
Journal of Artificial Intelligence Research X (YYYY) WW-ZZ Submitted 12/20; published TBD

Data-Driven Revision of Conditional Norms in
Multi-Agent Systems

Davide Dell’Anna d.dellanna@tudelft.nl

Delft University of Technology, Delft, The Netherlands

Natasha Alechina n.a.alechina@uu.nl

Fabiano Dalpiaz f.dalpiaz@uu.nl

Mehdi Dastani m.m.dastani@uu.nl

Utrecht University, Utrecht, The Netherlands

Brian Logan b.s.logan@uu.nl

Utrecht University, Utrecht, The Netherlands

University of Aberdeen, Aberdeen, United Kingdom

Abstract

In multi-agent systems, norm enforcement is a mechanism for steering the behavior of
individual agents in order to achieve desired system-level objectives. Due to the dynamics
of multi-agent systems, however, it is hard to design norms that guarantee the achievement
of the objectives in every operating context. Also, these objectives may change over time,
thereby making previously defined norms ineffective. In this paper, we investigate the use of
system execution data to automatically synthesise and revise conditional prohibitions with
deadlines, a type of norms aimed at prohibiting agents from exhibiting certain patterns of
behaviors. We propose DDNR (Data-Driven Norm Revision), a data-driven approach to
norm revision that synthesises revised norms with respect to a data set of traces describing
the behavior of the agents in the system. We evaluate DDNR using a state-of-the-art, off-
the-shelf urban traffic simulator. The results show that DDNR synthesises revised norms
that are significantly more accurate than the original norms in distinguishing adequate and
inadequate behaviors for the achievement of the system-level objectives.

1. Introduction

Multi-agent systems (MASs) comprise autonomous agents that interact in a shared envi-
ronment (Wooldridge, 2009). For example, a smart traffic system is a MAS that includes
autonomous agents like cars, pedestrians, smart traffic lights, etc. To achieve the system-
level objectives of a MAS, the behavior of the autonomous agents should be controlled and
coordinated (Bulling & Dastani, 2016). Norms and their enforcement have been proposed as
a way to control and coordinate the behavior of the agents in a MAS without limiting their
autonomy (Chopra et al., 2018;Tinnemeier et al., 2009;Testerink et al., 2016). Similar to
our society, norms can be viewed as standards of behavior specifying that certain states or
sequences of actions in a MAS should occur (obligations) or should not occur (prohibitions)
in order for the objectives of the MAS to be achieved (Boella & van der Torre, 2004).

We investigate the following scenario of MAS engineering. A MAS designer defines the
overall structure of a MAS by specifying a set of norms that the agents who participate in
the MAS are expected to obey. One or more agent designers, possibly one per agent and
each different from the MAS designer, determine the internal architecture of the agents.

©YYYY AI Access Foundation. All rights reserved.

Dell’Anna et al.

For many applications, it is assumed that the behavior of the agents and the norms
enforced in the MAS will guarantee the achievement of the system’s objectives (Dastani
et al., 2009). This is possible, for example, when the MAS designer and agent designers are
the same people, or when the agent’s behavior is enforced via the regimentation of norms,
so that the agents cannot deviate from the intended behavior.

Regimentation is particularly difficult in open MASs (Artikis & Pitt, 2001), where agents
can freely enter or leave the system, and their internal architecture is not known to the
MAS designer. Regimenting norms in open MASs has undesirable side effects: while it
can ensure that the objectives are achieved (if the norms are aligned with the objectives),
agent autonomy is unnecessarily restricted. Furthermore, without awareness of how the
agents internally behave, the MAS designer cannot fully predict how the agents will react
to the norms, making it impossible, or computationally infeasible, to design norms that
guarantee the satisfaction of the system’s objectives in every possible combination of the
agents’ behaviors. Also, the MAS objectives may change over time, and the designed norms
may become outdated and ineffective for the new objectives (Bicchieri, 2005).

To cope with these issues, norms need to be continuously evaluated, and possibly revised
when they become inadequate for achieving the MAS objectives (Dell’Anna et al., 2020).
Several formal contributions to norm revision have been proposed, including logics for norm
change (Aucher et al., 2009;Knobbout et al., 2016), design patterns for the iterative revi-
sion and verification of a specification (Kafali et al., 2017), or the automated refinement
of normative specifications via inductive logic programming (Corapi et al., 2011). Most
of the literature, however, assumes that the MAS designer possesses explicit knowledge of
the agents’ internals or of the causal relationship between agent behavior, norms and MAS
objectives. For example, our previous work (Dell’Anna et al., 2020) proposed a mechanism
for revising the sanctions that are used to enforce norms. However, we assume knowledge
of the preferences of the agents in the system. In (Corapi et al., 2011), inductive logic pro-
gramming is used, assuming that norms and objectives are expressed in the same language.
The objectives of MASs, however, are often stated in a language with no direct connection
with the language for expressing norms. In a traffic system, for example, one objective may
be to avoid traffic collisions, but ‘not colliding’ is not a property under full agent control,
and prohibition of collisions cannot be stated as a norm, as this also depends on other
agents and on the weather conditions, among other factors.

The increasing availability of large amounts of system behavior data (van der Aalst,
2016;Lorenz et al., 2021) enables new approaches for the automated design of norms that
relax these assumptions and where the revision of norms starts from data collected during
the execution of the system. For example, data may show that collisions always happen
when an agent’s speed is high, allowing us to state a speed limiting norm that prohibits
agents from driving faster than 100 km/h.

Based on the discussion above, this paper makes the following design decisions to support
norm revision in open and dynamic MASs: (1) we choose for the exogenous control of a
MAS, i.e., we do not assume control over agents’ design; (2) we study how to synthesise and
revise norms from system execution data describing the behavior of the agents in a MAS at
run-time, thereby supporting the dynamics within a MAS as well as different specification
languages for MAS objectives and norms; (3) we propose a norm revision mechanism that

2

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

does not require regimentation of norms, but supports enforcement via sanctioning that
respects better the autonomy of the agents (Alechina et al., 2013).

Specifically, in this paper we make the following contributions:

• We introduce DDNR, a novel Data-Driven Norm Revision approach. DDNR consists
of two steps: the synthesis step generates candidate revisions from a set of norms;
the selection step chooses the final revised norms from the set of candidate revisions
based on how well they characterize the available data. We focus on the revision of
conditional norms (prohibitions) with deadlines, a type of norms used in the normative
MAS literature to express behavioral properties (Tinnemeier et al., 2009).

• We report on the complexity of the proposed Data-Driven Norm Revision approach.

• We apply and experimentally evaluate a Java implementation of DDNR, available at
(Dell’Anna et al., 2022a), on an agent-based traffic simulation where norms regulate
the behavior (maximum speed and minimum safety distance) of vehicles on a highway.

Organization. Section 2 provides the necessary background on (normative) MASs and
conditional norms. Section 3 describes the proposed Data-Driven Norm Revision (DDNR)
approach and its complexity. Section 4 reports on our empirical evaluation in the context
of agent-based traffic simulation. Section 5 discusses the limitations. Section 6 presents
related work, and Section 7 outlines conclusions and future work.

2. Norm Revision in Normative Multi-Agent Systems

The focus of this paper is on Normative Multi-Agent Systems (NMASs), i.e., MASs where
norms are enforced in order to achieve system-level objectives. These objectives charac-
terize the desired behavior of either the MAS or of the agents. Our goal is to devise an
automated and data-driven mechanism for norm revision, which ensures that the enforced
norms contribute to the achievement of the MAS objectives.

As an illustrative example of a NMAS, we use the highway section shown in Figure 1.
In line with the idea of open MASs, we assume that the internals of the agents in the MAS
(viz., the vehicles driving on the highway) are not known to the MAS designer: the agents
are treated as black boxes. We assume, however, that the MAS is endowed with aMonitoring
and Norm Enforcement component that communicates to the agents the enforced norms and
the consequences of violating them (e.g., the sanctions), so that the agents entering the
system are norm-aware and can take autonomous decisions accordingly.

We focus on conditional norms with deadlines, which express behavioral properties (Tin-
nemeier et al., 2009). In our example, we consider norms concerning the speed limit of the
vehicles and their minimum safety distance. For instance: if a vehicle enters the 2nd km of
the highway, it is prohibited from driving faster than 70 km/h until it reaches the 7th km of
the highway. Conditional norms are detached in certain states of the MAS (e.g., the vehicle
entering the 2nd km of the highway) and have a temporal validity specified by a deadline
(the vehicle reaches the 7th km). The satisfaction or violation of a detached norm depend
on whether the behavior of the agent brings about a prohibited state (speed >70 km/h)
before a state in which the deadline condition becomes true.

3

Dell’Anna et al.

Monitoring and
Norm Enforcement

Data-Driven
Norm Revision

Labeled
traces

Norms

Updates

Collects
traces for

Input to

Input toInitial
design

Communicates norms and
sanctions to the agents

Monitors and logs the behavior
exhibited by the agents

MAS objectives
evaluator

Produces

Normative Multi-Agent System

Figure 1: A Normative Multi-Agent System, where norms are used to control the behavior
of the autonomous agents (small black rectangles resembling vehicles) in the MAS. The
Data-Driven Norm Revision module revises the norms based on the collected data labeled
by the MAS objectives evaluator (labeled traces). The MAS objectives evaluator provides a
labeling of the monitored agents’ behaviors (collected traces) w.r.t. the MAS objectives.

The Monitoring and Norm Enforcement component monitors agent behavior, and stores
the collected data in a database in the form of a data set of finite traces. Finite traces
are collected via runtime monitoring of the MAS (Alechina et al., 2014). A trace in the
running example represents the car journey through the highway, and it is generated by the
actions of a vehicle. The collected traces are then evaluated by the MAS objectives evaluator
component, which labels each trace as either positive or negative with respect to the MAS
objectives. We assume that each trace describing the behavior of the agents can be labeled
as either positive or negative based on whether it contributes positively to the achievement
of the MAS objectives, but we do not make assumptions on how such labeling is obtained1.
The MAS objectives evaluator can therefore be seen as an external component, either human
or automated, beyond the scope of the Data-Driven Norm Revision module and of this paper.

This paper focuses on the Data-Driven Norm Revision module (the green box in Figure 1),
which revises the currently enforced norms so to ensure that (i) traces (behaviors) that are

1. This assumption is realistic in several contexts and different kinds of MAS objectives (e.g., instances
of a process can be deemed as compliant or non-compliant w.r.t. a model (Loreti et al., 2020); in our
traffic example, traces can be labeled individually w.r.t. their travel time or emissions). Since we do not
make assumptions about the source of labeling, however, we also cover cases where the MAS objectives
depend on the joint behavior of different agents (e.g., the throughput of a road) and labels are assigned
to groups of traces (e.g., all traces collected in the time period when the throughput was below desired
levels are labeled as negative). We focus here on the case in which every trace is labeled independently,
and leave other scenarios for future work.

4

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

labeled as negative by the MAS objectives evaluator are prohibited by the revised norms, and
(ii) traces that are labeled as positive by the MAS objectives evaluator are not prohibited
by the revised norms. The Data-Driven Norm Revision module is agnostic to the MAS
objectives, for it only relies on labeled traces provided by the MAS objectives evaluator,
which are considered as ground truth. This guarantees that the proposed Data-Driven Norm
Revision module is data driven and supports those cases where the MAS objectives do
not correspond directly to properties expressible in the language of the norms (e.g., we
can express norms concerning the speed of the vehicles, while the objectives may concern
CO2 emissions) or where the causal relationship between norms and objective is not known
or unavailable. In our experiments that implement the running example (Section 4), we
label the traces that represent the cars journey through the highway section based on a
combination of measurements of the CO2 levels that were emitted by the vehicle in the
highway and its travel time. Neither the vehicles (agents) nor the Data-Driven Revision
module will be provided information about such an objective.

2.1 Agent Behavior and Conditional Norms

We provide a formal definition of the basic concepts for the rest of the paper.

2.1.1 Language of states, traces and norms

We assume a finite propositional language L{∧,∨} (simply L, from now on), with ∧ and ∨
indicating the conjunction and disjunction propositional connectives, respectively. Propo-
sitions in L correspond to properties of states of the MAS. A state of the MAS, represented
as s, is a (possibly empty) set of propositional variables (atomic propositions) considered
true in that state. When describing a state, we use lower case letters (e.g., p, q), with the
exception of the letter s, to indicate propositions. A trace, represented generically as γ, is
a finite sequence of states. We use the notation (s1, . . . , sk) for a trace γ consisting of k
states s1, . . . , sk, where si indicates the i-th state in γ. We denote with S(Γ) or simply S
the set of states occurring in traces in a data set of traces Γ.

In the running example, we consider a set of propositional variables V = VP ∪VS ∪VT ,
where VP = {km1, . . . , km10} is a subset of the variables referring to vehicle positions on
the highway of the running example (i.e., kmi indicates that the vehicle reached the ith km
of the highway), VS = {spx | 10 ≤ x ≤ 140 & x ∈ N} are propositions denoting that the
vehicle’s speed is higher than a certain speed x in km/h, and VT = {truck , car} represents
vehicle types. An example of a trace γ composed of 10 states and describing the behavior
of a car in the running example is the following.

γ = ({km1, sp30, car}, {km2, sp22, car}, {km3, sp10, car}, {km4, sp32, car}, {km5, sp10, car},
{km6, sp18, car}, {km7, sp32, car}, {km8, sp10, car}, {km9, sp18, car}, {km10, sp14, car}) (1)

The states in the trace in Equation 1 are indicated as sets containing the propositions that
are true in that state. Furthermore, for brevity, here and in the rest of the paper we only
report, for each state, the proposition from VS that represents the highest detected speed
of the vehicle, and we omit (but do not ignore) all the other propositions that refer to the
speeds that are lower than the detected speed, which are also true in the state due to their

5

Dell’Anna et al.

semantics, i.e., if the highest detected speed of a vehicle is v, all propositions spx ∈ VS
such that x ≤ v are true in the state. The same simplification of notation is also applied for
propositions from VP. For example, let the set of propositions {km1, km2, car}∪{spx | 10 ≤
x ≤ 22} be called Vtrue . In the full representation of state s2 in Equation 1, all propositions
in Vtrue are true, and all propositions in V \ Vtrue (i.e., propositions in {kmx | 2 < x ≤
10} ∪ {spx | 22 < x ≤ 140} ∪ {truck}) are false.

2.1.2 Data Set and Classification of Traces

We consider a data set (i.e., a set) of traces Γ to be partitioned into two sets ΓP (positive
traces) and ΓN (negative traces). The partition is performed by theMAS objectives evaluator
described above. Column Data set Γ in Table 1 shows a simple example of Γ where ΓP =
{γ1, γ3} and ΓN = {γ2, γ4}.

We say that a conditional norm n classifies a trace from Γ as norm-violating (or simply
violating) if the trace violates n, and as norm-compliant (or simply compliant) if the trace
does not violate n. In other words, we interpret a norm as a binary classifier that distin-
guishes two types of traces: violating and compliant ones. A formal account on violation
and compliance is provided later in Definition 2.

Therefore, we have two separate classifications of the traces in Γ: one is done by theMAS
objectives evaluator (column Label in Table 1), and the other is done by the norms (e.g.,
columns Norm n and Norm n’). Since we are interested in ensuring that traces classified as
negative by the MAS objectives evaluator are classified as violating by the norms, and traces
that are classified as positive by the MAS objectives evaluator are classified as compliant by
the norms, we can distinguish four different types of traces, like those reported in column
Type of trace w.r.t. label and n of Table 1.

Table 1: Example of data set Γ, where traces are labeled by the MAS objectives evaluator
(column Label), and of the classification of such traces as compliant or violating according
to two different norms n and n′. Columns Type of trace show that norm n is not perfectly
aligned with the MAS objectives, while norm n′ is, because the traces are either true
positives or true negatives.

Data set Γ Norm Type of trace Norm Type of trace
Trace Label n w.r.t. label and n n′ w.r.t. label and n′

γ1 positive compliant True Positive compliant True Positive
γ2 negative compliant False Positive violating True Negative
γ3 positive violating False Negative compliant True Positive
γ4 negative violating True Negative violating True Negative

• Trace γ1 describes a behavior (trace) that is positive according to the given labeling
and is also compliant with norm n. Borrowing terminology from statistics, we call
γ1 a True Positive w.r.t. n, to indicate that the trace is correctly (w.r.t. the MAS
objectives evaluation) classified as norm-compliant by n.

