . It is a matter of straightforward
calculus to see that this is a covariant. Its weight is 2, the order is 2k − 4 and the degree is 2.
The other important covariant is the Jacobian determinant t(f) defined by

t(f) =
1

k − 2

∣∣∣∣ f1 f2
H1 H2

∣∣∣∣ .
Again it is straightforward to check that this is a covariant. Its weight is 3, its order 3k − 6 and
degree 3.

Remark 6.2 Let C be a covariant of f . When we specialise the variables a0, . . . , ak to values
in some ring R and we do this both in f and C(f) we will still call the specialisation of C(f) a
covariant of the specialised f .

6.3 Structure of covariants

Suppose we are given a bihomogeneous polynomial

C(f) =

m∑
j=0

(
m

i

)
Cj(a)xm−j1 xj2.

We give necessary and sufficient condition for a form to be a covariant. Suppose it is a covariant.
Since GL(2,K) is generated by the matrices(

λ 0
0 1

)
,

(
0 1
1 0

)
,

(
1 ν
0 1

)
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where λ ∈ K∗, ν ∈ K, it suffices to verify the covariant property of C only for these matrices. First
we take g to be the diagonal matrix with entries λ, 1. Then

g(x1) = λx1, g(x2) = x2.

Let Aar00 · · · a
rk
k x

m−j
1 xj2 be a non-trivial term in C. In shorthand notation: Aarxm−j1 xj2. The

covariant property now implies that

λkr0+(k−1)r1+···+rk−1arxm−j1 xj2 = λp+m−jarxm−j1 xj2.

Hence
kr0 + (k − 1)r1 + · · ·+ rk−1 = p+m− j.

The covariant property with respect to

(
0 1
1 0

)
implies if Aar00 · · · a

rk
k x

m−j
1 xj2 occurs as a non-

trivial term, then so does (−1)pAar0k · · · a
rk
0 x

m−j
2 xj1. In particular, this observations together with

previous one, leads to
r1 + 2r2 + · · · krk = p+ j

for any monomial. Addition of the two equalities gives us

k(r0 + r1 + · · ·+ rk) = 2p+m

Letting g be the degree (in a) of C we get

kg = 2p+m.

Finally we need to implement the covariant property with respect to

(
1 ν
0 1

)
. It is a straightforward

but slightly tedious job to show that we get

DC = x2
∂C

∂x1

where D is the differential operator

D = a0
∂

∂a1
+ 2a1

∂

∂a2
+ 3a2

∂

∂a3
+ · · ·+ nan−1

∂

∂an
.

By the symmetry

(
0 1
1 0

)
we also get

∆C = x1
∂C

∂x2

where ∆ is the differential operator

∆ = an
∂

∂an−1
+ 2an−1

∂

∂an−2
+ · · ·+ na1

∂

∂a0
.

A particular consequence of the first equation is that

D(C0) = 0. (1)
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The second equation implies that

C1 =
1

m
∆C0, C2 =

1

m(m− 1)
∆2C0, . . . Cm =

1

m!
∆mC0. (2)

In fact, these conditions turn out to be both necessary and sufficient. In the following statement
an isobaric polynomial in the aj is a polynomial such that for all terms Aar00 · · · a

rk
k the sum r1 +

2r2 + 3r3 + · · ·+ krk has the same value.

Theorem 6.4 The bihomogeneous polynomial

C(f) =

m∑
j=0

(
m

i

)
Cj(a)xm−j1 xj2

is a covariant of weight p if and only if C0 is homogeneous of degree g, isobaric of weight p, such
that m = kg − 2p, and such that equations (1) and (2) are satisfied.

In particular we have a very nice corollary characterising invariants.

Corollary 6.5 A homogeneous polynomial C(a) is an invariant of weight p if and only if it has
degree g and is isobaric of weight p such that kg = 2p and such that the equation DC(a) = 0 is
satisfied.

6.6 Further examples

First we give some examples of invariants and covariants for small k.

The case k = 2, f = a0x
2
1 + 2a1x1x2 + a2x

2
2.

The Hessian of f equals a0a2−a21, the discriminant of f . It turns out that all invariants are powers
of the discriminant.

The case k = 3, f = a0x
3
1 + 3a1x

2
1x2 + 3a2x1x

2
2 + a3x

2
2.

The Hessian now reads

H(f) = (a0a2 − a21)x21 + (a0a3 − a1a2)x1x2 + (a1a3 − a22)x22.

There is also the Jacobian covariant

t(f) = (a20a3 − 3a0a1a2 + 2a31)x31 + · · ·

The discriminant of f is an invariant,

D(f) = a20a
2
3 − 3a21a

2
2 + 4a31a3 + 4a0a

3
2 − 6a0a1a2a3.

The powers of D form a full system of invariants. We have the classical relation

4H3 + t2 = Df2.
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The case k = 4, f = a0x
4
1 + 4a1x

3
1x2 + 6a2x

2
1x

2
2 + 4a3x1x

3
2 + a4x

4
2.

We have the Hessian and Jacobian covariants H(f), t(f) as before. The ring of invariants is gener-
ated by

I2 = a0a4 − 4a1a3 + 3a22

I3 = a0a2a4 − a0a23 − a21a4 + 2a1a2a3 − a32

We have the classical relation

t(f)2 = −4H(f)3 + I2H(f)f2 − I3f3.

