
Non-archimedean Geometry

Symmetries of equations. A popular viewpoint on mathematics is that its
mechanism of formalization allows one to reduce many a problem to “solving
equations”. An example which at the same time displays a sufficiently rich
structure is given by a (homogeneous) polynomial equation of three variables,
e.g.,

(1) x3y + y3z + z3x = 0.

Typically, one applies in such a case the process of “geometric visualization”:
one looks at the real solutions (x, y, z) to the equation by plotting the curve of
solutions (x/z, y/z) in the plane (Fig. 1). One can do even better by visualizing
the complex solutions in the complex (projective) plane – the result is a real
connected surface S, called a Riemann surface (not to be confused with the
above picture; up to deformation, it looks like Fig. 2 for equation (1)).
The first thing which catches the eye is that certain of these pictures reveal
a symmetry, e.g., there are movements of the ambient space which leave the
picture invariant. With this consideration, genuine mathematics enters the
stage: the questions shift to finding a theory about the structure of equations
and their Riemann surfaces.
The set of symmetries of a Riemann surface form a mathematical object called
the automorphism group of the equation (it is a “group” since symmetries can
be composed in a nice way). One then typically asks what these groups can
be, or: how many elements they can have. Formulated as such, the question is
ill-posed, since it turns out that for any number n, there is a Riemann surface
with n automorphisms, and the sphere even has infinitely many. However, A.
Hurwitz discovered in 1893 that a Riemann surface S has at most 84(g − 1)
automorphisms if g > 1. Here, the genus g is a number which can be read
off from the picture of S immediately: it is the “number of holes on S”. The
curve (1) has genus g = 3 and exactly 84(3 − 1) = 168 automorphisms. But
this is more of an exception: in some well-defined sense, “most” curves have no
automorphisms at all for g > 2 (if all curves of fixed genus are put into their
“moduli space”, those having automorphisms are almost always singular points
of that space).

Uniformization. The above mentioned pictures are also the playground of
two powerful analytical theories: that of local and global uniformization. Local
uniformization is like making an atlas of the surface, choosing coordinates in
any sufficiently small part of the surface to represent it in some “faithful” way.
These charts can (and should) be chosen to be biholomorphic maps. As a typical
example, projections from the north- and south-pole respectively produce plain
charts of the sphere.
The real mystery, however, is the existence of global uniformization. Let us
look at a completely different construction first: all real 2×2 matrices γ of unit

determinant

(
a b
c d

)
form a group SL(2,R) that acts on the set H of complex

numbers z = a+ bi with b > 0 by fractional transformations z 7→ γ · z = az+b
cz+d .
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Now if Γ is a “nice” infinite subgroup of SL(2,R), then we can form the quotient
Γ\H, identifying z with γ ·z for any γ ∈ Γ. The result turns out to be a Riemann
surface. What is more, for any equation with Riemann surface S, there is a
corresponding group Γ such that S = Γ\H. In the above example (1), a possible
group is called Γ(7); it consists of all matrices with a, b, c, d integers, such that
a−1, b, c and d−1 are divisible by 7 (though technically speaking, some points
will be missing). Fig. 3 displays the 168 triangles in H (itself depicted as
a disk), of which each point represents a distinct point of Γ(7)\H, and each
triangle corresponds to SL(2,Z)\H. From now on, denote this surface by its
canonical name, Y (7).
The existence of global uniformization lead Hermann Weyl to proclaim that “in
dem Symbol des zweidimensionalen Nicht-Euclidischen Kristalls wird das Urbild
der Riemannschen Flächen selbst, rein und befreit von allen Verdunklungen,
erschaubar”. The morale is that all the information about the equation lies
hidden in a huge infinite subgroup Γ of SL(2,R). In particular, it is possible
to compute the automorphisms of S only knowing Γ. For the cognoscenti: the
automorphism group is N/Γ, where N is the normalizer of Γ. In our example,
it is the group SL(2,Z)/Γ(7) = PSL(2, 7). Actually, since H carries a non-
Euclidean metric (like space-time), it makes sense to look at the hyperbolic
volume of Γ\H. Hurwitz’s theorem says exactly that π/21 is a lower bound for
it.

Non-archimedean structures. Rational numbers, when expanded in powers
of 10, have a “repeating decimal part”(like the 3 which repeats itself endlessly
in 1/3 = 0.3333...). If one allows any decimal part (not only repeating), one
arrives at all real numbers (like π = 3.1415926...). K. Hensel realized that one
might equally well expand rational numbers in powers of any fixed prime p, for
example the current year

2000 = 24 + 26 + 27 + 28 + 29 + 210 = 2 + 2 · 33 + 2 · 35 + 2 · 36 = 53 + 3 · 54

in powers of 2, 3 or 5. Just like one gets real number by allowing any decimal
part, one gets the so-called p-adic numbers by allowing infinitely many powers
of p in such expansions. As a matter of fact, it is necessary for number theory
to treat all these fields on an equal footing.
The nice thing about allowing p-adic numbers is that one has a kind of “an-
alytic” or “metric” control of prime divisibility. Just like there is the usual
“distance” |x − y| between real numbers x and y, there is a metric on such
p-adic numbers, namely, |x|p is the inverse of the least power of p occurring in
the expansion of x (so |2000|2 = 2−4, |2000|3 = 1, |2000|5 = 5−3). However, this
metric exhibits a strange geometric behaviour. Whereas for real numbers x and
y, |x+ y| ≤ |x|+ |y|, here it holds true that

(2) |x+ y|p ≤ max{|x|p, |y|p}.