6

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

• Trace γ2 describes a behavior that is compliant with norm n (it does not violate n)
but that should be prohibited, since γ2 is labeled as negative. We call γ2 a False
Positive, to indicate that the trace is erroneously classified as norm-compliant by n.

• Trace γ3 describes a behavior that currently violates n but that should not be pro-
hibited, since γ3 is labeled as positive. We say that γ3 is a False Negative because the
trace is erroneously prohibited (i.e., classified as norm-violating) by n.

• Finally, γ4 describes a behavior that is currently prohibited by n and is labeled as
negative. We call γ4 a True Negative, for the trace is correctly prohibited by n.

Note that norm n in Table 1 correctly regulates only two of the four traces in Γ: it cor-
rectly classifies γ1 as norm-compliant and γ4 as norm-violating, but it erroneously classifies
γ2 as norm-compliant and γ3 as norm-violating. Given a norm n that erroneously regulates
some traces, our goal is to synthesise, using propositions from L, a revised norm that classi-
fies as norm-compliant (more) positive traces and as norm-violating (more) negative traces
in Γ. Norm n′ in Table 1 provides an example of a norm that correctly classifies all traces
w.r.t. their labeling, i.e., a norm that leads to no False Positive/Negative. We say that a
norm like n′ is perfectly aligned with the MAS objectives.

This concept can also be described by means of a confusion matrix (see Figure 2a). A
confusion matrix describes the relationship between the classification of traces according to
a norm (i.e., whether the trace is classified as norm-compliant or norm-violating) and the
correct classification of the traces according to the MAS objectives labeling. Each cell (i, j)
in the matrix contains the number of traces in the data set Γ that are classified as i by
the MAS objectives evaluator and as j by the norm. For example, cell (positive, compliant)
contains the number of traces in Γ that are labeled as positive w.r.t. the MAS objectives
and classified as norm-compliant w.r.t. a norm, i.e., it contains the number of true positives
(TP). The inner diagonal of the matrix (the diagonal from TP to TN) represents the
number of traces correctly classified by a norm. The outer diagonal, instead, represents the
number of errors, or misclassifications.

norm

compliant violating

ob
je
ct
iv
es

positive TP FN

negative FP TN

(a)

norm

compliant violating

ob
je
ct
iv
es

positive x 0

negative 0 |Γ| − x

(b)

Figure 2: A generic confusion matrix (a) and an example with no misclassifications (b).

Given a data set of labeled traces Γ, the confusion matrix provides a compact represen-
tation of how well a norm is aligned with the MAS objectives. A perfectly aligned norm
w.r.t. Γ implies the confusion matrix in Figure 2b, where all traces are correctly classified
and no trace is misclassified.

Previous work has shown that verifying the existence of such a norm that is perfectly
aligned with the MAS objectives w.r.t. the traces in Γ, like the norm n′ in Table 1, is an
NP-complete problem (Dell’Anna et al., 2022b). Motivated by this complexity result, we

7

Dell’Anna et al.

propose a polynomial heuristic algorithm to solve this problem in an approximate way. In
particular, instead of searching for revised norms that are perfectly aligned with the MAS
objectives, we search for revised norms that are better aligned with the MAS objectives,
i.e., that lead to fewer False Positives/Negatives, than the original norms. More precisely,
we define the alignment of a norm with the MAS objectives w.r.t. a data set of traces as
the accuracy2 of the norm in classifying the traces. More details are given in Section 3.3.

2.1.3 Conditional Prohibitions

We formally define conditional prohibitions and the conditions for the violation of con-
ditional prohibitions. In the rest of the paper, we use the terms norm and prohibition
interchangeably.

Definition 1 (Conditional Prohibition). A conditional prohibition (over L) is a tuple
(ϕC , ϕP , ϕD), where ϕC , ϕP and ϕD are propositional formulas, expressed in Disjunctive
Normal Form (DNF), over L.

We refer to ϕC as the (detachment) condition of the norm, and ϕD as the deadline. ϕP
denotes a target state that is prohibited to occur after a state where the condition of the
norm ϕC holds, and before a state where the deadline ϕD holds (the norm “expires”).

Example. The norm “if a car enters the 2nd km of the highway, it is prohibited from
driving faster than 70 km/h until it reaches the 7th km of the highway” can be represented
as a conditional prohibition (km2 ∧ car, sp70, km7). The components ϕC = km2 ∧ car,
ϕP = sp70 and ϕD = km7 are propositional formulas from the propositional language L
with propositional variables V = VP ∪VS ∪VT defined above and expressed in DNF.

Definition 2 (Violation of a Prohibition). A conditional prohibition (ϕC , ϕP , ϕD) is violated
by a trace (s1, s2, . . . , sm) if there are i, j with 1 ≤ i ≤ j ≤ m such that ϕC is true at si, ϕP
is true at sj, and there is no k with i ≤ k ≤ j such that ϕD is true at sk.

In other words, a norm is violated by a trace if the states in the trace exhibit a pattern of
the following type: a state where the norm is detached (red grid, in the illustration below)
is followed by a number of states (possibly none) where neither the prohibition is violated
nor the deadline is reached (north west orange lines), after which there is a state where the
deadline is still not reached, but the prohibition is violated (north east blue lines). Note
that the state where the prohibition is violated may be the same state where the norm is
detached (not illustrated below, which considers the case where the three types of states
are distinct). Also note that the violation of a norm does not distinguish between a single
or multiple violations, i.e., a trace violates a prohibition if at least one violation occurs.

.ϕC ,¬ϕD,¬ϕP ¬ϕD,¬ϕP . . . ¬ϕD,¬ϕP ¬ϕD, ϕP

2. Based on the relative cost of False Positive and False Negative, other metrics could be used to assess
the alignment of a norm instead of accuracy (e.g., F-measure). DDNR supports this and, in different
contexts, DDNR can be tuned with the most suitable metric.

8

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

Violation conditions of conditional norms can be expressed in Linear Time Temporal
Logic (LTL) and evaluated on finite traces in linear time (Alechina et al., 2014). Such com-
bination of simplicity of evaluation and expressiveness, which allows to describe temporal
patterns of behaviors (frequent, for example, in traffic domains), motivates us to use condi-
tional norms in this paper. Moreover, conditional prohibitions have an intuitive meaning,
which enables us to propose intuitive operations of revision of their components.

3. DDNR: Data-Driven Norm Revision

In this section, we introduce DDNR, our proposed Data-Driven Norm Revision approach.
Given a set of norms N and a data set Γ of traces labeled w.r.t. the MAS objectives, DDNR
synthesises revised norms that are better aligned with the MAS objectives with respect to
Γ. DDNR consists of two steps.

• Synthesis step. DDNR synthesises a set of candidate revisions of the norms in N .
We discuss the synthesis step in Sections 3.1 and 3.2, where first we describe two
data-driven procedures of revision of DNF propositional formulas, and then we show
how to combine and use such operations to generate candidate revised norms.

• Selection step. DDNR selects a set of revised norms from the candidate norms ob-
tained in the synthesis step. We describe the selection step in Section 3.3, where we
characterize the concept of alignment of a norm with the MAS objectives by means
of statistical metrics (in particular, accuracy) that can be calculated on the data set
of traces Γ. The selected norms will be those that are most aligned with the MAS
objectives, i.e., those with highest accuracy.

In the following, we first consider, for simplicity, the case of one norm n. In Section 3.4,
we show how the approach applies to multiple norms and present the DDNR algorithm.

3.1 Data-Driven Procedures to Make a Formula More or Less Specific

We introduce two data-driven procedures, called MoreSpec and LessSpec, that can be
used to make a propositional formula ϕ, expressed in DNF, respectively more and less
specific. A formula ϕ is more specific than a formula ψ w.r.t. a data set of traces Γ if and
only if the set of states from traces in Γ in which ϕ holds is a subset of the states in which
ψ holds. Similarly, ϕ is less specific than ψ iff the set of states from traces in Γ where ϕ
holds is a superset of the states where ψ holds.

The inputs of these procedures are (i) a formula ϕ, expressed in DNF, that needs to be
revised into a less or more specific one (for example, this formula could be the condition
ϕC of the norm being revised); (ii) a set of states S, belonging to traces from a data set Γ,
from which propositions can be extracted to use for synthesising a new formula; and (iii)
a set V of all possible propositions that can be used for ϕ and its revisions (note that the
condition of a norm can be expressed using propositional variables that are different from
that of the deadline).

Algorithm 1 (MoreSpec) constructs more specific formulas than the input formula ϕ,
i.e., formulas that are true in a subset of the states where ϕ is true. First (line 3), it
retrieves rel prop, the set of propositions from V that occur in at least one of the states

9

Dell’Anna et al.

in S. prop(S ,V) = {p | p ∈ V ,∃s ∈ S : p ∈ s} indicates a function that returns the set of
propositions from V that occur in at least one of the states in S ⊆ S. Algorithm 1 then calls,
in line 4, a function buildConj, which constructs a set C of conjunctions of propositions
from rel prop (e.g., given two propositions p and q, it constructs C = {p, q, p ∧ q}).

Since the maximum number of possible conjunctions of propositions from rel prop is
2|rel prop|, i.e., it is exponential in the number of propositions in rel prop, function buildConj
constrains the number of synthesized conjunctions to a constant to limit the exponential
growth of set C. This can be done in a general way (e.g., by immediately returning after
the first x conjunctions that are created, or by uniformly sampling a limited number of
propositions from rel prop to use to create conjunctions) or in an informed way by using
domain knowledge to consider only some of the propositions in rel prop (e.g., leveraging
knowledge about the semantics of the propositions). Another analogous general strategy
is to bound the maximum number of conjuncts in each conjunction, similarly to standard
metrics of minimality in ILP (Corapi et al., 2011). In our empirical evaluation, we both
constrain the maximum number of conjunctions and use some domain knowledge to filter
conjunctions in an informed way (more details in Section 4.1).

Algorithm 1 MoreSpec

1: Input: formula ϕ in DNF; set of states S from Γ, set of propositional variables V
2: Output: set of formulas msf more specific than ϕ
3: rel prop ← prop(S, V)
4: C ← {⊤} ∪ buildConj(rel prop)
5: msf ← ∅
6: for c ∈ C do
7: f ← ⊥
8: for d ∈ disjuncts(ϕ) do
9: f ← f ∨ (d ∧ c)

10: msf ← msf ∪ {f}
11: return msf

We note that, clearly, limiting the size and characteristics of set C as described above
comes at the expenses of completeness w.r.t. the set of all possible revised formulas that
could be synthesised. This could later result in lower accuracy of the revised norms w.r.t.
to the data (the worst case is that no norm that is more accurate than the original one
is found). However, doing so allows to provide a tractable solution to the problem being
considered. We note, furthermore, that, even in the case of exhaustive search, no guarantee
is given that a more accurate norm is found given a data set of traces. A more in depth
discussion of this topic is provided in Section 5.

After obtaining the set C, Algorithm 1 constructs a set of new formulas msf (lines 5-10)3

more specific than ϕ by adding each conjunction c ∈ C in conjunction with each disjunct of
the original ϕ, creating a new disjunction f . The resulting set of disjunctions msf is a set
of formulas that are more specific than ϕ (incl. ϕ itself). Note that this follows from the

3. ⊥ and ⊤ are the atomic propositions indicating falsehood and truth, respectively.

10

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

fact that every new constructed conjunction will be composed of at least the propositions
contained in ϕ (i.e., it will be true in a state s only if ϕ is already true in s).

Example. Let V be the propositional variables defined in Section 2.1, ϕ = km2, and
S = {s}, with prop({s}, V) = {km1, km2, sp10, . . . , sp22, car}. Examples of formulas more
specific than ϕ that can be obtained via moreSpec(ϕ, S, V), i.e., that are in the set msf
returned by the function, include (km2), (km2∧sp22), (km2∧car), (km2∧sp22∧car), (km2∧
sp21 ∧ car), (km2 ∧ sp15 ∧ sp18), (km2 ∧ sp15), (km2 ∧ sp18), (km2 ∧ sp15 ∧ car), etc.4.

Algorithm 2 LessSpec

1: Input: formula ϕ in DNF; set of states S from Γ, set of propositional variables V
2: Output: set of formulas lsf less specific than ϕ
3: rel prop ← prop(S, V)
4: C ← {⊥} ∪ buildConj(rel prop)
5: lsf ← {(ϕ ∨ c) | c ∈ C}
6: return lsf

Algorithm 2 (LessSpec) constructs less specific formulas than the formula ϕ given as
input, i.e., formulas that are true in a superset of the states where ϕ is true. The algorithm
is slightly different from Algorithm 1. Here, we create a formula (a conjunction) c which
will be true in some of the states in S, and we synthesise a new formula ϕ ∨ c (less specific
than ϕ) where c is in disjunction with ϕ. We do not need to unroll the original formula ϕ
as done in the loop in line 8 of Algorithm 1, since here we introduce another disjunct to
ϕ, which is already in DNF. The resulting set of less specific formulas lsf is constructed as
per line 5. Note that, by definition of state, if ϕ is true in a set of states Sϕ, and c is true
in a set of states Sc, a formula f = ϕ ∨ c will be true in the (larger or equal) set of states
Sϕ ∪ Sc, thereby making f less specific than ϕ.

Example. Let V , ϕ = km2, and S be the same as per the example given for Algorithm 1.
Examples of formulas less specific than ϕ that can be obtained by invoking lessSpec(ϕ, S,
V) include (km2), (km2∨sp22), (km2∨car), (km2∨ (sp22∧car)), (km2∨ (sp21∧car)), (km2∨
(sp15 ∧ sp18)).

3.2 Revising the Norm: the Synthesis Step

We illustrate the first step of DDNR, the synthesis step, which is described by Algorithm 3
(Synthesis). Consider a norm n = (ϕC , ϕP , ϕD) to be revised. We distinguish three types
of revisions of a norm: alteration, weakening, and strengthening. In general, altering a
norm n changes the set of behaviors prohibited by n in an arbitrary way, while weakening
and strengthening a norm n create new norms that prohibit, respectively, a subset and a
superset of the behaviors prohibited by n. In particular, we have:

Alteration – Prohibiting different behaviors. An alteration of a norm n is a new
norm n′ that prohibits a different set of behaviors than n. An alteration of n can be realized
by making at least one of the components of n, that is the condition, the target state or
the deadline, either more or less specific. For example, an alteration of n is a new norm

4. Note that, as per Section 2.1, the semantics of spx∧spy is “the speed is both higher than x and y km/h”.

11

Dell’Anna et al.

n′ = (ϕ′C , ϕ
′
P , ϕ

′
D) such that ϕ′C is less specific than ϕC , while ϕ

′
P and ϕ′D are more specific

than ϕP and ϕD, respectively.

Weakening – Prohibiting fewer behaviors. A weakening of a norm n is a special case
of alteration of n: the new norm n′ prohibits a subset of the behaviors prohibited by n. To
weaken a norm, it is necessary to do at least one of the following operations, each causing
n′ to prohibit fewer behaviors: (i) making the condition more specific, so that the norm
is detached in fewer states; (ii) making the target state more specific, so that fewer target
states are prohibited; or (iii) making the deadline less specific, so that the norm “expires”
in more states.

Strengthening – Prohibiting more behaviors. A strengthening of a norm n is an-
other special case of alteration of n, leading to a n′ that prohibits a superset of the behaviors
prohibited by n. To strengthen a norm, it is necessary to do at least one of the following
operations, each causing n′ to prohibit more behaviors: (i) making the condition less spe-
cific, so that the norm is detached in more states; (ii) making the target state less specific,
so that more target states are prohibited; or (iii) making the deadline more specific, so that
the norm “expires” in fewer states.

Algorithm 3 (Synthesis) takes as input a set of traces Γ, a norm n = (ϕC , ϕP , ϕD) to
revise, the type of norms to synthesise (alteration, weakening or strengthening), and the
propositional variables related to the different components of n. As output, Synthesis re-
turns a triple ⟨cand c, cand p, cand d⟩ composed of three sets of formulas, which are the sets
of candidate revisions for the components ϕC , ϕP and ϕD of the original norm n determined
by making the norm components more or less specific, by invoking the procedures described
in Section 3.1. In principle, by creating the set of all possible combinations of formulas in
cand c, cand p and cand d, it is possible to obtain a set of norms which are revisions of the
original norm n. We call such a set R(n). Moreover, when referring to a particular type
of revision, we will use A(n), W(n) and S(n), for alteration, weakening and strengthening
respectively, instead of R(n). We highlight, however, that the DDNR algorithm (described
in Algorithm 5) does not require to create such a set of all possible combinations.