A general way to produce new covariants from old ones is the transvectant construction. Letting
C1, C2 be two covariants and r ∈ Z≥1 we define

(C1, C2)r =

(
(k − r)!
k!

)2

Ωr(C1(x1, x2)C2(x′1, x
′
2))|x′1=x1,x′2=x2

where

Ω =
∂

∂x1

∂

∂x′2
− ∂

∂x′1

∂

∂x2
.

The transvectants of f are defined by

τ2m =
1

2
(f, f)2m, τ2m+1(f) = (f, τ2m(f))1.

This is the sequence of transvectants we find in [H, Ch I.8]. They are covariants of degrees 2 and
3 respectively with weights equal to the index n in τn. One notes that H(f) = τ2(f), t(f) = τ3(f)
and

H(f) = (a0a2 − a21)x2k−41 + · · ·
t(f) = (a20a3 − 3a0a1a2 + 2a31)x3k−61 + · · ·
τ4(f) = (a0a4 − 4a1a3 + 3a22)x2k−81 + · · ·
τ6(f) = (a0a6 − 6a1a5 + 15a2a4 − 10a23)x2k−121 + · · ·

The following theorem will be crucial to us.

Theorem 6.7 (Gordan, 1887) The fourth transvectant τ4(f) of a non-trivial form f with k ≥ 4
is identically zero if and only if f is GL(2,K)-equivalent to one of the following forms

1. xk1 or xk−11 x2 (degenerate case)

2. x2(x31 + x32) (tetrahedral case)

3. x1x2(x41 + x42) (octahedral case)

4. x1x2(x101 − 11x51x
5
2 − x102 ) (icosahedral case)
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So the vanishing of τ4(f) forces f to be one of the Klein forms if f is not degenerate.
Because of its importance we give a proof of this theorem. First of all a straightforward computation
shows that τ4(f) vanishes for all forms in the list. We now show the converse statement. Let f be
a form with τ4(f) = 0. Very explicitly we have

τ4(f) =

2n−8∑
r=0

Drx
2n−r
1 xr2

where

Dr =
∑
i+j=r

(
n− 4

i

)(
n− 4

j

)
(aiaj+4 − 4ai+1aj+3 + 3ai+2aj+2).

We use the equations D0 = 0, D1 = 0, D2 = 0, . . . to recursively determine the coefficients aj .
Suppose our f is not equivalent to xk1 . Then f should have a zero of order ≤ k/2. By application
of a GL(2,K) substitution, we can see to it that this zero becomes x2 = 0. In particular, a0 = 0.
First suppose that a1 = 0. Choose t > 1 minimal so that at 6= 0. We have that t ≤ k/2 because
x2 = 0 is a zero of order ≤ k/2. Now note that for all t ≤ k − 2,

D2t−4 = 3

(
k − 4

t− 2

)2

a2t + · · ·

where the omitted terms all contain a factor ai with i < t. Since ai = 0 for all i < t it follows from
D2t−4 = 0 that at = 0, a contradiction. So a1 cannot be zero.
Now suppose, after normalisation if necessary, that a1 = 1. By application of a shift x1 → x1 +
νx2, x2 → x2 we can see to it that a2 = 0. We now determine the remaining ai recursively using
the equations

D0 = a0a4 − 4a1a3 + a22 = 0

Dr = · · ·+ k

r

k − 4

r − 1

(
r − 4 +

12

k

)
a1ar+3 + · · · = 0 (r ≥ 1)

where the omitted terms all contain a0 or an ai with 2 ≤ i ≤ r + 2. If the factor r − 4 + 12/k does
not vanish for any r we get that a3 = a4 = . . . = ak = 0 and we are in the case xk−11 x2. So we need
that k divides 12 and 4 > 12/k. Hence k = 4, 6 or 12. Take k = 12, the other cases being similar.
We get that a2 = a3 = . . . = a5 = 0 and choose a6 6= 0. By scaling we can see to it that a6 = −11.
Recursive solution of D4 = D5 = . . . = D9 = 0 shows that a7 = . . . = a10 = a12 = 0 and a11 = −1.
Hence f = x1x2(x101 − 11x51x

5
2 − x102 ).

7 Mordell’s approach

As an example of the use of invariant theory in solving diophantine equations we present Mordell’s
method to solve the equation

x2 = −y3 +A2yz
2 +A3z

3 (3)

in integers x, y, z with gcd(x, y, z) = 1. Mordell’s idea is to exploit the relation

t(f)2 = −4H(f)3 + I2H(f)f2 − I3f3
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for quartic forms f . Given a solution x, y, z with z 6= 0 he constructs a quartic form f with invariants
I2(f) = 4A2, I3(f) = 4A3 and such that f(1, 0) = z,H(1, 0) = y, t(1, 0) = 2x. When we write f in
our standard form, this amounts to solving

(i) z = a0

(ii) y = a0a2 − a21
(iii) 2x = a20a3 − 3a0a1a2 + 2a31

(iv) 4A2 = a0a4 − 4a1a3 + 3a22

(v) 4A3 = a0a2a4 − a0a23 − a21a4 + 2a1a2a3 − a32

We start by setting a0 = z. From (3) it follows that x2 ≡ −y3(mod z2). Hence −(xy−1)2 ≡
y(mod z2). Now choose a1 integral so that a1 ≡ −xy−1(mod z2). Then y+a21 is divisible by z = a0
and we can determine a2 from equation (ii). Rewrite the equation (iii) as

z2a3 = 2x+ 3a1y + a31.