This looks perhaps less annoying if one realizes that anyone actually knows
metrics with such properties: we measure how “large” a one-variable polynomial
F (X) is by its degree. The “measure” |F | = 2deg(F ) behaves as in (2): the
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degree of the sum of two polynomials F and G is the maximum of the degrees
of F and G, unless if both are of the same degree and have inverse leading
coefficients. Any “measure” x 7→ |x| satisfying property (2) (and some more
common things) is called a non-archimedean metric.
Around 1970, people realized that it would be of considerable interest to have
a geometric theory similar to the one sketched above for Riemann surfaces, but
valid in the non-archimedean situation – in this way, classical phenomena in
number theory could be accessed by geometrical or analytical means. That
such a thing is possible is not so obvious, because the metric properties are
quite different (e.g., all triangles are isosceles). But a successful theory was
worked out by several people, using fresh ideas from algebraic geometry.
Both MPI-directors Yuri Manin and Gerd Faltings have contributed to this
still active field of research and several visitors of the MPI specialize in it. Dur-
ing his 1999 visit to the MPI, Takeshi Saito constructed a theory of higher
ramification groups using such non-archimedean analysis: these form a chain
of easy-to-understand groups that describe geometrically possibly very compli-
cated branching structures. During her 1998 stay at the MPI, Annette Werner
used non-archimedean concepts in her study of local heights, i.e., the p-adic
“nearness” of, say, sets of points on curves. At the same time, Jiandong Guo
studied higher dimensional p-adic periodic functions (famous in the real case
ever since Fourier’s work on oscillations).

Non-archimedean uniformization. Around 1975, after J. Tate discovered local
uniformization for “non-archimedean curves” (viz., the set of solutions to equa-
tion such as (1) in non-archimedean structures), D. Mumford realized that not
all such spaces allow a nice global uniformization. The curves that do (called
“Mumford curves”) can be characterized as follows. The non-archimedean
world has one feature which is absent in the “real” world, namely, there is
a process of reduction. Typically, this means that a p-adic number is mapped
to the p-term in its expansion (so 2000 reduces to 0 and 2 in the 2-adic and
3-adic world, respectively). When one reduces such a Mumford curve, then it
becomes an arrangement of intersecting lines, say, in the plane, and it is this
line arrangement that encodes all the information about the curve. To any
Mumford curve, one can associate a “nice” matrix group, which acts on a “uni-
versal arrangement of lines”, called the Bruhat-Tits tree (it plays the role of
H).
Here is an example: consider the polynomial ring R = F41[T ] in the variable T
with coefficients in the field F41, i.e., we add and multiply coefficients modulo
41 (so 23 + 40 = 22, 23 × 40 = 18, and a41 = a for any a). A typical curve of
which one wants to study the solutions in R is the following:

(3) (x41 − x)(y41 − y) = T.

The non-archimedean metric in this case is given by |F | = 41deg(F ) for F ∈ R (as
in the previous paragraph). After applying reduction (which maps T to zero)
we arrive at a “chess-board” of lines as in Fig. 4. Observe that the number of
holes in this picture is g = (41− 1)2 = 1600.
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One can wonder again how many symmetries such a non-archimedean curve
can have (in terms of its genus g). We see for example (3) that the whole
picture is invariant under shifting the lines vertically and horizontally in a
cyclic way, and turning the whole square around. These symmetries are given
by x 7→ x + a, y 7→ y + b for a, b ∈ F41 and interchanging x and y. There is
one more symmetry given by x 7→ cx, y 7→ c−1y for non-zero c. In total, we
find 41× 41× 2× 40 = 134480 symmetries, which equals 2

√
1600(

√
1600 + 1)2.

The strange thing to notice is that this number exceeds Hurwitz’s bound for
Riemann surfaces, which would be only 84(g − 1) = 3360.
Recent studies of these phenomena at the MPI by Gunther Cornelissen, Fumi-
haru Kato and Aristeides Kontogeorgis revealed that the picture of this example
persists: any Mumford curve of genus g ≥ 9 over a non-archimedean field has
at most 2

√
g(
√
g+1)2 automorphisms, and this bound is reached for any square

g.
Many curves and higher dimensional geometrical objects that are especially rele-
vant to questions in number theory turn out to possess a global non-archimedean
uniformization. One such family which is somewhat similar to Y (7), called
“Shimura varieties”, was studied in detail at the MPI by Gerd Faltings and
Thomas Haines. They gave general recipes to simplify the study of uniformiza-
tion and reduction of such spaces. At the same time, Fumiharu Kato showed
that one such variety is, strangly enough, a “fake plane”. This means that it
has all the reasonable topological characteristics of the ordinary plane, without
being equal to it.
Another typical class of such curves are “Drinfeld modular curves”, studied
at the MPI by Gunther Cornelissen and Douglas Ulmer. Their construction
is a mixture of Y (7) and curve (3), taking “the best of both worlds”. Their
most amazing property is their symmetry: not only do they have many more
than 84(g − 1) automorphisms (where g is their genus), but also does their
reduction produce the best known (up to now) natural bounded concentrators.
This means the following: if one draws a dot in the plane for every line in
the arrangement of the reduction of such a curve, and connects any two dots
for which the corresponding lines intersect, then the resulting “network” has
optimal properties for the transmission of information (as is required, e.g., in
switching networks – Fig. 5).
The above results and the techniques used to prove it are part of a much larger
project to make non-archimedean methods as omnipresent in algebraic geome-
try as complex analysis has always been. The philosophy behind this seems to
be that the primitive human act of “measurement” should be varied as much
as possible, as each measure sheds a different light on the object of study. That
the particular “discrete” aspects of non-archimedean theory pay off so well in
applications, comes as no surprise in our networking age. (G. Cornelissen)
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