The three types of revision are visible in Algorithm 3 in lines 6, 10, and 14. In each case
(e.g., lines 11–13 for the case of weakening), the algorithm synthesises a number of candi-
date new components of the norms by using Algorithms 1 and 2 described in the previous
section. In the case of weakening, for example, the set of candidate new conditions (cand c)
is composed of the more specific conditions obtained with MoreSpec. Algorithms 1 and 2
are invoked with different input parameters based on the type of component (e.g., the con-
dition) and on the type of new formulas we wish to obtain (e.g., more specific conditions).
For instance, in line 11, MoreSpec is invoked with the current condition ϕC , a set of
“Condition” States CS which we describe below, and the set VC of the propositional vari-
ables that are relevant for the condition of the norm. The idea is to modify ϕC by making
it more specific to a set of states CS carefully selected from traces in Γ so that the resulting
norm will be detached in fewer states, thus prohibiting fewer traces (i.e. weakening the
norm). In line 19, finally, the three sets of revised components are returned. These sets, if
combined together, represent the final set R(n) of candidate revisions of the input norm n.

12

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

Algorithm 3 Synthesis

1: Input: data set Γ; norm n = (ϕC , ϕP , ϕD); type of revision type (alteration, weakening,
or strengthening); VC , VP , VD propositional variables for condition, target state and
deadline

2: Output: triple of sets of candidate revisions of the components of norm n
3:

4: CS,OPS, PS, IPS,CPS,DS ← getStates(Γ, n)
5:

6: if type is alteration then
7: cand c ←MoreSpec(ϕC , CS, VC) ∪ LessSpec(ϕC , OPS, VC)
8: cand p ←MoreSpec(ϕP , PS, VP) ∪ LessSpec(ϕP , IPS, VP)
9: cand d ←MoreSpec(ϕD, DS, VD) ∪ LessSpec(ϕD, CPS, VD)

10: if type is weakening then
11: cand c ←MoreSpec(ϕC , CS, VC)
12: cand p ←MoreSpec(ϕP , PS, VP)
13: cand d ← LessSpec(ϕD, CPS, VD)

14: if type is strengthening then
15: cand c ← LessSpec(ϕC , OPS, VC)
16: cand p ← LessSpec(ϕP , IPS, VP)
17: cand d ←MoreSpec(ϕD, DS, VD)
18:

19: return ⟨cand c, cand p, cand d⟩

We distinguish six sets of states (the states CS, OPS, etc. in line 4) that can be obtained
from the traces in data set Γ w.r.t. the norm n. Three of these sets, namely CS, PS and
CPS, are defined with respect to norm-violating traces and they are used to weaken n. The
remaining sets, i.e., OPS, IPS and DS, are defined with respect to norm-compliant traces
and they are used to strengthen n. All the six sets are used to alter n. Below, we formally
define and explain the details of each of these six sets.

Algorithm 4 provides a formal definition of all the states. The six states are defined by
exploiting three patterns of states (illustrated in Figure 3a) that are, or can be, exhibited by
traces in Γ due to the semantics of the violation of a norm (e.g., the pattern of states that is
always exhibited in prohibited traces as discussed in Section 2.1). In Figure 3, furthermore,
we report an example of data set Γ whose traces are labeled according to a norm n and to
7 examples of revisions5 of n obtained with Algorithm 3.

CS (Condition States, red grid in Figure 3a) is the set of states in norm-violating
traces where n is detached and, after that, a prohibited target state is encountered before
reaching the deadline. At least one such state exists in each norm-violating trace, as per
Definition 2. Synthesis extracts propositions from the states in CS to construct new
conditions that are more specific than the current one (e.g., lines 7 and 11), so that the
resulting norms will be detached in, thus prohibit, fewer traces currently norm-violating.

5. Note in Figure 3 that, as discussed above, weakenings of n prohibit no more traces than n, strengthenings
prohibit no fewer traces than n, and alterations of n prohibit a different set of traces than n.

13

Dell’Anna et al.

.

. . . ¬c,¬p . . .

¬c . . .

Pattern of states, always occurring in norm-violating traces

c,¬d,¬p ¬d,¬p . . . ¬d,¬p ¬d, p
Two patterns of states, possibly occurring in norm-compliant traces

¬c, p
c,¬d,¬p ¬d,¬p . . . ¬d,¬p d

Types of states
CS
CPS
PS
OPS
IPS
DS

(a) Three possible patterns of states that can appear in traces in Γ. Different states are coloured based
on their membership to a type of states (indicated by their color, as per the legend on the right) used
in Algorithm 3, and labeled w.r.t. the truth value of the components of a generic norm n = (ϕc, ϕp, ϕd)
(for readability we write, e.g., c instead of ϕc). The first pattern, described in Section 2.1, always appears
in norm-violating traces. The second pattern can appear in any kind of norm-compliant trace, regardless
of whether the norm is detached, and describes a case where a target state (purple dots) is encountered
before the norm is detached (possibly after the deadline was reached). The third pattern can appear
in norm-compliant traces where the condition is detached and, after that, the deadline is reached (grey
horizontal lines) after encountering a number of states that are not prohibited (green vertical lines).

Trace s1 s2 s3 (a, c, e) n1 n2 n3 n4 n5 n6 n7

γ1 e,f ✓ ✓ ✓ ✓ ✓ ✓
γ2 k,l ✓ ✓ ✓ ✓ ✓ ✓
γ3 ✓
γ4 a,b i.j k,l ✓
γ5 g,h e,f ✓ ✓
γ6 g,h k,l ✓ ✓
γ7 g,h i,j e,f

γ8 g,h i.j k,l

Data set Γ Norm n

Examples of
weakening of n:
n1 = (a ∧ b, c, e)
n2 = (a, c ∧ d, e)
n3 = (a, c, e ∨ a)

Examples of
strengthening of n:
n4 = (a ∨ c, c, e)
n5 = (a, c ∨ i, e)
n6 = (a, c, e ∧ f)

Examples of
alteration of n:
n7 = (a ∨ c,

c ∨ j,
e ∨ b)

a,b c,d

a c,d

a,b i,j e,f

c,d

c,d

(b) Data set Γ composed of 8 finite traces, each made of 3 states (columns s1-s3). States are colored based on
their types, as per Figure 3a, w.r.t. norm n, and, on the right, traces are labeled according to a norm n and to
7 examples of revisions of n obtained from Algorithm 3: the cells containing ✓indicate that the corresponding
trace is norm-violating, empty cells indicate that the trace is norm-compliant.

Figure 3: (a) Three possible patterns of states that can appear in traces in a data set Γ;
and (b) an example of Γ where traces’ states are colored according to their type as per
sub-figure 3a, and traces are labeled according to different norms.

14

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

CPS (In-Between Condition and Prohibited States, orange north west lines in
Figure 3a) is the set of states that are in between the state where the condition holds
and the state where the prohibition holds in norm-violating traces. Synthesis extracts
propositions from the states in CPS to construct less specific deadlines than the current
one, so that the resulting norms will expire also in some state in CPS (which are in between
the condition and the target state holds), thus classifying more traces as norm-compliant.

PS (Prohibited States, blue north east lines in Figure 3a) is the set of states in
norm-violating traces where ϕP holds after the norm is detached and before the deadline is
reached. Synthesis extracts propositions from the states in PS to construct more specific
prohibited target states, so that fewer states currently prohibited will violate the resulting
norms, thus making norm-compliant more traces that are currently norm-violating.

OPS (Outer Prohibited States, purple dots in Figure 3a) is the set of states in
norm-compliant traces where we know that ϕP holds, if any. If such a state exists, then it
is not in between a state where the condition holds and another where the deadline holds,
otherwise the trace would violate n. Synthesis extracts propositions from the states in
OPS to construct less specific conditions than the current one, so that the resulting norms
will apply also to states in OPS, where, if ϕP is not changed, the norm is violated, thus
prohibiting more traces that are currently norm-compliant.

Algorithm 4 getStates

1: Input: data set Γ; norm n = (ϕC , ϕP , ϕD);
2: Output: six sets of states from traces in Γ

3: CS ←

si | ∃(s1, . . . , si, . . . sm) ∈ Γ s.t. si ⊨ ϕC ,

∃j | i ≤ j ≤ m s.t. sj ⊨ ϕP ,
∄k | i ≤ k ≤ j s.t. sk ⊨ ϕD

4: CPS ←

{si | ∃(s1, . . . , si, . . . sm) ∈ Γ s.t. ∃j, k | 1 ≤ j < i < k ≤ m s.t.

sj ⊨ ϕC , sk ⊨ ϕP ,
∄l | j ≤ l ≤ k s.t. sl ⊨ ϕD

5: PS ←

si | ∃(s1, . . . , si, . . . sm) ∈ Γ s.t. si ⊨ ϕP ,

∃j | 1 ≤ j ≤ i s.t. sj ⊨ ϕC ,
∄k | j ≤ k ≤ i s.t. sk ⊨ ϕD

6: OPS ←

si | ∃γ = (s1, . . . , si, . . . sm) ∈ Γ s.t. si ⊨ ϕP ,

n is not violated on
γ

7: IPS ←

si | ∃γ = (s1, . . . , si, . . . sm) ∈ Γ s.t. n is not violated on γ,

∃j, k | 1 ≤ j ≤ i < k ≤ m s.t.
sj ⊨ ϕC ,
sk ⊨ ϕD

8: DS ←

si | ∃γ = (s1, . . . , si, . . . sm) ∈ Γ s.t. n is not violated on γ,

si ⊨ ϕD
∃j | 1 ≤ j ≤ i s.t. sj ⊨ ϕC ,
∄k | j ≤ k < i s.t. sk ⊨ ϕD

9: return CS,OPS, PS, IPS,CPS,DS

15

Dell’Anna et al.

IPS (Inner Permitted States, green vertical lines in Figure 3a) is the set of states
that are in between states where the condition and the deadline hold in norm-compliant
traces, if any. Synthesis extracts propositions from the states in IPS to construct less
specific prohibited target states than the current one, so that the resulting norms will also
prohibit states currently in norm-compliant traces.

DS (Deadline States, grey horizontal lines in Figure 3a) is the set of states where
ϕD holds (the deadline is reached), if any, in norm-compliant traces after the norm is
detached. Synthesis extracts propositions from the states in DS to construct more specific
deadlines than the current one, so that the resulting norms will expire in fewer states,
potentially prohibiting more traces currently norm-compliant.

3.3 Choosing the New Norm: the Selection Step

The synthesis step of DDNR produces a triple ⟨cand c, cand p, cand d⟩ representing the set
R(n) of candidate revisions a norm n. In this section, we discuss the selection step, which
chooses the new norm from R(n).

We recall that, as discussed in Section 2.1, by analysing a confusion matrix that charac-
terizes the traces in a data set w.r.t. the classification provided by a norm, we can determine
the number of classification errors of a norm, the type of errors (i.e., whether negative traces
are considered compliant more often than positive traces are considered violating), and we
can determine whether a norm is better (aligned with the MAS objectives) than another.

We characterize the concept of alignment of a norm with the MAS objectives using the
accuracy metric, defined as acc(n,Γ) = TP+TN

|Γ| , with TP and TN being the number of true
positives and true negatives obtained with a norm n on the data set of traces Γ.

Therefore, the selection step aims at choosing the combination of revised components
from cand c, cand p and cand d (i.e., the revision of n) with highest accuracy. In other
words, given a set of revised norms R(n), we choose, as a revision of n, the norm with
highest accuracy, i.e., n∗ = argmaxn′∈R(n) acc(n

′,Γ).

As an example, consider the three confusion matrices in Table 2, which are determined
by the three norms in R(n) = {n1, n2, n3} obtained with Algorithm Synthesis on a data
set Γ that consists of 12 traces, 6 of which are positive traces and 6 are negative. Norm n1
classifies correctly 75% of the traces making few errors among the positive traces and slightly
more errors among the negative traces. Norm n2 classifies correctly only 50% of traces. n2
is weaker than n1 and, thus, classifies many negative traces as norm-compliant. Finally, n3
classifies correctly 66% of traces. This norm is stricter than the others, and it captures all
negative traces. This, however, comes at the cost of misclassifying many positive traces.
In the selection step, we can choose n1 as the best revised norm in R(n), as its accuracy
is the highest. Again, note that based on the particular problem being considered, and
on the relative cost of False Positive and False Negative, other metrics could be used as
an alternative (or in addition) to accuracy. The metric can be considered a parameter of
DDNR. In this work, we choose accuracy as a metric since we focus on the introduction
of novel algorithms, we do not make specific claims about the cost of FP and FN, and we
consider data sets where the traces are evenly split among positive and negative.

16

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

Table 2: Accuracy of three examples of norms.

n1 n2 n3 TP FN

FP TN

 5 1

2 4

 4 2

4 2

 2 4

0 6

acc 0.75 0.5 0.66

3.4 Multiple Norms

Revising a set of norms N corresponds to generating a set of norms N ′ such that at least
one of the norms in N is revised. A set of norms N is weakened (strengthened) when
only weakening (strengthening) is applied, otherwise the set is altered. In Section 2.1, we
interpreted a norm as a binary classifier that distinguishes norm-compliant from norm-
violating traces. We can generalize this concept to a set of norms. We interpret the set
of norms as a multi-label binary classifier, where multiple binary labels can be assigned to
each trace. Each norm assigns a different binary label to a trace.

Consider, for example, a set N = {n1, n2} composed of two norms and a data set of
traces Γ. A trace γ ∈ Γ can be compliant with n1 and it can violate n2, thereby two labels
n1 compliant and n2 violating are assigned to the trace γ. Unlike the case of a single norm,
where a trace could be either correctly or wrongly classified, a trace can now be also partly
correctly classified. This happens, for example, if a trace is a positive trace and it complies
with one norm but it violates another norm. This situation is illustrated in Figure 4.
Suppose we aim to revise N by strengthening n1 and weakening n2. One straightforward
way to apply the proposed approach is to order the norms in some way and revise them
one by one, performing the synthesis and selection steps for each norm independently.

n1 compliant n1 violating

n2 compliant n2 violating n2 compliant n2 violating

ob
je
ct
iv
es

positive PFC PPC1 PPC2 PFW

negative NFW NPC2 NPC1 NFC

Figure 4: A confusion matrix for the case of two norms n1 and n2. PFC stands for Positive
Fully Correct (i.e., number of positive traces in a data set Γ correctly classified by both
norms); PPC i stands for Positive Partly Correct, with i indicating the id of the norm that
classifies correctly; PFW for Positive Fully Wrong. NFW, NPC i and NFC are analogous
for the Negative traces.

Revising each norm independently may lead to a set of new norms such that, while each
norm is better aligned with the MAS objectives, their combination diminishes the number
of fully correct classifications compared to the original set. Figure 5 shows an example
(artificial, for the sake of illustration) where a set of norms N = {n1, n2} is revised by
weakening n1 and strengthening n2, obtaining a new set N ′. While the number of correctly

17

Dell’Anna et al.

classified traces by each norm increases after the revision, the number of traces correctly
classified by both of them at the same time decreases, increasing instead the number of
partly correct classifications. Comparing the values inside and outside the brackets in
Figure 5b, we notice that after the revision all traces are only partly correctly classified.

Data set Γ N N ′

Trace Label n1 n2 n1 n2

γ1 positive violating violating compliant violating
γ2 negative compliant compliant compliant violating
γ3 positive violating compliant compliant violating
γ4 negative violating violating compliant violating

(a)

n1 compliant n1 violating

n2 compliant n2 violating n2 compliant n2 violating

ob
je
ct
iv
es

positive 0(0) 0(2) 1(0) 1(0)

negative 1(0) 0(2) 0(0) 1(0)

(b)

Figure 5: Example of classification of four traces by a set of norms N and by its revision
N ′ (a) and the corresponding confusion matrix (b). The values in the matrix in between
brackets refer to the set N ′.

If having fully correctly classified traces is not important, e.g., if obeying one or some
of the norms is sufficient for achieving the MAS objectives, then revising each of them
individually may be a good strategy and the alignment of the norm set can be determined
as the average alignment of all the norms. If, conversely, it is important to have fully
correctly classified traces, instead of revising each norm independently, we can search for
a combination of norms that minimizes the combined errors. Similarly to the case of one
norm, we can look for the set of norms that is most aligned with the MAS objectives. This
time, however, the alignment of the norm set must be determined w.r.t. the whole set of
norms at once. A direct generalization of the accuracy to multi-label problems6 is defined
as the average across all traces of the proportion of the predicted correct labels to the total
number (predicted and actual) of labels for each trace. Equation 2 reports its formalization.
Zi is the vector of labels predicted by the norms in N for a trace i (e.g., a label n1 compliant
expresses that a trace is compliant with norm n1), and Yi is the vector of correct labels
for trace i according to the MAS objectives (e.g., if the trace is negative w.r.t. the MAS
objectives, then the correct label is norm-violating). Note that, exclusively in Equation 2,
we follow the notation from (Sorower, 2010) where the intersection and union symbols (i.e.,

6. Other metrics for assessing the output of a multi-label classifier include the Hamming Loss (Schapire &
Singer, 2000) or the Weighted Kappa (Cohen, 1968). As per the case of a single norm, all these metrics
(and others) can be used in DDNR to assess the alignment of a norm set with the MAS objectives.