To solve this, the right hand side should be divisible by z2. This is indeed the case as follows from

2x+ 3a1y + a31 ≡ 2x+ 3(−xy−1)y + (−xy−1)3 ≡ −x(y3 + x2)y−3(mod z2)

and from equation (3).
We now determine a4 from equation (iv). With this value of a4, equation (v) is automatically
satisfied because of (3). We now see from equations (iv) and (v) that both a0a4 = za4 and
(a0a2−a21)a4 = ya4 are integer. Since z and y are relatively prime this implies that a4 is an integer.
Thus we know that to any solution of (3) we have a quartic form f with prescribed invariants
4A1, 4A2 such that f(1, 0) = z,H(1, 0) = y, t(1, 0) = 2x. Of course other specialisations of f,H, t
will provide us with an infinity of solutions to 3. Since the number of SL(2,Z)-classes of such forms
is finite, we get a finite number of parametrising solutions of (3) that give the complete solution
set.
Notice that I2 is the fourth transvectant of f . If this vanishes and if I3 = 4 we get the identity
t2 = −4H3 − 4f3. This is exactly the case for which Mordell provides a full solution set in [Mo,
Chapter 25].

8 Edwards’s approach

The main idea in Edwards’s paper [Ed] is to mimick Mordell’s technique to solve the diophantine
equation

x2 + y3 = dz5 (4)

in coprime integers x, y, z. Here d is a given non-zero integer. Let

f̃(x1, x2) = 123x1x2(x101 − 11x51x
5
2 − x102 )

be the icosahedral form of F.Klein. Letting H̃ and t̃ be its Hessian and Jacobian covariants, we get

(t̃/2)2 + H̃3 = f̃5. (5)
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Definition 8.1 Let d be a non-zero integer. By C5(d) we denote the set of GL(2,Q)-transforms of
f̃ which are of the form

f(x1, x2) =

12∑
i=0

(
12

i

)
aix

12−i
1 xi2,

such that

1. a0, . . . , a5, 7a6, a7, . . . , a12 ∈ Z for all i.

2.
(t(f)/2)2 +H(f)3 = df5. (6)

where H(f) and t(f) are the Hessian and Jacobian covariants of f .

Notice that a6 is preceded by a 7 in this definition (and in all formulas to come). It turns out that
the space of dodecahedral forms with a0, . . . , a5, 7a6, a7, . . . , a12 ∈ Z is stable under SL(2,Z). From
now on, when we speak of integer solutions, we will mean these variables to be integral.
Because of the covariant property it follows from (5) that for any g ∈ GL(2,Q) we have for f := f̃ ◦g
the identity

(t(f)/2)2 +H(f)3 = det(g)6f5.

So by taking det(g)6 = d we can see to it that we get parametrisations of x2 + y3 = dz5.
Our first goal is to prove the following theorem.

Theorem 8.2 Let d be a non-zero integer. Let x, y, z ∈ Z be a coprime solution of x2 + y3 = dz5.
Then there exists a form f ∈ C5(d) such that

f(1, 0) = z, H(f)(1, 0) = y, t(f)(1, 0) = 2x. (7)

Proof . In what follows we shall write a form

12∑
i=0

(
12

i

)
aix

12−i
1 xi2

in the shape
[a0, a1, . . . , a12].

When z = 0, we have x = ±1 and y = −1. We can immediately write down the corresponding
forms f . They read

[0,±1, 0, 0, 0, 0,−144d/7, 0, 0, 0, 0,∓(144d)2, 0].

So from now on we can assume z 6= 0. We first prove our theorem without the rationality properties
of the ai. Determine α, β ∈ Q such that f̃(α, β) = z/d and H̃(α, β) = y/d2. Determine γ, δ ∈ Q

such that αδ − βγ = 1. Define the dodecahedral form f by f = df̃ ◦ g, where g =

(
α γ
β δ

)
. Then,

because H(f) = H(df̃ ◦ g) = d2H(f̃) ◦ g and t(f) = t(df̃ ◦ g) = d3t(f̃) ◦ g we find that (6) is
satisfied for our choice of f . Moreover, f(1, 0) = df̃(α, β) = z and similarly H(f)(1, 0) = y. From
x2 + y3 = dz5 and (6) it follows that t(f)(1, 0) = ±2x. In case t(f)(1, 0) = −2x we take a new f
equal to the old f(ix1, ix2). This does not change f,H but it does change t by a minus sign. We
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have found a solution f for the equations (6) and (7). Notice that if f(x1, x2) is a solution, then so is
f(x1 +λx2, x2) for any λ ∈ Q. So we still have some freedom in the choice of f . Thus far everything
has been done over Q. Our claim is that we can choose λ in such a way that the coefficients ai
satisfy the rationality and integrality properties of the ai required by f being in C5(d).
Equations (7) gives us the following equations in ai

z = a0

y = a0a2 − a21
2x = a20a3 − 3a0a1a2 + 2a31

precisely the same as in Mordell. We also need explicitly given necessary conditions on the ai for
f to be equivalent to f̃ . These are given by the vanishing of the fourth transvectant according to
Gordan’s theorem. So we get the Di = 0 where the Di, i = 0, 1, . . . , 12 are the coefficients of τ4(f).
In Appendix B, at the very end we have reproduced the explicit equations Di = 0 for i = 0, . . . , 9.
Then we must take a0 = z. For a1 we have complete freedom because of the freedom in λ above.
We set a1 equal to a number in the residue class −xy−1(mod z5). From H(1, 0) = y and t(1, 0) = 2x
it follows that

a0a2 ≡ y + (xy−1)2 ≡ −dz5y−2 ≡ 0(mod z5)

a20a3 ≡ −x(x2 + y3)y−3 ≡ −dxz5y−3 ≡ 0(mod z5)