18

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

∩ and ∪) indicate respectively the AND and OR operation between every pair of labels in
the two vectors of labels Yi and Zi. Each operation results in a boolean vector and | · |
indicates the number of elements with value true in such a vector.

ml-acc =
1

|Γ|

|Γ|∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

(2)

Therefore, given a set of norms N , we can order the norms in some way, perform for
each of them the synthesis step, obtaining a list of possible revisions

R(N) =
[
⟨cand c, cand p, cand d⟩n1 , . . . , ⟨cand c, cand p, cand d⟩n|N|

]
and perform the selection step to choose the combination of norms that maximizes metric
ml-acc.

When the number of norms grows, an exhaustive search through all possible combina-
tions is infeasible. We can instead adopt a Monte Carlo algorithm and search the space of
all possible combinations of revised norms by randomly sampling k possible combinations7.

Algorithm 5 summarizes DDNR, the data-driven norm revision mechanism proposed in
this paper. DDNR takes as input a data set of traces Γ labelled by the MAS objectives
evaluator, a set of norms N to be revised, the type of revision required for each norm, the
propositional variables to use for revising the components of each norm, and the required
number of samples k for the Monte Carlo search. As output, DDNR returns a list of revised
norms, one for each norm in N .

Function synthesis (line 6) performs the synthesis step for a norm n as per Section 3.2,
returning a triple ⟨cand c, cand p, cand d⟩ of candidate revisions of the components of the
original norm n. This function is applied for all norms in N (line 5) so to populate the
list R(N) of triples, one for each norm. Function randomSample (line 7) takes as input
such list R(N) and the number k of required samples, and randomly samples each of the
sets in each triple in the list, so to obtain a set of k lists, each composed of one candidate
revision for each norm in N . Random sampling can be done in constant time via standard
procedures8, and can be performed without replacement so to return a set of unique items.

The algorithm returns the best candidate revision found in the k samples (line 8). In
the reported algorithm, the best candidate is that with highest ML-ACC (the multi-label
accuracy). We assume that all norms are equally important, but we note that extending
the algorithm to consider the importance of each norm (omitted here) is straightforward.

7. Note that a sampling strategy is justified by the fact that, as we discuss in Section 5, even an exhaustive
search among the set of all combinations of synthesised norms would not guarantee to find a perfect
solution (i.e., a set of norms that is perfectly aligned with the MAS objectives), because Algorithm
Synthesis adopts an heuristic approach that relies, for generating revised norms, (i) on the available
data and (ii) on the definition of the function buildConj, which might discard some better conjunctions
of propositions to keep the algorithm tractable.

8. See for example the Python random.sample() function https://docs.python.org/3/library/random.

html.

19

https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html

Dell’Anna et al.

Algorithm 5 DDNR

1: Input: data set Γ; set of norms N ; list T of |N | types of revisions, one for each norm
in N ; list V of |N | triples ⟨V C

n , V
P
n , V

D
n ⟩ of propositional variables, one for each norm

n in N ; number of samples k
2: Output: ordered list of revised norms selected
3: ▷ Synthesis step
4: R(N)← [] ▷ empty list
5: for all norm n ∈ N do
6: R(N).append(synthesis(Γ, n, Tn, V

C
n , V P

n , V D
n))

▷ Selection step
7: candidates ← randomSample(R(N), k)
8: return argmaxcand ∈ candidates ∪ {N} ml-acc(cand,Γ)

3.5 Complexity of DDNR

The complexity of the proposed approach depends on the complexity of (A) the synthesis
and (B) selection steps.

(A) Synthesis step. The complexity of the synthesis step depends on the size |Γ| of the
data set Γ, on the number of norms |N |, on the complexity of functions moreSpec and
lessSpec, and on the number of times they are invoked for each norm. The complexity
of moreSpec and lessSpec depends on the size of the set C of conjunctions constructed
via function buildConj, and on the number of disjuncts in each norm being revised. By
bounding the maximum size of conjunctions constructed via buildConj to either a constant
or to a polynomial in the number of propositions in the states in Γ (let such polynomial
be f(|Γ|)), as described in Section 3.1, the resulting complexity of buildConj, thus the
size of the set C, are in the worst case polynomial in |Γ|, i.e., O(f(|Γ|)). This is also the
complexity of lessSpec. In the case of moreSpec, each element in C is added to every
disjunct in the formula being revised. If the maximum number of disjuncts in a component
of any norm in N is the constant m, then the complexity of moreSpec is O(mf(|Γ|)).

Computing each of the sets of states in Algorithm synthesis for a norm n requires a
time that is O(λ|Γ|), with λ a constant representing the maximum length of (number of
states in) a trace in Γ. This is because extracting a particular set of states from a trace
requires a time that is linear in the size of the trace9 and this needs to be done for every
trace in the data set. This operation needs to be executed 6 times per norm (one per type
of state), resulting in a complexity O(6λ|Γ|). In the worst case, for the synthesis step we
perform an alteration for each of the |N | norms. An alteration requires to invoke 3 times
function moreSpec and 3 times function lessSpec, resulting in a complexity polynomial
in the size of Γ and N (data set and norms).

9. Similarly to the monitoring of a conditional norm, extracting a set of states from a trace can be done
by reading the states in the trace in order while preserving a boolean flag det that indicates whether an
instance of the norm has been detached in a previous state, storing the relevant states once encountered,
and discarding them if all conditions are not met. Please see our online appendix (Dell’Anna et al.,
2022a) for detailed algorithms.

20

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

(B) Selection step. The complexity of the selection step is polynomial in Γ, in particular
O(kλ|Γ|), since using a measure such as accuracy to calculate the norm alignment has a
complexity that is linear in the size of λΓ, and such operation is performed k (a constant)
times, one per each sample.

Table 3 summarizes the complexity of the different algorithms and steps of DDNR.

Algorithm/Step Complexity

buildConj O(f(|Γ|))
lessSpec O(f(|Γ|))
moreSpec O(mf(|Γ|))
SYNTHESIS (alteration of one norm) O(6λ|Γ|+ 3(m+ 1)f(|Γ|))
SYNTHESIS (weakening of one norm) O(6λ|Γ|+ 2mf(|Γ|) + f(|Γ|))
SYNTHESIS (strengthening of one norm) O(6λ|Γ|+mf(|Γ|) + 2f(|Γ|))
Synthesis step (worst case, i.e., alteration of |N | norms) O((6λ|Γ|+ 3(m+ 1)f(|Γ|))|N |)
Selection step O(kλ|Γ|)
DDNR (worst case, i.e., alteration of |N | norms) O((6λ|Γ|+ 3(m+ 1)f(|Γ|))|N |) + O(kλ|Γ|)

Table 3: Complexity of the different algorithms used by DDNR. m, k, and λ are constants,
respectively representing the maximum number of disjuncts in a component of the norms
in N , the number of samples required for the Monte Carlo sampling, and the maximum
number of states in any trace in Γ. f(|Γ|) represents a polynomial in the size of data set Γ.

4. Empirical Evaluation

We report on experimental results concerning DDNR, presented in Section 3. Our experi-
ments aim to provide an empirical answer to the following research questions:

RQ1. To what extent do the norms synthesised with algorithm Synthesis differ from the
original norms with respect to the number of FP, FN, TP and TN traces?

RQ2. Is the accuracy of the norms revised with DDNR higher than the accuracy of the
original norms?

RQ3. How does DDNR generalize to previously unseen traces?

4.1 Experimental Setting

We make use of a traffic simulation of the highway scenario described in Section 2 in order
to generate a data set of traces describing the behavior of agents in a MAS. We implement
the scenario with the SUMO traffic simulator (Krajzewicz et al., 2012) and we set up our
experiments as follows. The source code of our implementation of DDNR and the results
and material concerning our experiments are available at (Dell’Anna et al., 2022a).

SUMO vehicles. We consider two types of vehicles for our SUMO traffic simulation. A
passenger car (simply car, in the following) that can reach a maximum speed of 200 km/h
with a maximum acceleration of 2.6m/s2, and a truck that can drive up to 130 km/h, with
a maximum acceleration of 1.3m/s2. The emissions of the car refer to a gasoline-driven

21

Dell’Anna et al.

passenger car Euro norm 4, while the emissions of the truck refer to an average heavy
duty vehicle. For the exact details, we refer the reader to the SUMO documentation on
vehicles’ types10. In SUMO, vehicles placed on a road, drive in the direction of the road, and
exhibit a number of autonomous behaviors such as overtaking the vehicle ahead, signaling
the overtaking, accelerating or braking, keeping a certain safety distance from the vehicles
ahead, etc., based on realistic vehicles’ models implemented in SUMO.

Agents. We consider two agent types, one per type of SUMO vehicle as described above.
Each agent encapsulates a SUMO vehicle, so that some of the default behaviors of the
vehicle can be overridden when necessary (in particular, in our case, based on the enforced
norms and on the intention of the agent to violate or not the norms). We use a population
of agents randomly and uniformly distributed among cars and trucks. Both agent types
aim at driving through the highway section by maximizing their speed. At each simulation
step, every agent determines its desired speed according to its internals (i.e., its maximum
speed) and to the currently enforced norms. In particular, 75% of the agents are always
compliant with the enforced norms, while the remaining 25% will ignore them and focus
on maximizing speed. This can be seen as the effect of enforcing the norms by means of
sanctions that can be afforded by 25% of agents. Alternatively, this can also be seen as
the agents acting according to their types (e.g., using the BOID terminology (Broersen
et al., 2001), 75% of the agents are social agents giving priority to norm compliance over
their desired maximum speed, and 25% of the agents are selfish, preferring their desired
maximum speed over the norms). Here, we abstract away from the reasons for compliance
for the agents, and we simply uniformly draw from a distribution characterized by the
percentages above described the compliant and non-compliant agents. Note that, while
compliant agents always obey the norms, agents that ignore the norms do not necessary
violate them, as their ability to violate the speed limit depends both on their type (which
determines the vehicle’s maximum speed) and on the surrounding environment (e.g., traffic
jams will force agents to slow down, regardless of their preferences). The default behaviors
of the SUMO vehicles (e.g., those mentioned above) which are not regulated by the norms
are not monitored but they affect the overall behavior of both the individual agents and
the MAS. We consider an open MAS such that, at every simulation step, 2 new agents
(vehicles) enter the highway section and go through it.

Norms. We consider two types of norms, regulating (i) the maximum speed of the ve-
hicles, and (ii) the minimum safety distance between the vehicles in the highway section.
Maximum speed norms are norms (ϕC , ϕP , ϕD) such that ϕC , ϕP , ϕD are propositional
formulas from the languages with variables LC = VP ∪ VT , LPspeed = VS ∪ VT and
LD = VP , respectively, with VP , VS and VT defined as per Section 2.1. Minimum safety
distance prohibitions, instead, are norms (ϕC , ϕP , ϕD) such that ϕC , ϕP , ϕD are proposi-
tional formulas from the languages with variables LC = VP ∪VT , LPdist = VD ∪VT and
LD = VP , respectively, with VP and VT defined as per Section 2.1 and VD = {distx | 0 ≤
x ≤ 15 & x ∈ N}, with propositions distx denoting that vehicle’s distance from the vehi-

10. As a reference, the default truck model in the SUMO traffic simulator can reach up to 120 g/s of CO2.
More details can be found here: https://sumo.dlr.de/docs/Vehicle_Type_Parameter_Defaults.html

22

https://sumo.dlr.de/docs/Vehicle_Type_Parameter_Defaults.html

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

cles ahead is lower than x meters11. An example of minimum safety distance prohibition
is nd = (km2 ∧ car , dist10 , km7), which prohibits cars from staying closer than 10 meters
from the vehicles ahead from km2 to km7 of the highway section. We call SpeedNorms and
DistanceNorms the sets of all possible norms that can be defined w.r.t. their languages.

Traces. Throughout the simulations, we collect execution traces that describe the behav-
ior of each agent. An execution trace of an agent is composed of 10 different states, one per
each of the 10 kilometers of the highway section. The i-th state of a trace contains informa-
tion about: (i) the i-th km of the highway, (ii) the maximum speed the agent reached in the
i-th km of the highway, (iii) the type of agent (car or truck), and (iv) the minimum distance
the agent maintained from any vehicles ahead in the i-th km of the highway. Each trace
is labeled by the MAS objectives evaluator w.r.t. the CO2 emitted by the vehicle on the
highway and the time needed to travel from the beginning to the end of the highway section.
A trace is labeled as positive if the maximum emission of the vehicle from the beginning to
the end of the highway section is below a threshold tco2 = 100 g/s and the travel time is
below a threshold ttt = 450s (the time it takes to drive for 10 km at 80 km/h), and negative
otherwise. We emphasise once more that DDNR is agnostic of such underlying rules for the
labeling and it is exposed only to the given labeled traces. Note that the MAS objectives
concern a combination of CO2 emissions and road throughput and they are not expressed
in, nor do they explicitly relate to, the language in which the norms are expressed.

DDNR Configuration. In order to provide an accurate discussion of the proposed ap-
proach, we do not sample the possible candidate revised norms in Algorithm DDNR, but
we exhaustively compare all possible candidates (this is analogous to selecting a big enough
number of samples k for DDNR). This is made possible by keeping the number of candi-
date norms created in the synthesis step manageable. In particular, in our experiments
we adopted the following strategy for implementing function buildConj in Algorithms 1
and 2. Given the set of propositions rel prop, buildConj (a) splits the propositions in
types, e.g., it separates propositions belonging to VP from those belonging to VT , (b) or-
ders propositions from VP , VD , and VS , if any, alphabetically, (c) extracts the first x
propositions from each group in order, and (d) creates all possible combinations of the x
propositions. When buildConj is invoked by MoreSpec in step (c), the propositions are
ordered in ascending order, while when the function is invoked by LessSpec, the propo-
sitions are ordered in descending order. Note that ordering propositions alphabetically is
a syntactic operation which can be applied in any domain. In our case study, however, by
ordering alphabetically the propositions, we also introduce an ordering that characterizes
the domain knowledge (e.g., lower speeds are earlier in a list of speed-related propositions
in ascending order). By selecting the first x propositions of each group in order, therefore,
we both bound the maximum number of possible conjunctions and we apply a criteria of
similarity with the current norm based on the available domain knowledge, i.e., we select
at most x propositions which are semantically as “close” as possible to the original norm.
For example, if the current norm prohibits from speeding over 40 km/h, when looking for
candidate more specific prohibitions given the set of states PS, we limit buildConj to

11. Note that, as they do for their speed, vehicles autonomously adjust also their distance from the vehicle
ahead based on their internals. We do not directly affect their decisions about the specific safety distance
to maintain. Instead we regulate the minimum safety distance.

23

Dell’Anna et al.

return the first x propositions from the ordered set of propositions concerning the speed
found in the states in PS (e.g., sp41, sp44, sp50, . . .). We set x = 8 in our experiments.
As a consequence, buildConj can never generate more than 28 = 256 conjunctions from
propositions belonging to VP , VD , and VS , and never more than 22 = 4 from propositions
belonging to VT (because |VT | = 2), for a maximum number of possible conjunctions of
210 = 1, 024.

4.2 To what extent do the norms synthesised with algorithm Synthesis differ
from the original norms with respect to the number of FP, FN, TP and
TN traces? (RQ1)

We study the composition of the sets of revised norms generated during the synthesis step,
as per Section 3.2 for alteration, weakening, and strengthening.

Method. We execute 100 independent traffic simulations. In the i-th simulation, we
perform three steps.

1. We run the simulation until 1,500 vehicles drive through the highway section under
the enforcement of one norm ni randomly selected from the set SpeedNorms. Since the
behavior of each vehicle corresponds to an execution trace, the simulation generates
1,500 traces.

2. The traces are labeled by the MAS objectives evaluator as described above, obtaining
the data set Γi that is given as input to DDNR.

3. Given Γi, the synthesis step is performed to generate a set of revised norms R(ni).

By running 100 independent simulations, we obtain therefore 100 independent data sets
Γ1−Γ100, which we use to synthesise 100 sets R(n1)−R(n100) of revised norms (one per
simulation). To answer RQ1, we compare the confusion matrices of the synthesised norms
in the set R(ni) with the confusion matrix of the original norm ni w.r.t. data set Γi.
We report statistical results obtained in the 100 independent trials. When reporting the
statistics, we use the following abbreviations: M for mean, SD for standard deviation, SE
for standard error, Min for minimum value, Q1-Q3 for the three quartiles, and Max for
the maximum value. These measures allow to characterize quantitatively the distributions
of the number of TP, FP, TN, and FN traces (which we visualize via box plots) for the
synthesised sets of revised norms. Moreover, we indicate with n⃗ the vector of the 100
original norms being revised, and with R(n⃗) the vector of 100 sets of revised norms (i.e.,
the sets R(n1)−R(n100)), one set per norm in n⃗. Finally, in the tables in the rest of the
section, we highlight in gray the values that we mention in the text.

We repeat the above for the three types of revision (weakening, strengthening and
alteration) as per Section 3.2. We make the following hypotheses about the sets A(n⃗),
W(n⃗) and S(n⃗), respectively for alteration, weakening and strengthening, which help us
determining to what extent the norms synthesised with algorithm synthesis differ from
the original norms w.r.t. TP, TN, FP and FN traces (RQ1):

H1.1 The sets of altered norms in A(n⃗) are composed of norms with more TP and TN
traces and fewer FP and FN traces, compared to the original norms.

24

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

H1.2 The sets of weakened norms in W(n⃗) are composed of norms with more compliant
traces (TP and FP traces) and fewer violating traces (TN and FN traces), compared to the
original norms.

H1.3 The sets of strengthened norms in S(n⃗) are composed of norms with more violating
traces (TN and FN traces) and fewer compliant traces (TP and FP traces), compared to
the original norms.

Table 4a reports an overview of data sets Γ1−Γ100. On average, the data sets are split
relatively evenly among positive and negative traces w.r.t. the MAS objectives (TP+FN
traces are 52.5%, TN+FP are 47.5%), while, on average, the traces violating the original
norms are about the 7% of the total (TN+FN traces). Note that the randomly selected
original norms are generally too weak: while they cover relatively well the positive traces
(high values of TP), in many cases they mis-classify a large part of the negative traces (high
values of FP). The average accuracy is about 54%, with a maximum value of 89% and a
value below 64% for 75% of the norms (see the third quartile Q3).

Table 4b reports, instead, an overview of the norms in the 100 different sets in R(n⃗),
generated by the synthesis step for the three types of revisions. In the following (see
Figure 6), we study how the norms in these sets differ from the original norms described in
Table 4a. Note that the changes in TP, FP, TN and FN reported in Figure 6 are computed
by mapping each synthesised norm with its original one. For instance, the change of TP
for a norm n′i ∈ W(ni) is computed as TPn′

i
− TPni , with TPni the TP obtained with the

original norm ni, and TPn′
i
the TP obtained with norm n′i synthesised starting from (by

weakening, in this example) ni. We use the effect size metric dCohen
12 to analyze the change

in the percentage of TP, FP, TN and FN (illustrated in Figure 6 via box plots) between the
original and the synthesised norms, and to understand if the effect of such a change has a
statistically relevant magnitude.

In the case of weakening (Figure 6a), we observe a large13 reduction of the number of
FN traces. The reduction of FN traces corresponds to an increase of TP traces: those traces
are now correctly classified as norm-compliant. Due to the heuristic nature of Algorithm 3,
which relies on the available data and on the defined operations for making formulas more
or less specific based on the given states, the revision also exhibits a large side effect of
reducing TN traces with a corresponding increase of FP traces. We do not see any negative
change for the norm-compliant traces, nor any positive change for the norm-violating traces.
This confirms hypothesis H1.2 and validates the correctness of the revisions: weakening
does not affect negatively the norm-compliant traces.

Analogously, in the case of strengthening (Figure 6b), HP1.3 is confirmed, since the
norm-violating traces are not affected negatively while we observe a large decrease in the
number of FP traces. Also in this case, the revision exhibits a large side effect of reducing

12. The effect size is a statistical measure that describes the strength of a phenomenon, by computing the
difference between two groups of measurements in terms of their common standard deviation (Cohen,
2008). In particular, we use use Cohen’s delta (dCohen) since we compare two groups of same size with
similar standard deviation.

13. We use the terms small, intermediate and large according to the interpretation of the effect size dCohen

(Cohen, 2008). A change is considered having no effect if |dCohen | < 0.2; small effect if 0.2 ≤ |dCohen | <
0.5; intermediate effect if 0.5 ≤ |dCohen | < 0.8; and large effect if |dCohen | ≥ 0.8.

25

Dell’Anna et al.

Table 4: Statistics about (a) the 100 original norms enforced and (b) the 100 sets of synthe-
sised norms. In (b), column “Nr. norms” reports the statistics about the number of revised
norms synthesised for each of the 100 initial norms, and the remaining columns report the
statistics of such norms in terms of TP, FP, TN, FN and accuracy. Row Total indicates the
total number of norms synthesises starting from the 100 initial norms.

(a)

TP FP TN FN acc

O
ri
gi
n
al

n
or
m
s
n⃗ M 0.50 0.44 0.04 0.03 0.54

SD 0.27 0.24 0.06 0.04 0.22
Min 0.00 0.01 0.00 0.00 0.10
Q1 0.47 0.35 0.00 0.00 0.49
Q2 0.62 0.38 0.00 0.00 0.62
Q3 0.64 0.43 0.06 0.06 0.64
Max 0.89 0.89 0.24 0.16 0.89

(b)

Nr. Norms TP FP TN FN acc

W(n⃗)

M 57.02 0.37 0.61 0.01 0.01 0.39
SD 131.98 0.36 0.35 0.03 0.02 0.35
Min 1.00 0.00 0.01 0.00 0.00 0.00
Q1 1.00 0.00 0.31 0.00 0.00 0.04
Q2 8.00 0.17 0.82 0.00 0.00 0.17
Q3 48.00 0.66 0.96 0.01 0.01 0.67
Max 1057.00 0.99 1.00 0.24 0.16 0.99
Total 5702.00 - - - - -

S(n⃗)

M 50.86 0.15 0.12 0.28 0.45 0.43
SD 50.77 0.21 0.18 0.26 0.28 0.25
Min 1.00 0.00 0.00 0.00 0.00 0.01
Q1 1.00 0.00 0.00 0.04 0.16 0.26
Q2 35.50 0.00 0.00 0.30 0.51 0.37
Q3 92.00 0.22 0.30 0.38 0.64 0.52
Max 210.00 0.89 0.89 1.00 0.99 1.00
Total 5086.00 - - - - -

A(n⃗)

M 218.03 0.24 0.32 0.20 0.23 0.45
SD 229.50 0.30 0.33 0.27 0.29 0.29
Min 1.00 0.00 0.00 0.00 0.00 0.00
Q1 1.00 0.00 0.00 0.00 0.00 0.17
Q2 187.00 0.12 0.29 0.06 0.04 0.43
Q3 314.00 0.50 0.49 0.36 0.49 0.65
Max 1409.00 0.99 1.00 1.00 0.99 1.00
Total 21803.00 - - - - -

the number of TP traces. Note that the changes for strengthening are higher than those for
weakening: the data sets include no more than 25% norm-violating traces (no more than
25% of the agents will violate the enforced norm), while up to 100% norm-compliant traces.

Since we perform weakening or strengthening revisions regardless of the actual number
of FP or FN traces, in some cases no revision is needed or possible (e.g., when FP or FN
traces are 0). In our simulations, this is more common for weakening (see the median
values in Figure 6a closer to 0). This happens, for instance, when the enforced speed limit
is very weak so that all exhibited behaviors are norm-compliant, or when, by enforcing a
very strict speed limit, traffic jams are generated by compliant agents that significantly
slow down, preventing also any other agent behind them to violate the norm. Similarly,
if the number of FP traces is 0, no strengthening is possible/needed. This can happen,
for instance, when the enforced speed limit is already reasonably aligned with the MAS
objectives, and it is strict enough not to allow vehicles to speed too much, but not too strict
to cause jams as described above. When no revision is possible (needed), we do not revise
the original norm, resulting in no change in the classification of traces.

When performing an alteration (Figure 6c), as illustrated in Figure 3, we are not limited
anymore to revisions concerning exclusively norm-compliant or norm-violating traces, and
the revision can affect all types of traces. We can see this in Figure 6c by noting both an

26

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

Dell’Anna et al.

∆TP ∆FP ∆TN ∆FN

−0.2

0

0.2

(a)

∆TP ∆FP ∆TN ∆FN

−1

−0.5

0

0.5

1

(b) (c)

M SD dCohen interpretation

W(n)

∆TP 0.04 0.04 0.12 no effect
∆FP 0.07 0.07 0.23 small
∆TN -0.07 0.07 -1.39 large
∆FN -0.04 0.04 -1.22 large

S(n)

∆TP -0.4 0.26 -1.82 large
∆FP -0.26 0.23 -1.28 large
∆TN 0.26 0.23 1.37 large
∆FN 0.4 0.26 2.03 large

A(n)

∆TP -0.19 0.27 -0.61 intermediate
∆FP -0.14 0.25 -0.45 small
∆TN 0.14 0.25 0.72 intermediate
∆FN 0.19 0.27 0.91 large

(d)

Figure 1: The change of the % of TP, FP, TN, FN in the sets of norms W(n), S(n), A(n)
respectively obtained by (a) weakening, (b) strengthening or (c) altering a norm, with their
detailed statistics (d). Average values are obtained w.r.t. the 100 different sets of norms
obtained revising the 100 original norms in the highway scenario. The percentage of change
for each norm is calculated w.r.t. the total number of traces (i.e., 1500). dCohen and its
interpretation refer to the effect size as per (?).

2

(a)

Dell’Anna et al.

∆TP ∆FP ∆TN ∆FN

−0.2

0

0.2

(a)

∆TP ∆FP ∆TN ∆FN

−1

−0.5

0

0.5

1

(b) (c)

M SD dCohen interpretation

W(n)

∆TP 0.04 0.04 0.12 no effect
∆FP 0.07 0.07 0.23 small
∆TN -0.07 0.07 -1.39 large
∆FN -0.04 0.04 -1.22 large

S(n)

∆TP -0.4 0.26 -1.82 large
∆FP -0.26 0.23 -1.28 large
∆TN 0.26 0.23 1.37 large
∆FN 0.4 0.26 2.03 large

A(n)

∆TP -0.19 0.27 -0.61 intermediate
∆FP -0.14 0.25 -0.45 small
∆TN 0.14 0.25 0.72 intermediate
∆FN 0.19 0.27 0.91 large

(d)

Figure 1: The change of the % of TP, FP, TN, FN in the sets of norms W(n), S(n), A(n)
respectively obtained by (a) weakening, (b) strengthening or (c) altering a norm, with their
detailed statistics (d). Average values are obtained w.r.t. the 100 different sets of norms
obtained revising the 100 original norms in the highway scenario. The percentage of change
for each norm is calculated w.r.t. the total number of traces (i.e., 1500). dCohen and its
interpretation refer to the effect size as per (?).

2

(b)

Evolving Fuzzy Systems for Balancing Personalization and Creativity of Socially
Assistive Robots

Davide Dell’Anna, Anahita Jamshidnejad
Department of Control and Operations, Delft University of Technology, The Netherlands

{d.dellanna, a.jamshidnejad}@tudelft.nl

Abstract

Socially Assistive Robots (SARs) are increasingly being used in healthcare to reduce the costs and complexity of per-
sonalized care. SARs, for example, can effectively provide assistance to dementia patients by involving them in tasks
related to physical and cognitive stimulation. Research shows that stimulating creativity and divergent thinking of
dementia patients can preserve and improve their cognitive capacities. Current decision-making solutions for SARs focus
on learning and exhibiting behaviors that are personalized to the particular patient, but do not provide mechanisms for
explicitly accounting for the creativity and divergent thinking needs of the patients. Inspired by Evolutionary Artificial
Intelligence, a computational optimization strategy which has shown to be a creative and often surprising source of
behaviors, in this paper we introduce a novel solution for balancing the personalization and creativity of SARs. We
propose an Evolving Fuzzy Rule-Based System that autonomously and continuously evolves the fuzzy rules that govern
the SAR’s interactions with the patients. Results obtained via simulation show that the fuzzy rules evolved over time are
not only personalized to the patient but also variegate, and the resulting SAR’s behaviours effective. A pilot survey with
human subjects, furthermore, indicates that the creative behavior of the SAR resulting from our evolutionary mechanism
is preferred to standard static solutions.

Keywords: Evolving Fuzzy Systems, Socially Assistive Robots, Personalization, Creativity

∆TP ∆FP ∆TN ∆FN

−1

−0.5

0

0.5

1

Preprint submitted to Journal of LATEX Templates December 18, 2021

(c)

Original Synthesised ∆
dCohen Interpretation

M SD M SD M SD

weakening

TP 0.33 0.33 0.37 0.36 0.04 0.04 0.12 no effect
FP 0.53 0.30 0.61 0.35 0.07 0.07 0.23 small
TN 0.09 0.07 0.01 0.03 -0.07 0.07 -1.39 large
FN 0.05 0.04 0.01 0.02 -0.04 0.04 -1.22 large

strengthening

TP 0.55 0.24 0.15 0.21 -0.40 0.26 -1.82 large
FP 0.38 0.22 0.12 0.18 -0.26 0.23 -1.28 large
TN 0.03 0.05 0.28 0.26 0.26 0.23 1.37 large
FN 0.05 0.04 0.45 0.28 0.40 0.26 2.03 large

alteration

TP 0.43 0.32 0.24 0.30 -0.19 0.27 -0.61 intermediate
FP 0.46 0.29 0.32 0.33 -0.14 0.25 -0.45 small
TN 0.06 0.07 0.20 0.27 0.14 0.25 0.72 intermediate
FN 0.05 0.04 0.23 0.29 0.19 0.27 0.91 large

(d)

Figure 6: The % change of TP, FP, TN, FN for the sets of norms in W(n⃗), S(n⃗), A(n⃗)
respectively obtained by (a) weakening, (b) strengthening or (c) altering the 100 original
norms in n⃗, with detailed statistics: mean M and standard deviation SD (d). The mean
values are obtained w.r.t. the 100 different sets of norms obtained revising the 100 original
norms in the highway scenario. The change for each norm is calculated w.r.t. its original
norm, and the percentage of change for each norm is calculated w.r.t. the total number of
traces (1,500). dCohen and its interpretation refer to effect size as per (Cohen, 2008).

increase and a decrease in all types of traces. The sets of revised norms are more similar
to the ones obtained with strengthening (at least in terms of change in the values of the
confusion matrix). This shows that, in general, stricter norms are generated, in line with
the fact that the original norms, as described above, are generally too weak. For this reason,
the revisions mostly affect the traces that are wrongly classified as norm-compliant: the FP
traces in the revised norms are reduced, even though with a small effect size. In some cases,
the revisions also have the undesired side effect of increasing the number of FN traces.
Therefore, HP1.1 is only partly confirmed: it is confirmed that the set of altered norms
is composed of norms with more TN and fewer FP but, due to the side effect, it is not
the case that the set is composed of norms with more TP and fewer FN. However, such an
effect is less significant than with strengthening, indicating that when a data set of traces
includes both FP and FN traces, alteration operations allow to generate norms that are
better aligned with the MAS objectives. In particular, the size of the effect on the FN
traces is smaller than that of the analogous effect for strengthening.

27

Dell’Anna et al.

We conclude that the results confirm the hypothesesH1.2, andH1.3, and partly confirm
hypothesis H1.1. In particular, the results show that among the generated norms, some can
have significant side effects. This motivates us to propose the use of a metric like accuracy to
select among the possible norms during the selection step, instead of, for example, randomly
extracting one norm from the synthesised set. In the following, we show that using such a
metric is crucial to minimize the side effects of the revision.

4.3 Is the accuracy of the norms revised with DDNR higher than the
accuracy of the original norms? (RQ2)

We take the sets of norms generated for RQ1, and analyze how the accuracy of the selected
norms changes w.r.t. the original norms when the entire DDNR algorithm (including the
selection step) is applied. We hypothesise that:

H2.1 The accuracy of the norms revised with DDNR is higher than the accuracy of the
original norm in the case of weakening, strengthening and alteration operations.