From this we observe that a2 and a3 are integers divisible by z4 and z3 respectively. We can now
determine a4, a5, . . . recursively. Start with

0 = D0/1 = a0a4 − 4a1a3 + 3a22.

Hence a0a4 is an integer divisible by z3. Hence a4 is an integer divisible by z2. Similarly it follows
from D1 = 0 that a5 is an integer divisible by z and from D2 = 0 it follows that 7a6 ∈ Z. In

D3/56 = 0 = a0a7 − 6a2a5 + 5a3a4

a small miracle happens. There is no term a1a6 and we can now see that a0a7 is an integer divisible
by z5. Hence a7 is divisible by z4. The equation

D4/14 = 0 = 5a0a8 + 12a1a7 − 6a2(7a6)− 20a3a5 + 45a24

poses a small problem because of the coefficient 5 in front of a0a8. However, by elimination of a6, a7
from D4 = D3 = D2 = 0 we obtain

a20a8 = 12a4a3a1 + 18a4a
2
2 − 24a23a2 + 4a5a3a0 − 9a24a0.

Now it follows that a8 is an integer divisible by z3. Continuing with D5 = D6 = D7 = 0 we find
that a9, a10, a11 are integers as well. From D8 = D9 = 0 we see that a0a12 and a1a12 are integers.
Because a0, a1 are coprime, we conclude that a12 is integral.

qed

Up to a shift x1 → x1 + ax2, x2 → x2 the form f found in Theorem 8.2 is unique.
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Theorem 8.3 Let d, x, y, z be as in Theorem 8.2. Let f1, f2 ∈ C5(d) be such that

f1(1, 0) = f2(1, 0) = z, H1(1, 0) = H2(1, 0) = y, t1(1, 0) = t2(1, 0) = 2x.

Then there exists an integer q such that f1(x1, x2) = f2(x1 + qx2, x2).

Proof. Notice that if f(x1, x2) has coefficients a0, a1, a2, . . ., then for any number q the form
f(x1 + qx2, x2) has coefficients a0, a1 + qa0, a2 + 2qa1 + q2a0, . . ..
We distinguish two cases. First of all suppose that z = 0. Then, automatically, y = −1, x = ±1.
From the proof of Theorem 8.2 it follows that a0 = 0, a1 = ∓1. From D4 = a0a4 − 4a1a3 + 3a22 = 0
we see that a2 is even. Hence by a substition of the form (x1, x2) → (x1 + qx2, x2) we can see to
it that a2 = 0. The remaining ai are now uniquely determined from the equations Di = 0 and the
extra equation R1 = 0 (see Appendix B). This latter equation arises from the identity τ6(f) = 360df
and it fixes the proper normalisation of a6.
Now suppose that z 6= 0. We should have a0 = z. From D4 = a0a4 − 4a1a3 + 3a22 = 0 it follows
that a2 is even if a0 is even. We can now deduce from the equations H(1, 0) = y, t(1, 0) = 2x
that a1 ≡ −xy−1(mod z). So by a substitution (x1, x2) → (x1 + qx2, x2) we can see to it that
0 ≤ a1 < |z|. This determines a1 uniquely. The remaining ai are now determined uniquely as well
by the equations H(1, 0) = y, t(1, 0) = 2x and Di = 0.

qed

Corollary 8.4 Let d, x, y, z be as in Theorem 8.2. Suppose we have f1, f2 ∈ C5(d) and integers
a1, b1, a2, b2 such that

z = f1(a1, b1) = f2(a2, b2)

y = H1(a1, b1) = H2(a2, b2)

2x = t1(a1, b1) = t2(a2, b2)

Then f1 and f2 are SL(2,Z)-equivalent. Moreover, if the last equation reads

t1(a1, b1) = 2x t2(a2, b2) = −2x

then f1 and f2 are GL(2,Z)-equivalent.

Proof. Choose c1, d1 ∈ Z such that a1d1 − b1c1 = 1 and put g1 =

(
a1 b1
c1 d1

)
. Then f1 ◦ g1 is a

form in C5(d) which specialises together with its covariants at the point (1, 0) to the solution x, y, z.
We can choose g2 ∈ SL(2,Z) similarly. According to Theorem 8.2 the forms f1 ◦ g1 and f2 ◦ g2 are
SL(2,Z) equivalent. This shows the first part of our Corollary.
To show the second part, choose a g ∈ GL(2,Z) with determinant −1. Let f ′ = f ◦ g. Then
H(f ′) = H(f)◦g and t(f ′) = −t(f)◦g because H has even weight and t has odd weight. According
to the first part of our Corollary, f ′2 and f1 are SL(2,Z)-equivalent.

qed

We have now seen that all coprime solutions to x2 + y3 = dz5 arise from parametrisations using
forms from C5(d) and their covariants. It remains to show that C5(d) consists of a finite number of
SL(2,Z)-orbits and, if possible, compute these orbits.
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9 Reduction of binary forms

Also in this section we follow the approach in [Ed], but with a few simplifications. Consider a form
f ∈ R[x1, x2] of degree k ≥ 3 in x1, x2. We assume once and for all that it has distinct zeros.
Choose a factorisation over C,

f =

k∏
i=1

(νix1 − µix2).