We compare the acc metric against a baseline unbiased metric, which we call random,
that selects the new norm by randomly and uniformly sampling the sets produced by the
synthesis step. Figure 7 illustrates such comparison via box plots. The reported values
show the change of percentage of TP, TN, FP and FN traces with the 100 revised norms,
obtained in the 100 trials, w.r.t. each of the 100 original norms. In Table 5, instead, we
provide the detailed statistics about the selected norms. For brevity, we report only mean
and standard deviation. Note that, since Table 5 concerns the statistics of the 100 norms
randomly selected from the sets of synthesised norms (one from each of the 100 sets), in the
case of the random metric the values are not identical to those in Table 4b which, instead,
refers to all the norms contained in the 100 sets.

Table 5: Mean M and standard deviation SD of the 100 revised norms. The values in the
TP, FP, TN and FN columns are percentages w.r.t. the number of traces in the data set.

metric TP FP TN FN accuracy

weakening
random 0.52 ± 0.29 0.47 ± 0.28 0.01 ± 0.01 0.01 ± 0.01 0.52 ± 0.28
acc 0.52 ± 0.29 0.44 ± 0.24 0.04 ± 0.06 0.00 ± 0.01 0.56 ± 0.24

strengthening
random 0.24 ± 0.27 0.21 ± 0.20 0.27 ± 0.31 0.28 ± 0.32 0.51 ± 0.25
acc 0.47 ± 0.28 0.19 ± 0.17 0.28 ± 0.39 0.06 ± 0.08 0.75 ± 0.15

alteration
random 0.33 ± 0.29 0.29 ± 0.27 0.18 ± 0.25 0.20 ± 0.27 0.51 ± 0.23
acc 0.48 ± 0.29 0.18 ± 0.18 0.30 ± 0.39 0.04 ± 0.07 0.78 ± 0.15

Weakening. Figure 7 shows that, while with random the percentage of FP traces in-
creases, on average, of about 3%, with acc the increase is significantly lower (on average
0)14. In terms of change in the FN and TP traces, instead, random and acc perform analo-
gously. By only improving the FP and TP, acc leads to norms that are both more accurate
than those selected with random (compare the accuracy in Table 5) and also more accu-

14. A Wilcoxon-Signed Rank Test indicates a significant difference between the change of the percentage FP
traces with random and with acc; z = −5.47, p < .00001, with a large effect size dCohen = −0.832

28

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

random acc

−0.2

0

0.2

(a) weakening

random acc
−1

−0.5

0

0.5

1

∆TP ∆FP ∆TN ∆FN

(b) strengthening

random acc
−1

−0.5

0

0.5

1

(c) alteration

metric weakening strengthening alteration

random

∆TP 0.02 ± 0.04 -0.25 ± 0.29 -0.17 ± 0.24
∆FP 0.03 ± 0.05 -0.23 ± 0.26 -0.15 ± 0.22
∆TN -0.03 ± 0.05 0.23 ± 0.26 0.15 ± 0.22
∆FN -0.02 ± 0.04 0.25 ± 0.29 0.17 ± 0.24

acc

∆TP 0.02 ± 0.04 -0.03 ± 0.07 -0.02 ± 0.07
∆FP 0.00 ± 0.01 -0.24 ± 0.34 -0.26 ± 0.33
∆TN 0.00 ± 0.01 0.24 ± 0.34 0.26 ± 0.33
∆FN -0.02 ± 0.04 0.03 ± 0.07 0.02 ± 0.07

(d)

Figure 7: Comparison of the change of the % of TP, FP, TN and FN after (a) weakening,
(b) strengthening or (c) altering a norm with DDNR, and (d) the corresponding values.

rate than the original norms (56% accuracy compared to the original 54%). This confirms
hypothesis HP2.1 in the case of weakening of one norm.

Strengthening. Figure 7 shows that, while both random and acc lead to a desired re-
duction of the number of FP (in both cases of about 23–24%), acc has a side effect on the
FN about 8 times smaller than that caused by random, limiting the side effect on the FN
to an average 3% change, compared to the 25% change obtained with random. As a con-
sequence, the norms selected by acc are also more accurate than those selected by random
(in Table 5, we see an average accuracy of 75% with acc, and of 51% with random). This
confirms hypothesis HP2.1 in the case of strengthening of one norm.

Alteration. Consider row alteration in Table 5. acc significantly improves in all classes
compared to random, selecting norms with significantly more TN traces (and consequently
fewer FP traces) than the original norms (with a large effect dCohen = 0.932), and with a side
effect on FN and TP (see highlighted cells in column alteration of Figure 7) which has a size
about 5 times smaller than the effect with random (also, the effect size between the number
of FN of the original norms and the number with the revised norms is dCohen = 0.175 for
acc and dCohen = 0.881 for random). acc effectively selected norms with higher accuracy
than the original ones, with an average accuracy of 78% (see last cell in Table 5) compared
to the 54% accuracy (shown in Table 4a) of the original norms. This confirms hypothesis

29

Dell’Anna et al.

HP2.1 also in the case of alteration of one norm.

init weak str alt

0

0.5

1

(a)

Original

M 0.54
SD 0.22
Min 0.10
Q1 0.49
Q2 0.62
Q3 0.64
Max 0.89

(b)

∆ Final

w
ea
k
en

in
g

M 0.02 0.56
SD 0.04 0.24
Min 0 0.10
Q1 0 0.55
Q2 0 0.62
Q3 0.05 0.65
Max 0.16 0.99

st
re
n
g
th
en

in
g

M 0.21 0.75
SD 0.33 0.15
Min 0 0.48
Q1 0 0.62
Q2 0 0.68
Q3 0.26 0.87
Max 0.88 1.00

a
lt
er
a
ti
o
n

M 0.24 0.78
SD 0.32 0.15
Min 0 0.52
Q1 0 0.63
Q2 0.10 0.76
Q3 0.26 0.89
Max 0.88 1.00

(c)

Figure 8: Sub-figure (a) shows the original accuracy in red, the accuracy change in blue, and
the resulting accuracy after revision in black; sub-figure (b) reports the original accuracy
from Table 4a; sub-figure (c) illustrates the ∆ and the resulting accuracy after the revision
for with the three types of revision.

Figure 8 provides a more detailed comparison of the accuracy of the original norms
with the accuracy of the revised norms when using acc as a metric, and shows the accu-
racy change when performing weakening, strengthening or alteration. As reported earlier
in Table 4a, the accuracy of the original norms is, on average, about 54%, with 75% of
the norms having an accuracy below 64%, while the maximum accuracy is 89%. Both
weakening and strengthening operations in some cases affect the accuracy positively and in
other cases negatively. On average, however, all operations led to norms with significantly
higher accuracy than the original norms, confirming HP2.1 for all types of revisions of one
norm. Wilcoxon-Signed Rank Tests comparing the accuracy of the original norms with the
accuracy of the altered norms indicate a significant difference, with z = −8.6818, p < .00001
for weakening, z = −3.9902, p = .00006 for strengthening, and z = s− 3.593, p = .00034 for
alteration. Due to the low number of negative traces, the improvement with weakening has
a smaller magnitude, with a negligible effect size dCohen = 0.087. In the case of strength-
ening, instead, the average improvement of accuracy is around 20%, with a large effect size
dCohen = 1.115. Finally, with alteration, the average accuracy improves even more, with a
large improvement of around 24% (dCohen = 1.275). Note that half of the new norms have
an accuracy higher than 76%, and 25% of the norms have an accuracy higher than 89%.

30

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

Multiple Norms

We experiment with the highway scenario enforcing two norms instead of one, in order
to answer RQ2 also for the case of multiple norms. We focus only on alteration here for
brevity. The results on weakening and strengthening, which are analogous to the case of
one norm (i.e., the accuracy of both the weakened and strengthened norms is higher than
the original norms), are included in the online appendix (Dell’Anna et al., 2022a).

Method. Similar to the case of a single norm, we adopt the following experimental
method. We run and report results for 100 independent simulations. For each simula-
tion, we perform the following three steps. (1) We run the i-th simulation until a data set
of 1,500 traces is generated under the enforcement of two norms (as opposed to one, in
the case of one norm) randomly selected from the sets SpeedNorms and DistanceNorms.
(2) The MAS objectives evaluator labels the traces as per RQ1, producing the data set
Γi. (3) Given Γi, we run DDNR. Differently from the case of one norm, we repeat this
step for two different experiments—the subject of our analysis—in order to investigate two
different strategies to evaluate and select multiple norms: (independent) we select, by us-
ing the acc metric, each norm from its corresponding set, independently form the other
norm; (combined) we compare all combinations of norms from the two sets, and we select
the two revised norms by using the multi-label accuracy metricml-acc defined in Equation 2.

Table 6 compares the original norms with the revised ones, for the two experiments of
independent and combined revision of the norms. In column independent, the values concern
the average acc of the norms, and in column combined, the values concern the value of ml-
acc. By comparing the mean values of the original and revised norms, we observe that
in both experiments the alignment with the MAS objectives (i.e., the average accuracy of
the two norms in independent, and the multi-label accuracy in combined) significantly15

improves after the revision of the norms. This effect is large for both the independent
(dCohen = 1.205) and the combined (dCohen = 0.892) revisions, and confirms HP2.1 also
for the revision of multiple norms.

Table 6: Statistics about the accuracy (acc) and multi-label accuracy (ml-acc) for the
original and revised (altered) norms in the cases of independent and combined selections.

Experiment independent combined

Metric acc ml-acc

Norms Original Revised Original Revised

M 0.50 0.74 0.47 0.68
SD 0.25 0.13 0.28 0.18
Min 0.06 0.50 0.00 0.00
Q1 0.25 0.63 0.16 0.61
Q2 0.61 0.72 0.61 0.63
Q3 0.63 0.82 0.63 0.77
Max 0.93 1.00 0.93 0.99

15. We conducted two Wilcoxon-Signed Rank tests to compare the accuracy of the original and revised
norms. In both cases we identify a significant difference, For the independent revision we have z =
−7.9607, p < .00001. For the combined revision we have z = −7.3738, p < .00001.

31

Dell’Anna et al.

In Section 3.4, we discussed the difference between an independent and a combined
revision of the norms in terms of partly and fully correctly classified traces. We argued
that independent revisions are more suitable for cases when it is less important for the
traces to be classified correctly by all norms, while combined revisions are more suitable
when it is important to have fully correct traces. We briefly illustrate this concept in our
experiment. Figure 9 reports three confusion matrices: (a) one for the original norms of
our experiment, (b) one for the revised norms obtained in the independent experiment, and
(c) one for the revised norms obtained in the combined experiment. Note that the values
in the confusion matrices are the mean values for the 100 different norms (e.g., the top left
value in Figure 9a, is the mean number of Positive Fully Correct traces in the 100 original
norms). For the sake of readability, in this last qualitative discussion, we omit from the
figure the standard error of the mean values.

ns compliant ns violating

nd compliant nd violating nd compliant nd violating

o
b
je
ct
iv
es

positive 689.8 8.9 34.08 0.08

negative 687.95 19.63 59.58 1.41

(a)

ns compliant ns violating

nd compliant nd violating nd compliant nd violating

o
b
je
ct
iv
es

positive 640.52 11.24 64.37 16.73

negative 207.39 29.53 220.57 311.08

(b)

ns compliant ns violating

nd compliant nd violating nd compliant nd violating

o
b
je
ct
iv
es

positive 694.55 0.45 21.47 16.39

negative 355.45 2.36 101.28 309.48

(c)

Figure 9: Confusion matrices for the classification of the 1,500 traces with the (a) the
original norms, (ii) the revised norms obtained in the independent experiment, and (iii) the
revised norms obtained in the combined experiment. The values in the matrices are the
mean values for the 100 different norms.

Figure 9a highlights how the original norms, on average, fully correctly classify almost all
the positive traces (top left value), while they fully wrongly classify almost all the negative
traces (bottom left value). This shows that the original norms (both of them) are generally
too weak and too many negative behaviors are classified as norm-compliant. Comparing the
matrices in Figure 9b and Figure 9c, we find a confirmation of the above discussion. Both

32

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

the independent and combined approaches improve the alignment of the norms with the
MAS objectives, reducing the fully wrongly classified negative traces (bottom left value)
and improving the fully correctly classified negative traces (bottom right value). With
the independent revision, however, we observe a lower number of fully correctly classified
positive traces (top left) and a higher number of partly correctly classified traces (the
four central values). With the combined revision, instead, there is a higher number of fully
correctly classified positive traces, and, while the number of fully wrongly classified negative
traces is higher than with the independent approach, the revised norms have lower number
of partly correctly classified traces (compare the four central values of the two matrices).

The results of this section show that the accuracy of the norms improves after revising
them via DDNR, and confirms hypothesis H2.1. In all cases, as we have seen comparing
Figure 7 with Figure 6, accuracy provides a useful filter to select, from the set of possible
norms generated in the synthesis step, those that are better aligned with the MAS objectives,
while discarding the ones with strong side effects. Similar results are obtained for multiple
norms. These results show that the norms revised with DDNR are significantly better
aligned with the MAS objectives on the given data sets than the original ones. Even
though the accuracy improves significantly, in some cases it is not perfect. We will discuss
further this aspect in Section 5.

4.4 How does DDNR generalize to previously unseen traces? (RQ3)

So far, we did not discuss the case when the data set Γ is not a complete sample of all
possible traces. To answer RQ3, which concerns the generality of the norms obtained with
DDNR, we perform two experiments. In the first experiment (75-25 splitting), we use a
standard (machine learning) splitting technique: we take the 100 data sets obtained for
RQ1 and we split each of them in a training and a test set, composed of 75% and 25% of
the traces in the data set, respectively. In the second experiment (Independent test set),
we use the full data sets as training sets, and a new set of traces (obtained by running
the highway simulation with no norm enforced) as test set. In both experiments, we apply
DDNR on the training set, as done per RQ2. This time, however, we compare the accuracy
of the original norm and the revised one on the test set. We hypothesise that:

H3.1. The accuracy of the revised norms is higher than the accuracy of the original norms
on previously unseen traces.

We focus only on alteration again for brevity, and include analogous results for weakening
and strengthening in the online appendix. Table 7 reports the results for both experiments.

75-25% splitting. First, on the training set the revised norms have significantly higher
accuracy than the original ones, in line with the results obtained for RQ2 (compare the
values here with the values for alteration in Figure 8). Analogous results are obtained also
on the test set, composed of previously unseen traces: while the original norms have an
average accuracy of about 53%, the revised norms have an accuracy of about 78%. This
confirms hypothesis HP3.1 in the case of 75-25% splitting. Comparing the accuracy of
the revised norms on the training and test set, we notice that the accuracy is identical on
average, showing that the revised norms seem to generalize well also to previously unseen
traces. Since we split the original data sets, however, the test sets traces (although unseen

33

Dell’Anna et al.

Table 7: Statistics about the accuracy of the original and revised (altered) norms on the
training and test sets. In 75-25 splitting, the training and test sets are composed, respec-
tively, by 75% and 25% of the traces in the original data sets. In Independent test set, the
training set is the full set of traces in the original data sets, and the test set is an indepen-
dent set of traces obtained running the simulation with no norm enforced.

75-25 splitting Independent test set

Training set Test set Training set Test set

Norms Original Revised Original Revised Original Revised Original Revised

M 0.54 0.78 0.53 0.78 0.54 0.78 0.50 0.59
SD 0.22 0.15 0.22 0.15 0.22 0.15 0.25 0.21
Min 0.11 0.52 0.08 0.49 0.11 0.51 0.11 0.12
Q1 0.48 0.63 0.50 0.63 0.49 0.63 0.35 0.38
Q2 0.62 0.76 0.61 0.77 0.62 0.75 0.61 0.62
Q3 0.64 0.89 0.64 0.90 0.63 0.89 0.64 0.75
Max 0.89 1.00 0.87 1.00 0.89 1.00 0.90 0.90

during the revision process) are not completely independent from the traces composing the
training sets, for they are both obtained by monitoring the behavior of the agents under
the enforcement of the same original norms.

Independent test set. When we compare the difference in the accuracy of the revised
norms on the training and test set, we observe that the accuracy is about 19% lower on
the test set (dCohen = 1.041). This shows a certain, expected, degree of overfitting to the
training set16. However, the revised norms are still better aligned than the original norms
also on the previously unseen traces composing the test set: while the original norms have
an average accuracy of about 50%, the accuracy of the revised norms is about 9% higher
(corresponding to a small increase dCohen = 0.39). This confirms hypothesis HP3.1 also in
the case of independent data.

The results of this section show that the revised norms are better aligned with the
MAS objectives than the original norms, and they also appear to generalize better than the
original norms on previously unseen traces, confirming the hypothesis H3.1.

5. Discussion and Limitations

In this section, we discuss some of the most important aspects that characterize DDNR and
some of its limitations.

Perfect accuracy. From the experiments reported in Section 4 (e.g., see Table 7), we
note that even though on average the accuracy of the revised norms is higher than the
accuracy of the original ones, DDNR sometimes fails to obtain perfect accuracy. This is
due to two reasons: (i) the impossibility of approximating perfectly the MAS objectives by
means of conditional norms, (ii) the types of norms that can be synthesised by means of
our revision operations. We briefly discuss these two reasons.

16. We do not discuss them here, but in order to mitigate the effect of overfitting, different techniques, such
as cross-validation techniques (Kohavi, 1995), can be employed while the training of a model (in our
case, during the revision process).

34

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

One or more conditional norms may not be sufficiently expressive to perfectly charac-
terize the MAS objectives. In our simple highway scenario, for example, we are trying to
align (a) one norm concerning the speed limit of the vehicles in the highway section with
(b) MAS objectives concerning a combination of travel time and CO2 emissions. Regulating
only the speed of the cars (and doing it only with one norm), obviously, may not always
be sufficient to achieve any possible objective. For example, the CO2 emitted by a vehicle
does not only depend on its speed but also on its acceleration. Norms regulating only the
speed of the vehicles may not be sufficient, therefore, to fully characterize (and achieve) the
MAS objectives. In this paper, we discussed how to revise a given set of norms w.r.t. a
certain data set of traces. If the considered types of norms (e.g., speed related norms) are
not expressive enough to fully characterize the MAS objectives (e.g., objectives related to
both CO2 and throughput at the same time), it is possible that no norm expressible in the
given language can achieve perfect accuracy on a data set of traces.

The second reason why perfect alignment is not always reached concerns the types of
norms that can be synthesised w.r.t. a given data set. DDNR heuristically determines
approximate norm revisions as a more practical solution than exhaustively searching the
space of all possible norms, which is intractable (Dell’Anna et al., 2022b). To do so, as seen
in Section 3, Algorithms MoreSpec and LessSpec rely on the following two aspects.

(A) The propositions that are true in the states of traces in the data set (e.g., the states
CS or CPS defined in Section 3). If the data set is not informative enough, the revised
norms produced by our algorithms, which rely on the given data, may not contain a new
norm that is perfectly aligned with the MAS objectives. Consider an example where the
data set contains no norm-violating traces (e.g., if the data set is generated by monitoring
the enforcement of a very strict speed limit that forces all agents to go very slowly). In such
a case, the data set only provides evidence about TP and FP traces. Moreover, if a traffic
jam is caused by all the agents going very slowly, most likely all the traces will be labeled
as negative w.r.t. the MAS objectives, thus the data set would actually provide evidence
only about FP traces. With this type of data set, DDNR will likely result in norms that
are not better aligned with the MAS objectives than the original ones. In the example,
by considering only data about norm-compliant traces, DDNR will be able to synthesise
only stricter norms. The MAS designer might be required instead to weaken the speed
limit, thereby allowing more vehicles to speed up. Generally, in order to retrieve sufficient
information to produce meaningful revisions, it might be necessary to collect data about
the behavior of the agents under the enforcement of different (and possibly no) norms.
Potentially, data collection can be performed in an iterative and continuous fashion (i.e., by
iteratively applying DDNR after collecting data from the enforcement of the revised norms),
and the decision about how to revise a norm in a given iteration (e.g., whether to weaken
it, alter it or strengthen it) might follow from strategies that reflect the current state of the
system w.r.t. the achievement of the MAS objectives (e.g., in line with the considerations
reported by Dell’Anna et al., 2020). These aspects, which are important for an automated
run-time revision of norms, belong to our future work.

(B) The function buildConj. As mentioned in Section 4.1, in our experiments, we
bounded the number of propositions to be considered during the synthesis step. In par-
ticular, we selected a limited number of higher or lower speeds for the prohibited state,
and positions for the condition and deadline. Consider, as an example, an original norm

35

Dell’Anna et al.

prohibiting vehicles from having a speed higher than 10 km/h. When generating more
specific speed limits, we limited the maximum number of more specific speed limits to 8
(for example the speeds 11, 15, 16, 20, . . . , 24). For instance, if the MAS objectives are not
achieved when a vehicle is speeding over 40 km/h, but they are achieved when a vehicle
is having a speed of 30 km/h, due to the limitations imposed to the function buildConj
aimed at bounding the complexity of the algorithm, we may not generate a new norm that
perfectly distinguishes the negative and positive traces. One way to try to mitigate this
effect is by revising one norm multiple times. By doing so, we may be able to correct some
additional (possibly new, in case of alteration) errors that could not be captured only with
one revision, like in the example above. Starting from an original norm n, we can alter
it into a new norm n′ and then we can alter n′ into a further alteration n′′, etc.. In our
experiments, however, this strategy did not lead to any further improvement of accuracy.

Labeling of traces. We assumed that it is possible to determine for every trace a label
based on whether it contributes or not to the achievement of the MAS objectives. While this
assumption is realistic in a number of contexts and types of MAS objectives, as discussed
in Section 2, the labeling of an individual trace w.r.t. the MAS objectives is not always
deterministic. For example, if the MAS objective is to avoid traffic jams, the presence of a
traffic jam, which is a property of the whole system, cannot be determined for an individual
trace. In some cases, therefore, the MAS objectives may concern aggregate data (i.e., sets of
behaviors all together), or their evaluation can be obtained only with a lower frequency than
the rate at which the traces are obtained (e.g., if the MAS objectives concern user feedback
that is obtained every few weeks or months). While this is a current limitation of our
approach, we believe that DDNR can be used also for traces that are non-deterministically
labeled by the MAS objectives evaluator, where different instances of the same trace can
have a different label and belong to both the positive and the negative classes. This does
not affect the revision operations, as the operations do not depend on the MAS objectives
(e.g., to make the condition of a norm more specific, we consider the traces that violate the
norm, regardless of their classification according to the MAS objectives). Once the set of
possible norms is synthesized, the final norm is chosen based on statistical measures, which
can be calculated also on a data set that is non-deterministically labeled, as it is typically
done in automated classification.

We leave experimental studies about non-deterministic labeling for future work. As
an illustrative example, however, consider a data set containing, among other traces, ten
instances of a trace t describing a certain behavior of a truck in the highway. Suppose
that such a trace is labeled nine times as positive by the MAS objectives evaluator and one
time as negative. This could happen, for instance, if the MAS objective is to avoid traffic
jams, and the behavior of the truck described by t was observed only one time out of 10
during a traffic jam, i.e., the behavior does not highly correlate with a traffic jam. In the
synthesis step, t is used to synthesize candidate revisions of a norm n. In the selection step,
if one of the candidate revisions, let it be n′, prohibits trace t, n′ will result in one TN,
but also in nine FN. Norm n′ will therefore have a low accuracy (at least for what concerns
trace t, since it prohibits a behavior that is not highly correlated with traffic jams), and
other norms may be preferred to n′, thereby taking into account the rationale behind the
non-deterministic labeling.

36

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

Norms and language. The current proposal only supports conditional prohibitions with
deadlines, with components expressed as propositional formulas in DNF. While these norms
allow to describe temporal patterns of behaviors, their expressiveness might not be sufficient
in every domain to characterized the behaviors to regulate. The general methodology
for data-driven norm revision described in this paper (i.e., first synthesise then select via
statistical measures w.r.t. the available data) is applicable regardless of the type of norms.
However, the synthesis step of DDNR depends on the specific type of norms considered. To
support different types of norms, changes are necessary to Algorithms 1 and 2, which assume
formulas expressed in DNF with no negation, and to Algorithm 3, which extracts states from
the data set of traces based on the semantics of conditional norms (e.g., see the patterns
of states described in Figure 3a). Extending DDNR to conditional obligations should be
straightforward, due to their duality with prohibitions (Alechina et al., 2014). Different
synthesis operators should be defined, however, for other types of norms (e.g., prohibitions
or obligations defined in more complex modal logics). Defining similar operations for more
complex languages than that used in this paper is subject of future research.

Similarly, another limitation of the norms that we considered is that they do not dis-
tinguish multiple violations in a trace, i.e., a trace is either classified as compliant (when
the norm is never violated in the trace) or violating (if at least one violation occurs). This
aspect might be limiting in some contexts. Moreover, we assume that a trace can be given
a boolean evaluation also w.r.t. the MAS objectives. Generally speaking, however, a trace
can have degrees of alignment with the MAS objectives. To support a more fine-graded
evaluation of traces, it is necessary to consider a number of aspects that we did not address
in this paper, including the distinction between multiple violations of a norm in a trace, the
attribution of a compliance score (or violation score) to the traces, and the selection of the
revised norms based on metrics, different from accuracy, that are appropriate to non-binary
classification problems (e.g., the Mean Squared Error).

6. Related Work

In the MASs literature, norms have been proposed as a way to regulate the behavior of
the agents in order to achieve system-level properties without limiting the autonomy of the
agents (Alechina et al., 2015;Vázquez-Salceda et al., 2008).

A variety of formal approaches have been proposed for proving the correctness of nor-
mative systems by checking formulas that describe properties of a MAS, such as live-
ness or safety, against a model of the MAS (Alechina et al., 2013;Knobbout & Dastani,
2012;Wooldridge & van der Hoek, 2005;Ågotnes et al., 2007). These solutions are extremely
useful for the design-time construction of robust normative MASs. However, they rely on
the availability of a formal modeling and representation of the MAS, often feasible only
for simple and relatively static systems. Shoham and Tennenholtz (1995) (see also Fitoussi
& Tennenholtz, 2000), for example, consider the problem of synthesising a social law that
constrains the behavior of the agents in a MAS so as to ensure that agents in a focal state
are always able to reach another focal state no matter what the other agents in the system
do. They show that synthesising a useful social law is NP-complete. van der Hoek et al.
(2007) recast the problem of synthesising a social law as an ATL model checking problem.
The authors show that the problem of whether there exists a social law satisfying an objec-

37

Dell’Anna et al.

tive expressed as an arbitrary ATL formula (feasibility) is NP-complete, while for objectives
expressed as propositional formulae, feasibility (and synthesis) is decidable in polynomial
time. Model checking, moreover, cannot fully cope with the runtime unpredictability of the
system that stems from the autonomy and heterogeneity of the agents, like in the case of
open MAS, where the MAS designers have no complete knowledge of the (internals of the)
agents that will join the system (Artikis & Pitt, 2001). Fixed normative systems, therefore,
cannot generally perform well in any kind of runtime situation (Miralles et al., 2013). As
a consequence, the synthesis and revision of norms have gained attention over the years,
and it has been approached from different points of view (Sims et al., 2008;Kota et al.,
2008;Savarimuthu & Cranefield, 2011;Airiau et al., 2014).

In the following, we briefly overview work in the literature that most relates to ours,
highlighting the major distinctions of our proposal from the existing solutions.

Alechina et al. (2014), introduce the concept of norm approximation in the context of
imperfect monitors, i.e. monitors that cannot perfectly detect violations of a norm, but can
detect violations of an imperfect representation of the norm. The authors illustrate how
to synthesise a norm to approximate an original norm in order to maximize the number
of violations that an imperfect monitor can detect. Although presented with a different
goal in mind, this work inspires our paper. In this work, however, we assume perfectly
monitorable norms, and we focus on the synthesis of norms that are better aligned with the
MAS objectives with respect to execution traces by using a data-driven approach.

Miralles et al. (2013) present a framework for the adaptation of MAS regulations at
runtime similar to ours. They consider norms expressed via norm patterns (i.e., IF-THEN
rules associated with constraints on the operators and on the values that the norm com-
ponents can take). The authors describe an adaptation mechanism based on Case-Based
Reasoning. The authors propose a framework where norm adaptation is performed at run-
time first individually by a number of assistant agents and then, via a voting mechanism, a
final adaptation is approved. The decision on how to adapt norms is taken based on similar
previously seen cases. On the same lines, Dell’Anna et al. (2020) propose a framework for
the runtime selection of alternative norms based on Bayesian Networks trained with runtime
data to capture the corelation between the enforcement of norms and the achievement of
systems objectives. The authors illustrate how to revise the sanctions of norms based on
the learned knowledge and on information about the agents preferences.

These approaches, which tackle a problem analogous to ours, make a number of as-
sumptions about the agents participating in the MAS, and about their internals. In partic-
ular, Dell’Anna et al. (2020) assume knowledge about the preferences of the agents, while
Miralles et al. (2013) assume that some agents with specific reasoning, monitoring, and
communication capabilities can be placed in the MAS. In our work, we relax such assump-
tions: our proposal treats agents in the MAS as black boxes, and DDNR exclusively relies
on collected execution data.

Corapi et al. (2011) and Athakravi et al. (2012) discuss the application of Inductive
Logic Programming (ILP) (Lavrac & Dzeroski, 1994) to norm synthesis and norm revision.
In their work, the desired properties of the system are described through use cases (event
traces associated to a desired outcome state). Given the use cases, the authors propose
to use ILP to revise the current norms so to satisfy the use-cases. In such approach,
norms and desired outcome are strictly coupled: the desired outcomes of execution traces

38

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

are expressed in the same language of the norms and, therefore, are directly enforceable.
In our approach we consider a type of desired MAS objectives that cannot be directly
enforced, and we use norms as a means to achieve such objectives (e.g., a speed limit norm
is a means to achieve vehicles’ safety, but it is not possible to directly enforce safety on
vehicles: “no accidents should occur” is not directly enforceable on drivers). In our work,
the only knowledge of the MAS objectives available to the revision mechanism is a given
boolean labeling of the execution traces. The causal relation between norms and MAS
objectives is not given. Because we do not assume that the underlying causal structure
of the domain is known to our revision mechanism, we are unable to generate provably
correct norm revisions as in ILP-based approaches like (Corapi et al., 2011) and related
ones (Katzouris et al., 2015;Muggleton et al., 2014). This is why we use statistical analysis
to drive the revision of norms. Our approach and ILP-based approaches, can therefore
be seen as representing different trade-offs between the amount of background knowledge
assumed about the possible causes of norm violations, and the guarantees that can be given
regarding a particular (candidate) revision.

Lion (Morales et al., 2015) is an algorithm for the synthesis of liberal normative sys-
tems, i.e., an algorithm that synthesises norms trying to set as few constraints as possible
on the agents’ actions. To guide the synthesis process, the authors make use of a norma-
tive network: a graph structure that characterizes the generalization relationship between
different norms. They use such graph to synthesise more general, that is more liberal,
norms when possible. The norms synthesised by Lion are so-called action-based norms,
which prohibit agents from performing actions in certain states (Alechina et al., 2018). In
our work, we focus on the problem of revising conditional norms with deadlines, which are
behavior-based, or path-based, norms, prohibiting agents from exhibiting certain behaviors.
Furthermore, differently from Lion, where the norms are synthesised so to achieve certain
properties of the normative systems (such as its liberality), our norm revision is meant to
align the enforced norms with MAS objectives, which are properties that are desired from
the behavior of the MAS. We consider the liberality aspects of the norms an interesting
possible extension of our work that could be integrated as a criterion when selecting a new
norm among the possible revisions in the selection step.

The concept of generalization of a norm described by Morales et al. (2015) also relates
to our operations of weakening and strengthening of a norm. Weakening a norm generates
more general norms, while strengthening generates more specialized ones. Similar operations
have been described also in the software engineering literature, for example by Kafali et al.
(2017) who define design patterns for the iterative revision and verification of a specification,
a work which was later extended in DESEN (Kafali et al., 2020) to encompass also socio-
technical systems. We propose a data-driven approach to perform similar operations for
conditional norms with deadlines.