There is some ambiguity in the normalisation of the linear factors for the moment, but this will be
cleared. For any t1, . . . , tk ∈ R>0 define φ = φ(f, t) by

φ(f, t) =

k∑
i=1

t2i (νix1 − µix2)(νix1 − µix2).

This is a real quadratic form which is positive definite since its values for real (x1, x2) 6= (0, 0)
are strictly positive. Strictly speaking φ also depends on the particular factorisation of f we have
chosen. Let us write φ(f, t) = Px21 − 2Qx1x2 +Rx22 and let δ(f, t) = PR−Q2 be its determinant.

Lemma 9.1 For any g ∈ GL(2,R) we have

φ(f ◦ g, t) = φ(f, t) ◦ g and δ(f ◦ g, t) = det(g)2δ(f, t).

Proof. Note that the second is a consequence of the first, while the first is immediate from the
definitions.

qed

We define the Hermite determinant of f as

Θ(f) := min
t:

∏
i ti=1

δ(f, t)k/2.

Note that this minimum does not depend on the particular normalisation in the factorisation in f .
In [CS, Lemma 4.2] it is shown that the minimum is assumed at a uniquely determined point, which
we denote by t0. The representative point of f is the point z0 ∈ H such that φ(f, t0)(z0, 1) = 0.
Note also that this representative point is independent of the normalisation of the µi, νi. If the
representative point of f is in the standard fundamental domain |z| ≥ 1,−1/2 ≤ <(z) ≤ 1/2 we
call f Hermite reduced.

Theorem 9.2 Let f be a real form of degree k ≥ 3 and distinct roots. Then, for any g ∈ GL(2,R)
we have

1. Θ(f ◦ g) = det(g)kΘ(f).

2. If z0 is the representative point of f and z1 = g−1(z0) (fractional linear transform) then the
representative point of f ◦ g is given by z1 if det(g) > 0 and z1 if det(g) < 0.
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Proof. From δ(f ◦ g, t) = det(g)2δ(f, t) it follows that

Θ(f ◦ g) = min∏
ti=1

δ(f ◦ g, t)k/2

= |det(g)|k min∏
ti=1

δ(f, t)k/2

= |det(g)|kΘ(f)

Let t0 be the point t where the minimum is attained. Then from φ(f ◦g, t0) = φ(f, t0)◦g it follows
that

φ(f ◦ g, t0)(z1, 1) = (φ(f, t0) ◦ g)(z1, 1)

= |γz1 + δ|2φ(f, t0)(z0, 1)

where g =

(
α β
γ δ

)
. Hence z1 is a zero of the quadratic form φ(f ◦ g, t0). When det(g) > 0 this

lies in the upper half plane, so it is the representing point of f ◦ g. When det(g) < 0 however, the
conjugate zero z1 lies in H.

qed

Theorem 9.3 Let f be a real form of degree k ≥ 3 and distinct roots with factorisation f =∏
i(νix− µiy). Let z0 = x+ iy its representative point. Then,

Θ(f) =

(
k

2y

)k k∏
i=1

(|νix− µi|2 + |νiy|2).

This Theorem allows us to compute the Hermite determinant of the form f̃(x1, x2) = 123x1x2(x101 −
x51x

5
2−x102 ). Notice that f̃(x1, x2) = f̃(x2,−x1). Let z0 be the representing point of f̃(x1, x2). Then,

by covariance, the representing point of f̃(x2,−x1) is −1/z0. But by the invariance of the form f̃
we should have z0 = −1/z0. Thus we conclude that z0 = i. Using our Theorem it is straightforward
to verify that Θ(f̃) = 22431855.

Theorem 9.4 Let f ∈ C5(d). Then

Θ(f) = 22431855|d|2.

Proof. There exists an element g ∈ GL(2,C) such that f = f̃ ◦ g. In [Ed] it is shown that we can
assume g ∈ GL(2,R). From the covariance of the representing point we have

Θ(f) = |det(g)|12Θ(f̃).

(Using the SL(2,C)-reduction theory developed in [CS] one deduces that this follows also without
the assumption g ∈ GL(2,R)). We also have that |det(g)|6 = d(f)/d(f̃) and we know that d(f̃) = 1.
Hence we conclude

Θ(f) = |d|2Θ(f̃)

and our Theorem follows.
qed

The next theorem gives us upper bounds for the coeffcients of Hermite reduced forms.
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Theorem 9.5 Let

f =

k∑
i=1

(
k

i

)
aix

k−i
1 xi2

be a real, Hermite reduced form of degree k. Then for all i+ j ≤ k we have

|aiaj | ≤
(

4

3k2

)k/2
Θ(f).

Proof. Let z0 ∈ H be the representing point of f and write z0 = x + iy. Let t1, . . . , tk be the
components of the vector t that minimizes δ(f, t). We shall show that for all r,

|ar|2 ≤
|z0|2r

(ky)k
Θ(f).

Recalling that y ≥
√
3
2 max(|z0|, 1) when z0 is in the standard fundamental domain of SL(2,Z), the

proof of our Theorem then follows from this inequality.
We abbreviate Θ(f) by Θ. Let, as before, f =

∏k
i=1(νix1 − µix2). We know that there exist δ > 0

and ti > 0 such that

f =

√
Θ

δk/4

∏
(tiνix1 − tiµix2)

and δ is the determinant PR−Q2 of the quadratic form

Px21 − 2Qx1x2 +Rx22 =

k∑
i=1

t2i (νix1 − µix2)(νix1 − µix2).

Note that
P =

∑
t2i |νi|2, R =

∑
t2i |µi|2.

This form also equals P (x1 − zx2)(x1 − zx2). Hence, when we write z = x+ iy,

Q = xP, R = P |z|2, δ = P 2y2.

Choose bi, ci ∈ C such that
√
Pbi = νiti and

√
Rci = −µiti. Then

∑
|bi|2 =

∑
|ci|2 = 1 and also

f =
√

Θ
1

yk/2

∏
(bix1 + ci|z0|x2)(bix1 + ci|z0|x2).

Comparison of the r-th coefficients yields(
k

r

)
ar =

(
|z0|r

yk/2

)
(
∑

#S=k−r

bScS′)
√

Θ.

Here the summation is over all subsets S of 1, . . . , k of cardinality k − r, and S′ is the complement
of S. Furthermore bS denotes the product of all bi, i ∈ S. We first use Schwarz’s inequality ∑

#S=k−r

bScS′

2

≤

 ∑
#S=k−r

|bS |2
 ∑

#S=k−r

|cS′ |2
 .
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Finally use the generalised AM/GM inequality to obtain

∑
#S=k−r

|bS |2 ≤
(

k

k − r

)(
1

k

∑
i

|bi|2
)k−r

=

(
k

r

)
1

kk−r

and similarly ∑
#S=k−r

|cS′ |2 ≤
(
k

r

)
1

kr
.

Combining all inequalities yields the desired estimate for |ar|.
qed

Using the estimate of Θ(f) for any Hermite reduced f ∈ C5(d) we obtain the following consequence.

Corollary 9.6 Let f ∈ C5(d) and suppose f is Hermite reduced. Let a0, . . . , a12 be its coefficients.
Then, for every i, j with i+ j ≤ 12 we have

|aiaj | ≤ 21255|d|2.

In particular, |ai| ≤ 1600
√

5|d| for every i ≤ 6.

10 An algorithm to solve x2 + y3 = dz5

Let d be any non-zero integer. We have seen in the previous two sections that all coprime solutions
x, y, z to x2 + y3 = dz5 arise as specialisation to integers of a form f ∈ C5(d) and its Hessian and
Jacobian covariant. To determine the set C5(d) it suffices to determine the SL(2,Z)-orbits within
C5(d). More particularly, it suffices to determine the Hermite reduced forms in C5(d).
Here is an algorithm to find the Hermite reduced forms with a0 6= 0.

1. Let B = 1600
√

5|d|.

2. For all a0, a1, a2 ∈ Z with |ai| ≤ B and a0 6= 0 we do the following.

(a) Let Z = a0, Y = a0a2 − a21.

(b) Determine the at most two solutions a3 ofX = ±
√
−Y 3 − dZ5 and a20a3−3a0a1a2+2a31 =

2X

(c) Compute a4, . . . , a12 from the equations defining C5(d).

(d) If all a3, . . . , 7a6, . . . , a12 are integers and if they satisfy the bounds of Corollary 9.6 then
we output the form [a0, . . . , a12].

When a0 we follow a similar procedure, but now we can assume a1 6= 0. The values of a3, a4, . . .
follow from the equations D4 = 0, D5 = 0, . . ..
We have now a finite set F of forms in C5(d). We like to keep only the Hermite reduced ones.
For that we determine the representing point z(f) ∈ H for each f ∈ H. This can be a tedious
computation, but we use the following observation. Every form f ∈ C5(d) is GL(2,R)-equivalent to
x1x2(x101 −11x51x

5
2−x102 ). The latter form has four real roots, hence any form in C5(d) has four real

roots. Let f1 be the factor of f consisting of the four real linear factors of f . Then, by standard
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arguments as explained in [CS], it turns out that the representing point of f is the same as that of
f1. For the latter there are standard formulas. We delete from F the non-Hermite reduced forms.
We are now left with a full set of representatives of the SL(2,Z)-orbits in C5(d).
In the final listing it saves space to look at GL(2,Z)-orbits in C5(d). Suppose we have a form f
which, together with its covariants H(f), t(f)/2 represents a set S of solutions to x2 + y3 = dz5.
Let g ∈ GL(2,Z) and det(g). Then, by the covariant property we have H(f ◦ g) = H(f) and
t(f ◦ g) = −t(f). So the form f ◦ g represents the set {(−x, y, z)|(x, y, z) ∈ S} of solutions.
Of course we also delete those f from F that do not give rise to coprime solutions.