Game theoretic concepts have been employed to guide norm synthesis. Perelli (2019),
for example, show that the synthesis of dynamic norms for LTL objectives and Nash equilib-
ria is 2EXPTIME-complete when considering the existence of a Nash equilibrium satisfying
the objective, and in 3EXPTIME for enforcing all Nash equilibria to satisfy the objec-
tive. Morales et al. (2017) introduce a control loop which includes game recognition, payoff
learning, and norm replication. Unlike us, they focus on the goals of the individual agents.
In our setting, instead, we concentrate on objectives of the MAS, which may differ and

39

Dell’Anna et al.

conflict with the goals of the individual agents. Similarly, Mahmoud et al. (2018) propose
an algorithm for mining regulative norms that identifies recommendations, obligations, and
prohibitions by analyzing events that trigger rewards and penalties. They focus on agents
joining an open MAS who have to learn the unstated norms; we, instead, study how to alter
existing norms from the point of view of a centralized authority that is exogenous to the
agents. Bulling and Dastani (2016) have used concurrent game structures to illustrate how
the enforcement of norms can change agent behavior via regimentation and sanctions. Their
work shows the high computational complexity of reaching a Nash equilibrium mapping,
thereby motivating our data-driven (approximate) revision mechanism. Related to game
theoretical settings, where typically norm regimentation is considered, Christelis and Rovat-
sos (2009) devise algorithms that introduce prohibitions in a MAS by setting preconditions
to the actions the agents can perform in a regimentation setting. In our work, differently
from the works mentioned above, we do not explicitly consider a game theoretical setting
and we do not assume that regimentation is available.

Finally, our work is influenced by research on norm change, including logics for norm
change (Knobbout et al., 2016;Aucher et al., 2009), the study of the legal effects of norm
change, analyzed and formalized by Governatori and Rotolo (2010), and the contextualiza-
tion of norms (Jiang et al., 2012), which studies how to refine norms to make them suitable
for specific contexts. In our framework, this corresponds to modifying the detachment
condition and the deadline of the norms.

7. Conclusions and Future Work

We investigated the problem of norm revision in contexts where the internals of the agents in
a MAS are unknown and where norms are expressed in a different language from that of the
MAS objectives that they intend to bring about. In such setting, explicit knowledge about
the relationship between the enforced norms, the agents’ behavior and the MAS objectives
is not given, and a norm revision mechanism can solely rely on the monitored system’s
execution. We presented results regarding the revision of conditional norms (prohibitions)
with deadlines w.r.t. a set of observed traces representing the behavior of the agents in
the MAS. The traces are partitioned into positive and negative ones, depending on whether
each helps or hurts MAS objectives. Besides a boolean evaluation, the revision mechanism
possesses no information about the relationship between a trace and the objectives. We
proposed DDNR (Data-Driven Norm Revision): a practical heuristic approach to obtain
approximate revisions of the conditional norms.

DDNR consists of two steps: the synthesis step and the selection step. The synthesis
step generates a set of candidate new norms by revising the original norms based on the
given data set of execution traces. The selection step selects the final norms from the
synthesised set. In doing so, a norm is interpreted as a binary classifier distinguishing
norm-compliant and norm-violating execution traces. Statistical metrics, such as accuracy,
are used to evaluate and select the best norm among the possible candidates w.r.t. the
classification of the traces provided by the MAS objectives. We applied DDNR to a traffic
simulation, and we studied the accuracy of the revised norms. Results show that the revised
norms are significantly more accurate (aligned with the MAS objectives) than the original

40

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

norms, exhibiting an average improvement of accuracy on the given data set of traces of
about 30% and an average improvement of accuracy of about 13% on unseen traces.

In future work, we intend to embed DDNR in the runtime supervision framework pre-
sented in earlier work (Dell’Anna et al., 2019,2020) that continuously monitors the system’s
execution and, based on probabilistic strategies, suggests how to revise the norms (i.e.,
whether to alter, weaken or strengthen them) to continuously guarantee the achievement
of the MAS objectives. We intend to consider a more complex case study and to extend
our work with a number of additional aspects (e.g., the importance of the different norms,
their mutual constraints, their conflicts, properties, synergies, etc.) that would offer a more
realistic image of the complexity of enforcing multiple norms in a MAS. Incorporating a
degree of norm violation, and altering the sanctions used to enforce the norms, is another
interesting extension of this work. Empirical evaluation on multiple cases in different do-
mains is also necessary to identify algorithms that perform well in different types of MAS.
In the same direction, we intend to assess the robustness of the proposed approach to noise
in data. Finally, in defining the norm revision operations, we treated any state and any
proposition as equally important. In some cases, however, certain states or propositions
may be more important than others and, in revising norms, one would expect to be able
to consider such aspect. This is another future direction of our work. Similarly, the study
here reported focused on a single MAS objective and on a boolean evaluation of such an
objective. In future work, we also intend to extend the proposal to multiple labels, thereby
supporting multiple objectives, and to more fine-grained evaluations (as opposed to the
considered boolean evaluation) of the traces with respect to the objectives.

References

Ågotnes, T., van der Hoek, W., Rodŕıguez-Aguilar, J. A., Sierra, C., & Wooldridge, M. J.
(2007). On the logic of normative systems. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence, IJCAI 2007, pp. 1175–1180.

Airiau, S., Sen, S., & Villatoro, D. (2014). Emergence of conventions through social learning.
Autonomous Agents and Multi-Agent Systems, 28 (5), 779–804.

Alechina, N., Bulling, N., Dastani, M., & Logan, B. (2015). Practical run-time norm enforce-
ment with bounded lookahead. In Proceedings of the 14th International Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2015, pp. 443–451. ACM.

Alechina, N., Dastani, M., & Logan, B. (2013). Reasoning about normative update. In Pro-
ceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI
2013, pp. 20–26.

Alechina, N., Dastani, M., & Logan, B. (2014). Norm approximation for imperfect monitors.
In Proceedings of the 13th International conference on Autonomous Agents and Multi-
Agent Systems, AAMAS 2014, pp. 117–124.

Alechina, N., Logan, B., & Dastani, M. (2018). Modeling norm specification and verification
in multiagent systems. IfCoLog Journal of Logics and their Applications, FLAP, 5 (2),
457–490.

41

Dell’Anna et al.

Artikis, A., & Pitt, J. (2001). A formal model of open agent societies. In Proceedings of the
Fifth International Conference on Autonomous Agents, AGENTS 2001, pp. 192–193.

Athakravi, D., Corapi, D., Russo, A., Vos, M. D., Padget, J. A., & Satoh, K. (2012).
Handling change in normative specifications. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2012, pp. 1369–
1370.

Aucher, G., Grossi, D., Herzig, A., & Lorini, E. (2009). Dynamic context logic. In Pro-
ceedings of the Second International Workshop on Logic, Rationality, and Interaction,
LORI 2009, Vol. 5834, pp. 15–26.

Bicchieri, C. (2005). The grammar of society: The nature and dynamics of social norms.
Cambridge University Press.

Boella, G., & van der Torre, L. W. N. (2004). Regulative and constitutive norms in nor-
mative multiagent systems. In Proceedings of the Ninth International Conference on
Principles of Knowledge Representation and Reasoning, KR 2004, pp. 255–266.

Broersen, J. M., Dastani, M., Hulstijn, J., Huang, Z., & van der Torre, L. W. N. (2001).
The BOID architecture: conflicts between beliefs, obligations, intentions and desires.
In André, E., Sen, S., Frasson, C., & Müller, J. P. (Eds.), Proceedings of the Fifth
International Conference on Autonomous Agents, AGENTS, pp. 9–16.

Bulling, N., & Dastani, M. (2016). Norm-based mechanism design. Artificial Intelligence,
239, 97–142.

Chopra, A., van der Torre, L., Verhagen, H., & Villata, S. (Eds.). (2018). Handbook of
Multiagent Systems. College Publications, London.

Christelis, G., & Rovatsos, M. (2009). Automated norm synthesis in an agent-based planning
environment. In Proceedings of the 8th International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2009, pp. 161–168.

Cohen, B. H. (2008). Explaining psychological statistics. John Wiley & Sons.

Cohen, J. (1968). Weighted kappa: nominal scale agreement provision for scaled disagree-
ment or partial credit. Psychological bulletin, 70 (4), 213.

Corapi, D., Russo, A., Vos, M. D., Padget, J. A., & Satoh, K. (2011). Normative design
using inductive learning. Theory and Practice of Logic Programming, TPLP, 11 (4-5),
783–799.

Dastani, M., Grossi, D., Meyer, J. C., & Tinnemeier, N. A. M. (2009). Normative multi-agent
programs and their logics. In Normative Multi-Agent Systems, 15.03. - 20.03.2009,
Vol. 09121 of Dagstuhl Seminar Proceedings. Schloss Dagstuhl.

Dell’Anna, D., Alechina, N., Dalpiaz, F., Dastani, M., & Logan, B. (2022a). Supplementary
Material for “Data-Driven Revision of Conditional Norms in Multi-Agent Systems”.
Zenodo. https://doi.org/10.5281/zenodo.5907522.

Dell’Anna, D., Alechina, N., Logan, B., Löffler, M., Dalpiaz, F., & Dastani, M. (2022b).
The complexity of norm synthesis and revision. In Proceedings of the 15th Interna-
tional Workshop on Coordination, Organizations, Institutions, Norms, and Ethics for
Governance of Multi-Agent Systems, COINE@AAMAS 2022.

42

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

Dell’Anna, D., Dastani, M., & Dalpiaz, F. (2019). Runtime revision of norms and sanctions
based on agent preferences. In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2019, pp. 1609–1617.

Dell’Anna, D., Dastani, M., & Dalpiaz, F. (2020). Runtime revision of sanctions in normative
multi-agent systems. Autonomous Agents and Multi-Agent Systems, 34 (2), 1–54.

Fitoussi, D., & Tennenholtz, M. (2000). Choosing social laws for multi-agent systems:
Minimality and simplicity. Artificial Intelligence, 119 (1), 61–101.

Governatori, G., & Rotolo, A. (2010). Changing legal systems: legal abrogations and an-
nulments in defeasible logic. Logic Journal of the IGPL, 18 (1), 157–194.

Jiang, J., Aldewereld, H., Dignum, V., & Tan, Y. (2012). Norm contextualization. In
Proceedings of the 14th International Workshop on Coordination, Organizations, In-
stitutions, and Norms in Agent Systems, COIN 2012, pp. 141–157.

Kafali, Ö., Ajmeri, N., & Singh, M. P. (2017). Kont: Computing tradeoffs in normative mul-
tiagent systems. In Proceedings of the 31st AAAI Conference on Artificial Intelligence,
pp. 3006–3012.

Kafali, Ö., Ajmeri, N., & Singh, M. P. (2020). DESEN: specification of sociotechnical
systems via patterns of regulation and control. ACM Transactions on Software Engi-
neering and Methodology, 29 (1), 7:1–7:50.

Katzouris, N., Artikis, A., & Paliouras, G. (2015). Incremental learning of event definitions
with inductive logic programming. Machine Learning, 100 (2), 555–585.

Knobbout, M., & Dastani, M. (2012). Reasoning under compliance assumptions in nor-
mative multiagent systems. In Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2012, pp. 331–340.

Knobbout, M., Dastani, M., & Meyer, J. C. (2016). A dynamic logic of norm change. In
Proceedings of the 22nd European Conference on Artificial Intelligence, ECAI 2016,
Vol. 285, pp. 886–894.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and
model selection. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence, IJCAI 95, pp. 1137–1145.

Kota, R., Gibbins, N., & Jennings, N. R. (2008). Decentralised structural adaptation in
agent organisations. In Proceedings of the First International Workshop on Organized
Adaption in Multi-Agent Systems, OAMAS 2008, Vol. 5368, pp. 54–71.

Krajzewicz, D., Erdmann, J., Behrisch, M., & Bieker, L. (2012). Recent development and
applications of SUMO - Simulation of Urban MObility. International Journal On
Advances in Systems and Measurements, 5 (3&4), 128–138.

Lavrac, N., & Dzeroski, S. (1994). Inductive logic programming - techniques and applications.
Ellis Horwood series in artificial intelligence. Ellis Horwood.

Lorenz, R., Senoner, J., Sihn, W., & Netland, T. (2021). Using process mining to improve
productivity in make-to-stock manufacturing. International Journal of Production
Research, 1–12.

43

Dell’Anna et al.

Loreti, D., Chesani, F., Ciampolini, A., & Mello, P. (2020). Generating synthetic positive
and negative business process traces through abduction. Knowledge and Information
Systems, 62 (2), 813–839.

Mahmoud, M. A., Ahmad, M. S., Yusoff, M. Z. M., & Mostafa, S. A. (2018). A regulative
norms mining algorithm for complex adaptive system. In Proceedings of the Third
International Conference on Soft Computing and Data Mining, SCDM 2018, Vol.
700, pp. 213–224.

Miralles, J. C., López-Sánchez, M., Salamó, M., Avila, P., & Rodŕıguez-Aguilar, J. A.
(2013). Robust regulation adaptation in multi-agent systems. ACM Transactions
on Autonomous and Adaptive Systems, TAAS, 8 (3), 13:1–13:27.

Morales, J., López-Sánchez, M., Rodŕıguez-Aguilar, J. A., Wooldridge, M. J., & Vasconcelos,
W. W. (2015). Synthesising liberal normative systems. In Proceedings of the 14th
International Conference on Autonomous Agents and Multiagent Systems, AAMAS
2015, pp. 433–441.

Morales, J., Wooldridge, M., Rodŕıguez-Aguilar, J. A., & López-Sánchez, M. (2017). Evolu-
tionary synthesis of stable normative systems. In Proceedings of the 16th Conference
on Autonomous Agents and MultiAgent Systems, AAMAS 2017, pp. 1646–1648.

Muggleton, S. H., Lin, D., Pahlavi, N., & Tamaddoni-Nezhad, A. (2014). Meta-interpretive
learning: application to grammatical inference. Machine learning, 94 (1), 25–49.

Perelli, G. (2019). Enforcing Equilibria in Multi-Agent Systems. In Proceedings of the 18th
International Conference on Autonomous Agents and Multiagent Systems, AAMAS
2019, pp. 188–196.

Savarimuthu, B. T. R., & Cranefield, S. (2011). Norm creation, spreading and emergence:
A survey of simulation models of norms in multi-agent systems. Multiagent and Grid
Systems, 7 (1), 21–54.

Schapire, R. E., & Singer, Y. (2000). Boostexter: A boosting-based system for text catego-
rization. Machine learning, 39 (2-3), 135–168.

Shoham, Y., & Tennenholtz, M. (1995). On social laws for artificial agent societies: Off-line
design. Artificial intelligence, 73 (1-2), 231–252.

Sims, M., Corkill, D., & Lesser, V. (2008). Automated organization design for multi-agent
systems. Autonomous agents and multi-agent systems, 16 (2), 151–185.

Sorower, M. S. (2010). A literature survey on algorithms for multi-label learning. Oregon
State University, Corvallis, 18, 1–25.

Testerink, B., Dastani, M., & Bulling, N. (2016). Distributed controllers for norm enforce-
ment. In Proceedings of the 22nd European Conference on Artificial Intelligence, ECAI
2016, Vol. 285, pp. 751–759.

Tinnemeier, N. A. M., Dastani, M., Meyer, J. C., & van der Torre, L. W. N. (2009). Pro-
gramming normative artifacts with declarative obligations and prohibitions. In Pro-
ceedings of the 2009 IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, IAT 2009, pp. 145–152.

44

Data-Driven Revision of Conditional Norms in Multi-Agent Systems

van der Aalst, W. M. P. (2016). Process Mining - Data Science in Action, Second Edition.
Springer.

van der Hoek, W., Roberts, M., & Wooldridge, M. J. (2007). Social laws in alternating
time: effectiveness, feasibility, and synthesis. Synthese, 156 (1), 1–19.

Vázquez-Salceda, J., Aldewereld, H., Grossi, D., & Dignum, F. (2008). From human regu-
lations to regulated software agents’ behavior. Artificial Intelligence and Law, 16 (1),
73–87.

Wooldridge, M., & van der Hoek, W. (2005). On obligations and normative ability: Towards
a logical analysis of the social contract. Journal of Applied Logic, 3 (3), 396–420.

Wooldridge, M. J. (2009). An Introduction to MultiAgent Systems (2. ed.). Wiley.

45

	Introduction
	Norm Revision in Normative Multi-Agent Systems
	Agent Behavior and Conditional Norms
	Language of states, traces and norms
	Data Set and Classification of Traces
	Conditional Prohibitions

	DDNR: Data-Driven Norm Revision
	Data-Driven Procedures to Make a Formula More or Less Specific
	Revising the Norm: the Synthesis Step
	Choosing the New Norm: the Selection Step
	Multiple Norms
	Complexity of DDNR

	Empirical Evaluation
	Experimental Setting
	To what extent do the norms synthesised with algorithm Synthesis differ from the original norms with respect to the number of FP, FN, TP and TN traces? (RQ1)
	Is the accuracy of the norms revised with DDNR higher than the accuracy of the original norms? (RQ2)
	How does DDNR generalize to previously unseen traces? (RQ3)

	Discussion and Limitations
	Related Work
	Conclusions and Future Work
	References