11 Appendix A: Parametrizing X2 + Y 3 ± Zr = 0

This section has been taken directly from Johnny Edwards’s paper [Ed]. It gives complete parametriza-
tions to X2 + Y 3 ± Zr = 0 for r = 3, 4, 5. In the tables we list the forms

f =

k∑
i=0

(
k

i

)
aix

k−i
1 xi2

by the corresponding vector
[a0, a1, . . . , ak]

where k = 4, 6, 12 if r = 3, 4, 5 respectively. From this form we can compute the covariant forms

H =
1

k2(k − 1)2

∣∣∣∣ f11 f12
f21 f22

∣∣∣∣ , g =
1

2k(k − 2)

∣∣∣∣ f1 f2
H1 H2

∣∣∣∣ .
Here fij means ∂2f

∂xi∂xj
etc. The forms then satisfy g2 + H3 ± fr = 0 and each give infinitely

many integer primitive solutions of the corresponding diophantine equation by specialisation of
the polynomial variables. Moreover, solution sets given by different parametrisations are disjoint,
and their union is the full solution set. To keep the lists as short as possible, we identify the
parametrizations identifying ±X. If the corresponding GL(2,Z) class of f breaks into two SL(2,Z)
classes these are really 2 distinct parametrizations.
The case r = 3 was already done by Mordell in [Mo], Chapter 25 using a syzygy from invariant
theory. The cases r = 4 were done by Zagier and quoted in [Beu], appendix A. The r = 5 case is
new and presented in [Ed].

Complete Parametrization of X2 + Y 3 + Z3 = 0

A1 = [0, 1, 0, 0,−4]

A2 = [−1, 0, 0, 2, 0]

B1 = [−2,−1, 0,−1,−2]

B2 = [−1, 1, 1, 1,−1]

C1 = [−1, 0,−1, 0, 3]

C2 = [1, 0,−1, 0,−3]
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In Mordell’s book [Mo] he further shortens the list by assuming that Z is odd. This means that
A1, B1 can be omitted. However, Mordell gives 5 parametrizations: A2, B2, C1, C2 and f =
[−1,−2,−4,−6, 0] According to [Ed] the 5th should be superfluous. It turns out that f(x1−2x2, x2)
is A2.
In [Beu], on page 78, parametrizations obtained by interchanging Y and Z are identified.

Complete Parametrization of X2 + Y 3 ± Z4 = 0

These two equations were solved by Zagier and quoted in [Beu]. In [Co] there is a complete solution
according to classical lines and the lines followed by Zagier. To keep the lists short we identify ±X
and ±Z. This means every parametrization in the list is shorthand for ±f(x1,±x2). The first ± is
the ±Z.

The equation X2 + Y 3 + Z4 = 0:

f1 = [0, 1, 0, 0, 0,−12, 0]

f2 = [0, 3, 0, 0, 0,−4, 0]

f3 = [−1, 0, 1, 0, 3, 0,−27]

f4 = [−3,−4,−1, 0, 1, 4, 3]

The equation X2 + Y 3 − Z4 = 0:

f1 = [0, 1, 0, 0, 0, 12, 0]

f2 = [0, 3, 0, 0, 0, 4, 0]

f3 = [−1, 0, 0, 2, 0, 0, 32]

f4 = [−1, 0,−1, 0, 3, 0, 27]

f5 = [−1, 1, 1, 1,−1, 5, 17]

f6 = [−5,−1, 1, 3, 3, 3, 9]

f7 = [−7,−1, 2, 4, 4, 4, 8]

Complete Parametrization of X2 + Y 3 + Z5 = 0

Beukers in [Beu] was able to produce parametrizations, though his method was unable to produce
a complete set. If we identify ±X, we have the following complete set:

f1 = [0, 1, 0, 0, 0, 0,−144/7, 0, 0, 0, 0,−20736, 0]

f2 = [−1, 0, 0,−2, 0, 0, 80/7, 0, 0, 640, 0, 0,−102400]

f3 = [−1, 0,−1, 0, 3, 0, 45/7, 0, 135, 0,−2025, 0,−91125]

f4 = [1, 0,−1, 0,−3, 0, 45/7, 0,−135, 0,−2025, 0, 91125]
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f5 = [−1, 1, 1, 1,−1, 5,−25/7,−35,−65,−215, 1025,−7975,−57025]

f6 = [3, 1,−2, 0,−4,−4, 24/7, 16,−80,−48,−928,−2176, 27072]

f7 = [−10, 1, 4, 7, 2, 5, 80/7,−5,−50,−215,−100,−625,−10150]

f8 = [−19,−5,−8,−2, 8, 8, 80/7, 16, 64, 64,−256,−640,−5632]

f9 = [−7,−22,−13,−6,−3,−6,−207/7,−54,−63,−54, 27, 1242, 4293]

f10 = [−25, 0, 0,−10, 0, 0, 80/7, 0, 0, 128, 0, 0,−4096]

f11 = [6,−31,−32,−24,−16,−8,−144/7,−64,−128,−192,−256, 256, 3072]

f12 = [−64,−32,−32,−32,−16, 8, 248/7, 64, 124, 262, 374, 122,−2353]

f13 = [−64,−64,−32,−16,−16,−32,−424/7,−76,−68,−28, 134, 859, 2207]

f14 = [−25,−50,−25,−10,−5,−10,−235/7,−50,−49,−34, 31, 614, 1763]

f15 = [55, 29,−7,−3,−9,−15,−81/7, 9,−9,−27,−135,−459, 567]

f16 = [−81,−27,−27,−27,−9, 9, 171/7, 33, 63, 141, 149,−67,−1657]

f17 = [−125, 0,−25, 0, 15, 0, 45/7, 0, 27, 0,−81, 0,−729]

f18 = [125, 0,−25, 0,−15, 0, 45/7, 0,−27, 0,−81, 0, 729]

f19 = [−162,−27, 0, 27, 18, 9, 108/7, 15, 6,−51,−88,−93,−710]

f20 = [0, 81, 0, 0, 0, 0,−144/7, 0, 0, 0, 0,−256, 0]

f21 = [−185,−12, 31, 44, 27, 20, 157/7, 12,−17,−76,−105,−148,−701]

f22 = [100, 125, 50, 15, 0,−15,−270/7,−45,−36,−27,−54,−297,−648]

f23 = [192, 32,−32, 0,−16,−8, 24/7, 8,−20,−6,−58,−68, 423]

f24 = [−395,−153,−92,−26, 24, 40, 304/7, 48, 64, 64, 0,−128,−512]

f25 = [−537,−205,−133,−123,−89,−41, 45/7, 41, 71, 123, 187, 205,−57]

f26 = [359, 141,−1,−21,−33,−39,−207/7,−9,−9,−27,−81,−189,−81]

f27 = [295,−17,−55,−25,−25,−5, 31/7,−5,−25,−25,−55,−17, 295]

TheGL(2,Z) classes of the 27 forms split into 2 distinct SL(2,Z) classes, unless f = f3, f4, f12, f17, f18, f27.
This means that the above list becomes 48 parametrizations if we do not identify ±X. This is a
slight correction of [Ed], where the form f12 was omitted as giving one SL(2,Z) class.

12 Appendix B: fourth transvectants

In this appendix, again reproduced from [Ed], we reproduce the equations satisfied by f of any form
satisfying g2 +H3 + dfr = 0, where r, g,H are as in Appendix A. These equations are obtained by
setting the fourth transvectant of f equal to zero and a further equation to specify scaling. The
expressions Di are the coefficients of the fourth transvectant τ4(f) =

∑2k−8
i=0 Dix

r−i
1 xi2. Note that

in all cases to any such form there corresponds a solution X,Y, Z of the equation X2+Y 3+dZr = 0
by evaluation f,H, g at (1, 0),

Z = a0

Y = a0a2 − a21
2X = a20a3 − 3a0a1a2 + 2a31
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The tetrahedral case r = 3

0 = a0a4 − 4a1a3 + 3a22

−4d = a0a2a4 + 2a1a2a3 − a32 − a0a23 − a21a4

The octahedral case r = 4

D0/1 : 0 = a4a0 − 4a3a1 + 3a22

D1/2 : 0 = a0a5 − 3a1a4 + 2a3a2

D2/1 : 0 = a0a6 − 9a2a4 + 8a23

D3/2 : 0 = a1a6 − 3a2a5 + 2a3a4

−72d = a0a6 − 6a1a5 + 15a2a4 − 10a23

The last equation is obtained from τ6(f) = 72d.

The icosahedral case r = 5

D0/1 : 0 = a0a4 − 4a1a3 + 3a22

D1/8 : 0 = a0a5 − 3a1a4 + 2a3a2

D2/4 : 0 = a0(7a6)− 12a1a5 − 15a2a4 + 20a23

D3/56 : 0 = a0a7 − 6a2a5 + 5a3a4

D4/14 : 0 = 5a0a8 + 12a1a7 − 6a2(7a6)− 20a3a5 + 45a24

D5/56 : 0 = a0a9 + 6a1a8 − 6a2a7 − 4a3(7a6) + 27a4a5

D6/28 : 0 = a0a10 + 12a1a9 + 12a2a8 − 76a3a7 − 3a4(7a6) + 72a25

D7/8 : 0 = a0a11 + 24a1a10 + 90a2a9 − 130a3a8 − 405a4a7 + 60a5(7a6)

D8/1 : 0 = a0a12 + 60a1a11 + 534a2a10 + 380a3a9 − 3195a4a8

−720a5a7 + 60(7a6)2

D9/8 : 0 = a1a12 + 24a2a11 + 90a3a10 − 130a4a9 − 405a5a8 + 60(7a6)a7

By elimination of a6, a7 from D2 = D3 = D4 = 0 we get

D∗4 : a30a8 = 12a4a3a1a0 + 18a4a
2
2a0 − 24a23a2a0 + 4a5a3a

2
0 − 9a20a

2
4.

From τ6(f) = 360df we get by comparison of the coefficients of x121 and x111 x2,

R0/1 : 360da0 = a0(7a6)− 42a1a5 + 105a2a4 − 70a23

R1/6 : 720da1 = 7a0a7 − 5a1(7a6) + 63a2a5 − 35a3a4



F.Beukers, The diophantine equation Axp +Byq = Czr 30

13 References

[BCDT ] C.Breuil, B.Conrad, F.Diamond, R.Taylor, On the modularity of elliptic curves over Q: wild
3-adic exercises, J.Amer.Math.Soc. 14 (2001), 843-939.

[Bec ] S. Beckmann, On extensions of number fields obtained by specializing branched coverings,
J.reine angew. Math. 419 (1991), 27-53.

[Ben ] M.A.Bennett, The equation x2n + y2n = z5, J.Théorie des Nombres Bordeaux 18 (2006),
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